
maTLS: How to Make TLS middlebox-aware?

Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi,
Selin Chun, Taejoong Chung, Ted “Taekyoung” Kwon

Seoul National University, University of Luxembourg, Rochester Institute of Technology

2 / 82

Middleboxes

Client Server

3 / 82

Middleboxes

…

MiddleboxClient Server

• Web Application Firewalls
• Security Gateways
• Parental Controls

4 / 82

Middlebox

Middleboxes and Transport Layer Security

• Web Application Firewalls
• Security Gateways
• Parental Controls

…

Middlebox

Cannot work!

Client Server

5 / 82

Middlebox

Motivation for SplitTLS

Middlebox

To perform their functions
Middleboxes split the TLS session
• Private key sharing
• Custom root certificate

Client Server

6 / 82

Session and Segment

To perform their functions
Middleboxes split the TLS session
• Private key sharing
• Custom root certificate

Segment Segment

Session

MiddleboxClient Server

7 / 82

SplitTLS (1) Private Key Sharing

Certificate
CN: alice.com
Issuer: ca.com

MiddleboxClient Server

8 / 82

SplitTLS (1) Private Key Sharing

Certificate
CN: alice.com
Issuer: ca.com

Certificate
CN: alice.com
Issuer: ca.com

Server transfers
their private key and certificate

MiddleboxClient Server

9 / 82

SplitTLS (1) Private Key Sharing

Certificate
CN: alice.com
Issuer: ca.com

Certificate
CN: alice.com
Issuer: ca.com

Client initiates
a TLS handshake

MiddleboxClient Server

10 / 82

SplitTLS (1) Private Key Sharing

Certificate
CN: alice.com
Issuer: ca.com

Certificate
CN: alice.com
Issuer: ca.com

Middlebox initiates
another TLS handshake

MiddleboxClient Server

11 / 82

SplitTLS (1) Private Key Sharing

Certificate
CN: alice.com
Issuer: ca.com

Certificate
CN: alice.com
Issuer: ca.com

Middlebox impersonates Server with the tranferred key pair

MiddleboxClient Server

12 / 82

SplitTLS (1) Private Key Sharing

Certificate
CN: alice.com
Issuer: ca.com

Certificate
CN: alice.com
Issuer: ca.com

Client believes they have established a TLS session with Server, not Middlebox!

MiddleboxClient Server

13 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

14 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox installs
a root certificate in the client

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

15 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

Client initiates
a TLS handshake

16 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox initiates
another TLS handshake

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

17 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Forged
Certificate
CN: alice.com

Issuer: mitm.com Generate a forged certificate
with the name, alice.com

Sign!

Middlebox impersonates Server with the forged key pair

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

18 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Forged
Certificate
CN: alice.com

Issuer: mitm.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

19 / 82

SplitTLS (2) Custom Root Certificate

Certificate
CN: alice.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Forged
Certificate
CN: alice.com

Issuer: mitm.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

MiddleboxClient Server

Client believes they have established a TLS session with Server, not Middlebox!

20 / 82

Problems in SplitTLS

No information for Client

MiddleboxClient Server

21 / 82

Problems in SplitTLS - Authentication

alice.com alice.com

Authentication Client does not authenticate Server

MiddleboxClient Server

22 / 82

Problems in SplitTLS - Authentication

Expired
Certificate
CN: alice.com
Issuer: ca.com

Not Expired
Forged Certificate

CN: alice.com
Issuer: mitm.com

Authentication Client does not authenticate Server

MiddleboxClient Server

23 / 82

Not Expired
Forged Certificate

CN: alice.com
Issuer: mitm.com

Problems in SplitTLS - Authentication

Authentication Client does not authenticate Server

MiddleboxClient Server

Expired
Certificate
CN: alice.com
Issuer: ca.com

24 / 82

Problems in SplitTLS - Confidentiality

Authentication Client does not authenticate Server

Confidentiality

MiddleboxClient Server

Client does not know whether or not the segment is
encrypted with a strong ciphersuite

25 / 82

Problems in SplitTLS - Confidentiality

RC4 or SHA-1?

Authentication Client does not authenticate Server

Confidentiality

MiddleboxClient Server

Client does not know whether or not the segment is
encrypted with a strong ciphersuite

26 / 82

Problems in SplitTLS - Confidentiality

Authentication Client does not authenticate Server

Confidentiality

MiddleboxClient Server

RC4 or SHA-1?

Client does not know whether or not the segment is
encrypted with a strong ciphersuite

27 / 82

Problems in SplitTLS - Integrity

Authentication Client does not authenticate Server

Confidentiality

Integrity

MiddleboxClient Server

Client cannot confirm that Server sent the message,
or which middleboxes have modified it

Client does not know whether or not the segment is
encrypted with a strong ciphersuite

28 / 82

Problems in SplitTLS - Integrity

Middlebox inserts the unwanted script!

Authentication Client does not authenticate Server

Confidentiality

Integrity

MiddleboxClient Server

Client cannot confirm that Server sent the message,
or which middleboxes have modified it

Client does not know whether or not the segment is
encrypted with a strong ciphersuite

29 / 82

Problems in SplitTLS - Integrity

Authentication Client does not authenticate Server

Confidentiality

Integrity

Client believes Server sent

MiddleboxClient Server

Client cannot confirm that Server sent the message,
or which middleboxes have modified it

Client does not know whether or not the segment is
encrypted with a strong ciphersuite

30 / 82

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication Client can’t authenticate
Server Explicit Authentication

Confidentiality

Client can’t know if each of
the segments has been
encrypted with strong
ciphersuites

Security Parameter
Verification

Integrity
Client can’t confirm (1) who
actually sent the message (2)
if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes
as well as overcoming the challenges in SplitTLS

31 / 82

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication Client can’t authenticate
Server Explicit Authentication

Confidentiality

Client can’t know if each of
the segments has been
encrypted with strong
ciphersuites

Security Parameter
Verification

Integrity
Client can’t confirm (1) who
actually sent the message (2)
if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes
as well as overcoming the challenges in SplitTLS

32 / 82

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication Client can’t authenticate
Server Explicit Authentication

Confidentiality

Client can’t know if each of
the segments has been
encrypted with strong
ciphersuites

Security Parameter
Verification

Integrity
Client can’t confirm (1) who
actually sent the message (2)
if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes
as well as overcoming the challenges in SplitTLS

33 / 82

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication Client can’t authenticate
Server Explicit Authentication

Confidentiality

Client can’t know if each of
the segments has been
encrypted with strong
ciphersuites

Security Parameter
Verification

Integrity
Client can’t confirm (1) who
actually sent the message (2)
if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes
as well as overcoming the challenges in SplitTLS

34 / 82

Auditable Middleboxes

Certificate
Authority

Middlebox
Transparency
Log Server

Auditable Middleboxes

Middleboxes that have their own middlebox certificates
logged in a middlebox transparency log server

Middlebox
(mb.com)

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

35 / 82

Auditable Middleboxes

Certificate
Authority

Middlebox
Transparency
Log ServerMiddlebox

Certificate
CN: mb.com

Issuer: ca.com

Middlebox
(mb.com)

Information about Middlebox
• Type of Service
• URL
• Permission

36 / 82

Auditable Middleboxes

Certificate
Authority

Middlebox
Transparency
Log Server

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

Middlebox
(mb.com)

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

37 / 82

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

38 / 82

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Middleboxes now have their own key pairs and do not need to
impersonate others (in TLS)

39 / 82

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Anyone can know the name and properties of a middlebox from its
middlebox certificate

Middleboxes now have their own key pairs and do not need to
impersonate others (in TLS)

40 / 82

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Any interested parties can check for fraudulent certificates using the
middlebox transparency system

Anyone can know the name and properties of a middlebox from its
middlebox certificate

Middleboxes now have their own key pairs and do not need to
impersonate others (in TLS)

41 / 82

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability
Any incorrect middleboxes can be blocked following the certificate
revocation mechanisms (e.g., CRL or OCSP)

Any interested parties can check for fraudulent certificates using the
middlebox transparency system

Anyone can know the name and properties of a middlebox from its
middlebox certificate

Middleboxes now have their own key pairs and do not need to
impersonate others (in TLS)

42 / 82

MiddleboxClient Server

Security Goals of maTLS

Certificate
CN: alice.com

Issuer: ca2.com

Server Authentication

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Middlebox Authentication

Segment Secrecy
Individual Secrecy

Data Source Authentication
Modification Accountability

Path Integrity

43 / 82

Security Goals of maTLS - Authentication

Server Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

44 / 82

Security Goals of maTLS - Authentication

Server Authentication

Middlebox Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

45 / 82

Security Goals of maTLS - Authentication

Server Authentication

Middlebox Authentication
Explicit Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

46 / 82

Explicit Authentication

Certificate Blocks Each entity sends its certificate (with its signed certificate timestamp)

MiddleboxClient Server

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Certificate
CN: alice.com

Issuer: ca2.com

No impersonation

47 / 82

Security Goals of maTLS - Confidentiality

Segment Secrecy

High TLS version
with strong ciphersuite

High TLS version
with strong ciphersuite

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

48 / 82

Security Goals of maTLS - Confidentiality

Segment Secrecy

Individual Secrecy

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

49 / 82

Security Goals of maTLS - Confidentiality

Segment Secrecy

Individual Secrecy

Security Parameter
Verification

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

50 / 82

MiddleboxClient Server

Security Parameter Verification

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Security
Parameter Blocks Each entity describes information about its related segment(s)

51 / 82

MiddleboxClient Server

Security Parameter Verification

Version: TLS 1.3
Ciphersuite:
AEAD-AES256-

SHA256
Transcript of Handshake
Hash of Master Secret

Security
Parameter Blocks Each entity describes information about its related segment(s)

TLS version
Ciphersuite

Transcript of Handshake
Hash of Master Secret

Segment Secrecy

Individual Secrecy

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

52 / 82

MiddleboxClient Server

Security Parameter Verification

Security
Parameter Blocks Each entity describes information about its related segment(s)

Version,
Ciphersuite,

…

TLS version
Ciphersuite

Transcript of Handshake
Hash of Master Secret

Segment Secrecy

Individual Secrecy

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

No low TLS versions and weak ciphersuites

Report

53 / 82

MiddleboxClient Server

Security Parameter Verification

Security
Parameter Blocks Each entity describes information about its related segment(s)

TLS version
Ciphersuite

Transcript of Handshake
Hash of Master Secret

Segment Secrecy

Individual Secrecy

No low TLS versions and weak ciphersuites

Report

Confirmation of different segment keys

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

54 / 82

Security Goals of maTLS - Integrity

Data Source Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com
The message is

from Server

55 / 82

Security Goals of maTLS - Integrity

Data Source Authentication

Modification Accountability

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com
The message has been

modified by Middlebox

56 / 82

Security Goals of maTLS - Integrity

Data Source Authentication

Modification Accountability

Path Integrity

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com
The message has passed

through the established order

57 / 82

Security Goals of maTLS - Integrity

Data Source Authentication

Modification Accountability Valid Modification
Checks

Path Integrity

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

58 / 82

MiddleboxClient Server

Valid Modification Checks

Modification Log
Blocks

Each entity describes information about its modification by using
HMAC (The HMAC key is called an accountability key)

!" !" !# !#

Message flow

ID: Server
Prior Hash: none
HMAC(none||H(!#))

! → !′ ID &(!) &)*+(& !′ ||& !)

* Optimization on a Modification Log is described in the paper

59 / 82

MiddleboxClient Server

Valid Modification Checks

Modification Log
Blocks

!" !" !# !#

Message flow

! → !′ ID &(!) &)*+(& !′ ||& !)

ID: Middlebox
Prior Hash: H(!#)
HMAC(H(!")||H(!#))

* Optimization on a Modification Log is described in the paper

Each entity describes information about its modification by using
HMAC (The HMAC key is called an accountability key)

ID: Server
Prior Hash: none
HMAC(H(!#)||none)

60 / 82

MiddleboxClient Server

Valid Modification Checks

Modification Log
Blocks

!" !" !# !#

Message flow

! → !′ ID &(!) &)*+(& !′ ||& !)

ID: Middlebox
Prior Hash: H(!#)
HMAC(H(!")||H(!#))

Confirmation of who sends and who modifies the message

Report

ID: Server
Prior Hash: none
HMAC(H(!#)||none)

* Optimization on a Modification Log is described in the paper

Each entity describes information about its modification by using
HMAC (The HMAC key is called an accountability key)

61 / 82

MiddleboxClient Server

Valid Modification Checks

Modification Log
Blocks

!" !" !# !#

Message flow

! → !′ ID &(!) &)*+(& !′ ||& !)

Confirmation of who sends and who modifies the message

Report

Confirmation of the order of middleboxes

ID: Middlebox
Prior Hash: H(!#)
HMAC(H(!")||H(!#))

ID: Server
Prior Hash: none
HMAC(H(!#)||none)

* Optimization on a Modification Log is described in the paper

Each entity describes information about its modification by using
HMAC (The HMAC key is called an accountability key)

62 / 82

Summary of Audit Mechanisms

Explicit
Authentication

Server Authentication
Middlebox Authentication

Server Certificate and
Middlebox Certificates

(with their signed
certificate timestamps)

63 / 82

Summary of Audit Mechanisms

Explicit
Authentication

Security Parameter
Verification

Server Authentication
Middlebox Authentication

Segment Secrecy
Individual Secrecy

Security Information
Blocks

Server Certificate and
Middlebox Certificates

(with their signed
certificate timestamps)

64 / 82

Summary of Audit Mechanisms

Explicit
Authentication

Security Parameter
Verification

Valid Modification
Checks

Server Authentication
Middlebox Authentication

Segment Secrecy
Individual Secrecy

Data Source Authentication
Modification Accountability

Path Integrity

Security Information
Blocks

Modification Log Blocks

Server Certificate and
Middlebox Certificates

(with their signed
certificate timestamps)

65 / 82

maTLS Handshake

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

66 / 82

maTLS Handshake

alice.com

ClientHello and ServerHello,

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

MATLS
alice.com
MATLS

67 / 82

maTLS Handshake

ClientHello and ServerHello,
Each segment negotiates its TLS version and ciphersuite
Each entity establishes HMAC keys (accountability keys)

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

MATLS MATLS

68 / 82

MiddleboxClient Server

maTLS Handshake

ClientHello and ServerHello,

Certificate, Explicit Authentication

Each segment negotiates its TLS version and ciphersuite
Each entity establishes HMAC keys (accountability keys)

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Certificate
CN: alice.com

Issuer: ca2.com

69 / 82

maTLS Handshake

ClientHello and ServerHello,

Certificate, Explicit Authentication

ServerKeyExchange and ClientKeyExchange,
Each segment establishes its master secret

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Each segment negotiates its TLS version and ciphersuite
Each entity establishes HMAC keys (accountability keys)

70 / 82

MiddleboxClient Server

maTLS Handshake

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Finished
Each segment confirms the transcript of their handshake

71 / 82

MiddleboxClient Server

maTLS Handshake

Finished

ExtendedFinished Security Parameter Verification

Each segment confirms the transcript of their handshake

Version: TLS 1.3
Ciphersuite:
AEAD-AES256-

SHA256
Transcript of Handshake
Hash of Master Secret

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

Version,
Ciphersuite,

…

72 / 82

MiddleboxClient Server

maTLS Record

!" !" !# !#

ID: Middlebox
Prior Hash: H(!")
HMAC(H(!#)||H(!"))

* Optimization on a Modification Log is described in the paper

Data Exchange Valid Modification Checks

Message flow

ID: Client
Prior Hash: none
HMAC(H(!")||none)

73 / 82

MiddleboxClient Server

maTLS Record

!"′ !"′ !$′ !$′

* Optimization on a Modification Log is described in the paper

Data Exchange Valid Modification Checks

Message flow

ID: Middlebox
Prior Hash: H(!$′)
HMAC(H(!"′)||H(!$′))

ID: Server
Prior Hash: none
HMAC(H(!$′)||none)

74 / 82

Security Verification

* The implementation can be found at https://github.com/middlebox-aware-tls/matls-tamarin.git

Security verification of maTLS through Tamarin

Dolev-Yao adversary
Can capture all the messages delivered on the air
Can insert/drop/alter/reorder messages
Can corrupt long-term keys

Seven lemmas (security goals in first-order logic)

Example of
Server Authentication

The result shows that the maTLS protocol is secure

75 / 82

Evaluation Setting

All the applications are implemented in C with OpenSSL (for maTLS)

Client Client-side
Middlebox

Server-side
Middlebox Server

Located in
Seoul National University

Located in
1) AWS Seoul (Intra-Country)
2) AWS Tokyo (Intra-Region)
3) AWS Virginia (Inter-Region)

* The implementation can be found at https://github.com/middlebox-aware-tls/matls-implementation.git

Server and Server-side Middlebox: Intel Xeon CPU E5-3676 at 2.40GHz with 1GB Memory

Client: Intel Broadwell CPU at 3.30GHz with 1GB Memory
Client-side Middlebox: Intel Core i7 at 2.30GHz with 1GB Memory

76 / 82

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

§ HTTP Load Time: The TLS handshake and the HTTP message exchange
(GET and RESPONSE)

§ Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

77 / 82

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

§ HTTP Load Time: The TLS handshake and the HTTP message exchange
(GET and RESPONSE)

§ Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

The maTLS protocol introduces a slight delay
(10.22ms – 32.52ms) compared to SplitTLS and mcTLS

78 / 82

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

§ HTTP Load Time: The TLS handshake and the HTTP message exchange
(GET and RESPONSE)

§ Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

Three schemes show similar delay time for
data transfer.

79 / 82

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

§ HTTP Load Time: The TLS handshake and the HTTP message exchange
(GET and RESPONSE)

§ Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

We conclude that the maTLS overhead is mainly
due to the setup of an maTLS session

80 / 82

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

§ HTTP Load Time: The TLS handshake and the HTTP message exchange
(GET and RESPONSE)

§ Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

Once the session is established,
maTLS provides similar performance to the others

while preserving all security merits that we have discussed

81 / 82

Conclusion

Auditable Middlebox

Middlebox Certificate

Explicit Authentication

Middlebox Transparency System

Middlebox-aware TLS (maTLS)

Security Parameter Verification

Valid Modification Checks

SplitTLS is risky

Client is forced to fully trust behavior of middleboxes
Client is not aware of the middleboxes involved

82 / 82

fin.

email: hwlee2014@mmlab.snu.ac.kr

project webpage: https://middlebox-aware-tls.github.io

source codes: https://github.com/middlebox-aware-tls

83 / 82

Backup Slides

84 / 82

Why Middleboxes?

Acceptable Use Policy

Marware and Threat Protection

IoT Endpoint Protection

Unpatched Endpoint Protection

Crypto Security Audit

…

* I get the use cases from a draft of the RFC document titled “TLS 1.3 Impact on Network-Based Security”

85 / 82

Why Individual Secrecy?

It is known that initialization vector should not be reused

Without Individual Secrecy, confidentiality is undermined

This happened when the same keystream is used across the session and
the middlebox modified the message

Middlebox!" !#

The same keystream with
the different message

It is desirable to use different segment keys across the session

86 / 82

Why Path Integrity?

AnonymizerClient ServerFirewall

FirewallClient ServerAnonymizer

Message Flow

The data is anonymized and then the firewall read it

The firewall read the data and then it is anonymized

87 / 82

Session Establishment Approach (1)

Top-down approach

MiddleboxClient Server

MiddleboxClient Server

Server determines a TLS version, a ciphersuite, and extensions

88 / 82

Session Establishment Approach (2)

Bottom-up approach

MiddleboxClient Server

MiddleboxClient Server

A TLS version, a ciphersuite, and extensions are selected on a segment
basis

89 / 82

Difference from mcTLS

maTLS establishes different segment keys in different
segments

The same keystream is used across the session, which might undermine
the confidentiality of the session

mcTLS does not achieves Individual Secrecy

maTLS allows a partial maTLS session

Since the server determines the extensions among the “intersection” of
the supported extensions by all the entities

mcTLS requires all the entities support the protocol

90 / 82

Evaluation – Scalability of Three Audit Mechanisms

SPV: Security Parameter Verification / EA: Explicit Authentication / VMC: Valid Modification Checks

91 / 82

Evaluation – Scalability of Three Audit Mechanisms

SPV: Security Parameter Verification / EA: Explicit Authentication / VMC: Valid Modification Checks

0.063ms per
middlebox

0.045ms per
middlebox

0.026ms for 8
middleboxes

92 / 82

Evaluation – Scalability of Three Audit Mechanisms

SPV: Security Parameter Verification / EA: Explicit Authentication / VMC: Valid Modification Checks

We conclude that the audit mechanisms can achieve
their goals without incurring a substantial delay

93 / 82

Modification Log

• End point: Server, Client, or a valid end-point middlebox such as a cache proxy

• Writer: HTTP Header Enrichment, Optimizer (adding JavaScript) (! → !′)

$(&'(,*, $(!))

$(',!): The keyed hash function with ', applying to !
$(!): The hash function, applying to !

!

• A series of HMACs

,-./ modifies ! into !’

&'(,*: Server’s accountability key
&'.,*: MB’s accountability key (with client)

,-(

$(&'(,*, $(!))!′ ,-(,-./ $(!) $(&'.,*, $!′ ||$(!))

94 / 82

Modification Log Verification

Client knows
• !"#,%: The accountability key with the server
• !"&,%: The accountability key with the MB

'(!"#,%, '())))′ ,-# ,-&. '()) '(!"&,%, ')′ ||'()))

ServerMBClient))′

95 / 82

Modification Log Verification

Client knows
• !"#,%: The accountability key with the server
• !"&,%: The accountability key with the MB
• '()*): The hash value of the received message

'(!"#,%, '())))′ -.# -.&/ '()) '(!"&,%, ')′ ||'()))

ServerMBClient))′

By hashing the received
message, the client can

know '()*)

96 / 82

Modification Log Verification

!(#$%,', !(())(′ +,% +,-. !(() !(#$-,', ! (′ ||!(())

ServerMBClient ((′

From the ID, the client
can find the #$-,'

Client knows
• #$%,': The accountability key with the server
• #$-,': The accountability key with the MB
• !((0): The hash value of the received message

97 / 82

Modification Log Verification

!(#$%,', !(())(′ +,% +,-. !(() !(#$-,', ! (′ ||!(())

ServerMBClient ((′

From these hashes, the client can
confirm MB modifies (into (’

Client knows
• #$%,': The accountability key with the server
• #$-,': The accountability key with the MB
• !((1): The hash value of the received message

98 / 82

Modification Log Verification

!(#$%,', !(())(′ +,% +,-. !(() !(#$-,', ! (′ ||!(())

ServerMBClient ((′

From this hash, the client can confirm the
server generates (,

even though the client cannot confirm (itself

Client knows
• #$%,': The accountability key with the server
• #$-,': The accountability key with the MB
• !((0): The hash value of the received message

99 / 82

Modification Log Verification

!(#$%,', !(())(′ +,% +,-. !(() !(#$-,', ! (′ ||!(())

ServerMBClient ((′

From two verifications, the client
can confirm the server generates (
and mb changes it into (’, without

any invalid modification

Client knows
• #$%,': The accountability key with the server
• #$-,': The accountability key with the MB
• !((1): The hash value of the received message

