
FINE-GRAINED AND CONTROLLED
REWRITING IN BLOCKCHAINS
Chameleon Hashing Gone Attribute-Based

David Derler (DFINITY), Kai Samelin (TÜV), Daniel Slamanig (AIT), Christoph Striecks (AIT)

• Motivate problem on editing/re-writing distributed ledgers (DLs)
• Solution in form of a new cryptographic primitive:

• Instantiation from known cryptographic building blocks
• High-level example for fine-grained redactable transactions in DLs
• First performance evaluations

TALK OUTLINE

Policy-Based Chameleon Hashing (PBCH)

06/03/2019 2

• Massive progress beyond Bitcoin, very hyped in recent years

• Signs that hype is turning into extensive research within the cryptographic community
• (Cryptographic) research centers are established, e.g., CBR Stanford, CBRC

Aarhus, ABC Austria

• Many Cryptographic building blocks are applied to DLs
• ZK-SNARKs, Multi-Signatures, Verifiable Random Functions/Delay

Functions/Secret Sharing, Threshold Signatures, Multi-Party Computation, …

• Less research is known on rewriting DLs …
» … wait, isn’t that counterintuitive?

RESEARCH IN DISTRIBUTED LEDGERS
TECHNOLOGIES

306/03/2019

06/03/2019

IMMUTABLE DATA IN THE BLOCKCHAIN

4
Sources: reddit.com; marketwatch.com; theguardian.com

• Simple solution: hard forks, but not really useful (i.e., chain from change point has to
be “re-written”)

JUST DO A HARD FORK …

Different values!
…

…

06/03/2019 5

Hard fork
happened

• Ateniese, Magri, Venturi, Andrade (EuroS&P 2017) motivated to rethink immutable
DLs:
• Illegal or improper content occurs, intellectual properties unclear
• New versions of smart contracts unclear
• Right to be Forgotten may be legally required, e.g., by the EU’s GDPR
• But: redactions should be rare events

• Ateniese et al. proposed a solution on block level using chameleon hashing
replacing essential ingredient of DLs, i.e., hash function

• Deuber et al. (S&P 2019) propose alternative solution also on block level

RESEARCH MOTIVATION OF DL EDITS

606/03/2019

In this work, focus is on transaction-level rewriting.

PROTOTYPE OF EDITABLE BLOCKCHAINS

706/03/2019

CHAMELEON HASHING
Finding collisions for hash functions (if you know a trapdoor)

PRIMER: CRYPTOGRAPHIC HASH FUNCTIONS

H()

1. One-way
2. Collision-resistant
3. Short output

Hash function are a central ingredient to DLTs,
e.g., RIPEMD-160 used in Bitcoin

906/03/2019

Message
“Fingerprint”

CHAMELEON HASH (CH) FUNCTIONS

H()

1. One-way
2. Collision-resistant
3. Short output

… but only if td is unknown.

Trapdoor key

H()
Col(, , td)

1006/03/2019

Additional collision-finding algorithm “Fingerprint”

• Very useful cryptographic primitive envisioned by Krawczyk and Rabin (NDSS 2000),
based on work by Brassard, Chaum, Crépeau (JCS 1988)

• Application in many research areas:
• On-/offline digital signatures, tightly secure signatures, sanitizable signatures,

identity-based encryption, direct anonymous attestation, distributed hashing, and in
editable blockchains

• Problem: coarse-grained, if one is in possession of the trapdoor td, all security
guarantees are lost

CHAMELEON HASH (CH) FUNCTIONS

1106/03/2019

MAIN RESULT:
POLICY-BASED CHAMELEON HASHING
A new primitive for fine-grained hash-collision finding

• Enhances Chameleon Hashing with attributes and access structure/policies

• Attributes can be any string, e.g., “Scientist”, “Research”, “Engineer”

• Access structures can be seen as Boolean formulas, e.g., (“Research” AND
“Scientist”) OR “Engineer”

• Attributes fulfill an access structure if the Boolean formula evaluates to 1/true

POLICY-BASED CHAMELEON HASHING (PBCH)

1306/03/2019

Mimics fine-grained collision finding
for chameleon hashing and strong security guarantees.

POLICY-BASED CHAMELEON HASHING (PBCH)

H(, A)
Same value!

Trapdoor key
associated to
attribute set S

H(, A)
Col(, , tdS)

1406/03/2019

Collision-finding algorithm

Hashing associated to
access structure A Main feature: Fine-grained

collision finding if attribute set S
fulfills the access structure A

INSTANTIATING PBCH
Combining Chameleon Hashing (with Ephemeral Trapdoors) and
Attribute-Based Encryption

INGREDIENT 1: CHAMELEON HASHING WITH
EPHEMERAL TRAPDOORS (CHET)

H()

Same value!

Trapdoor key

H()Col(, , td, etd)

1606/03/2019

Collision-finding algorithm

Ephemeral trapdoor
key which is generated
during hashing Main feature: collision

finding possible if td and
etd are present.

Due to Camenisch et al. (PKC 2017)

INGREDIENT 2:
ATTRIBUTE-BASED ENCRYPTION (ABE)

skEngineer, Research

pk

Security guarantee: looks random without knowing secret keys

kxcas32sdc9wq
…

skFrontdesk

skEngineer, Development

TA

Properties:
• Enables fine-grained one-to-many communication
• Enforces access control on the cryptographic level
• Need of pk-related authority TA that distributes secret keys

Contract A

pk Engineer AND
Development

17

PUTTING EVERYTHING TOGETHER

H(, A)

Same value!

Trapdoor key
associated to
ABE secret
key for
attribute set S

H(, A)Col(, , tdS, etd)

06/03/2019

Hashing also
encrypts etd for
access structure A
with ABE

Main feature: collision
finding possible if ABE

secret key for S that fulfills
access structure A for

encrypted etd is known.

Ephemeral
trapdoor

POLICY-BASED CHAMELEON HASHING
(PBCH)

1906/03/2019

Ephemeral trapdoor etd can only be accessed with
ABE secret key for attributes which fulfill the

ciphertext access structure.

PBCH EVALUATION AND HIGH-LEVEL EXAMPLE
PBCH Proof-of-Concept Implementation

• Python 3.5.3 based on Charm
framework v0.5

• Intel Core i7-7600U @ 2.8
GHz with 16 GB RAM

• ABE is instantiated with
FAME (CCS 2017)

• Own CHET implementation

• Results under weaker security
variant (at most doubling of
Hash running time expected)

FIRST EVALUATION RESULTS

2106/03/2019

HIGH-LEVEL EXAMPLE

2206/03/2019

• Editing/re-writing DLs important aspect to consider
• Possible on block level and transaction level

• New primitive Policy-Based Chameleon Hashing (PBCH) to allow fine-grained re-
writing on the transaction level in DLs
• Yields the first instantiation of its kind

• First performance evaluations and high-level example presented, details in the
full version

• Open question: efficient integration into real-DL setting

CONCLUSION

06/03/2019 23

THANK YOU!
Christoph.Striecks@ait.ac.at

mailto:Christoph.Striecks@ait.ac.at

