
Giving State to the Stateless:
Augmenting Trustworthy Computation with Ledgers

Gabriel Kaptchuk, Matthew Green, and Ian Miers

Why care about the bogeymen?

● Ledgers exist in practice and they aren’t going away
○ Blockchains

○ Google Certificate Transparency Log

● Trusted Execution Environments exist in practice

Why care about the bogeymen?

● Ledgers exist in practice and they aren’t going away
○ Blockchains

○ Google Certificate Transparency Log

● Trusted Execution Environments exist in practice … kinda?

Why care about the bogeymen?

● Ledgers exist in practice and they aren’t going away
○ Blockchains

○ Google Certificate Transparency Log

● Trusted Execution Environments exist in practice … kinda?
○ Intel SGX and ARM Trustzone

○ Software only obfuscation

○ FPGA style hardware with burned keys

How can TEE’s augment ledgers?
vs

How can ledgers augment TEE’s?

Rewind Protection

Rewind Protection

Rewind Protection

Rewind Protection

● Hardware based TEE’s require NVRAM for protection
○ Scale poorly, expensive, and require special considerations for power fluctuations

○ Prior Work: Memoir [PLDMM11]

● Software only obfuscation can’t get hardware-back protections
○ Prior Work: Goyal and Goyal [GoyGoy17] get one time programs from Ledgers + Obfuscation

● This problem is real

Repeated Execution

● Re-execution of a path doesn’t cause
a vulnerability
○ Derive the same key repeatedly

○ Starting again generates new master key

Repeated Execution

● Re-execution of a path doesn’t cause
a vulnerability
○ Derive the same key repeatedly

○ Starting again generates new master key

● Forking is dangerous
○ Running new inputs on old state

○ Running old steps with new randomness

Repeated Execution

● Re-execution of a path doesn’t cause
a vulnerability
○ Derive the same key repeatedly

○ Starting again generates new master key

● Forking is dangerous
○ Running new inputs on old state

○ Running old steps with new randomness

● Strategy: bind program execution to
something linear

Model

Model

Model

Model

Model

Model

Model

Ledger Requirements

● Creates hash chains of transactions
○ Similar to transaction in bitcoin, ethereum, etc...

Ledger Requirements

● Creates hash chains of transactions
○ Similar to transaction in bitcoin, ethereum, etc…

● Publicly verifiable proof of publication and public access
○ Digital signatures for computational security

○ Proof of work for economic security

Ledger Requirements

● Creates hash chains of transactions
○ Similar to transaction in bitcoin, ethereum, etc…

● Publicly verifiable proof of publication and public access
○ Digital signatures for computational security

○ Proof of work for economic security

● Simplifying assumption: Single user ledgers

Protocol Extensions

● We have managed to condition execution on ledger postings

● Extension #1: Programs can require public posting
○ E.g. Error reporting, guaranteed logging

● Extension #2: One Time Programs
○ Swept under the rug: so far we have secure multi-execution programs
○ Derive unique valid hash chain from program code

Additional Applications

● Smart contracts computing on private data
○ Concurrent work with Intel’s Private Data Objects

○ Later follow-up work in the same area [Eikiden]

Additional Applications

● Smart contracts computing on private data
○ Concurrent work with Intel’s Private Data Objects

○ Later follow-up work in the same area [Eikiden]

Additional Applications

● Smart contracts computing on private data
○ Concurrent work with Intel’s Private Data Objects

○ Later follow-up work in the same area [Eikiden]

Additional Applications

● Smart contracts computing on private data
○ Concurrent work with Intel’s Private Data Objects

○ Later follow-up work in the same area [Eikiden]

Additional Applications

● Smart contracts computing on private data
○ Concurrent work with Intel’s Private Data Objects

○ Later follow-up work in the same area [Eikiden]

Additional Applications

● Autonomous Ransomware
○ Inevitable outcome of malicious trusted execution environments

○ Eliminates the need for command and control systems

Conclusions

● We create a novel protocol that provides trustworthy state for TEE’s by binding
state to an append-only ledger

● Ledgers are here to stay — lets do more than just currency-related research

● Keeping state is a difficult problem with wide ranging applications

Thank You!

Gabriel Kaptchuk
kaptchuk.com
gabe@kaptchuk.com

Bonus Slides

