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Now that we have SGX, all security
problems are trivial. Security research is
officially over!
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e Ledgers exist in practice and they aren’t going away .
o Blockchains
o Google Certificate Transparency Log
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Why care about the bogeymen?

e Ledgers exist in practice and they aren’t going away .
o Blockchains
o Google Certificate Transparency Log

e Trusted Execution Environments exist in practice ... kinda?
o Intel SGX and ARM Trustzone
o Software only obfuscation
o FPGA style hardware with burned keys
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Rewind Protection
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Rewind Protection

e Hardware based TEE's require NVRAM for protection

o Scale poorly, expensive, and require special considerations for power fluctuations
o  Prior Work: Memoir [PLDMM11]

e Software only obfuscation can’t get hardware-back protections
o  Prior Work: Goyal and Goyal [GoyGoy17] get one time programs from Ledgers + Obfuscation

e Thisproblemisreal
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Repeated Execution
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Repeated Execution

Re-execution of a path doesn’t cause

a vulnerability
o Derive the same key repeatedly
o Starting again generates new master key

Forking is dangerous
o  Running new inputs on old state
o  Running old steps with new randomness

Strategy: bind program execution to
something linear
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Ledger Requirements

e Creates hash chains of transactions
o Similar to transaction in bitcoin, ethereum, etc...
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Ledger Requirements

e Creates hash chains of transactions
o Similar to transaction in bitcoin, ethereum, etc...

e Publicly verifiable proof of publication and public access
o Digital signatures for computational security
o  Proof of work for economic security

e Simplifying assumption: Single user ledgers
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Protocol Extensions

e We have managed to condition execution on ledger postings

e Extension#1: Programs can require public posting
o E.g. Error reporting, guaranteed logging

e Extension#2:One Time Programs

o  Swept under the rug: so far we have secure multi-execution programs
o Derive unique valid hash chain from program code
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Additional Applications

e Autonomous Ransomware
o Inevitable outcome of malicious trusted execution environments
o Eliminates the need for command and control systems

Show me a valid
cryptocurrency payment to my
address and I'll give you the

key!




Conclusions

e Wecreate a novel protocol that provides trustworthy state for TEE'’s by binding
state to an append-only ledger

e Ledgers are here tostay — lets do more than just currency-related research

e Keeping state is a difficult problem with wide ranging applications



Thank You!

Gabriel Kaptchuk
kaptchuk.com
gabe@kaptchuk.com
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