Giving State to the Stateless:
Augmenting Trustworthy Computation with Ledgers

Gabriel Kaptchuk, Matthew Green, and lan Miers

PEWARE

HERE BE BLOCKCHAINS!

PEWARE!
HERE BE BLOCKCHAING

&_

PEWARE

HERE BE aGX!

Now that we have SGX, all security
problems are trivial. Security research is
officially over!

PEWARE
HERE BE SGX!

Why care about the bogeymen?

e Ledgers exist in practice and they aren’t going away .
o Blockchains
o Google Certificate Transparency Log

e Trusted Execution Environments exist in practice

Why care about the bogeymen?

e Ledgers exist in practice and they aren’t going away .
o Blockchains
o Google Certificate Transparency Log

e Trusted Execution Environments exist in practice ... kinda?

Why care about the bogeymen?

e Ledgers exist in practice and they aren’t going away .
o Blockchains
o Google Certificate Transparency Log

e Trusted Execution Environments exist in practice ... kinda?
o Intel SGX and ARM Trustzone
o Software only obfuscation
o FPGA style hardware with burned keys

How can TEE’s augment ledgers?
VS
How can ledgers augment TEE’S?

Rewind Protection

Is the password “1234”7?

Nope! You have 9 more attempts!

Rewind Protection

/ Is the password “1234”?

@ , Is the password “1234”?
- = -

@ , = KDF, (“1234")
<4 -

Rewind Protection

V77 S Is the password “1234” or “1235"?

Decryption Failure! 9 more attempts!

10

“‘95“5 , Isthe password “1234"?

9 KDF) (“1234”)
- L) P,
10
i ., |s the password “1235”?
@
—_— >
, = KDF, (“1235")
- L) o,

>

Rewind Protection

e Hardware based TEE's require NVRAM for protection

o Scale poorly, expensive, and require special considerations for power fluctuations
o Prior Work: Memoir [PLDMM11]

e Software only obfuscation can’t get hardware-back protections
o Prior Work: Goyal and Goyal [GoyGoy17] get one time programs from Ledgers + Obfuscation

e Thisproblemisreal

SaML) Jaof} maN
Jeyorjeudayuy

10

Guesses
Left

]
Guesses
Left

9
Guesses
Left

a”a

Guesses
Left

g
Guesses

«gggo” i Left

9
Guesses
Left

]
Guesses
Left

9
Guesses
Left

10
Guesses
Left

Guesses

«gggo” i Left

9
Guesses
Left

]
Guesses
Left

9
Guesses
Left

10
Guesses
Left

Guesses

«gggo” i Left

“1234”"

“1235"

“9999 »

8
Guesses
Left

8
Guesses
Left

2

Guesses
Left

9 8
Guesses Guesses
Left Left

]
Guesses
Left

9
Guesses
Left

10 /// \\\
Guesses
Left / \
9
Guesses
Left

“9999"

9
Guesses
Left

8
Guesses
Left

8
“1235" Guesses
Left

Guesses
Left

8
Guesses
Left

Repeated Execution

9 8
Guesses Guesses
Left Left
e Re-execution of a path doesn’t cause
9 8 a vulnerability
Gul_e;;es “1235" G“f:;es o Derive the same key repeatedly
o Starting again generates new master key

10
Guesses
Left

Guesses Guesses
Left Left

9 8
Guesses Guesses
Left Left

“9999"

10
Guesses
Left

“9999"

]
Guesses
Left

9
Guesses “1235"
Left

A\
o =

Guesses
Left

))

4
9
Guesses
Left

8

Guesses Repeated Execution
Left

e Re-execution of a path doesn’t cause

8 a vulnerability

Guesses

Lo o Derive the same key repeatedly

o Starting again generates new master key

e Forkingisdangerous
o Running new inputs on old state
Guesses . .
Left o Running old steps with new randomness

10
Guesses
Left

l(ggggl!

9 8

Guesses Guesses
Left Left

“1234”

9 8
Guesses “1235" Guesses
Left Left

A\
o =

Guesses Guesses
Left Left

4
9
Guesses
Left

))

Repeated Execution

Re-execution of a path doesn’t cause

a vulnerability
o Derive the same key repeatedly
o Starting again generates new master key

Forking is dangerous
o Running new inputs on old state
o Running old steps with new randomness

Strategy: bind program execution to
something linear

User

4

v

Pl N

Host

A

v

Enclave

A

\j

Host

4

\j

Enclave

A

\j

Host

4

\j

Enclave

(No NVRAM)
(No Counters)
(No RNG)

I 3
\j
4
\j

User Host Enclave

(No NVRAM)
(No Counters)
(No RNG)

State, Inputs

I 3
\j

~ \ - New State, Output

wl N -

User Host Enclave

(No NVRAM)
(No Counters)
(No RNG)

State, Inputs

4
v

~ \ - New State, Output

wl N -

User Host Enclave

(No NVRAM)
{No Counters)
(No RNG)
Inputs State, Inputs
¢ < Output \ - New State, Output
Mo VY <

User Host Enclave

Ledger Requirements

e Creates hash chains of transactions
o Similar to transaction in bitcoin, ethereum, etc...

Collision

Resistant Hash
Function

_ _ _
P P
|

Transaction Hash
Previous Tx Hash
User Data

Ledger Requirements

e Creates hash chains of transactions
o Similar to transaction in bitcoin, ethereum, etc...

e Publicly verifiable proof of publication and public access
o Digital signatures for computational security
o Proof of work for economic security

Ledger Requirements

e Creates hash chains of transactions
o Similar to transaction in bitcoin, ethereum, etc...

e Publicly verifiable proof of publication and public access
o Digital signatures for computational security
o Proof of work for economic security

e Simplifying assumption: Single user ledgers

o Sioce < o

Enclave

0o Soce < o

“1234"

Enclave

G S oec e o

> “1234"
%,
wl .
-

Enclave

o e e o o
1

Transaction Hash
Previous Tx Hash
Cc

> “1234"

i
v

User Host Enclave

o e e o o
1

Transaction Hash
Previous Tx Hash
Cc

> “1234"

i
v

User Host Enclave

Transaction Hash
Previous Tx Hash
Cc

C = Com(@ “1234"; 1) ™o

- o " e ,“1234",C, 1, “, ©
%’sz —

User Host Enclave

Q. “1234",C,r, g4, 0

.
>

Verify(™ , o)

Q-“‘”“"C' "0 Verify(C = Com(Q , 12347, 1))

.

>

G e e o o

Derive encryption key for next state «———— i
Previous Tx Hash
C —‘

Derive decryption key for previous state «

Verify(™ , o)

Q' Laaild, Verify(C = Com(Q , 12347, 1))

»

L

G e P P P

Derive encryption key for next state «———— i
Previous Tx Hash
C —‘

Derive decryption key for previous state «

Verify(™ , o)

Q'“”“"-C' "0 Verify(C = Com(0 , 12347, 1))

° = Decrypt(@, PRFg) (Previous Tx Hash)

Derive encryption key for next state «———— i
Previous Tx Hash
C —‘

Derive decryption key for previous state «

Verify(™ , o)

Q-“‘”“"C' "0 Verify(C = Com(Q , 12347, 1))

° = Decrypt(@, PRFg) (Previous Tx Hash)

’ = Program(° , “1234”; PRFg, (“rand” || Previous Tx Hash))

Derive encryption key for next state «———— i
Previous Tx Hash
C —‘

Derive decryption key for previous state «

Verify(™ , o)

Q-“‘”’“‘“C' "0 Verify(C = Com(@ , 12347, 1))

° = Decrypt(@, PRFg) (Previous Tx Hash)

° = Program(° , “1234”; PRFg, (“rand” || Previous Tx Hash))

e = Encrypt(° PRF (Current Tx Hash)

Derive encryption key for next state «———— T
Previous Tx Hash
C —‘

Derive decryption key for previous state «

Verify(™ , o)

Q'“‘”"‘"C' "0 Verify(C = Com(@ , 12347, 1))

.
>

e , = KDF, ("1234") G = Decrypt(@, PRFg) (Previous Tx Hash)

Q = Program(° , “1234”; PRFg, (“rand” || Previous Tx Hash))

e = Encrypt(° PRF (Current Tx Hash)

-
-

Transaction Hash
Previous Tx Hash
Cc

C = Com(@ “1234"; 1) ™o

- “1234" I e ,“1234",C,1, "G, ©
Q‘?g- —
\ Q . = KDF("1234")
= 1

User Enclave

Transaction Hash
Previous Tx Hash
Cc

C = Com(@ “1234"; 1) ™o

i “1234" . e ,“1234",C,1, g ©
Q?’g- —

= KDF ("1234")

Decryption Failure, 9 more

wl. —
N il -
=

User Host Enclave

Protocol Extensions

e We have managed to condition execution on ledger postings

e Extension#1: Programs can require public posting
o E.g. Error reporting, guaranteed logging

e Extension#2:One Time Programs

o Swept under the rug: so far we have secure multi-execution programs
o Derive unique valid hash chain from program code

Additional Applications

e Smart contracts computing on private data
o Concurrent work with Intel’s Private Data Objects
o Later follow-up work in the same area [Eikiden]

Additional Applications

e Smart contracts computing on private data
o Concurrent work with Intel’s Private Data Objects
o Later follow-up work in the same area [Eikiden]

Additional Applications

e Smart contracts computing on private data
o Concurrent work with Intel’s Private Data Objects
o Later follow-up work in the same area [Eikiden]

Additional Applications

e Smart contracts computing on private data
o Concurrent work with Intel’s Private Data Objects
o Later follow-up work in the same area [Eikiden]

/

oo

Additional Applications

e Smart contracts computing on private data
o Concurrent work with Intel’s Private Data Objects
o Later follow-up work in the same area [Eikiden]

ooy

\

Additional Applications

e Autonomous Ransomware
o Inevitable outcome of malicious trusted execution environments
o Eliminates the need for command and control systems

Show me a valid
cryptocurrency payment to my
address and I'll give you the

key!

Conclusions

e Wecreate a novel protocol that provides trustworthy state for TEE'’s by binding
state to an append-only ledger

e Ledgers are here tostay — lets do more than just currency-related research

e Keeping state is a difficult problem with wide ranging applications

Thank You!

Gabriel Kaptchuk
kaptchuk.com
gabe@kaptchuk.com

Bonus Slides

P PP

e

=

D o

(U

F

(e

=

1/

Key N+2 Key N+3 Key N+4

Key N+1

Key N

