

Stealthy Adversarial Perturbations against Real-time Video Classification Systems

Shasha Li*, Ajaya Neupane*, Sujoy Paul*, Chengyu Song*, Srikanth V. Krishnamurthy*, Amit K. Roy Chowdhury* and Ananthram Swami †

* University of California Riverside

† United States Army Research Laboratory

Adversarial Perturbations

Szegedy et al, 2013 (rescaled for visualization)

- Adversarial perturbations are imperceptible to humans
- DNNs misclassify adversarial examples

Video Classification Systems

Adversarial Perturbations Against Real-Time Video Classification Systems

Sliding Two Fingers Down

Swiping Left

20BN-Jester

Thumb Up

UCF 101

Video inputs:

- Appearance information
- Temporal information

Datasets:

- UCF101: coarse-grained actions
- Jester: fine-grained actions

Common Use of Video Classification Systems

DNN based video classification systems are widely used:

- self-driving cars
- security surveillance for smart cities
- fall detection in elderly care facilities
- abnormal event detection on campuses
- **>** ...

Problem Definition

How to attack real-time video classification systems?

Threat model:

- White-box attack
- Attacker capable of injecting perturbations onto the real-time video stream *
- Stealthy (misclassify only the target action)
- [1] K. Lab, "Man-in-the-middle attack on video surveillance systems," https://securelist.com/does-cctv-put-the-public-at-risk-of-cyberattack/70008/, Defcon,2014, [Online; accessed 30-April-2018].
- [2] Z. Net, "Surveillance cameras sold on Amazon infected with malware,"

Background on Video Classification Systems

Video classification systems:

- Sliding window on the video stream → input clips
- ➤ Classifier taking input clip → score vector

Attacker's Goal towards Misclassification

Classifier: input clip $x \rightarrow score vector Q(x)$ The score for the ith class $\rightarrow Q_i(x)$

Attack goal: low score for true class c(x)

$$\underset{p(x)}{\text{minimize }} Q_{c(x)}(x+p(x))$$

Perturbation is a clip!

$$\begin{array}{c} \operatorname{Cross\ entropy\ loss} \\ \operatorname{minimize} & -\log[1-Q_{c(x)}(x+p(x))] \\ p(x) \end{array}$$

Generating Perturbations for Real-time Video Streams

Real-time attack →

Need to generate perturbations with the same frame rate
Challenge 4

Challenge 1

Solution:

Offline generation + online addition >

Universal Perturbations (UPs)

Using a Generative Model to Craft Perturbations

Making Perturbations Stealthy

Misclassify all the perturbed inputs→
Easy to notice →Not stealthy

Solution:

Misclassify only the target (potentially malicious) action Dual-purpose Universal Perturbations (DUPs)

 x_t : a input clip of the target class

 x_s : a input clip of non-target classes

Impact of Nondeterministic Clip Boundaries

Nondeterministic clip boundaries →
Misalignment → Perturbations are broken

Challenge 3

perturbation clip [A B C]

Performance Impact from the Misalignment

The abscissa is the offset between the intended perturbation and extracted perturbation.

Overcoming the boundary effect

Solution: Circular DUPs (**C-DUP**s): a kind of perturbation whose circular shifted version is also a valid perturbation.

Assume perturbation clip [A B C]

Realizing circular perturbations

To realize Circular DUPs (C-DUPs) we roll the generated perturbation by a random offset during training

Is a single frame stealthy perturbation plausible?

Yes!!

Solution: Single-frame DUPs (**2D-DUP**s), special case of C-DUPs.

- $\sqrt{}$ lightweight and thus easy to store and use.
- X Limited in perturbing the temporal info

Experimental results – UP vs. DUP

Attack success rate:

- Samples of the target class: misclassification rate
- Samples of non-target classes: classification rate

UCF-101 (clips aligned)

	Target class (apply lipstick)	Non-target class
No attack	4.50%	91.80%
UP	84.01%	45.20%
DUP	84.49%	88.03%

baby crawling → cutting in kitchen biking → golf swing

Datasets – DUP vs. C-DUP

UCF-101 (coarse-grained actions)

T1 = {apply lipstick}

Jester (fine-grained actions)

T1 = {sliding hands right}

Experimental results – DUP vs. C-DUP

UCF-101 (coarse-grained actions)

T1 = {apply lipstick}

C-DUP > DUP

Experimental results – DUP vs. C-DUP

Jester (fine-grained actions)

T1 = {sliding hands right}

C-DUP > DUP

Datasets: C-DUP vs. 2D-DUP

UCF-101 (coarse-grained actions)

T1 = {apply lipstick}

Jester (fine-grained actions)

- T1 = {sliding hands right}
- T2 = {shaking hand}

Temporally similar action: Sliding two fingers right

No temporally similar actions

Experimental results - C-DUP vs. 2D-DUP

*UCF-101 T1*2D-DUP ≈ C-DUP

	Target class (apply lipstick)	Non-target class
No attack	4.5%	91.8%
C-DUP	84.00%	87.52%
2D-DUP	83.37%	87.58%

Jester T1Target class (sliding hands right)Non-target classNo attack12.9%90.4%2D-DUP \approx C-DUPC-DUP85.14%81.03%2D-DUP84.64%80.04%

Jester T2

2D-DUP < C-DUP

	Target class (shaking hand)	Non-target class
No attack	6.3%	89.9%
C-DUP	79.03%	57.78%
2D-DUP	70.92%	54.83%

Experimental results - C-DUP vs. 2D-DUP

Interpreting the results:

- ✓ In the first two scenarios, no need to perturb the temporal info by much to attack the video classification systems → 2D-DUP ≈ C-DUP.
 - ✓ 2D-DUP misclassifies to most similar action
- ✓ C-DUP > 2D-DUP in tough attack cases
 - 2D-DUP has more difficulty when no similar (temporal) actions to the target action are present

Conclusion

- Identify three key challenges in adding adversarial perturbations on video streams:
 - generating perturbations in real-time
 - making the perturbations stealthy
 - dealing with the indeterminism of video clip boundaries.
- Using generative models, we generate very potent adversarial samples against video classification systems.
- Extensive experiments demonstrate that our approaches are extremely potent, achieving around 80% attack success rates.

Thank you

C3D classifier

2D convolution with 3D input

3D convolution