
TextBugger: Generating Adversarial Text Against
Real-world Applications

Jinfeng Li Shouling Ji Tianyu Du Bo Li Ting Wang

NDSS 2019

Machine Learning For Natural Language Processing

Machine Learning
For Multiple Tasks

Question Answering

Information Retrieval

Sentiment Analysis

Machine Translation

Information Extraction

�������� �

Machine Learning As A Service For NLP

�������� �

Breaking Thing Is Easy

Recent works have revealed the vulnerabilities of DNNs in image and speech domain

Ø The DNNs for image classification are vulnerable to adversarial images. [Goodfellow et al., ICLR’15]

Ø Automatic speech recognition systems can be broken down by adversarial audios in physical world.
[Yuan et al., USENIX’18]

Do the adversarial examples also exist in text domain?

Are the MLaaS for NLP also vulnerable to adversarial examples?

�������� �

Preliminaries

�������� �

Adversarial Text

What is the adversarial text?
Carefully generated by adding small perturbations to the legitimate text.

What is the challenge for generating adversarial texts?

Ø The discrete property of text makes it hard to optimize.

Ø Small perturbations in text are usually clearly perceptible.
Ø Replacement of a single word may drastically alter the semantics of the sentence.

�������� �

Related Works For Generating Adversarial Texts

Gradient-based Methods
Ø Modifying an input text repetitively until it is misclassified. [Papernot et al., MILCOM’ 16]

Ø Changing one token to another by a gradient-based optimization method. [Ebrahimi et al. ,NAACL’ 18]

Ø Perturbing the important words determined by embedding gradient with hand-crafted synonyms.

[Samanta et al., arXiv’17]

Out-of-vocabulary Words
Ø Breaking machine learning systems down by random character manipulations. [Belinkov et al., ICLR’ 18]

Ø Attacking black-box models by applying random character perturbations. [Gao et al. SPW’ 18]

Ø Changing the toxicity score of the texts by adding spaces or dots between characters.

[Hosseini et al., arXiv’ 17]

�������� �

Related Works For Generating Adversarial Texts

Other Methods
Ø Attacking reading comprehension systems by adding distracting sentences to the input document.

[Jia et al., EMNLP’ 17]

Ø Generating adversarial sequence by Generative Adversarial Networks (GANs).

[Zhao et al., ICLR’ 18]

Replace with Semantically/Syntactically Similar Words
Ø Only replacing words with semantically similar ones. [Alzantot et al.., arXiv’ 18]

Ø Replacing tokens by random words of the same POS tag with a probability proportional to the

embedding similarity. [Ribeiro et al., ACL’ 18]

�������� �

Limitations

Ø Limited to short texts

Ø Significantly affect the original meaning

Ø Need hand-crafted synonyms and typos

Ø Requires manual intervention to polish the added sentences

Ø Not computationally efficient

These works are limited in practice due to at least one of the following reasons:

�������� �

TextBugger

�������� ��

Black-box
Attack Model

White-box
Attack Model

Attack Model

Online Platform Offline Model

Text Classification

Confidence
value

Gradient
information

Word
Embedding

Noise

Adversarial
Text

feed back

Text

vectors

Framework For TextBugger

�������� ��

Threat Model

White-box
Ø Have complete knowledge about the targeted model

Black-box
Ø Do not know the model architecture, parameters or training data

Ø Only capable of querying the targeted model with output as the prediction or confidence scores

�������� ��

Step 1: Finding Important Words

White-box attack
Ø Find important words by gradient information.

Denotes:
• ! is the input text, "# is the $%& word in !.
• is the confidence value of the (%& class.
• is the importance of word "#.
•) is the total number of words in !.
• * is the total number of classes.

�������� ��

Step 1: Finding Important Words

Sentence: It is so laddish and juvenile, only
teenage boys could possibly find it funny .

Black-box attack
Ø Find important sentences

!"#$%#%$ ← !'() * according to

Delete sentences in !"#$%#%$ if

Ø Find important words for each sentence in !"#$%#%$

Denotes:
• *+ is the ,-. sentence in the input text /.
• is *+’s confidence value of the predicted class 1.

• is the importance of word *+, is the importance of the 2-. word in *+.
• !"#$%#%$ is the important sentences set.

�������� ��

Step 2: Bugs Generation

Word-level perturbation: nearest neighbor searching in the embedding space

Ø Substitute-W (Sub-W) : Replace a word with its top k nearest neighbors in a context-aware
word vector space.

Character-level perturbation: out-of-vocabulary phenomenon
Ø Insert: Insert a space into the word.

Ø Delete: Delete a random character of the word.

Ø Swap: Swap random two adjacent letters in the word.

Ø Substitute-C (Sub-C) : Replace characters with visually similar characters or adjacent characters in the keyboard.

�������� ��

Step 3: Replacing Important Word By Generated Bug

Optimal bug selection
Ø choose the optimal bug according to the change of the confidence value

Important word replacement
Ø Replace the important word by the selected optimal bug

Ø Repeat until “convergence”
• the semantic similarity is below the threshold
• the new text is misclassified by the classifier

�������� ��

Attack Evaluation

�������� ��

Case Study

Sentiment Analysis

Toxic Content Detection

�������� ��

Attack Evaluation: Sentiment Analysis
Dataset

Ø IMDB: 50,000 positive and negative movie reviews
Ø Rotten Tomatoes Movie Reviews (MR): 5,331 positive and 5,331 negative snippets

Baseline Algorithms
Ø White-box: Random, FGSM+NNS (Nearest Neighbor Search), DeepFool+NNS
Ø Black-box: DeepWordBug

Targeted Model
Ø White-box models: LR, CNN, LSTM

Ø Real-world Online Platforms:

�������� ��

Attack Evaluation: Sentiment Analysis

Evaluation Metrics
Ø Edit Distance

Ø Jaccard Similarity Coefficient

Ø Euclidean Distance

Ø Semantic Similarity

�������� ��

Important Words Selected By TextBugger

�������� ��

Generated Adversarial Texts

Successful Attack Examples

�������� ��

Attack Performance: Effectiveness And Efficiency

White-box Attack

Remarks
Ø Choosing important words to modify is necessary.
Ø Effective: TextBugger has high attack success rate on all models and performs better than baselines.

Ø Evasive : TextBugger perturbs few words to fool the models.
�������� ��

Attack Performance: Effectiveness And Efficiency

Black-box Attack

Remarks
Ø Effective: TextBugger has higher attack success rate against all online platforms than DeepWordBug.

Ø Evasive: TextBugger only perturbs fewer words than DeepWordBug.

Ø Efficient: TextBugger spends less time than DeepWordBug.
�������� ��

Attack Performance: Change Of Confidence

Sentiment Score Distribution

Remarks
Ø TextBugger greatly changes the confidence value of the classification results.
Ø IBM Watson is more sensitive to the adversarial texts generated by TextBugger.

�������� ��

Utility Analysis: White-box Attack

Remarks
Ø The generated adversarial texts preserve good word-level and vector-level utility.

(a) IMDB

�������� ��

Utility Analysis: Black-box Attack

(a) IMDB

Remarks
Ø TextBugger generates higher quality adversarial texts than DeepWordBug.

�������� ��

The Impact Of Document Length

The Impact of Document Length on Attack Performance

Remarks
Ø Length has little impact on the success rate, but may decrease the change of negative class’s confidence value.
Ø The time required for generating one adversarial text increases slightly as the length grows.

�������� ��

The Impact Of Document Length

The Impact of Document Length on The Utility of Generated Adversarial Texts.

Remarks
Ø Longer document length leads to more perturbed words.
Ø The increasing perturbed words do not decrease the semantic similarity of the adversarial texts.
�������� ��

Bug Distribution

Remarks
Ø Azure and AWS are sensitive to the insert bug
Ø Watson and fastText are sensitive to Sub-C
Ø Delete and Sub-W are used less than others

�������� ��

Further Analysis

User StudyTransferability

�������� ��

Transferability

Remarks
Ø Transferability also exists in adversarial texts among models and online platforms.
Ø Transferability can be used to attack online platforms even they have call limits.

�������� ��

User Study

(a) The distribution of all mistakes in the samples. (b) The proportion of found bugs accounting
for each kind of bug added in the samples.

Remarks
Ø Adversarial texts generated by TextBugger are hard to distinguish.
Ø The insert bug is human-perceptible .
Ø Sub-W is the most robust bug.

�������� ��

Vulnerability Report

�������� ��

Summary

We proposed TextBugger, a framework for generating adversarial texts effectively and efficiently
Ø Effective: It outperforms state-of-the-art attacks in terms of attack success rate under both

white-box and black-box settings.

Ø Evasive: It preserves the utility of benign text.
Ø Efficient: It generates adversarial text with computational complexity sub-linear to the text length.

We evaluated TextBugger on 15 real-world online applications
Ø Dataset: IMDB, MR and Kaggle.
Ø Application: Includes sentiment analysis and toxic content detection.

We conducted a user study on our generated adversarial texts
Ø Utility-preserving: TextBugger has little impact on human understanding.

We further discuss two potential defense strategies to defend against such attacks

�������� ��

lijinfeng0713@zju.edu.cn

�������� ��

