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Machine Learning As A Service For NLP
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Breaking Thing Is Easy

Recent works have  revealed the vulnerabilities of DNNs in image and speech domain

Ø The DNNs for image classification are vulnerable to adversarial images. [Goodfellow et al., ICLR’15] 

Ø Automatic speech recognition systems can be broken down by adversarial audios in physical world.
[Yuan et al., USENIX’18]

Do the adversarial examples also exist in text domain?  

Are the MLaaS for NLP also vulnerable to adversarial examples? 
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Preliminaries
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Adversarial Text

What is the adversarial text?
Carefully generated by adding small perturbations to the legitimate text.

What is the challenge for generating adversarial texts?

Ø The discrete property of text makes it hard to optimize.

Ø Small perturbations in text are usually clearly perceptible.
Ø Replacement of a single word may drastically alter the semantics of the sentence. 
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Related Works For Generating Adversarial Texts

Gradient-based Methods
Ø Modifying an input text repetitively until it is misclassified. [Papernot et al., MILCOM’ 16]

Ø Changing one token to another by a gradient-based optimization method. [Ebrahimi et al. ,NAACL’ 18]

Ø Perturbing the important words determined by embedding gradient with hand-crafted synonyms. 

[Samanta et al., arXiv’17]

Out-of-vocabulary Words
Ø Breaking machine learning systems down by random character manipulations. [Belinkov et al., ICLR’ 18]

Ø Attacking black-box models by applying random character perturbations. [Gao et al. SPW’ 18]

Ø Changing the toxicity score of the texts by adding spaces or dots between characters. 

[Hosseini et al., arXiv’ 17]
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Related Works For Generating Adversarial Texts

Other Methods
Ø Attacking reading comprehension systems by adding distracting sentences to the input document. 

[Jia et al., EMNLP’ 17]

Ø Generating adversarial sequence by Generative Adversarial Networks (GANs). 

[Zhao et al., ICLR’ 18]

Replace with Semantically/Syntactically Similar Words
Ø Only replacing words with semantically similar ones. [Alzantot et al.., arXiv’ 18]

Ø Replacing tokens by random words of the same POS tag with a probability proportional to the 

embedding similarity. [Ribeiro et al., ACL’ 18]
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Limitations

Ø Limited to short texts

Ø Significantly affect the original meaning

Ø Need hand-crafted synonyms and typos 

Ø Requires manual intervention to polish the added sentences 

Ø Not computationally efficient

These works are limited in practice due to at least one of the following reasons:
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TextBugger
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Threat Model

White-box
Ø Have complete knowledge about the targeted model

Black-box
Ø Do not know the model architecture, parameters or training data

Ø Only capable of querying the targeted model with output as the prediction or confidence scores
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Step 1: Finding Important Words

White-box attack
Ø Find important words by gradient information.

Denotes:
• ! is the input text, "# is the $%& word in !.
• is the confidence value of the (%& class.
• is the importance of word "#. 
• ) is the total number of words in !.
• * is the total number of classes.
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Step 1: Finding Important Words

Sentence: It is so laddish and juvenile, only 
teenage boys could possibly find it funny .

Black-box attack
Ø Find important sentences

!"#$%#%$ ← !'() * according to 

Delete sentences in !"#$%#%$ if

Ø Find important words for each sentence in !"#$%#%$

Denotes:
• *+ is the ,-. sentence in the input text /.
• is *+’s confidence value of the predicted class 1.

• is the importance of word *+,         is the importance of the 2-. word in *+.
• !"#$%#%$ is the important sentences set.
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Step 2: Bugs Generation

Word-level perturbation: nearest neighbor searching in the embedding space

Ø Substitute-W (Sub-W) : Replace a word with its top k nearest neighbors in a context-aware
word vector space.

Character-level perturbation: out-of-vocabulary phenomenon
Ø Insert: Insert a space into the word.

Ø Delete: Delete a random character of the word.

Ø Swap: Swap random two adjacent letters in the word.

Ø Substitute-C (Sub-C) : Replace characters with visually similar characters or adjacent characters in the keyboard.
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Step 3: Replacing Important Word By Generated Bug

Optimal bug selection
Ø choose the optimal bug according to the change of the confidence value

Important word replacement
Ø Replace the important word by the selected optimal bug

Ø Repeat until “convergence”
• the semantic similarity is below the threshold
• the new text is misclassified by the classifier
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Attack Evaluation
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Case Study

Sentiment Analysis

Toxic Content Detection
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Attack Evaluation: Sentiment Analysis
Dataset

Ø IMDB: 50,000 positive and negative movie reviews
Ø Rotten Tomatoes Movie Reviews (MR): 5,331 positive and 5,331 negative snippets

Baseline Algorithms
Ø White-box: Random,  FGSM+NNS (Nearest Neighbor Search),  DeepFool+NNS
Ø Black-box:  DeepWordBug

Targeted Model
Ø White-box models: LR, CNN, LSTM

Ø Real-world Online Platforms:
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Attack Evaluation: Sentiment Analysis

Evaluation Metrics
Ø Edit Distance

Ø Jaccard Similarity Coefficient

Ø Euclidean Distance

Ø Semantic Similarity
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Important Words Selected By TextBugger
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Generated Adversarial Texts

Successful Attack Examples
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Attack Performance: Effectiveness And Efficiency

White-box Attack

Remarks
Ø Choosing important words to modify is necessary.
Ø Effective: TextBugger has high attack success rate on all models and performs better than baselines.

Ø Evasive : TextBugger perturbs few words to fool the models.
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Attack Performance: Effectiveness And Efficiency

Black-box Attack

Remarks
Ø Effective: TextBugger has higher attack success rate against all online platforms than DeepWordBug.

Ø Evasive: TextBugger only perturbs fewer words than DeepWordBug.

Ø Efficient: TextBugger spends less time than DeepWordBug.
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Attack Performance: Change Of Confidence

Sentiment Score Distribution

Remarks
Ø TextBugger greatly changes the confidence value of the classification results.
Ø IBM Watson is more sensitive to the adversarial texts generated by TextBugger.
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Utility Analysis: White-box Attack 

Remarks
Ø The generated adversarial texts preserve good word-level and vector-level utility.

(a) IMDB
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Utility Analysis: Black-box Attack 

(a) IMDB

Remarks
Ø TextBugger generates higher quality adversarial texts than DeepWordBug.
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The Impact Of Document Length

The Impact of Document Length on Attack Performance

Remarks
Ø Length has little impact on the success rate, but may decrease the change of negative class’s confidence value.
Ø The time required for generating one adversarial text increases slightly as the length grows.
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The Impact Of Document Length

The Impact of Document Length on The Utility of Generated Adversarial Texts. 

Remarks
Ø Longer document length leads to more perturbed words.
Ø The increasing perturbed words do not decrease the semantic similarity of the adversarial texts.
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Bug Distribution

Remarks
Ø Azure and AWS are sensitive to the insert bug
Ø Watson and fastText are sensitive to Sub-C 
Ø Delete and Sub-W are used less than others
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Further Analysis

User StudyTransferability
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Transferability

Remarks
Ø Transferability also exists in adversarial texts among models and online platforms.
Ø Transferability can be used to attack online platforms even they have call limits.
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User Study

(a) The distribution of all mistakes in the samples. (b) The proportion of found bugs accounting
for each kind of bug added in the samples.

Remarks
Ø Adversarial texts generated by TextBugger are hard to distinguish.
Ø The insert bug is human-perceptible .
Ø Sub-W is the most robust bug.
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Vulnerability Report
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Summary

We proposed TextBugger, a framework for generating adversarial texts effectively and efficiently
Ø Effective: It outperforms state-of-the-art attacks in terms of attack success rate under both 

white-box and black-box settings.

Ø Evasive:   It preserves the utility of benign text.
Ø Efficient: It generates adversarial text with computational complexity sub-linear to the text length.

We evaluated TextBugger on 15 real-world online applications
Ø Dataset:        IMDB, MR and Kaggle.
Ø Application: Includes sentiment analysis and toxic content detection.

We conducted a user study on our generated adversarial texts
Ø Utility-preserving: TextBugger has little impact on human understanding.

We further discuss two potential defense strategies to defend against such attacks 

�������� ��



lijinfeng0713@zju.edu.cn

�������� ��


