
Send Hardest Problems My Way:
Probabilistic Path Prioritization for Hybrid

Fuzzing

Lei Zhao, Yue Duan, Heng Yin, Jifeng Xuan

Wuhan University, China
University of California Riverside

Motivation
• Automatic vulnerability detection techniques

Fuzzing
● Pros: scalable and efficient
● Cons: hard to generate satisfying

inputs for specific conditions

Concolic Execution
● Pros: generate concrete inputs

for a specific path
● Cons: path explosion,

heavyweight

Motivation
• Hybrid fuzzing

• Fuzzing and concolic execution are complementary in nature

• High throughput by making fuzzing take the majority task of path
exploration

• Alleviate path explosion as concolic execution is directed for specific
branches

Concolic
Execution Fuzzing

State-of-the-art Hybrid Fuzzing
• Demand Launch: Driller (NDSS’16), Hybrid Concolic Testing(ICSE’07)

• General idea: launch concolic execution when fuzzer gets stuck (blocked

by condition checks)

• Assumptions:

1. fuzzer in non-stuck state ⇒ concolic execution is not needed.

2. stuck state ⇒ fuzzer cannot make progress

3. concolic execution is able to find and solve the hard-to-solve condition

problems that block the fuzzer

• Question:

• Do these assumptions hold?

State-of-the-art Hybrid Fuzzing
• Optimal Strategy Markov Decision Processes with Costs (ICSE’18)

• Insight: estimating the costs and always selects the best one
• cost of fuzzing based on coverage statistics
• cost of concolic execution based on constraints complexities

• Assumptions:
1. estimation is accurate and fast
2. decision making is lightweight

• Question:
• How practical is the MDPC technique?

State-of-the-art Hybrid Fuzzing
• First systematic evaluation on hybrid fuzzing strategies

• 118 binaries from DARPA Cyber Grand Challenge with 12 hours testing
• Findings for Demand Launch

1. Concolic execution launched on only 49 out of 118 binaries
2. 85% of the stuck time periods are under 100 seconds.

The stuck state is not a
good indicator to decide

whether the concolic
execution is needed

State-of-the-art Hybrid Fuzzing
• Findings (cont.)

3. Concolic execution on one input takes 1654 seconds on average
4. Only 7.1% (1709 out of 23915) of the inputs retained by fuzzing are

processed by concolic execution within the testing time.
5. Fuzzer imports only a totally of 51 inputs on 13 binaries with 1709

runs of concolic execution
CE is too slow to process all inputs

After CE generates a good input,
fuzzer may have already found one

State-of-the-art Hybrid Fuzzing
• Findings for Optimal Strategy

1. MDPC decision making is heavyweight: several thousand times larger than
fuzzing

1. Throughput is significantly reduced:
• from 417 eps (execution per second) in pure fuzzing to 2.6 eps

2. MDPC discovers fewer vulnerabilities:
• only in 29 binaries, whereas the pure fuzzing can discover vulnerabilities in

67 binaries.

Our Proposed Approach: Discriminative Dispatch

• Design principles:
• Let fuzzing take the majority task of path exploration
• Concolic execution only solves the hardest problems

• Key challenge:
• quantify the difficulty of traversing a path for a fuzzer in a lightweight

fashion. Any extra analysis must be lightweight to avoid negative
impact on the performance of fuzzing

Probabilistic Path Prioritization

• Monte-Carlo Based Probabilistic Path Prioritization Model (MCP3)
• Treat fuzzing as a sampling process

• random sampling to the whole program space
• large number of samples

• Estimate branch probabilities based on Monte-Carlo Method

• Estimate path probabilities as Markov Chain of successive branches

Our Approach - Overview

• Iterative process:
• MCP3 performs sampling, updates execution tree, calculates the

probabilities of each path and prioritizes them.
• Concolic executor generates new inputs along the path
• Fuzzer takes the new inputs and further explores the program

Our Approach - Implementation Details

• A Fuzzing Component: AFL
• Modify AFL to record the coverage statistics for every branch

• MCP3 model
• Construct the execution tree based on execution traces
• Calculate probabilities for missed branches and paths
• Prioritize missed paths

• A concolic executor based on Angr

Evaluation
• Dataset

• CQE challenges (126 binaries)

• LAVA-M (4 real-world binaries)

• Baseline techniques
• AFL: pure fuzzing

• MDPC: Optimal Strategy

• Driller* : allocate resources evenly other than a shared pool

• Random: concolic execution launched from the beginning (no path
prioritization)

Evaluation on the CQE dataset
• Code coverage

• DigFuzz, Random, Driller, and AFL are 3.46 times, 3.25 times, 3.02
times and 2.91 times larger than the base (code coverage of the initial
inputs)

• Concolic execution can indeed help fuzzing
• Random outperforms Driller (demand

launch doesn’t work well)
• Path prioritization in DigFuzz is effective
• The contribution of concolic execution to

bitmap size in DigFuzz is much larger than
those in Driller (18.9% vs. 3.8%) and
Random (18.9% vs. 11.7%)

Evaluation on the CQE dataset
• Discovered vulnerabilities

• Tested 12 hours with 3 runs for each binary
• Our approach steadily discovers more vulnerabilities
• Per Driller paper report, DigFuzz can achieve similarly with only half of

the running time (12 hours vs. 24 hours) and much less hardware
resources (2 fuzzing instances per binary vs. 4 fuzzing instances per
binary)

Evaluation on the CQE dataset
• Contribution of concolic execution

• More binaries aided by concolic execution (Aid.) ⇒ CE launched in more
binaries

• More imported and derived inputs from concolic execution (Imp. and Der.
) ⇒ better quality for generated inputs

• More crashes are triggered by inputs from concolic execution ⇒ more
effective in finding vulnerabilities

Evaluation on the LAVA dataset
• LAVA-M consists of 4 small applications

• DigFuzz achieved better code coverage
• Random caught up because the programs are small

Case Study
• Performance

• AFL: failed to trigger the
vulnerability

• Driller: took 2590s
• Random: took 1438s
• DigFuzz: took 691s

Case Study
• Further Investigation on how DigFuzz performs

Discussion
• Evaluation on real-world programs

• We tried to evaluate our approach on real world programs. However, the
concolic execution engine (angr) fails to scale on real programs due to
unsupported system calls.

• Only estimates the probability of fuzzing, but does not consider the
cost of concolic execution

• Collecting path constraints and estimating the complexity of constraint
solving are challenging

Conclusion
• A thorough investigation

• Report several fundamental limitations on the “demand launch” and
“optimal switch” strategies.

• A “discriminative dispatch” strategy
• to better utilize the capability of concolic execution
• design a Monte Carlo based probabilistic path prioritization model to
quantify each path’s difficulty.

• A prototype system DigFuzz
• Evaluation results show that the concolic execution in DigFuzz is more
effective with respect to code coverage and vulnerability discovery.

THANK YOU!

