
DNS-Based User Tracking
Amit Klein

Joint research with Benny Pinkas

Last update: 2019-02-23 18:22 UTC+0200



Why do we need user tracking?

From the literature:
• Real-time targeted marketing
• Campaign measurement
• Fraud detection
• Protection against account hijacking
• Anti-bot and anti-scraping services
• Enterprise security management
• Protection against DDOS attacks
• Reaching customers across devices
• Limiting number of accesses to services



User tracking in 1999…

• Cookies!

• Later, also: localStorage and friends

• Two browsers (IE+Mozilla), one OS (Windows)



User tracking in 2019 – the challenges

• Privacy mode boundary

• Identical HW+SW (the “golden image” problem)

• Many browsers (IE, FF, GC, Safari) on desktops/laptops 
(Windows, macOS) and mobile (iOS, Android)

• Awareness – history clearing, browser restart, browser per 
task



Have the cake and eat it too

Fingerprinting (typical) Tagging (typical)

Privacy mode boundary

Identical HW+SW

Coverage

History cleanup

Browser restart

Cross-browser



Have the cake and eat it too

Fingerprinting (typical) Tagging (typical)

Privacy mode boundary

Identical HW+SW

Coverage

History cleanup

Browser restart

Cross-browser



Have the cake and eat it too

• We devised a technique that basically satisfies all 6 requirements

• DNS-based (duh)

• Some disclaimers:
• Good coverage (resolver SW), but not perfect

• Cross browser works, but not in some browser combinations

• Doesn’t work across network switches (and OS restart)

• TTL limitations



DNS refresher
Client (OS)

Browser Stub resolver

Stub resolver cache

Resolution
platform

Resolution
platform cache

Root N.S.

.com N.S.

.example.com
N.S.

Web server 
(10.1.1.1)

Navigate to
http://www.
example.com/

getaddrinfo
www.example.com A? www.example.com

www.example.com
A 10.1.1.1

www.example.com
→ 10.1.1.1



DNS-based user tracking



The main idea (example)

• User 1: 
• x1.anonymity.fail → 10.4.5.6, … (2)
• x2.anonymity.fail → 10.1.2.3, … (1)
• x3.anonymity.fail → 10.7.8.9, … (3)
• …
ID=(2,1,3,…)

• User 2: 
• x1.anonymity.fail → 10.1.2.3, … (1)
• x2.anonymity.fail → 10.1.2.3, … (1)
• x3.anonymity.fail → 10.4.5.6, … (2)
• …
ID=(1,1,2,…)



The main idea - components

• Tracking is carried out via an HTML+Javascript “snippet” which you can 
place in any page.

• The snippet references Javascript resources on multiple hosts (x1,…,xN) 
in the tracking domain (managed via a dedicated auth. name server).

• The tracker also runs a web server farm. Each web server j has a 
dedicated IP address and returns a different JS code (e.g. v[i]=j)



The main idea - technique
Client (OS)

Browser

Tracking snippet:

:
<script src="xi.

…">
:

Stub resolver

Stub resolver cache

Resolution
platform

Resolution
platform cache

Root N.S.

.fail N.S.

.anonymity.fail
N.S.

Tracking web servers

v=1

10.1.2.3

v=2

10.4.5.6

v=3

10.7.8.9

xi.
…

A 10.1.2.3
A 10.7.8.9
A 10.4.5.6

xi.
…

A 10.4.5.6
A 10.7.8.9
A 10.1.2.3

xi.
… → 

10.4.5.6
10.7.8.9
10.1.2.3



Mandatory requirements

• Req #1: Same client must get same ID each time (for a reasonable 
time)
• Caching at the Stub Resolver ensures this

• Req #2: Different clients must get different IDs
• This is obvious for clients that use different DNS resolvers (each resolver gets 

its own order of IPs)

• But what happens with clients behind the same resolver?



IDs in the same farm 

• Main problem: the answer (list of IP addresses) is cached in the 
resolver itself! 

• So theoretically, the resolver returns the same response to all its 
clients (and they all get the same ID). Right?
• Not necessarily. BIND 9.x (the most popular SW) randomizes the order!

• Microsoft DNS server, MaraDNS do round robin – we can still use this.

• Unbound, PowerDNS – fixed order (bad). But a very small portion of the 
landscape.



IDs in the same farm – multiple resolvers

• Load-balanced “farm” of resolvers works in the tracker’s favor!

• Clients are load balanced over resolvers, so even if a single resolver 
does return data in the same order, load balancing among resolvers 
provides the necessary randomness



Complications and limitations

• Windows: dual cache: IE/Edge+Firefox, vs. Chrome+Opera

• macOS: Chrome has its own stub resolver (but Safari and Firefox 
share the stub resolver cache) 

• TTL cap – most resolvers put a cap on the TTL (7d-¼d), stub 
resolvers as well.

• Disconnecting from the network automatically flushes the stub 
resolver DNS cache

• Restarting the machine flushes the DNS cache



How do we score?

• Privacy mode boundary – GOOD. Both modes use the stub resolver 
cache.

• Identical HW+SW – GOOD. Each device gets a random ID.

• Coverage – PRETTY GOOD. Except for single Unboud resolver or 
single PowerDNS>3.6 resolver. Coverage >90% for enterprises.

• History cleanup – GOOD. Doesn’t touch the stub resolver cache 
(except Chrome on macOS).

• Browser restart – GOOD. Ditto.

• Cross browser – GOOD. Except Chrome on macOS, and the dual cache 
on Windows.



Mitigations

• Systematic solution (need both):
• Browsers use random IP from RRset for each new connection

• Takes care of the “randomized” RRset approach (|RRset|>1)

• Sticky-by-client (IP) DNS load balancing
• Takes care of the load-balancing approach with |RRset|=1 (there’ll be only |resolvers| 

possible IDs)

• Forward shared HTTP proxy (or Tor)

• Flush DNS cache very often

• Tracking domain blacklisting (cat and mouse)



Conclusions

• A new user tracking method:
• DNS Based

• Crosses the privacy mode boundary

• Handles the golden image challenge

• Has good coverage

• Not easy to mitigate!

• Additional results (non-DNS-tracking):
• DNS load balancing strategies (good for connecting to a specific resolver)

• Systematic info about resolver SW, stub resolver SW, browser DNS behavior



Q&A

Thanks!


