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Goals of the Study

1. Who knows what and how much?
2. How do users perceive interests inferred about them?
3. How are the interests inferred?

4. How do privacy practices impact amount of inferences drawn?
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Ad Preference Managers (APMs)

Transparency tools
et users control the inferred interests about them

Google Ad Settings

Ads are based on personal info you've added to your Google Account, data from advertisers that partner with
Google, and Google's estimation of your interests. Choose any factor to learn more or update your
preferences. Learn more

@ 25-34 years old e Male
f Action & Platform Games «\  Advertising & Marketing
2 Air Travel € American Football

Antivirus & Malware ' Apparel




Overview

1. Data collection
2. Interests inferred by different APMs
3. Perception of interests

4. Limitations & Conclusion
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Data Collection

* We recruited 220 participants
82 from Pakistan (university students), 138 from US (crowdsource)
* Used our browser extension to
A. Take a survey

B. Contribute data from their APMs + Historical Data

Ethics
* Obtained IRB from both LUMS and Northeastern University

 Obtained informed consent.
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Dynamic Questions
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Summary of Data Collection

220 participants (82 from Pakistan, 138 from US)

For each participant, we have:

Foreground

e Survey

1.
. General web usage

o oA W

Basic demographics

Interaction with Ads
Privacy practices
Knowledge about APMs
Relevance of interests

Background

Interests from 4 APMS
1. Facebook
2. Google
3. BlueKai
4. eXelate

Browsing history (last 3 months)

Search term history (last 3 months)
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Goals of the Study

1. Who knows what and how much?
 What inferences are drawn by each APM?

 Does every APM infer the same information?

13
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Table: Interests gathered from 220 participants

Inferred Interests

Users Unique  [e] ¥:1 Avg. per User
Google 213 594 9,013 42.3
Facebook 208 25,818 108,930 523.7
BlueKai 220 3,522 92,926 422.4
eXelate 218 139 1,941 8.9
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Canonicalization of Interests

We cannot directly compare interests from different APMs
« Synonyms: Real Estate, Property

 Granularity: Sports, Tennis, Wimbledon

For fair comparison, we need to map interests to a common space

FB Bluekai

We used Open Directory Project (ODP) . .

 Manually mapped raw interest to 465 ODP categories \ /

ODP
Category
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Inferred Interests After ODP Mapping

CDF
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Fig: CDF of raw interests per user
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Do APMs Infer Similar Interests?
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Goals of the Study

2. How do users perceive these interests inferred about them?
e Do some APMs infer more relevant interests?

* Do users find ads targeted against these interests relevant?

19



“Half the money | spend on
advertising is wasted; the trouble
Is | don't know which half.”

-- John Wanamaker

20



Relevant Interests According to Participants
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Fig: Fractions of interests rated as relevant
(on a 1-5 scale) by participants
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Participants’ Ratings of Interests
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Majority of Interests Marked Irrelevant
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Users marked ads targeted to low relevant interests less useful
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Limitations & Challenges

1. Participant sample is not representative of all web users
2. Single snapshot of APMs.
* A better way would be to conduct a longitudinal study.

3. Users can have biases In recalling relevant ads.

26



Summary

* First large-scale study of interest profiles from four APMs
e Different APMs have different ‘portraits’ of the user.

e Participants rated only < 30% interests as strongly relevant.

Q: Are the marginal utility gains from targeted ads justified at the cost of
privacy”?

27



More Results in the Paper ...

1. Origin of Interests

 \What fraction of the interests could be explained by historical data”

* A majority of interests could not be explained by recent browsing history
2. Affect of privacy-conscious behaviors on interest profiles

* No significant correlations

Questions?

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad Preference Managers

ahmad@ccs.neu.edu
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Participants Dropping Out

 Overall 9 participants refused to take the survey
e 3 provided feedback.

1 did not have time and 2 had privacy reservations

30
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Goals of the Study

1. Who knows what and how much?
 What inferences are drawn by the APMs?
 Does everyone infer the same information?

2. How do users perceive these interests inferred about them?
Do some APMs draw better inferences?

3. How are the inferences drawn?

32



How Are The Inferences Drawn?
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How Are The Inferences Drawn?
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Fig: Amount of historical data collected from the participants
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How Are The Inferences Drawn?

Browsing History Search History
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Fig: Amount of historical data collected from the participants

e 50% people had 80-90 days of browsing history

« 90% people had 30-40 days if search history
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Domains From Browsing & Search History

Browsing

e Out of 1.2M uniqgue URLs, we extracted ~42K uniqgue FQDNSs

* We used PhantomdsS to collect trackers from these 42K FQDNs
 We crawl home page + 5 additional pages

* Only considered those domains, where any of the APM trackers were present

Search

e Considered the URL of the first search result

34



Domains Mapped to Common Space
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Origins of Interests
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Origins of Interests
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CDF

Browsing & Search History Domains
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 More domains in Search as compared to Browsing

* Very high label rate for Search

« >7/5% Browsing domains labeled for 80% people
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BlueKai Branded Data
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