Data Oblivious ISA Extensions for
Side Channel-Resistant and High
Performance Computing

Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher
University of lllinois at Urbana-Champaign

Network and Distributed System Security Symposium (NDSS), San Diego, 2019

I Computer Science

Introduction OISA Extension Hardware Security Evaluation Conclusion

Outline

* Introduction

e Data Oblivious ISA (OISA) Extension
 Hardware Implementation

e Security Analysis

 Evaluation

* Conclusion

I Computer Science :

Introduction

Microarchitectural Side Channels Attacks

Processor

\
| Load Store Unit ‘

Load addrl

Cache

\

I Computer Science :

Introduction

Microarchitectural Side Channels Attacks

Processor

I Load Store Unit

Load addrl

if (secret)
a = *(addrl);

else

|
|
|
|
|
|
|
|
a = *(addr?2); l
|

\

I Computer Science :

Introduction

Cf@l

Microarchitectural Side—

[Qe
Core Datapath g

L1 | Cache L1 D Cache

L2 Cache JJ

L3 Cache

DRAM (and/or: stacked DRAM, HMC, NVMs)

I Computer strerce 2

Introduction

X
i a i a&

Microarchitectural SideF:‘: ot contention [CBRPTI 18

&
SIS
¥ $Patapatis

~ 4K aliasing [MES’17

Speculative execution [Spectre’18]

v

I o
| &°
&

L1 I Cache
Cache banking [YGH’16]

= s S0y ' L 5 L2 Cache
%l Shared |3 Cache- 4 = L b : i Non-inclusive LLC [YSGFCT’19]
: e BT R e L3 Cache

— DRAM [PGMSM’16]
DRAM (and/or: stacked DRAM, HMC, NVMs)

Computer strerce 2

Threat Model

* How to block all privacy threats from microarchitectural side channels.

 Software adversary is monitoring resource contention/program timing

I Computer Science 7

Introduction

Why Microarchitectural Side Channels are Big Issues

Software does not know what hardware can leak

Hardware does not know what is secret in the software

I Computer Science :

Introduction

Why Microarchitectural Side Channels are Big Issues

I Computer Science :

Introduction

Data Oblivious Programming

* A programmer’s solution to block all side channels
[WNLCSSH’14], [NWIWTS’15], [SDSCFRYD’13], [RLT’15], [DJB’06], etc.

* Different names:
e “constant time programming” (system community)
» “data oblivious programming” (applied crypto community)
e “writing programs in the circuit abstraction” (pure crypto community)

 Remove data-dependent behaviors from programs

I Computer Science =

Data Oblivious Programming: An Example

/* Source program */
if (secret)

a = *(addrl);
else [a & load addrl] [b <& load ader]

a = *(addr2);

/* machine code */
a « load (addrl);
b « load (addr?);

cmov secret, a, b; [cmovsemettxa]
// a = secret? b : a

I Computer Science .

Introduction

Data Oblivious Programming: Three Assumptions

Security based on 3 assumptions
[a & load addrl] [b & load ader]

[cmov secret, b, a]

I Computer Science .

Introduction

Data Oblivious Programming: Three Assumptions

— g, — g,

—

Instructions processing data 7 ~ o -7 e 2N
([a & load addrl])] ([b &< load ader])]
\ 7 N\ 7’

Assumption 1: Every instruction is RN T~ L ==

evaluated in a data-independent

manner

N\

]
-’

j

([cmov secret, b, a
~

———_’

I Computer Science .

Data Oblivious Programming: Three Assumptions

b & load ader]

-

Data transfer within and across
hardware structures [a < load aﬂdr_l_] [

Assumption 2: Data transfers in a \
data-independent manner

cmov secret, b, a

I Computer Science =

Introduction

Data Oblivious Programming: Three Assumptions

L
— —_— o,

P --" T S
” ~ ~
. . s N
Executed instruction sequence ’ N
// [a & load addrl] [b < load ader] \\
Assumption 3: Instruction / \
sequence is fixed regardless of : II
program data \ /
\ /
S\ /
N\ ~ P
S o [cmov secret, b, a] P
-
~ -~ ~ _ - -

~—_—_—_—

I Computer Science £

Introduction

Data Oblivious Programming: Problems

Q|
S &
S S
< Z.
% %
72

efficiency

I Computer Science

Introduction

Data Oblivious Programming: Problems

* Security

[a <& load addrl] [b & load ader]

[cmov secret, b, a]

I Computer Science =

Introduction

Data Oblivious Programming: Problems

* Security:

— g,

- ‘\

—_——-~
~

N\

”

-
. . N
Assumption 1: Instructions are ([a & load addrl] J ([b & load addrz])]
P ~

’

evaluated in a data-independent ™ <
manner

]

Violations:

* Input-dependent arithmetic
* Microcode

» Silent stores ~ -

I Computer Science =

Introduction

Data Oblivious Programming: Problems

* Security:
Assumption 2: Data transfers in a [a & load add:l_] [b & load addrz]
data-independent manner — ~
”’
Violations:

e Data-based compression
* Microop fusion

cmov secret, b, a

I Computer Science =

Introduction

Data Oblivious Programming: Problems

e]

. . - - ~y ~
* Security: _- ~ o
7 < N \
Assumption 3: Instruction /’ [a & load addrl] [b < load ader] \\
sequence is fixed / \
I |
Violations: ‘\ /I
* Speculative execution ‘. p
/
S ’
~ -
S [cmov secret, b, a] _
~ o - _ - -

e mm s ==

I Computer Science &

Introduction

Data Oblivious Programming: Problems

e]

1 . - -~ = =~ ~
* Security: _- ~ o
7 < N \
Assumption 3: Instruction /’ [a & load addrl] [b < load addrz] \\
sequence is fixed / \
I |
Violations: ‘\ /I
* Speculative execution ‘. p
’
S ’
S -’
S e [load secret] _
~ ~ -

e mm s ==

I Computer Science &

Introduction

Data Oblivious Programming: Problems

* Security

* Portability

X86 Processor A
without branch
prediction

if (condition)
/* path A */
else

/* path B *

I Computer Science

A

X86 Processor B
with branch
prediction

SPECTRE

Introduction

Data Oblivious Programming: Problems

* Security
X86 Processor A X86 Processor B
e Porta b|||ty without branch ® {/ with branch
prediction & prediction

SPECTRE

if (condition)
/* path A */
else

/* path B */ @
8

I Computer Science =

Introduction

Data Oblivious Programming: Problems

* Security

e Porta b|||ty [a < load addrl] [b <& load ader]

e Efficiency [a < load addrl] VS

[cmov secret, b, a]

I Computer Science “

OISA Extension

Data Oblivious Programming: Problems

Conclusion: data oblivious programing still lacks of a good contract
* Security: All assumptions are not in a contract that hardware can see
* Portability: No consistent contract across hardware implementations

* Efficiency: Software has to use simple instructions

I Computer Science =

OISA Extension

This paper: Augment Instruction Set Architecture
(ISA) for Data Oblivious Programming

IS
sred srel ADDJ/SLT/SETU dest OF
0000000 sre2 srel AND/OR/XOR dest opP
Q000000 sre? srcl SLL/SRL dest Op
QL0000 red srel Op

26

OISA Extension

Data Oblivious ISA: the Right Solution

ecurity
* |SA tells software what operations leak/do not leak

v
e |SA tells hardware what data is confidential

worta bility

* |SA is fixed across hardware implementations

fficiency

* Hardware can optimize expensive data oblivious operations since security
semantics is clear at ISA level

I Computer Science =

OISA Extension

Data Oblivious ISA Extensions

telling hardware what data is confidential

Two mechanisms for: ~|:
telling software what operations leak/do not leak

1. Differentiate between Confidential/Public data
* New type of Dynamic information flow tracking

2. Indicate which operations are Safe to leak Confidential data
* New notion of Safe instruction operands

Security specifications added to the contract

I Computer Science “

OISA Extension

New Dynamic Information Flow Tracking (DIFT)

* Programmer declares data as Public or Confidential

* Confidential data is tracked in hardware using DIFT

* Traditional DIFT only tracks retired data

/ multiplier \
* Our DIFT tracks data at all instruction stages | [tag: pubiic] Register 1: 1 ——»
e At 3 h|gh level: [tag: Confidential] Register2: 0 —>]

* Public data needs no protection

[tag: Confidential] Register 3: 0 <«

* Confidential data must be protected K /

Processor core

I Computer Science “

OISA Extension

Instruction with Safe Operands

e Each instruction’s input operand is defined as Unsafe or Safe
* Safe operand: Block side channels stemming from that operand if necessary
* Unsafe operand: No protection

/ multiplier \

. _ -
Exam plg. m ultiplier [tag: Public] Register 1: 1 — <unsafe>
Zero-skipping 2 .
input dependent timing [tag: Confidential] Register 2: 0 — <unsafe>
N : AL Fast, with
[tag: Confidential] Register 3: 0 <« Zero-skipping

o

Processor core

I Computer Science =

OISA Extension

Instruction with Safe Operands

e Each instruction’s input operand is defined as Unsafe or Safe
* Safe operand: Block side channels stemming from that operand if necessary
* Unsafe operand: No protection

/ multiplier \

. _ -
Example' mU|t|p||er [tag: Public] Register 1: 1 — <safe>

Zero-skipping =2
input dependent timing [tag: Confidential] Register 2: 0 — <safe>

slow, without
Zero-skipping

[tag: Confidential] Register 3: 0 <«

o

Processor core

I Computer Science =

OISA Extension

Safe Operands + DIFT:

* Public data - Safe operand:

* Public data - Unsafe operand:

* Confidential data - Safe operand:

* Confidential data - Unsafe operand:

Transition Rules

No protection needed
No protection needed
Execute with protection
Stop speculation™

/ multiplier \
[tag: Public] Register 1: 1 — > <safe>
[tag: Confidential] Register 2: 0 > <safe>
[tag: Confidential] Register 3: 0 <

Processor core

I Computer Science =

Complete Proposal: Safe Operands + DIFT

1. ISA Design time:

ISA designers decide instructions with Safe/Unsafe operands

2. Hardware Design time:
Hardware designers augment processors with logic to enable/disable optimizations

3. Programing time:
Programmers annotate some program inputs and static data Public/Confidential

4. Runtime
Processor implements transition rules and taint propagation during execution.

I Computer Science =

OISA Extension

Key Benefits

1. Simple portable guarantee for programmers across implementations
2. Hardware & Data-oblivious-programming co-design

3. Defense against non-speculative and speculative execution attacks

I Computer Science *

OISA Extension

Key Benefit: HW-Algorithm Co-design

* Problem: Sensitive loads are performance bottlenecks
 Solution: add load with Safe address

Implementation Efficiency
(object with size N)
Micro-code into loads w/ Unsafe address O(N)
Cryptographic techniques (e.g., Oblivious RAM) O(log N) or O(log? N)
Hardware partitioning O(1), size restricted

(e.g., cache partitioning, private scratchpads)

I Computer Science =

Key Benefit: HW-Algorithm Co-design

* Problem: Sensitive loads are performance bottlenecks
 Solution: add load with Safe address

* More opportunities for complex instructions
* Oblivious shuffle instruction
* Oblivious sort instruction

I Computer Science =

OISA Extension

Key Benefit: Defense Against Non-spec & Spec Attacks

Defends against Confidential
Non-speculative [data | ‘ Saje Operand}

attacks
Defends against Confidential Unsafe
Speculative attacks{ data } {Safe Operana 1 { Operand }

vad speculationy

Stop speculation

I Computer Science =

Hardware

Hardware Implementation

* Hardware prototyping on RISC-V BOOM processor
* Enumerate potential threat vectors of BOOM
* Propose an OISA extension for RISC-V ISA

* Implement new instructions with safe operand and
DIFT on BOOM Current OISA Extension:

* Int/FP arithmetic w/ Safe operands
* Branches/Jumps w/ Unsafe
* Design open sourced at github (see paper) operands
* Two flavors of loads/stores
* Safe data, Unsafe address
* Safe data, Safe address
* Instructions to set data as
Confidential/Public

I Computer Science *

Security Analysis

* Formalize the security of data oblivious ISA extension

e Goal: prove for different confidential data, the trace of observable
processor states is invariant.

* Two challenges:
 How to formalize attacker’s capability of observing processor states
 How to model modern processors -> designed an abstract BOOM machine

I Computer Science =

Evaluation

* Achieve a speedup of up to 8.8x over baseline data oblivious
programming

* Case studies:
e Constant time AES: 4.4x speedup over bitslice AES
 Memory oblivious library: more than 4.6x speedup over ZeroTrace [SGF’18]

I Computer Science =

Conclusion

Conclusion

Data Oblivious ISA decouples security from
functionality and implementation

Software receives consistent, portable security guarantee
Hardware is not constrained to specific implementation

Applies to both speculative & non-speculative side channels

I Computer Science =

Questions?

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance Computing
Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher

University of lllinois at Urbana-Champaign

I Computer Science

Thank you for listening to our talk!

I Computer Science

