
Total Recall:
Persistence of Passwords in Android

Jaeho Lee, Ang Chen, Dan S. Wallach

Motivation

Unprivileged attackers can access sensitive data from device memory.

Memory is not a safe place for sensitive data.

2

Cold-boot attack Heartbleed (CVE-2014-0160)

Meltdown (CVE-2017-5754) Spectre (CVE-2017-5753)Nexus 5X bootloader vulnerability (ALEPH-2016000)

Memory is not a safe place for sensitive data.

Sensitive data should be deleted as soon as it is no longer in use.
§ Crypto libraries have long recognized the importance of this practice.

Ø OpenSSL is well engineered to follow the practice.

3

void *OPENSSL_clear_realloc(void *p, size_t old_len, size_t num)
void OPENSSL_clear_free(void *str, size_t num)
void OPENSSL_cleanse(void *ptr, size_t len);
void *CRYPTO_clear_realloc(void *p, size_t old_len, size_t num, const char *file, int line)
void CRYPTO_clear_free(void *str, size_t num, const char *, int)

void *SSL_SESSION_free(SSL_SESSION *ss) {
...
OPENSSL_cleanse(ss->master_key, sizeof(ss->master_key));
OPENSSL_cleanse(ss->session_id, sizeof(ss->session_id));
...

}

Memory is not a safe place for sensitive data.

Sensitive data should be deleted as soon as it is no longer in use.
§ Crypto libraries have long recognized the importance of this practice.

Ø OpenSSL is well engineered to follow the practice.

4

void *OPENSSL_clear_realloc(void *p, size_t old_len, size_t num)
void OPENSSL_clear_free(void *str, size_t num)
void OPENSSL_cleanse(void *ptr, size_t len);
void *CRYPTO_clear_realloc(void *p, size_t old_len, size_t num, const char *file, int line)
void CRYPTO_clear_free(void *str, size_t num, const char *, int)

void *SSL_SESSION_free(SSL_SESSION *ss) {
...
OPENSSL_cleanse(ss->master_key, sizeof(ss->master_key));
OPENSSL_cleanse(ss->session_id, sizeof(ss->session_id));
...

}

[NDSS 18]

Focus of Research

What about user input passwords in Android?
§ User input passwords are of paramount importance.

Ø Stolen passwords cause widespread damage.
§ Numerous 3rd party apps in Android require our passwords.

Do apps manage user input passwords well?
Does Android support enough protection for them?

5

Are they safe under memory disclosure attacks?

Preliminary Study
Is password exposure a real problem in Android?

Preliminary Study
Is password exposure a real problem in Android?

7

Application Type Installs
Gmail Email 1,000 M

Chrome Browser 1,000 M

Facebook Social 1,000 M

Tumblr Social 100 M

Yelp Social 10 M

Chase Bank Finance 10 M

1Password Password 1 M

Dashlane Password 1 M

Keepass2Android password 1 M

passwdSafe password 0.1 M

Unlocking process system Built-in

Passwords
6
4
6
4
3
5
4
2
1

12
7

Master password

lockscreen
password

Password strings are easily recognizable from the binary dump.

Preliminary Study
Passwords are vulnerable to memory disclosure attack.

8

Facebook

Tumblr

This is an old issue, but still problematic.
Ø 5/14 apps hoard passwords in memory (CleanOS [OSDI 12])

ASCII PASSWORD

UTF-16 PASSWORD

Attackers only need one memory disclosure vulnerability.

Goal
Answers the two research questions

What causes password retention when passwords are no longer used?

Can we solve the password retention problem effectively?

9

We analyzed Android framework and various apps,
and found root causes.

Practical solution is possible to reduce passwords,
with minor change and performance impact.

Root causes of password retention
Password flow in Android

10

Root causes of password retention
Three components retain user passwords unnecessary.

11

Root causes of password retention
1. Android Framework

Root causes of password retention
Android framework: Keyboard (IME) applications

Default keyboard app buffers recent input regardless of passwords.

13

Application Installs Passwords
LatinIME Built-in 2

Application Installs Passwords
LatinIME Built-in 2
Gboard 1,000 M 0

SwiftKey 300 M 0

Go 100 M 1
KiKA 100 M 1

TouchPal 100 M 4
Cheetah 50 M 7
FaceMoji 10 M 1

New Keyboard 10 M 1
Simeji 10 M 0

Simplified Chinese 0.1 M 135
Baidu Voice 0.1 M 2
TS Korean 0.01 M 0

We dumped the memory of keyboard app process after login.

The insecure default open source may influence 3rd keyboard apps.

Captured passwords from 9/13 keyboard apps

We investigated popular keyboard apps.

Root causes of password retention
Android framework: Password widget

Lack of user input password protection in UI implementation.
§ No dedicated class for the password widget.

12,000 LoC of TextView is reused both for normal and password entry.
§ Missing necessary secure handling for passwords.

Ø E.g., the widget holds passwords even though the UI is going to the background.

14

Root causes of password retention
Android framework: Password widget

Poor API design in TextView

Ø Developers are guided to store passwords in String objects.

String is unsuitable for storing sensitive data [Java Crypto Arch. Reference Guide]

Ø String objects are immutable.
Ø No method is defined to overwrite the contents.
Ø Always collect and store security sensitive information in a char array.

15

public CharSequence getText()

Return the text that TextView is displaying.

Root causes of password retention
Android framework: Password widget

Poor API design in TextView

Ø Developers are guided to store passwords in String objects.

Comparing with password widget in Desktop JDK: JPasswordField
Ø Corresponding String getText() has been deprecated since Java 1.2 (‘98).

16

public char[] getPassword()

public CharSequence getText()

Return the text that TextView is displaying.

Returned char[] should be cleared after use by setting each character to zero.

The content of the return value should not be modified. Make your own copy first.

Root causes of password retention
2. Android applications

Root causes of password retention
Android applications

Developers often implement authentication routines from scratch.
Ø They have different levels of awareness and experience in security.

Various bad practices throughout Android developers.
Ø Sending raw passwords into files or through network.
Ø Widespread use of String passwords

– Surprisingly, all apps use String passwords except one password manager.
Ø No cleanup passwords after authentication.

18

Solution

Solution

The identified causes should be addressed altogether.

Lack of password protection in the Android framework.

Developers’ mistake in managing passwords.
§ Encourage the best practice.

Ø Use char array passwords.
Ø Clear the buffer of TextView after login.
Ø Derive a strong key and use it instead of raw passwords.
Ø Overwrite all passwords after login.

20

SecureTextView

Abstraction for the best practices
KeyExporter

Solution: KeyExporter

Developers make mistakes in dealing with passwords.
§ Even critical apps

The purpose of using input passwords is the same throughout the apps.
§ Developers repeat similar logic.

21

Make easy for developers to do the right thing.

Solution: KeyExporter

22

onClick()

pw = UI.getText().toString()

propagate(pw)

k = deriveKey(pw)

to_network(k)decryptDB(k)

verify_user(k) to_file(k)

password = UI.getText().toString();

Developers don’t need to access pw.

Gives what developers actually need.

Acessing passwords

onClick()

ke = KeyExporter(UI)

to_network(k)decryptDB(k)

verify_user(k) to_file(k)

k = ke.deriveKey()

+ Crypto primitives

Implementation

Android Framework (patch submitted to Google)
§ SecureTextView: extension of TextView
§ Fix lockscreen processes and LatinIME Keyboard app
§ Built on Android 8.1.0_r20

KeyExporter API (unmodified Android)
§ Support key derivation functions: PBKDF2, HMAC, Scrypt
§ Support PAKE (password-authenticated key agreement): SRP Protocol

23

Evaluation
How effective can our solution fix password retention?

Is KeyExporter generally applicable to different types of apps?

Evaluation

Evaluation after integrating KeyExporter with various apps.

Evaluation for close source

25

Application Description Original
Android

Naïve sample Sending the raw password to the server 25

Application Description Original
Android

SecureTextView
Only

Yelp Close source. Log in with Facebook OAuth 3

Found in memory of Facebook

Secure sample HMAC-based challenge-response protocol 21

passwdSafe Open source password manager with 40,000 LoC 12
Unlocking process Hash with scrypt and send it to TEE 7

0
0
0
0

2

SecureTextView
+ KeyExporter

Conclusion

Analyzed the Android framework and a variety of apps comprehensively.
§ Identified the root causes of password retention.

Developed practical solution without intrusive modification in Android.
§ SecureTextView (Android 8.1 framework patch)
§ KeyExporter (Standalone libraries)

Evaluated with apps in various categories including popular security app.

26

Questions?
Jaeho Lee

jaeho.lee@rice.edu

Source: https://github.com/friendlyjlee/totalrecall

mailto:jaeho.lee@rice.edu
https://github.com/friendlyjlee/totalrecall

Back-up Slides

Feedback from Disclosure reporting
Google Android Security Team: Won’t fix

Facebook Security Team: No immediate plan

KiKa Keyboard app: Working on it

29

In Android, each process runs in its own security sandbox.
Because of this isolation, we don’t believe there is a significant advantage in attempting
to wipe memory.
Being able to read the memory of another process indicates a system is already
significantly compromised.

The problems are best dealt with by the underlying platform, rather than individually.
If Google chooses to adopt some of your suggestions, we will evaluate them for potential
future adoption.

Kika Keyboard used AOSP LatinIME. So it might be common issue for every IME
powered by AOSP LatinIME.
It’s not very easy to root, but there are still many users having root Android phone. Thus,
it should be fixed AOSP. We are still working on it.

Related Work

Protecting sensitive data in secure storages.
§ TRESOR (Security 11): CPU registers

§ CleanOS (OSDI 12): Encrypting data in memory

§ Sentry (ASPLOS 15): Cache + iRAM in SoC chip

§ CaSE (Oakland 16): Cache + TrustZone

§ Ginseng (NDSS 19): CPU registers

Dynamic Analysis: Taint Analysis
§ TaintDroid (OSDI 10): Detecting leakage of sensitive data

§ K-Hunt (CCS17): Identifying insecure keys.

30

Intrusive modification and
significant overhead

General and
Backward-compatible

