NDSS 2019 @ San Diego, US

Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’ on Android

Daniele Antonioli¹, Nils Ole Tippenhauer², Kasper Rasmussen³

¹Singapore University of Technology and Design (SUTD)
²CISPA Helmholtz Center for Information Security
³University of Oxford
What are Google Nearby Connections?

• Public API for Android and Android Things
 ▶ In-app proximity-based services
 ▶ E.g. peer-to-peer file editing

• Implemented in the Google Play Services
 ▶ Available across different Android versions
 ▶ Applications use it as a shared library
Why Analyzing Nearby Connections?

- Wide attack surface
 - Android (version \(\geq 4.0 \)) and Android Things
 - Uses Bluetooth and Wi-Fi (at the same time)

- Proprietary technology
 - No public specifications
 - Implementation is closed-source and obfuscated
Our Core Contributions

• First (security) analysis of Nearby Connections
 ▶ Uncovers its proprietary mechanisms and protocols
 ▶ Based on reversing its Android implementation

• Re-implementation of Nearby Connections (REarby)
 ▶ Exposes parameters not accessible with the official API
 ▶ Impersonates nearby devices from any application

• Attacking Nearby Connections on Android
 ▶ Connection manipulation and range extension attacks
 ▶ Responsible disclosure with Google
Server advertises a service, client discovers it (sid)
• Connection strategies: $P2P_STAR$ and $P2P_CLUSTER$
Nearby Connections Public Information 2

- Client and server connect using Bluetooth and/or Wi-Fi
- Nodes exchange encrypted payloads (peer-to-peer)
Our Dynamic Binary Instrumentation

- **Workhorse:** Frida, https://www.frida.re
 - Profiling of processes, e.g. NC-App, NC-GPS
 - Hook function and methods calls
 - Override parameters and return values
 - Read and write processes’ memory
Reversed Phases of a Nearby Connection

1. Discovery: Bluetooth BR/EDR name and BLE reports
2. Connection Request: Bluetooth BR/EDR, not authenticated
4. Optional Authentication: based on the shared secret
5. Application Layer Connection Establishment: interactive
6. Key Derivation Functions: session, AES and HMAC keys
7. Optional Physical Layer Switch: Bluetooth BR/EDR to Wi-Fi
8. Exchange Encrypted Payloads: 30 seconds timeout
9. Disconnection
Reversed Phases of a Nearby Connection

1 Discovery: Bluetooth BR/EDR name and BLE reports
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports

2. **Connection Request**: Bluetooth BR/EDR, not authenticated
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports

2. **Connection Request**: Bluetooth BR/EDR, not authenticated

3. **Key Exchange Protocol**: establishment of a shared secret
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports
2. **Connection Request**: Bluetooth BR/EDR, not authenticated
3. **Key Exchange Protocol**: establishment of a shared secret
4. **Optional Authentication**: based on the shared secret
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports
2. **Connection Request**: Bluetooth BR/EDR, not authenticated
3. **Key Exchange Protocol**: establishment of a shared secret
4. **Optional Authentication**: based on the shared secret
5. **Application Layer Connection Establishment**: interactive
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports

2. **Connection Request**: Bluetooth BR/EDR, not authenticated

3. **Key Exchange Protocol**: establishment of a shared secret

4. **Optional Authentication**: based on the shared secret

5. **Application Layer Connection Establishment**: interactive

6. **Key Derivation Functions**: session, AES and HMAC keys
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports
2. **Connection Request**: Bluetooth BR/EDR, not authenticated
3. **Key Exchange Protocol**: establishment of a shared secret
4. **Optional Authentication**: based on the shared secret
5. **Application Layer Connection Establishment**: interactive
6. **Key Derivation Functions**: session, AES and HMAC keys
7. **Optional Physical Layer Switch**: Bluetooth BR/EDR to Wi-Fi
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports
2. **Connection Request**: Bluetooth BR/EDR, not authenticated
3. **Key Exchange Protocol**: establishment of a shared secret
4. **Optional Authentication**: based on the shared secret
5. **Application Layer Connection Establishment**: interactive
6. **Key Derivation Functions**: session, AES and HMAC keys
7. **Optional Physical Layer Switch**: Bluetooth BR/EDR to Wi-Fi
8. **Exchange Encrypted Payloads**: 30 seconds timeout
Reversed Phases of a Nearby Connection

1. **Discovery**: Bluetooth BR/EDR name and BLE reports

2. **Connection Request**: Bluetooth BR/EDR, not authenticated

3. **Key Exchange Protocol**: establishment of a shared secret

4. **Optional Authentication**: based on the shared secret

5. **Application Layer Connection Establishment**: interactive

6. **Key Derivation Functions**: session, AES and HMAC keys

7. **Optional Physical Layer Switch**: Bluetooth BR/EDR to Wi-Fi

8. **Exchange Encrypted Payloads**: 30 seconds timeout

9. **Disconnection**
Key Exchange Protocol (KEP)

- Based on ECDH, NIST P256 curve, shared secret is S_x
Optional Physical Layer Switch

- Bluetooth to soft access point (Wi-Fi Direct, hostapd)
 - Server instructs the client over Bluetooth
 - Client contacts the server over Wi-Fi
Range Extension MitM Attack

Victims are not nearby

Client Server
Range Extension MitM Attack

Attackers connect them

Client

Server
Soft Access Point Manipulation Attack
Victim Connects to Attacker’s REarby Server
Attacker Manipulates Bluetooth to Wi-Fi Switch

Internet

Client

Server

NC

REarby

essid

pass

Daniele Antonioli
Nearby Threats: Reversing, Analyzing and Attacking Google’s 'Nearby Connections' on Android
Victim Connects to Attacker’s Wi-Fi AP
Attacker Configures Victim’s Network Interface

Internet

DHCP config

Client

Server

Nearby Threats: Reversing, Analyzing and Attacking Google’s 'Nearby Connections' on Android

Daniele Antonioli

Attacks
Attacker Eavesdrops All Wi-Fi Traffic
Conclusions

• First security analysis of Nearby Connections
• Reversed its Android implementation and re-implemented it (REarby)
• Range extension and soft access point manipulation attacks
• Try the Soft Access Point Manipulation attack:

 https://github.com/francozappa/REarby/tree/master/poc-hostapd
Conclusions

• First security analysis of Nearby Connections
• Reversed its Android implementation and re-implemented it (REarby)
• Range extension and soft access point manipulation attacks
• Try the Soft Access Point Manipulation attack:
 https://github.com/francozappa/REarby/tree/master/poc-hostapd

• Thanks for your time! Questions?