

BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals

Fenghao Xu¹, Wenrui Diao^{2,3}, Zhou Li⁴, Jiongyi Chen¹, Kehuan Zhang¹

The Chinese University of Hong Kong¹, Shandong University², Jinan University³,

University of California, Irvine⁴

Motivation

• Bluetooth Everywhere

- Bluetooth device type: mouse/keyboard, headset ...
- Rich functionalities

Motivation

- Attractive attack interface
 - More than 200 CVEs... implementation vulnerabilities (e.g., driver's bugs)
 - Privacy leakage on Bluetooth device.
 - Mis-bonding. App can access any paired device. [Naveed et al. NDSS'14]
- Motivated Observation: How do users know the device type?
 - Appearance?
 - Displayed name/icons?
 - Pairing process? (e.g., input PIN)
 - Potential attacks!

Our Work

Study current Bluetooth design, focus on Android phone

- Identify several design weaknesses
 - Bluetooth device: Profile Authentication
 - Android app: Coarse-grained permission
- New Attack with 3 showcases
- Defense solution and evaluation

Outline

Background

- Design weaknesses
- New attack with 3 showcases
- Defense solution and evaluation

Background: Bluetooth

- Bluetooth Profile A general functionality (e.g., Headset Profile)
- Bluetooth Connection
 - Discovering
 - Pairing link key
 - Profile connection
 - Multiple profiles at same time

Description Name Usage Human Interface Device Keyboard HID PAN Personal Area Networking Network Hotspot HFP/HSP Hands-Free/Headset Wireless Headset SAP SIM Access Car Kit MAP Message Access Car Kit PBAP Phone Book Access Car Kit OPP **Object** Push File Transfer Advanced Audio Distribution A2DP Wireless Speaker AVRCP Audio/Video Remote Control Remote Media Controller DIP Device ID Extra Device Information HDP Health Device Blood Pressure Kit SPP Serial Port App-specific

Android Supported Profiles

Background: Bluetooth

- Bluetooth Profile A general functionality (e.g., Headset Profile)
- Bluetooth Connection
 - Discovering
 - Pairing link key
 - Profile connection
 - Multiple profiles at same time

Outline

- Background
- Design weaknesses
- New attack with 3 showcases
- Defense solution and evaluation

Weakness – Profile Authentication

- Inconsistent Authentication Process on Profile
 - Device-level authentication
 - No profiles indication on pairing
 - Show a list in details menu if paired
 - Device can change profile dynamically!

Android Bluetooth Menu

Weakness – Coarse-grained Permissions

- Android Bluetooth Permissions
 - BLUETOOTH, BLUETOOTH_ADMIN normal level (implicit granted)
 - For device discovery: ACCESS_COARSE_LOCATION

(not required with known MAC address)

- App can access any paired device [Naveed et al. NDSS'14]
- Mis-aligned with profiles

Weakness – Coarse-grained Permissions

- Mis-aligned with profiles
 - normal-permission app (Bluetooth permissions)
 - initiate "system-level" Bluetooth connection (on behalf of the phone)
 - "Hidden" APIs Java reflection or replace SDK
 - App privilege escalation through external device

app-device "direct" connection (e.g., Serial Port Profile)
system-device connection (e.g., Human Interface Device)

Weakness – More

Silent Pairing

- Pairing is supposed to involve user interaction. (e.g., numerical comparison, input PIN)
- Device neither display nor input ability
- Pair with the device stealthily

- Deceivable and vague UI
 - Device name and icon easy to cheating
 - Class Device Number (CoD)

Icon	CoD	Class Description		
	0x100	Computer		
<u></u>	0x200	Phone		
	0x404	Audio/Video-Wearable Headset		
$\mathbf{\Omega}$	0x418	Audio/Video-Headphones		
	0x500	Peripheral		
·····	0x540	Peripheral-Keyboard		
•	0x580	Peripheral-Pointing device		
•	0x600	Imaging		
*	0x000	General Bluetooth		

Outline

- Background
- Design weaknesses
- New attack with 3 showcases
- Defense solution and evaluation

BadBluetooth Attack

- Adversary Model
 - Device: various ways
 - e.g., seller, previous owner hacked; exploit device vulnerabilities...
 - App: with two normal-level permissions

- Google Pixel 2 with Android 8.1
- Raspberry Pi 2 running Linux with Bluetooth USB Adapter (CSR8510)

Attack Case 1: Human Interface Device (HID)

- Full functional keyboard and mouse supporting on Android
- Construct global input sequences equivalent to any user actions

Attack Case 1: Human Interface Device (HID)

- Attack Strategy
 - Adaptive using phone brands and Android version information
 - Input Capability mouse, keyboard event (including functional keys)
 - Output Capability KEY_SYSRQ (capture any view on the phone)

Linux Key Code Name	Description (effect on Android)		
KEY_ENTER	Enter Key (click)		
KEY_TAB	Tab Key (select item)		
KEY_SYSRQ	Screenshot		
KEY_COMPOSE	Menu Key (open menu for current app)		
KEY_POWER	Power Key (open/close screen)		
KEY_WWW	Explorer (launch browser app)		
KEY_PHONE	Call (launch phone app)		
KEY_MAIL	Envelope (launch mail app)		
KEY_ADDRESSBOOK	Contacts (launch phone book app)		
KEY_HOMEPAGE	Home Key		
KEY_BACK	Back Key		

Attack Case 1: Human Interface Device (HID)

- Attack: Information Stealing
 - Screenshot then read
- Attack: App and System Controlling
 - Cross-app injection
 - System setting modification
 - Acquire dangerous permissions
 - Restart/shutdown phone...
- Attack: Beyond the phone
 - Steal tokens (e.g., website login, SMS code)
 - Open camera...

Attack Case 2: Personal Area Networking (PAN)

- Attack: Network Sniffing and Spoofing
 - Device as NAP
 - Force traffic to go through the device
 - MITM attack sniffing, spoofing
- Attack: Network Consumption
 - Device as PANU
 - App opens the Bluetooth Tethering (global)
 - Share the phone's network

(b) Device as PANU

Attack Case 3: Hands-Free (HFP)

- Attack: Telephony Control
 - Answer/reject incoming calls
 - Initiate outgoing calls (arbitrary number)
- Attack: Voice Command Injection
 - Google Voice Assistant
 - Trigger and inject voice command

Demo

Outline

- Background
- Design weaknesses
- New attack with 3 showcases
- Defense solution and evaluation

Defense: Profile Binding

- Fine-grained control and better visibility to user
- Bind the device with a permitted profile list, prohibit connection with other profiles

Defense: Implementation

Modified Android Open Source Project (AOSP) Android 8.1

- Modules in the Bluetooth Process
 - Pairing Monitor
 - Binding Policy DB
 - Settings.Secure storage
 - Connection Controller

The white blocks and blue lines represent the defense framework

Defense: Evaluation

- Effectiveness
 - All pairing process is monitored and prompted to users
 - Only explicitly granted profiles can be connected
- Performance
 - connect() time delay
 - less than 12% with total time

TABLE VII: Profile connection evaluation. (mean/std)

ProfileService Class	Original (µs)	Defense (µs)	Delays (µs)	Total* (µs)
HidService	494.9/63.0	605.5/49.0	110.6	2546.0/589.4
PanService	235.8/45.8	460.4/43.1	224.6	1890.5/420.5
HeadsetService	473.5/62.4	522.2/66.5	48.7	2359.3/326.1

*:From upper-layer API call to connection completion (original Android OS).

Summary

- Several weaknesses on Bluetooth design, especially on Android
- We presented the BadBluetooth attack
 - Device: abuse the Bluetooth profile abilities to attack phone
 - App: break Android security mechanisms through a peripheral
- Three concrete attack cases HID, PAN, HFP
- Defense solution: profile binding
 - fine-grained control

Thank you!