
IoTGuard: Dynamic Enforcement of Security and Safety Policy
in Commodity IoT

Z. Berkay Celik

Patrick McDaniel
	

Gang Tan

Penn State University
NDSS 2019

Internet of Things (IoT) enables the future

Smart Homes
Source: Samsung

Healthcare
Source: John Hopkins

Smart Energy
Source: LG

Smart Farms
Source: MicrosoQ

2
Connected devices

IoT is not magic

Mobile app IoT applicaRon AutomaRon

Po
w
er
	C
on
su
m
pt
io
n	

30%	saving	

With	no	smart	
	

With	smart	
	

Usage/
month	

IoT enables the future (and a whole lot of problems)

3

All of these failures are tradiRonal security problems:
SoQware bugs, user error, poor configuraRon, or faulty design

4

IoT environment IoT Devices

IoT app market Trigger-acRon app market

21

4

welcome-home IoT app

E: light turned-on
A: acRvate home-mode

home-mode-automaRon IoT app

E: home-mode
A: turn on heater and
 slow cooker, unlock paRo-door

3
goodnight IoT app

E: light turned-off
A: set alarm at 7 am, turn on
 coffee machine at 7:15

Trigger-acRon pla]orm IF rule

E: coffee machine turned-on
A: post a Tweet

5

5

simulate-occupancy app

E: tap an app icon or at a Rme
A: turn on lights
 turn off lights

5

* E is for event, A is for AcRon

6

interacts

interacts

interacts
simulate-occupancy app

goodnight IoT app

welcome-home IoT app

E: light turned-on
A: acRvate home-mode

home-mode-automaRon IoT app

E: home-mode
A: turn on heater and cooker,
 unlock paRo-door

E: light turned-off
A: set alarm at 7 am and turn on
 coffee machine at 7:15 am

trigger-acRon rule
interacts

E: coffee machine turned-on
A: post a Tweet

E: tap an app icon
A: turn on lights
 turn off lights

unlocked

turned on

turned on

turned on

post Tweet

InteracRons among IoT and trigger-acRon apps

How can we prevent safety and security violaRons

within IoT environments?

7

Future Work

8

IoTGuard

‣ Model device behavior from app source code

‣ Construct state transiRons of the IoT environment

‣ Prevent IoT environment from arriving an undesired state

We need a custom system for IoT to …

•  No runRme monitoring: It may not anRcipate devices at implementaRon Rme

•  One sided: Users cannot reason about undesired states at runRme

•  Scope: Its analysis is limited to pre-installed devices

… But code analysis isn’t ideal

S1 S2 S3 S4

1

2

1
3

2

32

1

1

2

3
3

Modeling states and transiRons of IoT devices

Events Device adributes

SoluRon…

Future Work

9

IoTGuard
IoTGuard

* We refer to IoT and trigger-acRon apps as IoT apps

...

AcRon
reject/pass

Event

User			
config.	

AcRon
...

App execuRon

App info

Instrumented

IoT app

Data
Collector

IoT app

Security
Service

PoliciesCode
 Instrumentor

Unlock door state blocked
when you are not home! !

Policy Violation !
R.3 Enforced !

IoTGuard	 x

Instrument the code Monitor runRme behavior

Block or ask users for unsafe
state transiRons

u v

w

IoTGuard Server

•  IoTGuard is a dynamic policy-based enforcement system on IoT
device behaviors

Code instrumentaRon
IoTGuard

10

•  Add extra code logic to an app source code to work with IoTGuard

// Devices !
presence sensor ps!
door d !
thermostat t !
power meter p !

when ps.present !
 t_home=71; thold=50; !
 d.unlock(); !
 if (p.power<thold){ !
 t.set(t_home); !
 } !

1: !
2: !
3: !
4: !
5: !

6: !
7: !
8: !

!

9: !
10: !
11: !

‣ Perform path-based staRc analysis to collect app informaRon and guard app acRons

Source code of home-automaRon IoT app

Guard device acRons

if(response["d.unlock"]){	
				d.unlock();	
}	

w

if(response["t.set"]){	
				t.set(t_home);	
}	

IdenRfy hook points
u

- events
- path condiRons
- numerical-value
 in adributes

Insert instrumentaRon code
v

door unlock !

thermostat set !
71 !

power<50 !

Event: present

transmitAppInfo() !

‣ OpRmize number of added instrumentaRon code block

Data collector
IoTGuard

11

•  Store app’s informaRon in a dynamic model

Data Collector
(IoTGuard)Transmit!

Instrumented IoT
app

device ID
predicates
event Rme

block/allow bit
app info. object

Event AcRon

obj Instrumented
trigger-acRon app

…

Dynamic model

•  Dynamic model represents the runRme behavior of individual and interacRng apps

app-touch

app-touch

light.off()

light.on()

2 11

light-off

light-off

alarm.set()

coffeeMac.on()

mode.home()

door.unlock()

home-mode

home-mode

home-mode
heater.on()

crockpot.on()

light-on

coffeeMac-on

postTweet()

Unified dynamic model

app-touch
	

app-touch	
light.on()	

light.off()	

11	
light-off	
light-off	

alarm.set()	

coffeeMac.on()	

light-on	

mode.home()	

door.unlock()	

home-mode	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

coffee	mac.-on	

postTweet()	 11	

11	

11	

11	

Individual dynamic models

welcome-home

Twider-trigger-acRon

Instrumented apps

home-automaRon

good-night

simulate-occupancy

‣ Extends Guova graph library for construcRon

Security service - Property idenRficaRon

The door must always be locked when the user is not home

General properRes

moRon-acRve switch-on

Adributes of conflicRng values

moRon-acRve switch-off

ApplicaRon-specific properRes
‣ Constraints on states and transiRons ‣ IdenRfy use cases of one or more devices

•  Policy* is a system arRfact that represents the real world needs of users
and environments

1

2

3

30

moRon-acRve switch-on

Race condiRon of events

user-present switch-off

5

1

IoTGuard

* Extends safety and security properRes of Soteria system (Celik et al., Usenix ATC’18) exercised through model checking
12

. . .
 The refrigerator and security system must always be on

The water valve must be closed if a leak is detected

The alarm must always go off when there is smoke

. . .

Security service - Policy idenRficaRon
IoTGuard

13

•  IdenRfy safety and security policies for trigger-acRon apps

•  Trigger-acRon specific policies
<policy-set>	::=	[<statements>]	
	
<statements>	::=	<statement>	`;'	[<statements>]	
	
<statement>	::=	<restrict_clause>	|	<allow_clause>	
	
<restrict_clause>	::=	`restrict'	`:'	[<transitions>]	`:'	[<states>]		
	
<allow_clause>	::=	`allow'	`:'	[<transitions>]	`:'	[<states>]	

.	.	.		

Overall IoTGuard checks an IoT environment against 36 idenRfied policies

‣ Label states through NLP techniques

GPL: IoTGuard Policy Language

Public		
state	

Private	
informaDon	

ConfidenRality policy

Trusted		
state	

Untrusted		
event	

Integrity policy

ViolaRons in trigger-acRon apps: Surbatovich et al. (WWW’17), Celik et al. (arXiv’18)

‣ Store them in app’s dynamic model object

Future Work

14

Security service - Policy enforcement
IoTGuard

switch-on	User	tagged		
in	a	post	

Integrity policy enforced

X Save	it	to	a	
public	file	

user-present	

ConfidenRality policy enforced

X

•  Security service blocks undesired states before happening

smoke-detected switch-on switch-on home-mode door-lockhome-mode

smoke-detector	 welcome-home	mode-change	

‣ Enforce policies by exploring their reachability and check state labels during exploraRon

•  Two soluRons for policy enforcement

X
Block door-lock state when there is a smoke at home

User approval via runRme prompts

door-lock	state	in	welcome-home	
is	blocked!	

P.3 Enforced

Door is locked when there is smoke

IoTGuard	 x

Automated blocking

door-lock	state	in	welcome-home	

P.3 Violated

Door is locked when there is smoke

IoTGuard	

Deny	 Allow	
Automated blocking

3

9

2

1
1

10
11

7 8

18

4

5

17

12

13

16

15

15

1
3

44

1

11

14
14

6

19

20

IoTGuard

ApplicaRon study

15

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20

Light	switch(4)	
Door	lock	
Presence	sensor(2)	
MoDon	sensor(3)	
Contact	sensor	
Temp.	measure.	
AC	
Heater	
Coffee	machine	
Crockpot	
Leak	detector(2)	

Fan	
Power	meter	
Alarm(2)	
Smoke	detector(2)	
Humidity	sensor	
Luminance	sensor	
Speakers	
Window	shade	
Doorbell	

‣ Simulated a smart home including 29 devices with a total of 20 device types
‣ Configured apps based on their descripRons

•  ExecuRng apps

•  Implemented IoTGuard for SmartThings and IFTTT pla]orm
•  Selected 35 SmartThings IoT and 30 IFTTT trigger-acRon market apps

IoTGuard

Policy enforcement in individual apps

16

‣ R:13: InteracRons through abstract adributes

‣ S.1: Lack of app-vepng for trigger-acRon apps

‣ R.17: MisconfiguraRon of numerical-valued device adributes

•  Source of policy violaRons

App ID ViolaRon DescripRon Policy Blocked

ST4-ST7 The heater is turned on when user is not at home R.13 heater on

IFTTT5 The switch is turned on when someone Tweets a hashtag S.1 switch on

ST11-ST12 Heater and AC turned on at the same Rme R.17 AC on

X
X

ST = SmartThings IoT apps IFTTT = Trigger-acRon apps

X

•  Enforced 3 (8%) policies and blocked 3 states in 5 (8%) apps

IoTGuard

Policy enforcement in mulR-apps

17

•  Enforced 9 (25%) unique policies and blocked 18 states
‣ Studied violaRons between interacRng apps

door ring-pressed
turn on
lights

missed-call
light-on

light-on
open window shades

send noRficaRonemail

physical
domain

digital
domain change modelight-off

(away, sleeping)

mode change heater onsunset
turn off

lights
moRon-acRve

11 pm

mode change cooker on
mode change lights on

1

2

Group

Group

IoTGuard

X
X
X

‣ Each group includes a set of interacRng IoT and trigger-acRon apps

X
X

Performance

18

•  Code instrumentaRon
‣ 14±4 Lines of Code (LoC) added to the apps (+ 20 LoC for IoTGuard library)

•  RunRme latency

‣ 4.1±2 seconds to add instrumentaRon code

0 1 2 3 4 5 6 7 8 9 10
Interaction size (number of interacting apps)

0.6

0.61

0.62

0.63

0.64

0.65

En
d-

to
-e

nd
 o

ve
rh

ea
d

(s
ec

)

17.3%
18.1% 18.5%

19.4% 19.8%
20.8%

21.7%
22.3%

23.1% 23.5%

Fig. 11: IOTGUARD’s end-to-end overhead on policy enforcement.
Error bars indicate standard errors, and percentages shows the
overhead with respect to the unmodified system.

the app. Figure 11 shows the end-to-end overhead, in seconds,
of the different number of interacting apps. The interaction size
represents the number of states which impacts the number of
policies that IOTGUARD checks on the unified dynamic model of
interacting apps. For instance, if ten apps are interacting with
each other, IOTGUARD checks more policies because the number
of devices that a unified dynamic model includes is more than
the devices of an app’s dynamic model. As can be seen, most
policy checks on an instrumented app require on average 90 ms
(17.3%) with respect to the unmodified system. The overhead
increases with the number of interacting apps. For instance, the
overhead for ten interacting apps is on average 122 ms, which
constitutes less than a 23.5% runtime overhead. The end-to-end
overhead is dominated by buffering of app’s information and
checking the policies. While these overheads are acceptably
low for many applications, they may be partially reduced by a
tighter coupling of IOTGUARD and the edge system (i.e., hub or
cloud). We note that the actual overhead in an IoT system often
happens due to the communication between the edge system
and physical device; for example, execution of a device action
often has a latency over a second [28], [51]. Thus, IOTGUARD’s
overhead in real-world scenarios would be negligible because
it does not add latency for device action execution.

IoTGuard Console-prompt and Data Storage Overhead.
When the user deactivates the automated blocking, IOTGUARD

provides the user with a console to review the policy violation,
and the user may either deny or allow an app’s action. We
measure the overhead of displaying the console to the users
through a Web interface in 21 policy violations recorded in
our market-based study. The console adds negligible perceived
latency, on the order of milliseconds, to the end-to-end overhead.
We next determine the storage cost of IOTGUARD by measuring
the app’s information recorded in the data collector. We
randomly triggered 500 app events by considering a highly
active IoT user. The data collector imposes 80KB of storage cost.
We note that storage cost can be reduced either by deleting the
logs based on the user’s needs or integrating the IOTGUARD into
the edge system or cloud based on the IoT platform architecture.

VIII. LIMITATIONS AND DISCUSSION

A limitation of IOTGUARD is in taking the right course of
action if a state is blocked. In some cases, merely blocking
a state caused by users or policy errors could have physical
consequences. For example, suppose that a door should be

unlocked only for a security service based on a time window
specified by the user when she is on vacation. However, a
policy that blocks the unlock-door state prevents the security
service from entering the house, which may or may not be
preferable depending on the circumstances. To help keep the
IoT environment stable when an action is rejected, future work
will need to study more complex policies through multiple
users and better handle blocked states.

IOTGUARD allows a user to specify policies through IOT-
GUARD’s GPL. This can pose problems especially when users
create policies in highly complex IoT environments, where an
incorrect policy specification may prevent legitimate states, fail
to block unsafe and insecure states, or conflict with another
policy. For instance, one policy may allow action “a” when a
specific event occurs, while a second policy may deny a set of
actions, of which “a” is a member. To address these issues, we
plan to adapt machine learning and other modeling techniques
to automate the property-discovery process and policy conflict
resolution in IoT devices and domains.

IOTGUARD implements an algorithm to find the events and
actions of IFTTT trigger-action applets. Thereafter, we manually
label the events and actions with integrity and confidentiality
labels. We found that extracting IFTTT events and actions and
labeling them is not a trivial process because an applet’s event
and actions often do not match the device capabilities of an IoT
platform. Additionally, this process does not scale to a large
number of IFTTT applets. We plan to use more semantically
rich natural language processing techniques for automated and
scalable applet processing.

We have shown that IOTGUARD can express meaningful
policies to preserve system safety and security. We plan to
conduct a user study to evaluate the usability of IOTGUARD based
on user configuration of the apps. We will ask independent
users to configure the IoT apps and trigger-action applets with
the assumption that they deploy them in a smart home. We will
then execute the apps and study the effectiveness of IOTGUARD,
focusing on policies, blocked states, and user-perceived risks
based on specific user configurations.

Lastly, IOTGUARD’s implementation and evaluation are based
purely on the SmartThings home automation platform and
IFTTT trigger-action platform apps. There are other IoT do-
mains suitable to evaluate safety and security violations, such as
FarmBeats for agriculture [50], HealthSaaS for healthcare [23],
and KaaIoT for the automobile industry [29], and Zapier [53]
and Microsoft Flow [35] for trigger-action platforms. We plan
to extend IOTGUARD’s algorithms to these platforms and engage
in large-scale analyses of IoT markets and industries.

IX. RELATED WORK

There has been an increasing amount of recent research
exploring IoT security and more broadly safety. We compare
IOTGUARD with several previous approaches that differ in scope,
focus, precision, and runtime. The approaches studied here are
the most applicable that run directly on IoT app source code.
As presented in Table V, IoTGuard supports more features
than any previous approach to IoT security. ContexIoT is a
permission-based system that provides contextual integrity for
IoT apps at run time [28]. SmartAuth generates an authorization
interface for users and enforces the apps permissions after a

12

End-to-end overhead: The Rme between receiving an event and invoking an acRon

~20% overhead on five
interacRng apps

IoTGuard

Thanks for listening!

https://beerkay.github.io!

beerkay!

@ZBerkayCelik!

19

Through this effort, we introduce a rigorously grounded system for
enforcing correct opera8on of IoT devices through systema8cally iden8fied
IoT safety and security policies, demonstra8ng the effec8veness and value
of monitoring IoT apps with tools such as IoTGuard.

