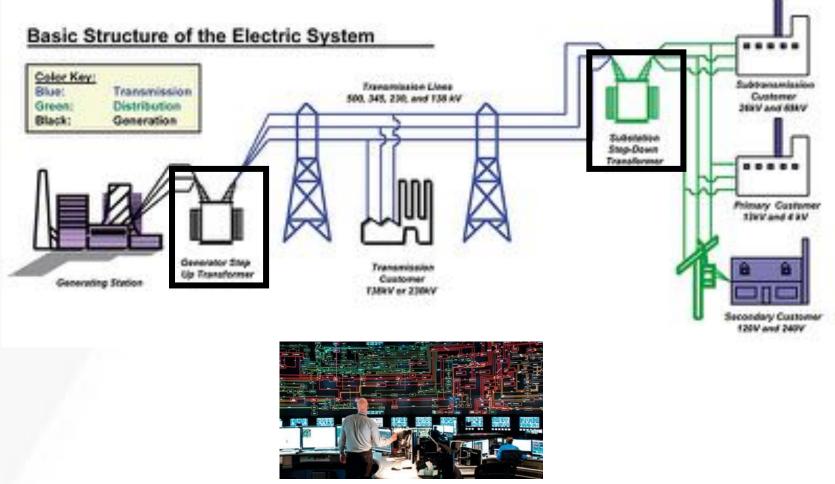
Georgia Tech


CREATING THE NEXT

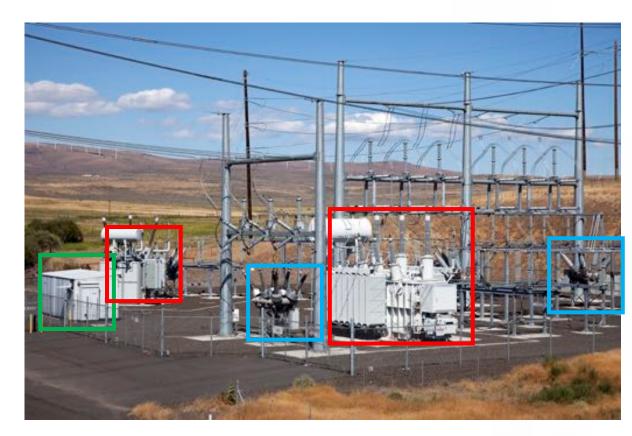
RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the Power Grid

Tohid Shekari, Christian Bayens, Morris Cohen, Lukas Graber, and Raheem Beyah School of Electrical and Computer Engineering February 2019

Power Grid Overview

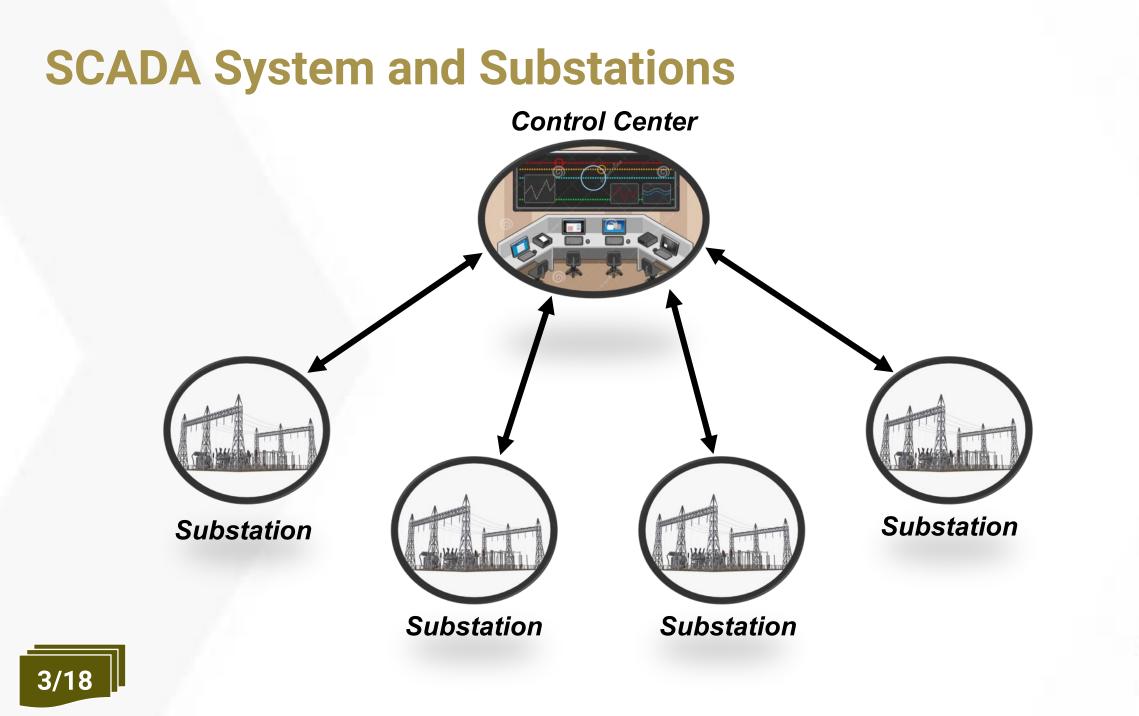
Basic Structure of the Power Grid

1/18


Control Center

Gene

TRANSFORM FROM BARDING


SCADA System and Substations

- Typical equipment in substations
 - Transformers
 - Circuit breakers
 - Measurement devices and relays
- SCADA system
 - Control center
 - Substations (RTUs)

Geog

Power Grid Attacks

- Ukrainian power grid attack on December 2015
 - Substation RTUs
 - Circuit breakers
 - 30 substations
 - 230,000 residents
 - DDoS attack on the call centers

Our Motivations – Why Substations?

- Main target of attackers?
- Large attack surface
- Two million attacks per day!

US power grid needs defense against looming cyber attacks

BY MELANIE KENDERDINE AND DAVID JERMAIN, OPINION CONTRIBUTOR -- 03/23/18 03:30 PM ED1 THE VIEWS EXPRESSED BY CONTRIBUTORS ARE THEIR OWN AND NOT THE VIEW OF THE HILL

Existing Defense Mechanisms

- Cybersecurity issues has been traditionally handled using network security and IT practices [15]-[28]
 - Patching more frequently and personnel training
 - SCADA network traffic
 - Machine learning methods to extract signatures
 - Network scanning, password guessing
- Weaknesses
 - SCADA network can be compromised totally
 - Zero day vulnerabilities

General Idea of Our Solution

- Deploying new low-cost sensors in power substations
 - Electromagnetic emanations from power circuits
 - Robust against replay/spoofing attacks

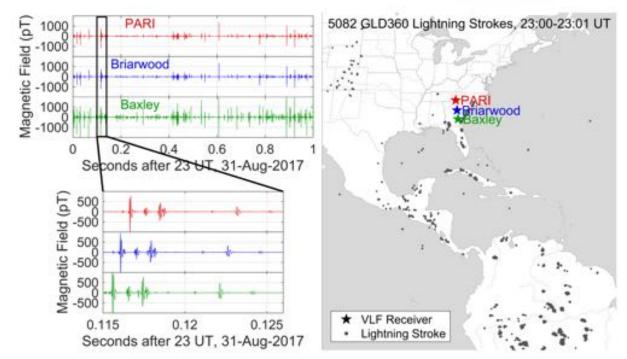
Measured electromagnetic signal Caused by circuit current

Caused by lightning strokes from far distances SCADA Network

Signal
Authentication

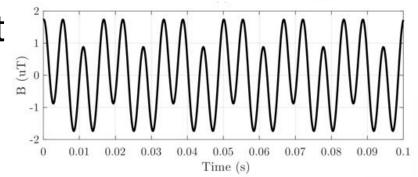
Lightning Authentication Method

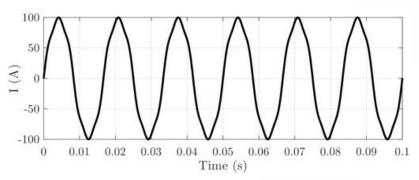
- Large current radiates electromagnetic signal
- Can travel long distances
- Random natural phenomenon
- Roughly 3 million times/day
- Similar signal? Nuclear explosion!
- Travels at the speed of light



Lightning Authentication Method

- Lightning database, e.g., NLDN
 - Lightning current (intensity)
 - Lightning location
 - Lightning occurrence time
- Compare the expected arrival time of lightning signals





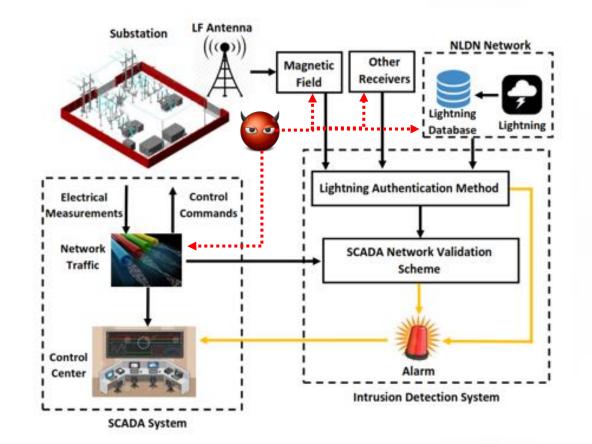
SCADA Network Validation Scheme

- Electromagnetic emissions from circuit current
 - Direct mathematical equations
 - Reconstructing the circuit current
 - Useful attributes
 - Circuit current harmonic content (especially 60 Hz)
 - Current fundamental frequency

Measured Magnetic field Signal

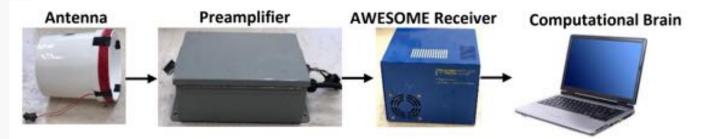
Reconstructed Circuit Current

SCADA Network Validation Scheme


- Harmonic content and fundamental frequency
 - Reported to the control center as measurements
 - Control actions will affect them
 - Circuit breakers
 - Transformers
 - Protective relays
 - Substation RTUs

Threat Model and Defense Mechanisms

- Overview of the proposed scheme
- Four attackers were considered
 - ICS SCADA knowledge
 - Level 1 + EM analysis
 - Level 2 + Lightning database
 - Level 3 + Geographical information



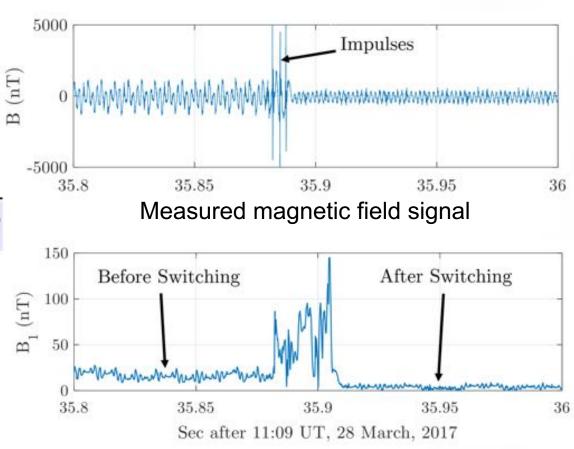
Example Attack Scenarios

Measurement setup

- Experimental results
 - One substation of Georgia Power in Atlanta
 - Two substations of Choptank Electric in Maryland
- Simulation results
 - PSCAD and Matlab

Example Attack Scenarios

- Attack on the lightning authentication scheme simulation with experimental data (99.99% true positive, true negative 99.99%)
- Circuit breaker malicious switching experimental
- Transformer malicious tap changing simulation (see Section V.B.2)
- False data injection to substation RTUs simulation and experimental (see Section V.B.3)
- Any other attack that can affect the circuit current


Attack Scenarios

- Circuit breaker malicious switching
 - Opening the circuit breaker

11:09:35.387	.0.11	DNP 3.0	89 from 1024 to 48, Select
.0.11	.20.22	TCP	60 20000 → 65528 [ACK] Seq=10996 Ack=3925 Win=16384 Len=0
11:09:35.422 .0.11	.20.22	DNP 3.0	91 from 48 to 1024, Response
11:09:35.437 20.22	.0.11	DNP 3.0	89 from 1024 to 48, Operate
11:09:35.455 .0.11	. 20.22	DNP 3.0	91 from 48 to 1024, Response
11:09:39.558	.0.11	DNP 3.0	78 from 1024 to 48, Read, Class 123
.0.11	.20.22	TCP	60 20000 + 65528 [ACK] Seq=11070 Ack=3984 Win=16384 Len=
11:09:39.570		DNP 3.0	274 from 48 to 1024, Response
11:09:39.609	.0.11	DNP 3.0	69 from 1024 to 48, Confirm

SCADA network traffic

SCADA network traffic, T = 11:09:35Measured magnetic field, T = 11:09:35

First harmonic of the measured signal

Conclusions and Possible Directions

- Conclusions
 - An air-gapped physical signal-based distributed IDS is proposed
 - The developed sensor is robust against spoofing/replay attacks
 - A natural random phenomenon (lightning) is leveraged for signal authentication
 - The proposed method is able to detect various types of attacks with high accuracy

Conclusions and Possible Directions

- Weaknesses and Possible Directions
 - Other attributes can be used in the lightning authentication method
 - **Remote** deployment of RF receivers
 - Handling three-phase unbalanced systems
 - The minimum number of receivers within the substation

