Private Continual Release of Real-Valued Data Streams

Date: February 26, 2019

Victor Perrier,

Hassan Jameel Asghar,

Dali Kaafar

Macquarie University, Data61 (CSIRO), ISAE-SUPAERO

Streaming Data and Statistics

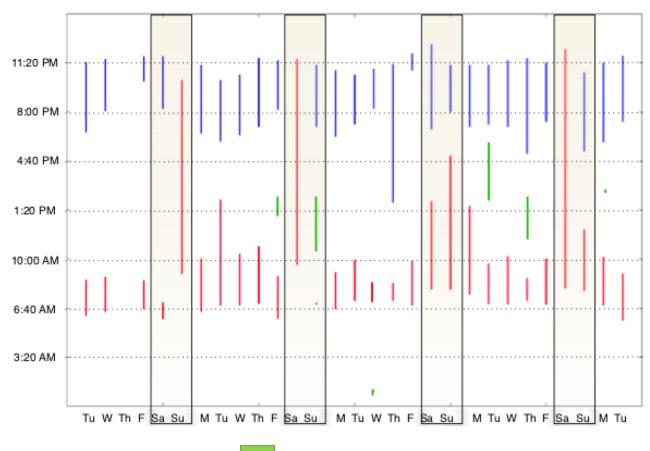
- Real-time monitoring of customer data can improve services
 - Real-time updates
 - Analysts/planners can optimize services

Service	Event	Real-time statistics
Energy	Smart-meter reading	Electricity usage in a neighborhood
Transport	Tap-on/off time	Peak hour commute times
Retail	Supermarket bill	Average expenditure in a supermarket
Location	Check-in/out time	Average time spent in a restaurant

Issue: Privacy

Smart meter readings

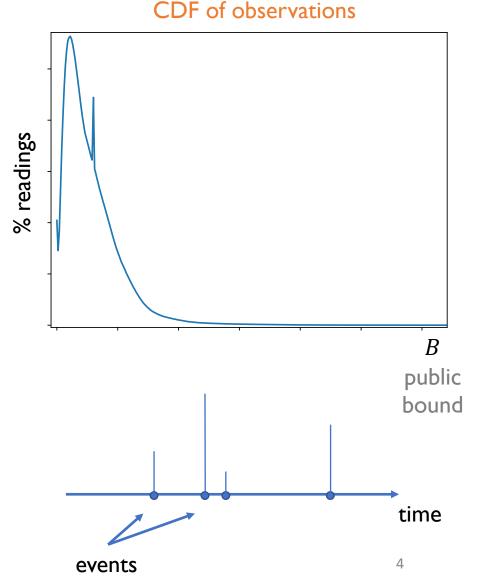
- Raw stats may reveal sensitive events
 - Unusual presence at home (smart meter)
 - Trip to beach instead of work (transport)
- Events (observations) can be linked to real-life activities [MSF+10]



Unusual activity [MSF+10]

Privacy-Preserving Statistics

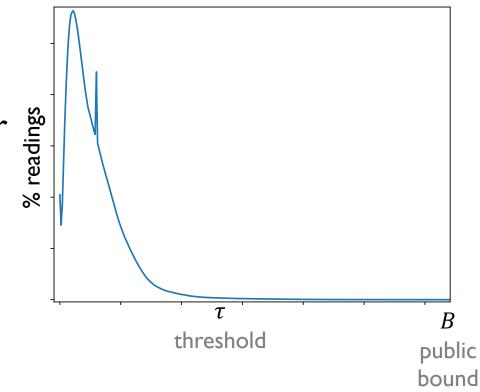
- Differential privacy a natural candidate
 - Most work on static databases
 - Some work on binary data streams [DNPR10, CSS11]
- Our problem
 - Data from an event is **real-valued** within a public upper bound *B*
 - Release updated sum/average at each event
 - Event-level privacy
 - Peculiar events protected



How to Release the Average?

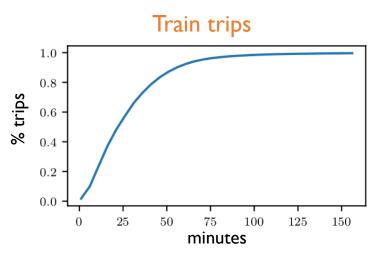
- Basic: add Laplace noise of scale B to each observation
 - Error Bn after n events
- Generalized binary stream algorithm fairs better
 - Error $B\log_2 n$ [DNPR10, CSS11]
- Problem: error still proportional to ${\cal B}$
 - In many situations B is too loose or unknown
 - E.g., Unlikely someone commuting for full 24 hours!
 - Most readings concentrated below a threshold τ
 - If au known, error is only $au \log_2 n$
 - Significant if $B: \tau$ large

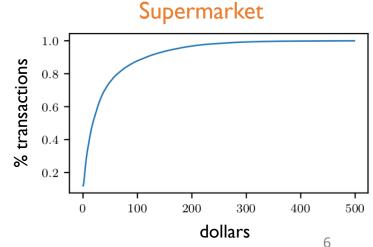
CDF of observations



Validation of Data Concentration

- Is data really concentrated well below a conceivable *B*?
- Train trips dataset
 - 50 million trips over four weeks (Sydney, Australia)
 - Conceivable bound B = 24 hours
- Supermarket dataset
 - 140,000 transactions by 1,000 customers (Australia)
 - Conceivable bound B = ?

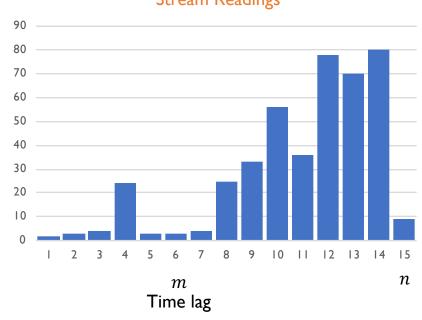




How to Estimate Threshold with Privacy?

- Need to observe a subset m of observations

 time lag
- Time lag needs to be optimized for accuracy
 - Too early: high outlier error
 - Too late: marginal gain (may just use *B* as estimate)
- Naively estimating au violates privacy
 - E.g., maximum of *m* observations is an exact event!



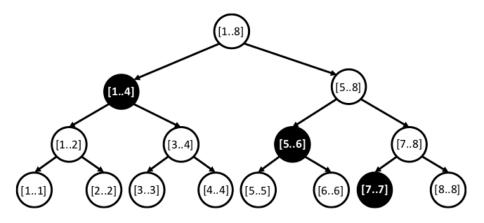
Stream Readings

Our Work

- A method to estimate threshold au using a subset of observations
 - With differential privacy
 - and utility optimized for moving average
- Mechanism is generic can also be used for
 - Average over a sliding window
 - Releasing histogram of streaming data
 - Estimating scale of distribution

Background: Binary Tree Algorithm

- Binary tree (BT) algorithm [DNPRI0, CSSII]
 - Find at most $\log_2 n$ nodes in tree whose union equals sum up to i events
 - Add Laplace noise of scale $\frac{B\log_2 n}{\epsilon}$ instead of $\frac{Bn}{\epsilon}$
- Goal: Use BT as sub-module but noise scaled to τ instead of B



Computing private sum of first 7 observations

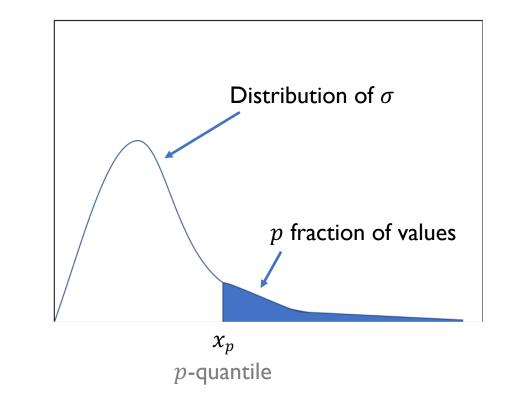
Global Mechanism

- I. Estimate threshold τ using first m observations using budget ϵ_1
- 2. Use Laplace noise with scale $\frac{\tau}{\epsilon_2}$ to release sum of first *m* observations
- 3. Update & release sum for each event after m with Laplace noise of scale $\tau \log_2 n/\epsilon$ using BT algorithm
- Overall: (ϵ, δ) -differential privacy

What are the Choices for Threshold?

• False starts

- Differentially private max of m values?
 - max function is highly sensitive
 - Adjacent streams can differ by any value in [0, B]
- Standard deviation of distribution of σ ?
 - Need to know distribution in advance
- Statistic of choice: p-quantile
 - E.g., p = 0.005 (0.5% of values)



Privately Estimating *p*-Quantile

- Need to estimate p-quantile through first m readings
 - Satisfying $n \gg m \gg 1/p$ ______ required for stable estimate of p
- Roadmap
 - Obtain the empirical estimate \hat{x}_p of x_p
 - Add differentially private noise to \hat{x}_p
 - Set the result as threshold au
- Complication: cannot use Global Sensitivity (GS) for DP noise
 - Maximum change in function over all adjacent streams
 - GS of p-quantile is close to B

Using Smooth Sensitivity

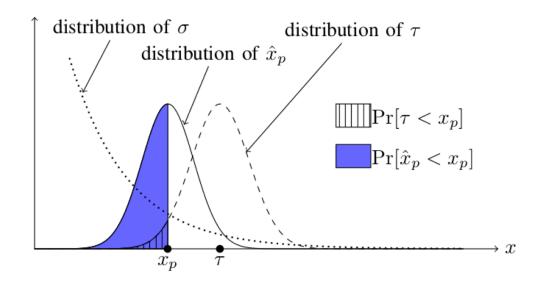
- Local sensitivity (LS)
 - Maximum change in p-quantile over streams adjacent to input stream only
 - Unfortunately, LS itself can be sensitive
 - E.g., big differences in LS over nearby streams
- Smooth sensitivity (SS) [NRS07]
 - $d(\sigma, \sigma')$: Hamming distance between streams σ and σ'
 - $SS(\sigma, b) = \max_{\sigma'} \{e^{-bd(\sigma, \sigma')} \cdot LS_{\sigma'}\}$
 - Smooths out change in LS as we move away from input stream

Privately Obtaining the Threshold

Obtain threshold as

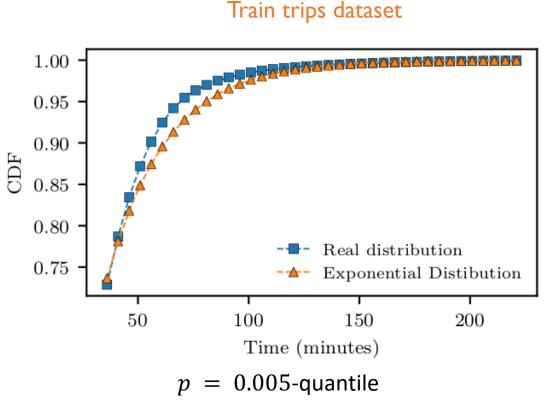
 $\tau = \hat{x}_p$ + Laplace noise with SS

- We have swept some details under the rug
 - \hat{x}_p and τ should be $\geq x_p$ to bound error
 - We assume $\hat{x}_p \ge x_p$



Utility Analysis

- Light-tailed distributions
 - Lighter than exponential distribution with the same p-quantile
- True for train trips and supermarket datasets for sufficiently small p
- If distribution is light-tailed
 - We show that error $\tau \log_2 n/\epsilon$ (as required)
 - **Note:** Privacy definition **not** dependent on distribution assumption



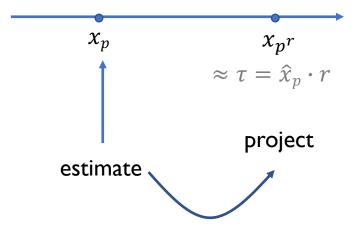
Utility Analysis for Light-tailed Distributions

• Exponential distribution has the property

 $x_p \cdot r \ge x_{p^r}$ for all $r \ge 1$

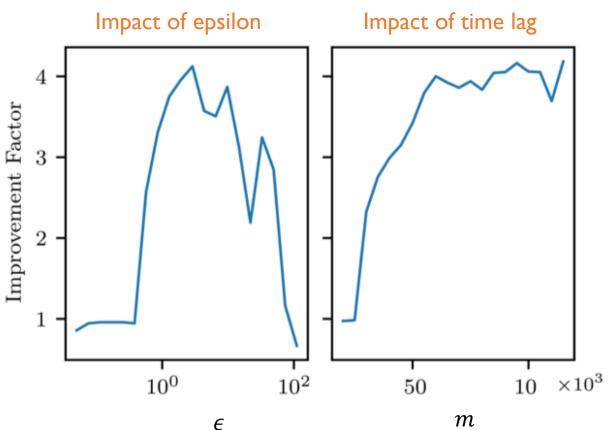
- For light-tailed distributions: $\hat{x}_p \cdot r \ge x_{p^r}$
- Idea:
 - Estimate p-quantile using 1/p readings
 - Set threshold au to $\hat{x}_p \cdot r$
 - Benefits:
 - Estimate threshold with a much smaller time lag m
 - Minimise outlier error

•
$$O\left(\frac{\tau}{\epsilon}\log_2 n\right)$$



What Values to Use in Practice?

- Improvement Factor (IF) metric
 - Ratio of error through BT versus our method
- Epsilon: IF increases with larger ϵ but then drops
 - Due to truncation: any value greater than threshold is fixed to threshold
- Time lag: Noticeable increase in impact factor with $m \approx 50,000$



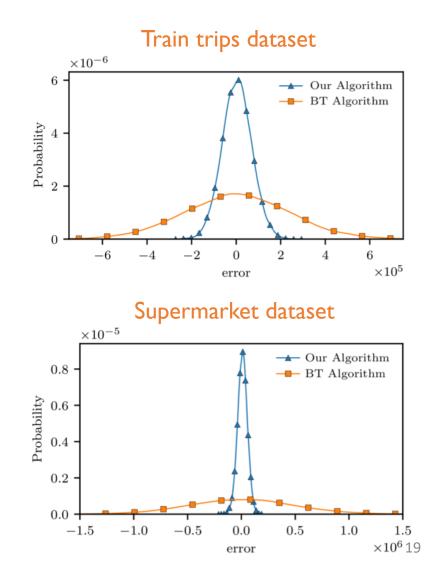
Heuristics for Choosing Parameters

• Optimization suggests

Parameter	Interpretation	Value
p	p-quantile	0.005
r	Shifting <i>p</i> -quantile	Between 1 and 2
ϵ_1	Budget to estimate threshold	0.8 of overall privacy budget
ϵ_2	Budget to release sum of first m terms	Derive from ϵ_1
т	Time lag	50,000

Experimental Evaluation

- Max error on the sum (at step n)
 - 20k repetitions
- Train trips
 - *n* = 250, 000, 000
 - *m* = 50,000
 - B = 1440 mins (24 hrs)
 - Improvement factor: 3.5
- Supermarkets
 - *n* = 150,000
 - *m* = 50,000
 - *B* = 3,000 dollars
 - Improvement factor: 9



Discussion

- Improved private release of moving average if distributions are light-tailed
- Question: which data have light-tailed distribution?
 - Any data coming from short-lived, time constrained events
 - Smart-meter data
 - Phone-call durations
 - Length of posts (on social media)
 - Daily average inter-arrivals of check-in times
- Heavy-tailed distributions are not "directly" time-constrained
 - Income distribution
 - File sizes in computer systems

Conclusion

- Shown a way to privately estimate the bulk of a distribution of streaming realvalued data
- Can be estimated by sacrificing a time lag
- Heuristics for choosing parameters in practice
- In worst-case, threshold is close to public bound B
 - We do not need to abort as in the propose-test-release approach [DL09]
- Moving average release is just one application can be used in other applications

References

- [CSSII]Chan, T.H.H., Shi, E. and Song, D., 2011. Private and continual release of statistics. ACM Transactions on Information and System Security (TISSEC), 14(3), p.26.
- [DL09] Dwork, C. and Lei, J., 2009, May. Differential privacy and robust statistics. In STOC (Vol. 9, pp. 371-380).
- [DNPR10] Dwork, C., Naor, M., Pitassi, T. and Rothblum, G.N., 2010, June. Differential privacy under continual observation. In Proceedings of the forty-second ACM symposium on Theory of computing (pp. 715-724). ACM.
- [MSF+10] Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E. and Irwin, D., 2010, November. Private memoirs of a smart meter. In Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building (pp. 61-66). ACM.
- [NRS07] Nissim, K., Raskhodnikova, S. and Smith, A., 2007, June. Smooth sensitivity and sampling in private data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing (pp. 75-84). ACM.