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Streaming Data and Statistics

• Real-time monitoring of customer data can improve services
• Real-time updates
• Analysts/planners can optimize services

Service Event Real-time statistics
Energy Smart-meter reading Electricity usage in a neighborhood
Transport Tap-on/off time Peak hour commute times
Retail Supermarket bill Average expenditure in a supermarket
Location Check-in/out time Average time spent in a restaurant
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Issue: Privacy

• Raw stats may reveal 
sensitive events
• Unusual presence at home 

(smart meter)
• Trip to beach instead of work 

(transport)

• Events (observations) can be 
linked to real-life activities 
[MSF+10]

Unusual activity [MSF+10]

Smart meter readings
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Privacy-Preserving Statistics

• Differential privacy a natural candidate
• Most work on static databases
• Some work on binary data streams [DNPR10, 

CSS11]

• Our problem
• Data from an event is real-valued within a 

public upper bound !
• Release updated sum/average at each event
• Event-level privacy

• Peculiar events protected
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Since GS = B, we get a linear term in B. We will
use this algorithm as the building block, but we shall
find ways to improve the dependence on B. Our gain
will be through the assumption that actual distribution
of the string � is concentrated far below B. We will
later justify this assumption by analyzing two real-world
datasets. Then, instead of using the global sensitivity,
we shall use smooth sensitivity tailored to a threshold
⌧ ⌧ B, and therefore we expect considerable gain in
utility.

A. Motivation

We consider scenarios where the upper bound B on a
generic element of the incoming stream is overly conser-
vative resulting in utility that is begging to be improved
in practice. Consider the following likely scenarios

• The bound B might not be known in advance. For
instance, a bound on the expenditure during a trip to
the supermarket. Any guess on the bound B would
be taking into account instances of unusually high
spendings. This will result in a very conservative
upper bound.

• In some cases, a natural bound B exists. For in-
stance, the commute time per day has a natural
bound of B = 24 hours. However, most commute
times will be tightly concentrated well below this
B. Once again, we have an overly conservative
estimate.

Thus, our aim is to obtain a threshold ⌧ ⌧ B below
which most data is concentrated with the constraint that
we obtain the best trade-off between error due to noise
added for privacy (scaled proportional to ⌧ ) and the error
due to outliers (any value greater than ⌧ shall be fixed
to ⌧ ). As a natural consequence, we withhold releasing
any values before we have enough data points from the
stream to obtain a “safe” guess of ⌧ , where safe is
in terms of utility. Once the threshold is obtained our
algorithm can release noisy version of c with noise scaled
to ⌧ rather than B.

B. Justification of Assumption on B

Our argument that the distribution F is tightly con-
centrated is backed up by looking into different statistics
of real-world datasets. A “nice” distribution in our use
case is any distribution which is not heavy-tailed [?, §1,
p. 4]. Figure 2 shows the (smoothed) histogram of the

cumulative time taken by any passenger using Sydney
trains on a particular day (including multiple trips). We
can see that the peak is around 20 to 30 mins, and very
few customers take more than 150 minutes of train ride
on a given day. Notice that this is significantly less than
the total time possible in a 24 hour period, which is
obviously 1,440 minutes.

Fig. 2: Histogram of journey times on Sydney trains on
a particular day What is the scale of the x-axis.

Likewise, we see a similar trend in the total expen-
diture during a trip to a supermarket chain in Australia
on a given day. Converted into an empirical cumulative
distribution function (CDF), the two distributions are
shown in Figures 3 and 4 respectively. An interesting
observation is that in both cases the tail of the distri-
bution behaves like an exponential distribution. We will
utilize this observation later when bounding the tail.

Fig. 3: ECDF of Sydney train journey times on a single
day.
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How to Release the Average?

• Basic: add Laplace noise of scale ! to each 
observation
• Error !" after " events

• Generalized binary stream algorithm fairs better
• Error !log&" [DNPR10, CSS11]

• Problem: error still proportional to !
• In many situations ! is too loose or unknown

• E.g., Unlikely someone commuting for full 24 hours!

• Most readings concentrated below a threshold '

• If ' known, error is only 'log&"
• Significant if !: ' large
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Validation of Data Concentration

• Is data really concentrated well below a 
conceivable !?

• Train trips dataset
• 50 million trips over four weeks (Sydney, Australia)
• Conceivable bound ! = 24 hours

• Supermarket dataset
• 140,000 transactions by 1,000 customers (Australia)
• Conceivable bound ! = ?

Train trips
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How to Estimate Threshold with Privacy?

• Need to observe a subset ! of observations 
– time lag

• Time lag needs to be optimized for accuracy
• Too early: high outlier error
• Too late: marginal gain (may just use " as 

estimate)

• Naively estimating # violates privacy
• E.g., maximum of ! observations is an exact 

event!
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Our Work

• A method to estimate threshold ! using a subset of observations
• With differential privacy
• and utility optimized for moving average

• Mechanism is generic – can also be used for
• Average over a sliding window
• Releasing histogram of streaming data
• Estimating scale of distribution
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Background: Binary Tree Algorithm

• Binary tree (BT) algorithm [DNPR10, CSS11]
• Find at most log$% nodes in tree whose union 

equals sum up to & events

• Add Laplace noise of scale '()*+,- instead of ',-

• Goal:  Use BT as sub-module but noise 
scaled to . instead of /

Computing private sum of first 7 observations 
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Global Mechanism

1. Estimate threshold ! using first " observations using budget #$

2. Use Laplace noise with scale %&'
to release sum of first "

observations

3. Update & release sum for each event after " with Laplace noise of 
scale ! log+ ,/# using BT algorithm

• Overall: (#, 0)-differential privacy
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What are the Choices for Threshold?

• False starts 
• Differentially private max of ! values?

• max function is highly sensitive
• Adjacent streams can differ by any value in [0, %]

• Standard deviation of distribution of '?
• Need to know distribution in advance

• Statistic of choice: (-quantile
• E.g., ( = 0.005 (0.5% of values) ,(

( fraction of values

Distribution of '

(-quantile 
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Privately Estimating !-Quantile

• Need to estimate !-quantile through first " readings

• Satisfying # ≫ " ≫ 1/!

• Roadmap
• Obtain the empirical estimate '(! of (!
• Add differentially private noise to '(!
• Set the result as threshold )

• Complication: cannot use Global Sensitivity (GS) for DP noise
• Maximum change in function over all adjacent streams
• GS of !-quantile is close to *
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Using Smooth Sensitivity

• Local sensitivity (LS)
• Maximum change in !-quantile over streams adjacent to input stream only
• Unfortunately, LS itself can be sensitive

• E.g., big differences in LS over nearby streams

• Smooth sensitivity (SS) [NRS07] 
• " #, #% : Hamming distance between streams # and #%
• SS(#, () = max./ {1234 .,./ 5 LS./}

• Smooths out change in LS as we move away from input stream 
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Privately Obtaining the Threshold

• Obtain threshold as

! = #$%+ Laplace noise with SS

• We have swept some details under the 
rug
• #$% and ! should be ≥ $% to bound error
• We assume #$% ≥ $%
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Utility Analysis

• Light-tailed distributions
• Lighter than exponential distribution with the 

same !-quantile

• True for train trips and supermarket datasets 
for sufficiently small !

• If distribution is light-tailed
• We show that error "log&'/) (as required) 
• Note: Privacy definition not dependent on 

distribution assumption ! = 0.005-quantile 

Train trips dataset
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Utility Analysis for Light-tailed Distributions

• Exponential distribution has the property
!" # $ ≥ !&' for all $ ≥ 1

• For light-tailed distributions: )!" # $ ≥ !&'

• Idea: 
• Estimate "-quantile using 1/" readings
• Set threshold + to )!" # $
• Benefits:

• Estimate threshold with a much smaller time lag ,
• Minimise outlier error

• - .
/ log3 4

!" !&'
≈ + = )!" # $
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What Values to Use in Practice?

• Improvement Factor (IF) metric
• Ratio of error through BT versus 

our method

• Epsilon: IF increases with larger !
but then drops
• Due to truncation: any value greater 

than threshold is fixed to threshold

• Time lag: Noticeable increase in 
impact factor with " ≈ 50,000

Impact of epsilon Impact of time lag

"!
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Heuristics for Choosing Parameters

• Optimization suggests

Parameter Interpretation Value
! !-quantile 0.005
" Shifting !-quantile Between 1 and 2
#$ Budget to estimate threshold 0.8 of overall privacy budget
#% Budget to release sum of first & terms Derive from #$
& Time lag 50,000
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Experimental Evaluation

• Max error on the sum (at step !)
• 20k repetitions

• Train trips
• ! = 250, 000, 000
• " = 50,000
• # = 1440 mins (24 hrs)
• Improvement factor: 3.5 

• Supermarkets
• ! = 150, 000
• " = 50,000
• # = 3,000 dollars
• Improvement factor: 9 

Train trips dataset

Supermarket dataset
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Discussion

• Improved private release of moving average if distributions are light-tailed

• Question: which data have light-tailed distribution?
• Any data coming from short-lived, time constrained events

• Smart-meter data
• Phone-call durations
• Length of posts (on social media)
• Daily average inter-arrivals of check-in times

• Heavy-tailed distributions are not “directly” time-constrained 
• Income distribution
• File sizes in computer systems
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Conclusion

• Shown a way to privately estimate the bulk of a distribution of streaming real-
valued data

• Can be estimated by sacrificing a time lag

• Heuristics for choosing parameters in practice

• In worst-case, threshold is close to public bound !
• We do not need to abort as in the propose-test-release approach [DL09]

• Moving average release is just one application – can be used in other applications
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Questions
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