Constructing an Adversary
Solver for Equihash

Xiaofei Bai, Jian Gao, Chenglong Hu, Liang Zhang
Fudan University

Fairness of PoW Systems

e Don’t service those who don’t work
e Adversaries should not be doing less work than honest users

e Cheating adversaries eat away miner profit
O Drive miners away
o Form monopoly -> 51% attack

ASIC Solvers and ASIC resistance

Adversaries build highly-efficient ASIC solvers
o not selling to most users
o creating profitability advantage
New systems try to limit ASIC solver advantage
o craft puzzle schemas with special characteristics
o spawned almost every PoW system after SHA256d
o designing ASIC solvers is significantly harder
o memory-hard and bandwidth-hard theories
Alternative methods exist

Equihash

Designed to be ASIC resistant

Uses a single-list General Birthday Problem

Applied in cryptocurrency systems including Zcash and BTG
Has efficient ASIC solvers under (200, 9), but not under (144, 5)

® Our design can handle all parameters

Goals

e Demonstrate how adversaries design their solvers
o the difficulties they face
o how they work around problems

® Understand PoW systems better

® Designing puzzle schemas with better fairness

Eventually offer better protection to underlying systems

Input : list L of N n-bit strings (N < 2")
begin
Enumerate L(*) as {(z;,{i})|i = .., N}

r+1
while » < k£ do

join

Sort L("=1 | finding all unordered pairs

((x,5:), (z,S5;)) such that x; collides
with z; on the first ;7% bits, and that

Lo
SiNS;, =0
L(T)(—{(l’i@x.j:SiUSj)‘((m“ i) (25,5
is a found pair }

rer+1

join

H

Sort L*=Y finding all unordered pairs
(Caxss 55, (m,,Si)) such that x; = x;, and that

]
.
|

S; N Sj =g
R {(S:US)|((x::), (;,5;)) is a found
| pair }
Output: list R of sets of distinct indices

The join Step

e Under large parameter sets, list itself too large for on-chip storage
o off-chip memory access is slow and energy-expensive

e Hashing or sorting to cover this subroutine
o honest software solvers prefer hashing

® ASIC hashing is basically stripping CPU/GPU of unused logic
o not much advantage

Smartcell (1)

' >—@ ®
Input F FF outpui>

|1
}FF
|1

®—is_valid

:

LUT

is_valid

Smartcell (2)

N

FF

FF

™

is_valid

>

is_valid

LUT

outpuE>

Smartcell (3)
:EE£E>-0---====F

-

FF

is_valid

FF

outpuE>

is_valid

LUT

Smartcell Chains

e Cansortlonger lists

o greater values overtake lesser ones
® \Worst case: last to enter, first to exit

O jumps over every other item
® Need N-smartcell chain to sort N-item lists

Smartcell Sorting Recap

Pros: Cons:
® Lineartime e Linear logic
® One sequential read o too large for one chip

O use too much energy

Merge

® Reduce list length
Major operation is trivial
Need to store input in memory
o output pattern of smartcell chains and input pattern of merge modules
mismatch
e Add prefetch queues to merging lanes
o avoid stalling for read latency
O inputis random, so cache is not helpful
o implemented with SRAMs/eDRAMs
m possibly prefetch again into FFs

Pair Generation

® Torecordindices and compute XOR
e Trivial on MCUs

o because colliding entries are already sorted together
e Output list length is random

o expected to stay the same

o if shrink: add bubbles to pipeline

o if expand: breaks sorting in next round

Tail Cutting

e Cut the longer intermediate lists
® The better cases are cut
o they (should) tend to yield more solutions
o best case can have trillions of pairs
m virtually impossible
m handling is unrealistic
o hurtyields, but not significantly

Evaluation

Correctness: Proven. Algorithm unchanged
Implementation: Verified. Via simulation
Memory usage: Calculated.

Performance: Calculated.

e Frequency and power usage: ?

Evaluation: Off-Chip Memory

(200, 9) (144, 5)
Capacity ~500MB ~8GB
Total Bandwidth ~70B/tick ~100B/tick

* Uniform memory, with pipelining considered.
** Solver core ticks, not memory bus ticks.

Evaluation: Power

e ME software to estimate power usage
o based on design, clock speed and tech lib
o serve as reference for IC designers
® Synopsis Design Compiler
o with 28nm HKMG tech lib
o Applied to core components
e 15-2WatlGHz
o scales very well with frequency

Evaluation: Efficiency (1)

frequency / throughput / k * yield * (1-loss) / power
tick/s / (tick/round) / (round/puzzle) * (sol/puzzle) *% /W
= efficiency

= (sol/J)

Evaluation: Efficiency (2)

(200, 9) (144, 5)
Adversary ~ ~
(ASIO) 53 sol/J 5.3 sol/J
Honest User ~4 sol/) ~0.4 sol/J

(GPU)

* At 500MHz core frequency.

Conclusion

e A highly efficient adversary solver for Equihash
o multi-chip ASIC
o works under all parameter sets
e Equihash-related systems and assets should be carefully valued
® Exposed design procedure
o PoW routines are subject to tweaks and optimizations
o Adversary-side design challenges, as candidates for future PoW fairness
o proving ASIC-resistance is extremely hard, if not impossible

THANK YOU!

Q&A

