
Graph-based Security and Privacy Analytics
via Collective Classification

with Joint Weight Learning and Propagation

Binghui Wang, Jinyuan Jia, and Neil Zhenqiang Gong
Department of Electrical and Computer Engineering

What is Collective Classification?

?

-
+

?

-

?

?

+

-
?

?

?+

?

Modeling Security & Privacy Problems as
Collective Classification

Social graph

Attribute inference

Host-file graph Social graph

Malware detection Sybil detection

+ +

-

-

+ - +

-

Existing Collective Classification Methods

• Studied by multiple research communities
• Networking, security, machine learning, data mining, etc.

• Classified as Random walk (RW) and Loopy belief propagation (LBP)

• Three key steps:
• Step I: assign nodes’ prior scores based on a training dataset
• Step II: assign (fixed/equal) weight to every edge in the graph
• Step III: obtain nodes’ posterior scores by propagating nodes’ prior scores

among the weighted graph; larger posterior score indicates a higher likelihood
to be positive

Fundamental Limitation of Existing Methods

• Assign small weights to a large number of homogeneous edges
• homogeneous edge (u,v) => u and v have the same label => large weight

• Assign large weights to a large number of heterogeneous edges
• heterogeneous edge (u,v) => u and v have different labels => small weight

• Limited success in security and privacy problems having a large
amount of heterogeneous edges
• e.g., Sybil detection in weak-trust social networks (like Twitter)

Our Work: Joint Weight Learning and Propagation

• Jointly learning edge weights and propagating posterior scores

• Applicable to both RW-based and LBP-based methods

• Applicable to both undirected and directed graphs

• Applicable to various graph-based security and privacy problems
• Sybil detection in social networks
• Fake review detection
• Attribute inference in social networks
• Malware detection
• Malicious website detection
• …

Outline

• Background

• Methodology

• Evaluation

• Conclusion

Outline

• Background

• Methodology

• Evaluation

• Conclusion

Collective Classification

• Nodes’ posterior scores are solutions to a system of equations:

• q, p: nodes’ prior and posterior scores
• W: edge weight matrix
• f: different methods use different function f

• Iteratively updating the posterior scores:

LBP on Undirected Graphs

• Function f

• Nodes’ prior scores

• !", !$: labeled positive and labeled negative nodes
• & > 0: strength of the prior

• Edge weight
•)*+>0:	u, v likely to have the same label
•)*+<0:	u, v likely to have different labels
• w/0=w	>0, i.e., assume all edges homogeneous!

)

2 = −1

2 = 1

2 = 0

2 = 02 = 0

)

)

)

)

)

)

+

-

Outline

• Background

• Methodology

• Evaluation

• Conclusion

Motivation

• Existing methods assign large weights to a large number of
heterogeneous edges

• Existing methods assign small weights to a large number of
homogeneous edges

• Can we adaptively learn edge weights such that
heterogeneous (homogeneous) edges have small (large) weights?

Goals

• Goal 1: final posterior scores of labeled nodes should be
close to nodes’ labels

• Quantifying Goal 1:
• !" = 1, if % is labeled positive
• !" = −1, if % is labeled negative
• L(W): loss function over the training dataset

Goals

• Goal 2: edge weights and final posterior scores be consistent
• u and v predicted the same label => edge (u,v) homogeneous
• u and v predicted different labels => edge (u,v) heterogeneous

• Quantifying Goal 2:
• !"!# > 0 => &"#> 0
• !"!# < 0 => &"#< 0
• C(W): regularization term

Learning Edge Weights via Gradient Descent

• Optimization problem:

• Gradient descent:

• Solving a linear system for each edge:

Computationally infeasible for large graphs!

Alternative Goals

• Computational challenge due to two goals using final posterior scores

• Instead, quantify the two goals using the current posterior scores

• Given posterior scores !(#) and edge weights %(#&'), we learn %(#)

• Goal 1’: posterior scores !(#(')of labeled nodes should be close to their labels
• Goal 2’: edge weights %(#) and posterior scores !(#) should be consistent

Joint Weight Learning and Propagation

• Propagating posterior reputation scores !(#):

• Learning weight matrix %(#):

• Gradient descent (!(#) is known):

W(0) p(0)

W(1) p(1)

W(2) p(2)…

Computationally efficient!

Outline

• Background

• Methodology

• Evaluation

• Conclusion

Experimental Setup

• Application scenarios
• Security problem: Sybil detection & fake review detection
• Privacy problem: Attribute inference attack

• Datasets

Experimental Setup

• Training datasets
• Twitter: 3000 Sybils and 3000 benign users
• Sina Weibo: 980 labeled users
• Yelp: 1000 fake reviews and 1000 genuine reviews
• Google+: 75% users who have at least one city

• Evaluation metrics
• AUC
• Learnt edge weights
• Scalability

Compared Methods

• RW-based methods
• For undirected graphs: RW-N, RW-P, RW-B, RW-FLW
• For directed graphs: RW-N-D, RW-P-D

• LBP-based methods
• For undirected graphs: LBP-U, LBP-FLW-U
• For directed graphs: LBP-D

• Our proposed methods
• LBP-JWP-w/o, LBP-JWP-L1, LBP-JWP-L2, LBP-JWP

AUC Performance

Our methods consistently outperform existing ones
Jointly edge weight learning and propagation indeed enhances performance

Learnt Edge Weights

The average edge weights between negative (or positive) nodes increase
The average edge weights between positive nodes and negative nodes decrease

Scalability

Our methods are only 2-3 times slower than state-of-the-art methods

Outline

• Background

• Methodology

• Evaluation

• Conclusion

Conclusion

• We propose a general framework to learn edge weights for graph-
based security and privacy analytics

• Our framework is applicable to both RW-based and LBP-based
methods, and both undirected and directed graphs

• Iteratively learning edge weights can enhance performance for
various graph-based security and privacy applications, with an
acceptable computational overhead

