
Neural Machine Translation
Inspired Binary Code Similarity

Comparison beyond Function Pairs
Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo*,

Qiang Zeng*, Zhexin Zhang

NDSS 2019

2

Why Cross-Architecture Binary Code
Similarity Comparison?

3

Source code

X86 ARM MIPS

Source code

X86 ARM MIPS

Source code

X86 ARM MIPS

4

X86 Arm MIPSX86 Arm MIPSX86 ARM MIPS

Cross-architecture binary code similarity comparison

• Plagiarism detection
• Malware family identification
• Vulnerability discovery

5

X86 Arm MIPSX86 Arm MIPSX86 ARM MIPS

A challenging task due to different

• Instruction sets
• Registers
• Memory addressing
• Calling conventions
• Compilation optimizations
• …

6

What is the current research status?

• Non-machine-learning approaches
– Multi-MH [S&P’15]: fuzzing (on basic blocks)
– Esh [PLDI’16]: SMT (on IR)
– David et al. [PLDI’17]: re-compilation (of IR)
ØSlow

• Machine-learning approaches
– Genius [CCS’16]: traditional ML
– Gemini [CCS’17]: deep learning (graph)
ØFast; accurate (at function level)
ØBut…

7

Gemini used some manually selected features to represent
a basic block, e.g., # of instructions, # calls, etc.

– Is it good enough?
• Basic-block comparison: AUC = 0.85

– Could we do better?

– What information is lost?
• Instruction meaning
• Instruction dependence

8

9

• Neural Machine Translation: deep learning for translation
• First proposed in 2014
• Already adopted by Google and Microsoft

10

A binary, after disassembly, is represented in some assembly
language. Can NMT handle assembly languages as well?

Image credit: smerity.com

More specifically, given that NMT can translate sentences, can
it also compare code of different architectures?

Interesting idea, but tons of questions
– Words ó instructions, but an infinite vocabulary?

• E.g., mov edx, 200

– Sentences ó basic blocks vs. functions?
• A sentence: a sequence of words
• A basic block: a sequence of instructions
• A function: a graph

– Corpus of equivalent basic block pairs?
• Unlike functions, which have names

– Expensive hardware?
• We are not Google
• Would be impractical if expensive facilities are required

– Interesting application?
• Submitted to S&P in 05/2018; comment: no interesting application

11

12

two words ahead. The model starts with a random vector for
each word, and then gets trained when going over each sliding
window. In each sliding window, the embedding of the current
word, wt, is used as the parameter vector of a softmax function
(Equation 1) that takes an arbitrary word wk as a training input
and is trained to predict a probability of 1, if wk appears in the
context Ct (i.e., the sliding window) of wt, and 0, otherwise.

P (wk 2 Ct|wt) =
exp(wT

t wk)P
wi2Ct

exp(wT
t wi)

(1)

where wk, wt, and wi are the embeddings of words wk, wt,
and wi, respectively.

Thus, given an arbitrary word wk, its vector representation
wk is used as a feature vector in the softmax function
parameterized by wt. When trained on a sequence of T words,
the model uses stochastic gradient descent to maximize the
log-likelihood objective J(w) as showed in Equation 2.

J(w) =
1

T

TX

t=1

X

wk2Ct

(log P (wk|wt)) (2)

However, it would be very expensive to maximize J(w),
because the denominator

P
wi2Ct

exp(wT
t wi) sums over all

words wi in Ct. To minimize the computational cost, popular
solutions are negative sampling and hierarchical softmax. We
adopt the skip-gram with negative sampling model (SGNS) [43].
After the model is trained on many sliding windows, the
embeddings of each word become meaningful, yielding similar
vectors for similar words. Due to its simple architecture and
the use of the hierarchical softmax, the skip-gram model can
be trained on a desktop machine at billions of words per hour.
Plus, training the model is entirely unsupervised.

B. Challenges

Some unique challenges arise when learning instruction
embeddings. First, in NMT, a word embedding model is usually
trained once using large corpora, such as Wiki, and then reused
by other researchers. However, we have to train an instruction
embedding model from scratch.

Second, if a trained model is used to convert a word that
has never appeared during training, the word is called an out-
of-vocabulary (OOV) word and the embedding generation for
such words will fail. This is a well-known problem in NLP, and
it exacerbates significantly in our case, as constants, address
offsets, labels, and strings are frequently used in instructions.
How to deal with the OOV problem is a challenge.

C. Building Training Dataset

Because we regard blocks as sentences, we use instructions
of each block, called a Block-level Instruction Stream (BIS)
(Definition 1), to train the instruction embedding model.

Definition 1: (Block-level Instruction Stream) Given a basic
block B, consisting of a list of instructions. The block-level
instruction stream (BIS) of B, denoted as ⇡(B), is defined as

⇡(B) = (b1, · · · , bn)

where bi is an instruction in B.

word2vec

An Instruction embedding matrix Wx86

f1 f2

p (B1(2))
p (B2(2))

p (B1(1))
p (B2(1))
p (B3(1))

p (f1) p (f2)

Fig. 3: Learning instruction embeddings for x86. ⇡(B(j)
i)

represents the i-th block-level instruction stream (BIS) in the
function Fj . Each square in a BIS represents an instruction.

Preprocessing Training Data. To resolve the OOV problem,
we propose to preprocess the instructions in the training dataset
using the following rules: (1) The number constant values are
replaced with 0, and the minus signs are preserved. (2) The
string literals are replaced with <STR>. (3) The function names
are replaced with FOO. (4) Other symbol constants are replaced
with <TAG>. Take the following code snippets as an example:
the left code snippet shows the original assembly code, and
the right one is the preprocessed result.
MOVL %ESI, $.L.STR.31 MOVL ESI, <STR>
MOVL %EDX, $3 MOVL EDX, 0
MOVQ %RDI, %RAX MOVQ RDI, RAX
CALLQ STRNCMP CALLQ FOO
TESTL %EAX, %EAX TESTL EAX, EAX
JE .LBB0_5 JE <TAG>

Note that the same preprocessing rules are applied to
instructions before generating their embeddings. This way, we
can significantly reduce the OOV cases. Our evaluation result
(Section VII-C) shows that, after a large number of preprocessed
instructions are collected to train the model, we encounter very
few OOV cases in the later testing phase. This means the trained
model is readily reusable for other researchers. Moreover,
semantically similar instructions indeed have embeddings that
are close to each other, as predicted.

D. Training Instruction Embedding Model

We adopt the skip-gram negative sampling model as imple-
mented in word2vec [42] to build our instruction embedding
model. As an example, Figure 3 shows the process of training
the model for the x86 architecture. For each architecture, an
architecture-specific model is trained using the functions in our
dataset containing binaries of that architecture. Each function
is parsed to generate the corresponding Block-level Instruction
Streams (BISs), which are fed, BIS by BIS, into the model for
training. The training result is an embedding matrix containing
the numerical representation of each instruction.

The resultant instruction embedding matrix is denoted by
W 2 Rde⇥V , where de is the dimensionality of the instruction
embedding selected by users (how to select de is discussed
in Section VII-F) and V is the number of distinct instructions
in the vocabulary. The i-th column of W corresponds to the
instruction embedding of the i-th instruction in the vocabulary
(all distinct instructions form a vocabulary).

5

Instruction preprocessing:
(1) Constant value => 0
(2) Strings => <str>
(3) Function names => FOO
(4) Other labes => <TAG>

Vocabulary size

13

0 10 20 30 40 50 60 70 80 90 100
0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Th
e

si
ze

 o
f v

oc
ab

ul
ar

y
(

10
6).

With pre-processing
Without pre-processing

ARM vocabulary: 21K
X86 vocabulary: 28K

14

The word2vec network is then trained using the preprocessed
instructions

Then, the network is used to convert each instruction into an
instruction embedding

Corpus of equivalent BB pairs

15

TABLE II: Examples of similar BB pairs that are correctly classified by INNEREYE-BB, but misclassified by the SVM model.

Pair 1 Pair 2 Pair 3

x86 ARM x86 ARM x86 ARM
MOVSLQ RSI,EBP LDRB R0,[R8+R4] MOVQ RDX,<TAG>+[RIP+0] LDR R2,[R8+0] MOVQ [RSP+0],RBX LDR R0,[SP+0]
MOVZBL ECX,[R14,RBX] STR R9,[SP] MOVQ RDI,R12 MOV R0,R4 MOVQ [RSP+0],R14 STR R9,[SP+0]
MOVL EDX,<STR> STR R0,[SP+0] MOVL ESI,R14D MOV R1,R5 ADDQ RDI,0 STR R0,[SP+0]
XORL EAX,EAX ASR R3,R7,0 CALLQ FOO BL FOO CALLQ FOO ADD R0,R1,0
MOVQ RDI,R13 MOV R0,R6 MOVQ RDI,R12 MOV R0,R4 MOVL ESI,<TAG> BL FOO
CALLQ FOO MOV R2,R7 CALLQ FOO BL FOO MOVQ RDI,[R12] LDR R7,<TAG>
TESTL EAX,EAX BL FOO MOVQ RDX,<TAG>+[RIP+0] LDR R2,[R8+0] MOVB [RDI+0],AL LDR R1,[R6]
JLE <TAG> CMP R0,0 MOVQ RDI,R12 MOV R0,R4 CMPB [RDI+0],0 LDR LR,[SP+0]

BLT <TAG> MOVL ESI,R14D MOV R1,R5 JNE <TAG> MOV R12,R7
CALLQ FOO BL FOO STRB R0,[R1+0]
TESTL EAX,EAX CMP R0,0 B <TAG>
JNE <TAG> BNE<TAG>

TABLE III: Examples of dissimilar BB pairs that are correctly classified by INNEREYE-BB, but misclassified by the SVM model.

Pair 4 Pair 5 Pair 6

x86 ARM x86 ARM x86 ARM
IMULQ R13,RAX,0 MOV R1,R0 XORL R14D,R14D LDMIB R5,R0,R1 MOVL [RSP+0],R14D SUB R2,R1,0
XORL EDX,EDX LDR R6,[SP+0] TESTQ RBP,RBP CMP R0,R1 MOVQ RAX,[RSP+0] MOV R10,0
MOVQ RBP,[RSP+0] CMP R0, 0 JE <TAG> BHS <TAG> CMPB [RAX],0 CMP R2,0
DIVQ RBP BEQ <TAG> MOVQ [RSP+0],R13 MOV R9,0
JMP <TAG> MOVQ [RSP+0],R15 BHI <TAG>

JNE <TAG>

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.79
0.82
0.85
0.88
0.91
0.94
0.97
1.00

AU
C

O1
O2
O3
Cross-opt-levels

(a) AUC vs. # of epochs.

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Lo
ss

O1
O2
O3
Cross-opt-levels

(b) Loss vs. # of epochs.

(%) Optimization levels Cross
O1 O2 O3 -opts

50 95.77 95.23 94.97 95.39
100 96.83 96.33 95.99 95.82
150 96.89 96.33 96.24 95.86

(c) AUC vs. instruction embedding dimensions.

(%) Optimization levels Cross
O1 O2 O3 -opts

10 95.57 95.73 95.48 95.59
30 95.88 95.65 96.17 95.45
50 96.83 96.33 95.99 95.82
(d) AUC vs. block embedding dimensions.

(%) Optimization levels Cross
O1 O2 O3 -opts

1 95.88 95.65 96.17 95.45
2 97.83 97.49 97.59 97.45
3 98.16 97.39 97.48 97.76

(e) AUC vs. # of network layers.

(%) Optimization levels Cross
O1 O2 O3 -opts

LSTM 96.83 96.33 95.99 95.82
GRU 96.15 95.30 95.83 95.71
RNN 91.39 93.26 92.60 92.66

(f) AUC vs. network hidden unite types.

Fig. 12: Impact of different hyperparameters. Figure 12a and Figure 12b are evaluated on the validation datasets of Dataset I, and
others are evaluated on its testing datasets.

computational complexity and does not help significantly on
the performance, we choose the network depth as 2.

4) Network Hidden Unit Types: As a simpler-version of
LSTM, Gated Recurrent Unit (GRU) has become increasingly
popular. We conduct experiments on comparing three types
of network units, including LSTM, GRU as well as RNN.
Figure 12f shows the comparison results. It can be seen that
LSTM and GRU are more powerful than the basic RNN, and
LSTM shows the highest AUC values.

G. Efficiency of INNEREYE-BB

1) Training Time: We first analyze the training time for
both the instruction and basic-block embedding models.

Instruction embedding model training time. The training
time is linear to the number of epochs and the corpus size. We
use Dataset I, containing 437,104 blocks for x86 and 393,529
blocks for ARM, with 6,199,651 instructions in total, as the
corpus to train the instruction embedding model. The corpus
contains 49,760 distinct instructions which form a vocabulary.
We use 10�5 as the down sampling rate and set the parameter
mini-word-count as zero (no word is ignored during
training), and train the model for 100 epochs. Table IV shows
the training time with respect to different instruction embedding
dimensions. We can see that the instruction embedding model
can be trained in a very short period of time.

Block embedding model training time. We next evaluate the

12

Clang C/C++
Frontend

LLVM
Optimizer

IR

LLVM X86 Backend

Basic Block Boundary Annotator
IR

LLVM ARM Backend

�
�
�

llvm-gcc
Frontend

GHC
Frontend

�
�
�

At backends, BBs generated from the same IR BB obtain the same annotated ID

Architecture for cross-architecture BB
similarity comparison

X86 => ARM, then compare two ARM BBs?
– No, NLP researchers use the Siamese architecture to

compare the similarity of two sentences [AAAI’16]
• Mueller et al. "Siamese recurrent architectures for learning sentence

similarity.” AAAI 2016.

16

Architecture for cross-architecture BB
similarity comparison

17

Layer 1

Layer n

B1 B2

X86 ARM

Interesting Application

• Prior cross-architecture binary analysis
– answers whether C1 is equivalent to C2
– cannot answer whether C1 is contained in program P

• The code containment problem:
– Vulnerable code is inlined as part of another function
– An attacker reuses a crypto in multiple malware
– One steals a piece of code and inserts it into program
– …

• Not explored yet in cross-architecture scenarios

18

• To determine whether C is contained in P
– The CFG of C is decomposed into multiple paths
– For each path x of C, LCS (longest common subsequence)

and breadth-first search are combined to search in the
CFG of P, and calculate a score for path x

– Based on all path scores, a final score is calculated

• It was proposed by Luo et al. [FSE’14]
– Symbolic execution for BB comparison
– Mono-architecture code analysis

• Applying our NMT-based BB comparison
– The first solution to cross-architecture code containment
– Much faster

19

Hardware

• Actually, a Dell laptop
– 2.7 GHz Intel i7
– 32 GB RAM
– No GPUs

20

Datasets for training InnerEye-BB

21

TABLE I: The number of basic-block pairs in the training, validation and testing datasets.
Training Validation Testing Total

Sim. Dissim. Total Sim. Dissim. Total Sim. Dissim. Total Sim. Dissim. Total

O1 35,416 35,223 70,639 3,902 3,946 7,848 4,368 4,354 8,722 43,686 43,523 87,209
O2 45,461 45,278 90,739 5,013 5,069 10,082 5,608 5,590 11,198 56,082 55,937 112,019
O3 48,613 48,472 97,085 5,390 5,397 10,787 6,000 5,988 11,988 60,003 59,857 119,860

Cross-opts 34,118 33,920 68,038 3,809 3,750 7,559 4,554 4,404 8,958 42,481 42,074 84,555
Total 163,608 162,893 326,501 18,114 18,162 36,276 20,530 20336 40,866 202,252 201,391 403,643

are labeled with the similarity ground truth. In particular,
we prepare this dataset using OpenSSL (v1.1.1-pre1) and
four popular Linux packages, including coreutils (v8.29),
findutils (v4.6.0), diffutils (v3.6), and binutils
(v2.30). We use two architectures (x86-64 and ARM) and
clang (v6.0.0) with three different optimization levels (O1-
O3) to compile each program. In total, we obtain 437,104 basic
blocks for x86, and 393,529 basic blocks for ARM.

We follow the approach described in Section V-D to gen-
erate similar/dissimilar basic-block pairs. Totally, we generate
202,252 similar basic-block pairs (one compiled from x86 and
another from ARM; as shown in the 11th column of Table I),
where 43,686 pairs, 56,082 pairs, 60,003 pairs, and 42,481 pairs
are compiled using O1, O2, O3, and different optimization
levels, respectively. Similarly, we generate 201,391 dissimilar
basic-block pairs (as shown in the 12th column of Table I),
where 43,523 pairs, 55,937 pairs, 59,857 pairs, and 42,074 pairs
are compiled using O1, O2, O3, and different optimization
levels, respectively.

C. Evaluation on Out-Of-Vocabulary Instructions

As pre-processing is applied to addressing the issue of out-
of-vocabulary (OOV) instructions (Section IV-C), we evaluate
its impact, and seek to understand: a) how the vocabulary size
(the number of columns in the instruction embedding matrix)
grows with or without pre-processing, and b) the number of
OOV cases in later instruction embedding generation.

To this end, we collect various x86 binaries, and disassemble
these binaries to generate a corpus which contains 6,115,665
basic blocks and 39,067,830 assembly instructions. We then
divide the corpus equally into 20 parts. We counted the
vocabulary size in terms of the percentage of the corpus
analyzed, and show the result in Figure 7. The red line and
the blue line show the growth of the vocabulary size when
pre-processing is and is not applied, respectively. It can be seen
that the vocabulary size grows fast and becomes uncontrollable
when the corpus is not pre-processed.

We next investigate the number of OOV cases, i.e., unseen
instructions, in later instruction embedding generation. We
select two binaries that have never appeared in the previous
corpus, containing 67,862 blocks and 453,724 instructions. We
then count the percentage of unseen instructions that do not
exist in the vocabulary, and show the result in Figure 8. The
red and blue lines show the percentage of unseen instructions
when the vocabulary is built with or without pre-processing,
respectively. We can see that after pre-processing, only 3.7%
unseen instructions happen in later instruction embedding
generation, compared to 90% without pre-processing; (for an
OOV instruction, a zero vector is assigned). This shows that

0 10 20 30 40 50 60 70 80 90 100
0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Th
e

si
ze

 o
f v

oc
ab

ul
ar

y
(

10
6).

With pre-processing
Without pre-processing

Fig. 7: The growth of the vocabulary size.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Th
e

pr
op

or
tio

n
of

 u
ns

ee
n

in
st

ru
ct

io
ns

 in
 te

st
 c

or
pu

s(
%

).
With pre-processing
Without pre-processing

Fig. 8: The proportion of unseen instructions.

the instruction embedding model with pre-processing has a
good coverage of instructions. Thus, it may be reused by other
researchers and we have made it publicly available.

D. Qualitative Analysis of Instruction Embeddings

We present our results from qualitatively analyzing the
instruction embeddings for the two architectures, x86 and ARM.
We first use t-SNE [41], a useful tool for visualizing high-
dimensional vectors, to plot the instruction embeddings in
a three-dimensional space, as shown in Figure 9. A quick
inspection immediately shows that the instructions compiled for
the same architecture cluster together. Thus the most significant
factor that influences code is the architecture as it introduces
more syntactic variation. This also reveals one of the reasons
why cross-architecture code similarity detection is more difficult
than single-architecture code similarity detection.

We then zoom in Figure 9, and plot a particular x86
instruction MOVZBL EXC,<TAG>[RCX+0] and its neighbors.
We can see that the mov family instructions are close together.

Next, we use the analogical reasoning to evaluate the quality
of the cross-architecture instruction embedding model. To do
this, we randomly pick up eight x86 instructions. For each x86
instruction, we select its similar counterpart from ARM based
on our prior knowledge and experience. We use [x] and {y} to

9

TABLE I: The number of basic-block pairs in the training, validation and testing datasets.
Training Validation Testing Total

Sim. Dissim. Total Sim. Dissim. Total Sim. Dissim. Total Sim. Dissim. Total

O1 35,416 35,223 70,639 3,902 3,946 7,848 4,368 4,354 8,722 43,686 43,523 87,209
O2 45,461 45,278 90,739 5,013 5,069 10,082 5,608 5,590 11,198 56,082 55,937 112,019
O3 48,613 48,472 97,085 5,390 5,397 10,787 6,000 5,988 11,988 60,003 59,857 119,860

Cross-opts 34,118 33,920 68,038 3,809 3,750 7,559 4,554 4,404 8,958 42,481 42,074 84,555
Total 163,608 162,893 326,501 18,114 18,162 36,276 20,530 20336 40,866 202,252 201,391 403,643

are labeled with the similarity ground truth. In particular,
we prepare this dataset using OpenSSL (v1.1.1-pre1) and
four popular Linux packages, including coreutils (v8.29),
findutils (v4.6.0), diffutils (v3.6), and binutils
(v2.30). We use two architectures (x86-64 and ARM) and
clang (v6.0.0) with three different optimization levels (O1-
O3) to compile each program. In total, we obtain 437,104 basic
blocks for x86, and 393,529 basic blocks for ARM.

We follow the approach described in Section V-D to gen-
erate similar/dissimilar basic-block pairs. Totally, we generate
202,252 similar basic-block pairs (one compiled from x86 and
another from ARM; as shown in the 11th column of Table I),
where 43,686 pairs, 56,082 pairs, 60,003 pairs, and 42,481 pairs
are compiled using O1, O2, O3, and different optimization
levels, respectively. Similarly, we generate 201,391 dissimilar
basic-block pairs (as shown in the 12th column of Table I),
where 43,523 pairs, 55,937 pairs, 59,857 pairs, and 42,074 pairs
are compiled using O1, O2, O3, and different optimization
levels, respectively.

C. Evaluation on Out-Of-Vocabulary Instructions

As pre-processing is applied to addressing the issue of out-
of-vocabulary (OOV) instructions (Section IV-C), we evaluate
its impact, and seek to understand: a) how the vocabulary size
(the number of columns in the instruction embedding matrix)
grows with or without pre-processing, and b) the number of
OOV cases in later instruction embedding generation.

To this end, we collect various x86 binaries, and disassemble
these binaries to generate a corpus which contains 6,115,665
basic blocks and 39,067,830 assembly instructions. We then
divide the corpus equally into 20 parts. We counted the
vocabulary size in terms of the percentage of the corpus
analyzed, and show the result in Figure 7. The red line and
the blue line show the growth of the vocabulary size when
pre-processing is and is not applied, respectively. It can be seen
that the vocabulary size grows fast and becomes uncontrollable
when the corpus is not pre-processed.

We next investigate the number of OOV cases, i.e., unseen
instructions, in later instruction embedding generation. We
select two binaries that have never appeared in the previous
corpus, containing 67,862 blocks and 453,724 instructions. We
then count the percentage of unseen instructions that do not
exist in the vocabulary, and show the result in Figure 8. The
red and blue lines show the percentage of unseen instructions
when the vocabulary is built with or without pre-processing,
respectively. We can see that after pre-processing, only 3.7%
unseen instructions happen in later instruction embedding
generation, compared to 90% without pre-processing; (for an
OOV instruction, a zero vector is assigned). This shows that

0 10 20 30 40 50 60 70 80 90 100
0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Th
e

si
ze

 o
f v

oc
ab

ul
ar

y
(

10
6).

With pre-processing
Without pre-processing

Fig. 7: The growth of the vocabulary size.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Th
e

pr
op

or
tio

n
of

 u
ns

ee
n

in
st

ru
ct

io
ns

 in
 te

st
 c

or
pu

s(
%

).

With pre-processing
Without pre-processing

Fig. 8: The proportion of unseen instructions.

the instruction embedding model with pre-processing has a
good coverage of instructions. Thus, it may be reused by other
researchers and we have made it publicly available.

D. Qualitative Analysis of Instruction Embeddings

We present our results from qualitatively analyzing the
instruction embeddings for the two architectures, x86 and ARM.
We first use t-SNE [41], a useful tool for visualizing high-
dimensional vectors, to plot the instruction embeddings in
a three-dimensional space, as shown in Figure 9. A quick
inspection immediately shows that the instructions compiled for
the same architecture cluster together. Thus the most significant
factor that influences code is the architecture as it introduces
more syntactic variation. This also reveals one of the reasons
why cross-architecture code similarity detection is more difficult
than single-architecture code similarity detection.

We then zoom in Figure 9, and plot a particular x86
instruction MOVZBL EXC,<TAG>[RCX+0] and its neighbors.
We can see that the mov family instructions are close together.

Next, we use the analogical reasoning to evaluate the quality
of the cross-architecture instruction embedding model. To do
this, we randomly pick up eight x86 instructions. For each x86
instruction, we select its similar counterpart from ARM based
on our prior knowledge and experience. We use [x] and {y} to

9

• Training : validation : testing = 0.8 : 0.1 : 0.1

• Deduplication: any BB in training does not re-appear in
validation or testing

22

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

itiv
e

Ra
te

Our model, AUC=97.89%
SVM model, AUC=85.28%

Cross-optimization levels, different sizes of BBs

23

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

itiv
e

Ra
te

 Our model, AUC=94.97%
SVM model, AUC=79.24%

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

itiv
e

Ra
te

 Our model, AUC=94.43%
SVM model, AUC=69.51%

Large BBs at O3 Small BBs at O3

24

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.79
0.82
0.85
0.88
0.91
0.94
0.97
1.00

AU
C

O1
O2
O3
Cross-opt-levels

Good accuracy after 20 epochs
Each epoch takes 971 seconds
Training time: 5.5 hours

Testing time per BB pair: 0.76 ms

Case studies on code containment

• Whether the URL checking loop of thttpd is
contained in other programs
– sthttpd got a score 0.91, while others got < 0.04
– Consistent with manual checking

• Whether MD5 code of OpenSSL is included in
other 12 programs
– High scores (0.88~0.93) for cryptlib, openssh,

libgcrypt, etc.
– Low scores for others

25

t-SNE of instructions

26

27

ADD SP,SP,0

SUB SP,SP,0

BEQ <TAG>

BNE <TAG>

CMP R9,0
CMP R7,0

LDR R0,[R4+0]
LDR R0,[R5+0]

ADDQ RSP,0

SUBQ RSP,0

JE <TAG>
JNE <TAG>

TESTL R12D,R12D

TESTL R15D,R15D

MOVQ RDI,[R12+0]
MOVQ RDI,[R14+0]

• A good word embedding model
- cos (“man”, “woman”) ≈ cos (“king”, “queen”)

• Our instruction embedding model
- cos(BEQ <TAG>, BNE <TAG>) ≈ cos(JE <TAG>, JNE <TAG>)
- cos({ADD SP,SP,0}, {SUB SP,SP,0}) ≈ cos({ADDQ RSP,0}, {SUBQ RSP,0})

ARM x86

Take-away messages

• NMT-inspired cross-architecture binary code
similarity comparison works well (AUC = 0.98)
– Can NLP inspire us (binary analysts) more?

• Does not need “big data” (400k samples)
• A laptop without GPU can do the job
• First solution to cross-arch code containment

• Uncertain: cross-compiler? (on-going work)

28

29

https://nmt4binaries.github.io (online since August 2018)

Contact: Qiang Zeng (zeng1@cse.sc.edu)

Thank you!
Q&A

https://nmt4binaries.github.io
mailto:zeng1@cse.sc.edu

Out-of-Vocabulary (OOV) rate

30

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100
Th

e
pr

op
or

tio
n

of
 u

ns
ee

n
in

st
ru

ct
io

ns
 in

 te
st

 c
or

pu
s(

%
).

With pre-processing
Without pre-processing

3.7% vs. 90%

How about BBs of different optimization
levels of the same architecture?

• O3 B1 => O0 B2 => src code
• Compare src code of B1 and B2
• If they are the same, B1 and B2 are similar

31

How about dissimilar BB pairs?

• ARM O3 BB1 => ARM O0 BB2
• X86 O2 BB3 => X86 O0 BB4 => ARM O0 BB5
• Use n-gram to compare BB2 and BB5
• If they are dissimilar, BB1 and BB3 are dissimilar

32

Interesting idea, but tons of questions
– Words ó instructions, but an infinite vocabulary?
– Sentences ó basic blocks vs. functions?
– Corpus of equivalent basic block pairs?
– Architecture?
– Expensive hardware?
– Interesting applications?

• Please refer to our paper for more details
– Ground truth of dissimilar BB pairs
– Selection of many hyperparameters
– …

33

