Neural Machine Translation
Inspired Binary Code Similarity
Comparison beyond Function Pairs

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo’,
Qiang Zeng Zhexin Zhang

NDSS 2019

IIIIIIIIIIII

SOUTH CAROLINA



Why Cross-Architecture Binary Code
Similarity Comparison?



G o

Source code




Cross-architecture binary code similarity comparison

* Plagiarism detection
« Malware family identification
* Vulnerability discovery




A challenging task due to different

* Instruction sets

* Registers

 Memory addressing

« (Calling conventions

- Compilation optimizations




What is the current research status?



* Non-machine-learning approaches
— Multi-MH [S&P’15]: fuzzing (on basic blocks)
— Esh [PLDI’16]: SMT (on IR)
— David et al. [PLDI’'17]: re-compilation (of IR)

> Slow

 Machine-
— Genius
— Gemini

earning approaches
CCS’16]: traditional ML

(CCS’17]: deep learning (graph)

» Fast; accurate (at function level)

> But...



Gemini used some manually selected features to represent
a basic block, e.qg., # of instructions, # calls, etc.

— Is it good enough?
« Basic-block comparison: AUC = 0.85

— Could we do better?

— What information is lost?

* Instruction meaning
» Instruction dependence



= Google Translate

X Text B Documents
DETECT LANGUAGE CHINESE ENGLISH SPANISH v & CHINESE (SIMPLIFIED) ENGLISH SPANISH
San Diego is a beautiful city X ZTEFE—7EMAEH
Shengdiyagé shi yige méili de chéngshi
oD} 30/5000 - "))

* Neural Machine Translation: deep learning for translation
* First proposed in 2014
* Already adopted by Google and Microsoft



He Iloved to eat

A binary, after disassembly, is represented in some assembly
language. Can NMT handle assembly languages as well?

More specifically, given that NMT can translate sentences, can
it also ?

Image credit: smerity.com

10



Interesting idea, but tons of questions

— Words < instructions, but an infinite vocabulary?
« E.g., mov edx, 200

— Sentences < basic blocks vs. functions?
» A sentence: a sequence of words

» A basic block: a sequence of instructions
« A function: a graph

— Corpus of equivalent basic block pairs?
* Unlike functions, which have names

— Expensive hardware?
« We are not Google
« Would be impractical if expensive facilities are required

— Interesting application?
« Submitted to S&P in 05/2018; comment: no interesting application

11



MOVL $%ESI, $.L.STR.31
MOVL S%EDX, $3

MOVQ %RDI, S$RAX
CALLQ STRNCMP

TESTL $EAX, S$EAX

JE .LBBO_5

Instruction preprocessing:
(1) Constant value =>0

(2) Strings => <str>

(3) Function names => FOO
(4) Other labes => <TAG>

12



. 2.75

€ 550}
% 2.25
=2.00
(qv] i
g 1-75
0 1.50 |
§ 125+
o 0.75+
N

% 0.50 ¢
225t

Vocabulary size

ARM vocabulary: 21K
X86 vocabulary: 28K

—v— With pre-processing
—o— Without pre-processing

0 10 20 30 40 50 60 70 80 90 100
The proportion of used corpus (%) .

13



network is then trained using the preprocessed
instructions

Then, the network is used to convert each instruction into an

14



MOVSLQ RSLEBP
MOVZBL ECX,[R14,RBX]
MOVL EDX,<STR>
XORL EAX,EAX

MOVQ RDI,R13

CALLQ FOO

TESTL EAX,EAX

JLE <TAG>

| LDRB RO,[R8+R4]

Corpus of equivalent BB pairs

STR R9,[SP]
STR RO,[SP+0]
ASR R3,R7,0
MOV RO,R6
MOV R2,R7
BL FOO

CMP RO,0

Clang C/C++
Frontend

llvm-gcc
Frontend

GHC
Frontend

LLVM
Optimizer

BLT <TAG>

Basic Block Boundary Annotator

P LLVM ARM Backend

\ LLVM X86 Backend

At backends, BBs generated from the same IR BB obtain the same annotated ID




Architecture for cross-architecture BB
similarity comparison

X86 => ARM, then compare two ARM BBs?

— No, NLP researchers use the Siamese architecture to

compare the similarity of two sentences [AAAI'16]

* Mueller et al. "Siamese recurrent architectures for learning sentence
similarity.” AAAI 2016.

16



Architecture for cross-architecture BB
similarity comparison

[Sz’mz’larity Score := exp(—L1) }

1 2
_ Li=|nY - n) |

Bl Bz 17



Interesting Application

* Prior cross-architecture binary analysis

— answers whether C1 is equivalentto C2

— cannot answer whether C1 is contained in program P
* The code containment problem:

— Vulnerable code is inlined as part of another function

— An attacker reuses a crypto in multiple malware
— One steals a piece of code and inserts it into program

* Not explored yet in cross-architecture scenarios

18



* To determine whether Cis contained in P
— The CFG of Cis decomposed into multiple paths

— For each path x of C, LCS (longest common subsequence)
and breadth-first search are combined to search in the
CFG of P, and calculate a score for path x

— Based on all path scores, a final score is calculated

* It was proposed by Luo et al. [FSE’14]
— Symbolic execution for BB comparison
— Mono-architecture code analysis

* Applying our NMT-based BB comparison
— The first solution to cross-architecture code containment
— Much faster

19



Hardware

« Actually, a Dell laptop
— 2.7 GHz Intel i7
— 32 GB RAM
— No GPUs

20



Datasets for training InnerEye-BB

Total
Sim. Dissim. Total
Ol 43,686 43,523 87,209
02 56,082 55,937 112,019
O3 60,003 59,857 119,860
Cross-opts 42 481 42.074 84,555
Total 202,252 | 201,391 | 403,643

* Training : validation : testing =0.8 : 0.1 : 0.1

« Deduplication: any BB in training does not re-appear in

validation or testing

21



—
o

O

= 0.8

o

206

2

n 0.4}

o /

= o

— 0.2/ e |
I Our model; 'AUC=97.89% .

ool ;",..-«——— SVM model AUC=85.28% -

00 02 04 06 08 1.0
False Positive Rate

Cross-optimization levels, different sizes of BBs



—_k
o

True Positive Rate

o o
» o

o
~

o
\V)

— Our model, 'AUC=04. 97%";.:
———SVM model AUC 79 24%

OO 02 04 06 08 1.0

False Positive Rate

Large BBs at O3

o o o =
~ O 0 O

True Positive Rate

o
N

0.0

I — Our model, AUC 94, 43%
' [---SVM model, AUC=69.51% |

0.0 02 04 06 08 1.0

False Positive Rate

Small BBs at O3

23



1.00

0.971 . ERRLL AL STTITTIUAMILY QAL RETR L LT LT LT IR PIITPPPRPPPRPPSLIITS 3
0.94r |
O 0.91
D ........... 01
< 0.88 o
o8sf 1+ o
0.82/ —— Cross-opt-levels|

079+
O 20 40 60 80 100 120 140 160 180 200
Epoch
Good accuracy after 20 epochs
Each epoch takes 971 seconds
Training time: 5.5 hours

Testing time per BB pair: 0.76 ms

24



Case studies on code containment

* Whether the URL checking loop of thttpd is
contained in other programs

— Sthttpd got a score 0.91, while others got < 0.04
— Consistent with manual checking

« Whether MD5 code of OpenSSL is included in
other 12 programs

— High scores (0.88~0.93) for cryptlib, openssh,
libgcrypt, etc.

— Low scores for others

25



t-SNE of instructions

«MOVZBL EDX,[RBX,RAX]

MOVB [R15,RAX+0],CL
“MOVB [RBX,RAX+0],CL

» MOVQRCX,[R12,RAX] *MOVQ [RBX,RAX,0-0],RCX

MOVQ RDX,[RBX,RAX]

- MOVZBL ECX,<TAG>[RCX+0]
* MOVB [RDX,RDI,0],CL

» MOVB [RSP,RAX,0+0],DL

26



ARM x86

MP R9.0 TESTL R15D,R15D

C @)
CMP R7,0 A
A TESTL R12D,R12D

JE <TAG>

BNE <TAG>
= O UNE <TAG>
©)

SUB SP,SP0
A

SUBQ RSP0
(@)

LDR RO,[R4+0]
LDR RO,[R5+0] &

A MOVQ RDI,[R12+0]

MOVQ RDI,[R14+0] ©
)

* A good word embedding model

n u n u

— cos (“man”, “woman”) = cos (“king”, “queen”)

* Qurinstruction embedding model
— cos(BEQ <TAG>, BNE <TAG>) = cos(JE <TAG>, JNE <TAG>)
— cos({ADD SP,SP,0}, {SUB SP,SP,0}) =~ cos({ADDQ RSP,0}, {SUBQ RSP,0})



Take-away messages

NMT-inspired cross-architecture binary code
similarity comparison works well (AUC = 0.98)

— Can NLP inspire us (binary analysts) more?
Does not need “big data” (400k samples)

A laptop without GPU can do the job

First solution to cross-arch code containment

Uncertain: cross-compiler? (on-going work)

28



https://nmt4binaries.github.io (online since August 2018)

Contact: Qiang Zeng (zengl@cse.sc.edu)

Thank you!
Q&A

UNIVERSITY OF

SOUTH CAROLINA


https://nmt4binaries.github.io
mailto:zeng1@cse.sc.edu

The proportion of unseen
instructions in test corpus(%

100%

Out-of-Vocabulary (OOV) rate

3.7% vs. 90%

—v— With pre-processing
—— Without pre-processing

~Z

VOV VTV VY Y VY VY VY Y VYV Y

0O 10 20 30 40 50 60 70 80 90 100
The proportion of used corpus (%) .
30



How about BBs of different optimization
levels of the same architecture?

« O3 B1 =>00 B2 => src code
« Compare src code of B1 and B2
* |If they are the same, B1 and B2 are similar

31



How about dissimilar BB pairs?

ARM O3 BB1 == ARM OO0 BB2

X86 O2 BB3 => X86 O0 BB4 => ARM OO0 BB5
Use n-gram to compare BB2 and BB5

If they are dissimilar, BB1 and BB3 are dissimilar

32



Interesting idea, but tons of questions

— Words < instructions, but an infinite vocabulary?
— Sentences <& basic blocks vs. functions?

— Corpus of equivalent basic block pairs?

— Architecture?

— Expensive hardware?

— Interesting applications?

* Please refer to our paper for more details

— Ground truth of dissimilar BB pairs
— Selection of many hyperparameters

33



