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providers like Spotify [21], Cloudflare [23] and Google [11]
have highlighted the global impact of this problem.

Existing tools designed to curtail leaks, like the many
Internet Routing Registries (IRRs), are challenging to deploy
or limited in scope. IRRs are databases where ASes can
publish their routing policies. Other ASes can then convert
IRR-stored policies into filters to validate received routes. IRR-
based filtering is limited by its requirement for broad AS
participation, however, as the motivations and sophistication
of network operators varies greatly between ASes [22]. Other
BGP security extensions, like the Resource Public Key Infras-
tructure (RPKI), only enable filtering for a subset of leaks (e.g.
re-origination leaks for RPKI).

The Peerlock [44], [18] leak defense system was presented
in 2016 to address the need for a deployable solution. Each
Peerlock deployment occurs between two neighboring ASes,
the protector AS and protected AS. The protector AS agrees
to filter routes that transit the protected AS unless they arrive
directly from the protected AS or one of its designated
upstreams. The filter prevents the protector AS from propa-
gating or steering its traffic onto any leaked route that transits
the protected AS, regardless of origin AS/destination prefix.
Peerlock is designed to leverage the rich web of relationships
that exist between transit networks in the Internet’s core, and
functions without coordination with other ASes on potential
leak paths. This makes Peerlock especially viable in the
peering clique formed by the 19 Tier 1 ASes that sit atop the
inter-domain routing hierarchy. A related technique, Peerlock-
lite, enables networks to spot likely leaks without prior out-
of-band communication. ASes deploying Peerlock-lite drop
routes arriving from customers that contain a Tier 1 AS; it
is highly improbable that customers are providing transit for
large global networks.

Our first contribution is a measurement of
Peerlock/Peerlock-lite deployment on the control plane.
In Section IV we design, execute, and evaluate active Internet
measurements to search for evidence of filtering consistent
with these systems. Our experiments use BGP poisoning, a
technique used in prior work for traffic engineering [42] and
path discovery [1], to mimic route leaks that transit some
target AS. We then listen for which networks propagate -
or filter - these "leaks" relative to control advertisements.
This information feeds several inference techniques designed
to uncover which ASes are Peerlocking for (protecting) the
target AS.

Abstract—BGP route leaks frequently precipitate serious dis-
ruptions to inter-domain routing. These incidents have plagued 
the Internet for decades while deployment and usability issues 
cripple efforts to mitigate the problem. Peerlock, presented in 
2016, addresses route leaks with a new approach. Peerlock 
enables filtering agreements between transit providers to protect 
their own networks without the need for broad cooperation 
or a trust infrastructure. We outline the Peerlock system and 
one variant, Peerlock-lite, and conduct live Internet experi-
ments to measure their deployment on the control plane. Our 
measurements find evidence for significant Peerlock protection 
between Tier 1 networks in the peering clique, where 48% of 
potential Peerlock filters are deployed, and reveal that many 
other networks also deploy filters against Tier 1 leaks. To 
guide further deployment, we also quantify Peerlock’s impact 
on route leaks both at currently observed levels and under 
hypothetical future deployment scenarios via BGP simulation. 
These experiments reveal present Peerlock deployment restricts 
Tier 1 leak export to 10% or fewer networks for 40% of simulated 
leaks. Strategic additional Peerlock-lite deployment at all large 
ISPs (<1% of all networks), in tandem with Peerlock within the 
peering clique as deployed, completely mitigates about 80% of 
simulated Tier 1 route leaks.

I. INTRODUCTION

The Internet consists of many Autonomous Systems (ASes)
with distinct IP prefixes, routing policies, and inter-AS con-
nections. These networks exchange routes with neighboring
ASes over the control plane to connect hosts in disparate
ASes and create the illusion for users of a single, unified
Internet. Unfortunately, there are few security controls on route
exchange. ASes behaving adversarially, whether intentionally
or by mistake, can export routes that should be kept internally
or shared with only a subset of their neighbors. Because the
language ASes use to communicate - the Border Gateway
Protocol or BGP - does not package validation information
with routes, remote networks often receive and propagate these
route leaks throughout the control plane. Leaks frequently
steer user traffic on the data plane onto unintended paths that
lack capacity for the additional traffic. The end result is soaring
latency or complete availability loss for destination services.
Recent route leaks to prefixes hosting major content/service
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Notably, we find substantial Peerlock deployment within the
peering clique: about 48% of possible filtering rules (153/342)
are already implemented within this set. Further, many non-
Tier 1 ASes - including nearly 40% of large ISPs observed
during our experiments - perform some Peerlock-lite filtering
on Tier 1 AS leaks. Evidence for Peerlock filtering of non-Tier
1 leaks is virtually nonexistent, though three Tier 1 networks
(AS 12956, AS 2914, and AS 3320) each filter leaks for more
than 20 non-Tier 1 ASes.

After detecting current Peerlock/Peerlock-lite deployments,
we ask how well these systems mitigate Tier 1 leaks. Internet-
scale BGP simulations in Section V test over 6,000 simulated
Tier 1 leaks against observed Peerlock/Peerlock-lite levels to
quantify the effect of these systems as deployed. We test
the same leaks against six hypothetical extended deployment
scenarios to understand where additional filters should be
placed to isolate leaks.

We find that Peerlock filtering within the peering clique is
helpful, but not sufficient to mitigate Tier 1 route leaks on
its own. Consistent with prior work on BGP filtering [8], our
experiments show that positioning filters at relatively few ASes
- the roughly 600 large ISPs - can play a decisive role in leak
prevention. About 80% of simulated leaks were completely
mitigated by uniform Peerlock-lite filter deployment at large
ISPs, with fewer than 10% of leaks spreading beyond 10%
of the topology. These figures are especially encouraging
because Peerlock-lite is based on a simple route validity check
informed by the valley-free routing model [7] that requires no
out-of-band communication.
In this paper, we make the following key contributions:

• We give an overview of the Peerlock and Peerlock-
lite filtering systems, and consider their benefits and
limitations relative to existing tools in Section III.

• We describe how we adapt existing Internet measurement
techniques to probe Peerlock/Peerlock-lite deployment on
the control plane and introduce a novel inference method
in Section IV-A.

• We actively measure where Peerlock and Peerlock-lite
filters are deployed with PEERING [36] and CAIDA’s
BGPStream [34] in Section IV-B, with a discussion of
results in Section IV-C.

• We simulate thousands of Tier 1 route leaks against
several protection scenarios in Section V-B, and present
a new path encoding method to understand how these
scenarios influence leak propagation and export in Sec-
tion V-C.

II. BACKGROUND

A. The Border Gateway Protocol

The Internet is a confederation of about 69,000 smaller
networks, called Autonomous Systems or ASes. ASes exchange
routing information via the Border Gateway Protocol (BGP)
to enable global connectivity. Each AS originates routes to its
hosted prefixes; these routes are advertised to neighbors via
BGP updates. Each update contains a prefix and a collection
of other attributes, including an AS PATH that describes the

route’s AS-level hops. ASes compare all received updates via
the BGP decision process to select a single best path to every
destination prefix. Both path qualities (like AS PATH length)
and local network policies (e.g., business relationship with
advertising AS) are taken in account when selecting a best
path, but policies take precedence in the process. Once an AS
selects a best path for a given prefix, it prepends its unique
AS number (ASN) to the path and advertises only that path to
its neighbors.

Paths learned from customer ASes - those purchasing
transit - are advertised to all connections. Provider-learned
routes, meanwhile, are generally only advertised to an AS’s
customers. Peer ASes exchange traffic without compensation,
and likewise advertise routes learned from one another only
to customer ASes. Limitations on non-customer learned route
export prevents customer ASes from transiting traffic between
peers/providers at their own expense. This dynamic, known as
the Gao-Rexford or valley-free routing model [7], guides the
exchange of routes on the control plane. No widely-deployed
mechanism enforces this model, but the economic incentives
it describes shape AS path export behavior.

The customer cone [10] is one product of this model. An
AS’s customer cone is the set of all ASes reachable from the
AS via only provider to customer links. Stated simply, these
are the AS’s direct and indirect customers. Customer cone
size is one of the few publicly observable features commonly
used to judge an AS’s influence on the control plane, e.g.
in CAIDA’s AS ranking [50]. Customer cone size is the
basis for the UCLA classification presented in [33] widely
used in research on this topic [41], [49], [1], [4], [53]. This
scheme separates ASes into 1) Tier 1 ASes, who have no
providers, form a peering clique, and can transit traffic to any
prefix without compensation, 2) large ISPs with more than 50
customer cone ASes, 3) small ISPs with 5-50 customer cone
ASes, and 4) stub ASes with fewer than 5 direct or indirect
customer networks.

B. Route Leaks

Despite its vital role in binding together Internet networks,
BGP is missing key security features like cryptographic hard-
ening of routes exchanged between ASes or trusted certifi-
cation binding ASes to owned prefixes. This leads to two
common classes of major inter-domain routing mishaps, pre-
fix hijacking and route leaks. Prefix hijacks occur when a
network, often unintentionally, originates or advertises a fake
but attractive (e.g. shorter or more specific) route to prefixes
owned by another AS. Traffic destined for those prefixes is
then intercepted by the hijacker. A number of recent studies
focus on hijack mitigation [39], [35], [52].

Route leaks are defined in RFC 7908 as the propagation
of an advertisement beyond its intended scope [45]. Type 1-
4 leaks all cover various valley-free routing violations, i.e.
advertising one peer/provider’s routes to another peer/provider.
Because remote ASes have little or no information on rela-
tionships between non-neighboring networks, they generally
cannot distinguish leaks from valid routes, and may propagate
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them throughout the topology. Type 5 leaks occur when one
provider’s routes are announced to another with the AS PATH
stripped, effectively re-originating the prefix from the leaker.
Finally, a Type 6 leak involves an AS announcing routes used
internally to its neighbors. These routes are often more specific
than externally announced routes; this makes the leaks more
attractive in the BGP decision process and encourages their
spread to other remote networks.

Globally disruptive route leaks occur frequently [21], [40],
[11], [27], [54], [26]. The 2019 Verizon-Cloudflare leak [23]
is a high profile example. A small ISP, AS 33154, leaked
specific internal prefixes (Type 6) to Cloudflare and many
other destinations to its customer, AS 396531. AS 396531
committed a Type 1 leak by advertising this route to its
other provider, AS 701 Verizon. Verizon propagated the leak,
which spread widely on the control plane because it was
more specific than legitimate available routes (see depiction in
Fig. 1). Traffic for Cloudflare, a leading content distribution
network (CDN), was funneled through small networks. Many
of the thousands of websites and services backed by Cloud-
flare suffered degraded service until the leak was resolved
via out-of-band communication between Cloudflare and AS
33154 [48].

e
Fig. 1: 2019 Verizon/Cloudflare leak. Other destination ser-
vices were also affected.

C. Route Leak Prevention

There are a number of tools available to assist network
operators in preventing route leaks. The Resource Public Key
Infrastructure [25] is a trusted repository for certificates that
bind IP prefixes to owning ASes’s public keys, called Route
Origin Authorizations (ROAs). Remote networks can validate
BGP updates against ROAs in the RPKI, a process called
Route Origin Validation (ROV). Widespread ROV filtering
could prevent Type 5 (and some Type 6) leaks and many prefix
hijacking attacks. Unfortunately, ROA/ROV deployment has
suffered from circular deployment logic; it is meaningless for
origin ASes to invest in publishing ROAs until ROV is widely
implemented, but ROV is ineffective without ROAs. This issue
has been identified as a major obstacle to ROV deployment [8],
[12]. NIST estimates that just 20% of prefixes are covered by
a valid ROA [31].

Internet routing registries (IRRs) back another leak pre-
vention system. IRRs are databases where AS operators can
store their routing policies. Remote networks can ingest these
policies to inform filters that block unintended/invalid ad-
vertisements. IRR databases are operated by private firms,
regional Internet registries, and other interests [15], and policy
entries are often mirrored between them. A complete, up-
to-date IRR would eliminate many Type 1-4 route leaks.
Like ROV filtering, though, IRR filtering is hampered by
deployment headaches. ASes’ routing policies are interdepen-
dent, so changes to one network’s stored policies can render
many others obsolete. Operators in smaller, resource-limited
networks can avoid periodic updates by configuring permissive
routing policies; large transit ASes have complex, dynamic
routing policies that require frequent changes to dependent
networks’ filters [22]. These issues, combined with poor or
non-existent authentication, have resulted in inconsistent and
out-of-date IRRs. Though leading organizations like RIPE
have launched efforts to improve IRR quality [30], operator
incentive and dependency issues will continue to limit their
usefulness.

Other filtering techniques include max-prefix limit filtering,
where a network caps the number of prefixes it will accept
from a neighbor. This prevents mass prefix spills like the 2017
Level 3 leak [27], but not more targeted (yet highly disruptive)
leaks like the Verizon/Cloudflare incident described earlier.
BGPSec [24] is a protocol extension for cryptographic AS
path hardening. This would prevent some types of hijacking,
but BGPSec has not been commercially implemented and is
not designed to prevent route leaks.

Finally, a communities-based "down-only" (DO) leak solu-
tion has been proposed [46]. Large BGP communities [43] are
signals containing three integers that can be attached to routes.
The DO system relies on providers/peers marking a route
"down-only" using the first two integers in a large community,
with their ASN included as the third integer, before passing the
route to customers or peers. If these customers/peers attempt
to re-advertise the route to other providers/peers, the attached
DO community will clearly signal a route leak. While this
system would prevent many leaks if properly implemented,
it relies on customers/peers preserving DO information when
propagating advertisements. Moreover, some leaks - like the
internal route leaks in the Verizon/Cloudflare incident - would
not be arrested by this system.

D. BGP Poisoning

BGP poisoning is a technique designed to manipulate the
BGP decision process in remote networks. ASes originating a
prefix can poison an advertisement by including the ASNs
of remote networks in the AS PATH. Often, the poisoned
ASNs will be inserted between copies of the origin’s ASN.
This "sandwiching" ensures traffic is routed properly and that
the advertisement is valid for ROV filtering purposes (see
Fig. 2). BGP prevents cycles from forming in the topology
by requiring ASes to drop routes containing their own ASN
in the AS PATH; this is known as BGP loop detection. So,
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all networks included in the poisoned update’s AS PATH -
the poisoned ASes - will filter it. Poisons can be used for
inbound traffic engineering purposes [42], [41], [20] but we
employ them in Section IV to mimic route leaks transiting the
poisoned AS.

Fig. 2: BGP poisoning. AS 1 originates a route with AS 2
prepended to path (left); AS 2 filters the update (center), but
AS 3 propagates (right).

III. THE PEERLOCK SYSTEM

The challenge of leak filtering stems from the topological
scope asymmetry between BGP routes and the perspective
of individual AS operators who evaluate them. Routes span
the topology (global scope); operators only know their own
relationships with adjoining ASes (local scope). Filtering
systems built on the RPKI [13] and IRRs [14] partially address
this asymmetry by applying additional information to the
route evaluation process. However, these existing solutions
have limitations that have hamstrung their deployment. Most
critically, their effectiveness depends on the cooperation of
many unincentivized remote ASes as detailed in Section II-C.

A. Peerlock

Peerlock, first detailed by NTT in 2016 [44], [18], is a
leak filtering scheme based on out-of-band information ex-
change between BGP neighbors. Peerlock requires a single AS
(the protected AS) to designate authorized upstreams to their
BGP neighbor (the protector AS). This communication dis-
tributes AS relationship information between peers to decrease
route/filterer scope asymmetry. The protector AS then rejects
any BGP update whose AS PATH contains the protected AS
unless received 1) directly from the protected AS, or 2) from
an authorized upstream, with the protected AS immediately
following the authorized upstream in the AS PATH. We say
that the protector AS is Peerlocking for the protected AS.
See Fig. 3 for a depiction of the system. In this paper, we
will often refer to a single instance of Peerlock - that is, one
protector/protected pairing - as a Peerlock rule.

Here we describe Peerlock’s benefits and drawbacks
relative to previous leak prevention systems, each of which
is described in detail in Section II-C. These comparisons are
summarized in Table 1.

RPKI/ROV Comparison: Peerlock provides broader leak
type coverage than RPKI/ROV filtering without a trust
infrastructure requirement. However, Peerlock only applies to
leaks that violate configured topological rules (Types 1-4), so

Fig. 3: Simple Peerlock deployment. Protector AS filters
updates containing the peer Protected AS from unauthorized
propagators.

Type 5 (re-origination) and Type 6 (internal route) leaks fall
outside its scope. ROAs tie prefixes to valid originating ASes,
so ROV filtering can prevent Type 5 leaks. Additionally,
ROAs can be configured with a max prefix length to prevent
some internal route leaks and hijacks, although recent work
has identified vulnerabilities in this feature [9]. Because
Peerlock and RPKI/ROV filtering cover different leak types,
Peerlock is complementary to ROV filtering rather than a
replacement.

IRR Comparison: IRRs are policy object databases capable
of storing participating networks’ routing intentions with great
detail and fine granularity (prefix level). Any AS wishing to
enforce these intentions can automatically derive filters from
stored objects using software tools, whereas Peerlock rule
configuration requires setup between each protector/protected
AS pair. Unfortunately, IRRs suffer from incentive misalign-
ment, governance, and rule dependency issues as described in
Section II-C. Peerlock rules are self-contained, and changes do
not affect other rules. This encapsulation avoids the cascading
dependency problem exhibited by IRRs, where one AS’s
policy changes may render many other AS’s entries obsolete.

Most importantly, Peerlock allows the protector AS to
stop leaks that transit the protected network regardless of
the actions of ASes along potential leak paths; the value of
IRR-based filters depends on many remote networks to store
accurate policy entries. Peerlock’s relatively light cooperation
requirement only requires that ASes with an existing
relationship communicate information between themselves.
This dynamic enables the best resourced, positioned, and
incentivized networks (i.e., those serving the most customers)
to block route leak propagation regardless of other remote
networks’ actions.

Max Prefix Comparison: BGP’s max prefix feature enables
networks to limit the number of prefixes they will accept
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System Coverage Requirements Notes

RPKI/ROV Type 5 internal leak,
Type 6 re-origination

RPKI trust infrastructure,
local ROA registration &
remote ROV checks

Type 5 coverage depends on optional ROA max length

IRR Filtering
Potentially all leak types;
depends on stored policy
object specificity.

Correct, fresh policy objects &
derived filters along potential leak
path

Quality issues, misaligned incentives

Max Prefix All leak types
Filter with meaningful max prefix
limit somewhere on potential leak
path

Only effective when many prefixes are leaked

Table 1: Common leak filtering systems.

over each neighboring AS connection. Mass route leaks
- those involving many prefixes - are filtered once prefix
volume over an inter-AS link exceeds the preset limit. Max
prefix filtering affords broad protection across leak types, but
cannot stop leaks involving few (potentially critical/highly
trafficked) prefixes. On the other hand, Peerlock cannot stop
leaks that do not violate established topological constraints
regardless of volume, but is effective against more selective
leaks unprotected by max prefix limits.

Other Considerations: Currently, each Peerlock rule must
be manually configured, although at least one method has
been proposed to automate Peerlock [16]. Peerlock also
lacks a standard to describe how out-of-band information
is exchanged between participants. Without a detailed and
secure protocol for rule configuration, Peerlock is vulnerable
to exploitation; fraudulent rules affect route export, and could
be used to engineer traffic flows. Furthermore, operators must
define their own ad-hoc protocols for communicating rules
that may not guarantee authenticity and/or confidentiality.
Virtually all leak solutions discussed here, including IRR,
RPKI/ROV, and AS PATH filtering, are recommended by the
best practices group Mutually Agreed Norms for Routing
Security (MANRS) [5].

B. Peerlock-lite

Peerlock-lite [18] (or Tier 1 filter, "big networks" filter)
is a related technique, based on the assumption that transit
providers should never receive a route whose AS PATH in-
cludes a Tier 1 AS from a customer. This is a valid assumption
under the valley-free routing model [7], because such an
update implies the customer is providing transit for the Tier 1
AS; otherwise, the customer would not export (leak) the route
to another provider. However, Tier 1 ASes have no providers
by definition. This logic can be extended heuristically to any
other large non-Tier 1 networks that the provider does not
expect the customer to export.

This simple logic yields an equally simple filtering rule
for transit providers - reject any updates from customers that
contain a Tier 1/large transit ASN. See Fig. 4 for a depiction of
this filtering technique. Peerlock-lite filters are limited to Tier
1/large transit provider leaks, but they require no out-of-band
information to configure. Moreover, Tier 1 ASes’ position at
the Internet’s core results in their frequent presence on AS

PATHs of highly disruptive leaks, e.g. the Verizon/Cloudflare
leak [23] and the Enzu/AWS/Spotify leak [21].

Fig. 4: Example Peerlock-lite deployment. Provider AS filters
updates from its customer that include a Tier 1 AS.

IV. MEASURING PEERLOCK DEPLOYMENT

Our initial experiments seek to establish the current state of
Peerlock deployment on the control plane. As discussed in the
previous section, every Peerlock rule is configured between a
pair of networks: the protector AS and the protected AS. Each
of the experiments in this section works to identify some or
all Peerlock/Peerlock-lite protectors for a targeted AS.

A. Measurement Methodology

Experimental Design: Each set of measurement experiments
in this section is designed to discover Peerlock rules for a
set of potential protected ASes, called target ASes. For each
target AS, we advertise a /24 prefix from many points-of-
presence (PoPs) on the control plane. This is the control
advertisement. It is a normal /24 origination in every way,
except that our university AS - which we know not to be
protected by any Peerlock rule - is poisoned (i.e., prepended
to the advertisement’s AS PATH - see Section II-D). We then
listen at varied collection sites, called collectors, for BGP
updates triggered by our advertisement. The AS PATH for each
such update that arrives at collectors lists in encounter order
the ASes that received and re-issued the update as described
in Section II-A.
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Taken together, the gathered AS PATHs form a directed
acyclic graph (DAG) that describes the control advertisement’s
propagation through the control plane; each AS appearing
on at least one AS PATH forms a node in the DAG, and
AS ordering within paths allows us to form directed edges
between nodes. BGP loop detection prevents cycles as noted
in Section II-D. We call this graph the control DAG. Note that
all of the ASes appearing in the control DAG propagated (and
thus did not filter) control updates that include a poisoned AS.

We then wait 30 minutes for update propagation before
issuing an explicit withdrawal for the /24 prefix. This timing
is built conservatively from empirical measurements of propa-
gation times through the control plane (see update propagation
experiments in appendix). After another waiting period to
ensure the withdrawal has completely propagated, we issue a
leak advertisement for the same /24 prefix. This advertisement
matches the control advertisement in every way, except that
the target AS is poisoned. This leak advertisement structure is
designed to mimic a leak for the purposes of Peerlock while
avoiding other common filtering systems. The target AS’s
presence on update paths triggers filtering for any Peerlock
protector ASes.

Finally, we gather all BGP updates for the leak advertise-
ment from our collectors. The ASes that appear on AS PATHs
in any of these updates are added to a set called the leak set.
Since they propagated poisoned updates, we know these ASes
did not filter the "leak". With the control DAG and leak set
together, we can reason about which ASes are Peerlocking for
the target AS using two techniques: 1) clique inference and 2)
DAG inference.

Fig. 5: Measurement experiment depiction. Inferences are
made about Peerlock deployment based on differences be-
tween normal updates (left) vs. poisoned updates (right) ar-
riving at collectors.

For detecting Tier 1 protector ASes, we use clique inference.
This simple technique relies on the fact that Tier 1 ASes
form a peering clique by definition. According to the valley-
free routing model [7], ASes share all updates received from
customers with their peers; this maximizes the traffic the AS
transits for its customers (and thus the AS operator’s compen-
sation). Further, ASes should not share a peer’s updates with
another peer, as this is a Type 2 route leak [45]. So, in general,
if a Tier 1 AS is observed propagating an update, all Tier
1s should receive the update via their peering relationships.
Because we observe at least one Tier 1 propagating control
and leak updates across all experiments, we define a simple

rule for inferring Tier 1 protector ASes: any Tier 1 AS that
appears in the control DAG but not the leak set is Peerlocking
for the target AS.

Inferring other protector ASes requires a more general tech-
nique. Outside the structural guarantees provided by the Tier
1 clique, there is significantly more uncertainty about which
networks are filtering leak updates. Specifically, it is difficult
to distinguish an AS filtering updates from an AS not receiving
updates at all due to filtering by other upstream/downstream
networks. This challenge leads us to make three separate
inferences for these ASes for each leak target.

First and simplest is the max inference set, defined as all
control DAG ASes minus the leak set. This set includes all
ASes who may have filtered leak updates, but also ASes who
did not receive the leak update because it was filtered by an
intermediate AS. Secondly, we build a min inference set. This
set is built by deleting all leak set ASes from the control
DAG, and collecting the root of every weakly connected
component that remains. This isolates the ASes that filtered
leak updates from ASes in their "shadow" who did not receive
the updates. The min inference set contains those ASes who
likely filtered leak updates based on routes we observed. Note
that the min/max inference techniques closely align with those
employed in the long path filtering experiments in Smith et
al.’s study on BGP poisoning as a re-routing primitive [41].

Our last inference set is the likely inference. Because ASes
only export their best path to our /24 prefix, we cannot
observe every edge that should exist in the control DAG (i.e.,
every potential propagation path for updates). So, this set’s
is built like the min inference set, except that we augment
the control DAG with edges from CAIDA’s provider-peer
observed customer cone inference [51]. That is, we add edges
to the control DAG where CAIDA’s data indicates there are
links between ASes that we did not observe due to policy
decisions. This forms a superset of the min inference set and
a subset of the max inference set that contains the most likely
filterers. This is a novel technique not used to our knowledge
in any prior work on this topic.

These three inference sets are formed for each target
from differences in control and leak update propagation. In
addition to these sets, we also build a min/max/likely poison
filtering set by following the same steps listed above, but
with a unpoisoned advertisement’s updates compared against
the control advertisement’s updates. These sets are built to
explore the prevalence of general poison filtering as in Smith
et al. [41].

Framework Details: The control-plane measurement
framework for these experiments consists of 1) 13 PoPs to
issue BGP advertisements and 2) 54 BGP collectors to listen
for propagation. We employ the PEERING testbed [36] for
the first requirement. PEERING allows us to advertise three
assigned /24 prefixes from edge routers at thirteen PoPs
worldwide. For collecting BGP updates, we used CAIDA’s
BGPStream [51] tool. This tool draws updates from 54
globally distributed collectors, including 30 RouteViews [32]
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and 24 RIPE RIS [29] collectors. While most of these
collectors are positioned in North America and Europe, every
populated continent is represented by at least one collector.

Measurement Limitations: While our framework allows us
to effectively probe the control plane for evidence of Peer-
lock and related techniques, a number of limitations prevent
complete certainty regarding Peerlock filter placement. The
most important of these obstacles are imperfect collector
coverage, topological instability, and the presence of other
filtering systems. Here we discuss each of these factors in
turn.

BGP policies prohibit us from viewing the entirety of the
topology with our framework; there are few collectors in
stub networks, and stub/remote ASes do not export received
updates back "up" through provider networks. This means our
observation window - the ASes on update paths at collectors
- is biased toward transit networks in the Internet’s core
as in [33]. Fortunately, this is the most important/influential
region to monitor, as these network’s policies have the widest
impact on the control plane. Altogether, we observed 610 ASes
during our experiments, including 181/605 large ISPs and all
19 Tier 1 networks. Most observed ASes (332) were present
in the observation window during all experiments conducted
from August 2019-May 2020. Note that while we can only
infer protector ASes from our observation window, we can
poison any AS. So, our window does not limit our inference
regarding which ASes are protected.

To account for instability in our observation window, we
limit our filtering inferences to those ASes observed in control
updates both before and after the leak advertisement (i.e., for
the current and next target AS experiment). Additionally, we
repeat experiments - issue control/leak advertisements for the
same target ASes - over several months. These observations
are combined to reduce the "noise" of topological dynamism
from our inferences. Specifically, we remove ASes from
a target’s filtering inference sets if we later observe them
propagating a leak update for that target; in this case, the
earlier inference was likely caused by the AS’s intermittent
presence in the observation window during the experiment.

Most importantly, we acknowledge that we cannot be certain
Peerlock/Peerlock-lite exactly as described by NTT [44], [18]
is responsible for all observed filtering, but our experiments are
designed to avoid common leak filtering systems. First, since
the leak and control advertisements in our experiments share
an origin AS/prefix, their updates present identically for ROV
filtering purposes. Additionally, since we observe all ASes in
the control DAG propagating control updates, we infer those
ASes will not apply common IRR or max-prefix limit filtering
to the same /24 in leak updates. Finally, while prior work
indicates that short poisoned paths are frequently present on
the control plane [49] and rarely filtered [41], the poisoning
in the control advertisement ensures that we do not conflate
poison filtering and Peerlocking.

Despite our efforts to avoid common filtering practices,
local policies grant network operators extensive discretion in

how routes are vetted and exported. This flexibility means we
cannot be certain that experimental updates are not sometimes
blocked by AS specific, ad-hoc AS PATH filtering techniques.
We know of no way to distinguish such functionally similar
filters from Peerlock.

Ethics: We issued only well-formed BGP advertisements
using the PEERING software client and adhered to all rules
published by PEERING. We advertised only our assigned /24
prefixes, which are reserved for experimental use, and thus did
not disturb Internet control or data plane operation for any
non-experimental IP addresses. Our experiments did require
poisoned advertisements, but this is a common practice used
both in research [2], [41] and in traffic engineering [49]. One
network operator observed and inquired about our experiments
to PEERING, but did not report any resultant adverse effects.
No data-plane traffic was sent during the conduct of our
experiments.

B. Evaluation

Target Set 1, Tier 1s: The 19 Tier 1 ASes form our first
target AS set, i.e. the potential protected ASes for which we
are inferring Peerlock rules. The Tier 1 peering clique includes
the most influential networks by one of the few observable
metrics, customer cone size [51], and often creates [27] or
distributes [23], [11], [40] leaks that disrupt global Internet
services. Paradoxically, deploying filters for leaks that include
Tier 1 ASes is also relatively simple for non-Tier 1 networks
via the Peerlock-lite system described above. We iteratively
issued unpoisoned, control, and leak advertisements that cov-
ered this set every two months from August 2019 to May
2020. This repetition allows us to capture filtering rules for
ASes with inconsistent presence in our observation window,
and to explore how deployments change over time.

We first present results for protection within the Tier 1
clique in Fig. 6. Note that because of BGP loop detection,
every AS filters leak updates that include their own ASN
regardless of Peerlock deployment. The peering clique is
fortunately the most stable feature in our observation window,
enabling us to measure the presence/absence of nearly every
potential Peerlock rule within the clique. We have marked
the exceptions for which we were unable to measure filtering
rules in pink in Fig. 6. We see that Peerlock deployment is
significant but unevenly distributed within the clique. Some
ASes - e.g. AS 2914 NTT, AS 701 Verizon - filter leak
updates for virtually the entire clique. For five others - e.g.
AS 3491 PCCW Global, AS 6762 Telecom Italia - we found
no evidence of Tier 1 Peerlock filtering at all.

Our measurement results for Peerlock/Peerlock-lite
protection of Tier 1s by all observed ASes are depicted
in Fig. 7. Fig 7a shows both our inferences about which
networks filter poisoned updates in general (blue lines) and
which filter Tier 1 leaks (red lines). These are displayed as a
cumulative distribution function (CDF) over Tier 1 targets;
likely inferred filtering levels range from about 3% (AS
6830) to 15% (AS 701) of observed ASes. Note that per
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(a) Number of protector/protected rules by ASN. Protector numbers
include ASes protecting their own ASN via loop detection.

(b) Depiction of Tier 1 protection rules.

Fig. 6: Tier 1s filtering Tier 1 leaks, 2019/2020 measurements.

the experimental design described above, we cannot make
Peerlock protection inferences for ASes filtering all poisoned
updates; however, this is a small set without Tier 1/large
ISP members (max inference size = 9 ASes). Fig. 7 shows
the number of ASes in each UCLA class (see Section II)
protecting at least one Tier 1 target.

Target Set 2, Tier 1 Peers: Our second target set includes the
non-Tier 1 peers of Tier 1 ASes (about 600 ASes) as inferred
by CAIDA [51]. These experiments explore whether Tier 1
ASes are extending Peerlock protection to their non-Tier 1
peers. Additionally, despite covering about 1% of all ASes, this
set includes a third of all large ISPs. The presence of these
large ISPs in the target set allows us to investigate whether
non-Tier 1 ASes apply Peerlock-lite filters to large transit
networks outside the peering clique. These experiments were
conducted from Oct 2019 to May 2020, with every included
network targeted at least twice.

The overall results are presented in Fig. 8a. Clearly, filtering
for these leaks is less prevalent within our observation window.
80% of Tier 1 peer leaks were filtered by fewer than 2%
of observed ASes, but a few exceptional targets did trigger
significant filtering behavior. Our poison filtering inference for
these targets is, as expected, nearly identical to that derived
from the Tier 1 leak experiments. Fig. 8b displays filtering
levels for each Tier 1 ASes by peering status with the target.
All Tier 1s protect 10 or fewer peer networks from this set.
More variance exists in non-peer filtering behavior, as we will
explore in the following discussion.

C. Discussion

Consistent with Smith et al. [41], we find no evidence
for widespread filtering of otherwise unremarkable poisoned
paths. Their study also found that poisoning high degree
ASes in an update is associated with reduced propagation.

Specifically, sub-20% update propagation rates were observed
for some Tier 1 ASes, including AS 174 (Cogent/Tier 1)
and AS 3356 (Level 3/Tier 1). Birge-Lee et al. [2] likewise
found that using AS poisoning rather than communities as
a path export control primitive significantly reduced update
spread, especially when large transit providers were poisoned.
Defensive AS-path filtering (e.g.,Peerlock/Peerlock-lite)
is identified as a likely culprit for this effect. Our work
systematically examines how and where these filters are
deployed on the control plane (within the limits of our
observation window).

Tier 1 Leak Filtering: The greatest protection within our
observation window is clearly afforded to Tier 1 ASes. Our
initial experiments in August 2019 discovered evidence for
133/342 (192−19) possible Tier 1-Tier 1 filtering rules (about
39%). Each measurement that followed uncovered at least
two new filtering rules, and by our final experiment in May
2020, 153 rules had been observed, a nearly 15% uptick in
Peerlock deployment. We had previously observed a negative
filtering result for every additional rule, indicating this increase
results from genuinely new Peerlock deployments rather than
instability in the observation window.

Non-Tier 1 ASes also filter Tier 1 leaks, though this
behavior is far from uniform. Overall, Tier 1 leak filtering
ranged from 3% to 15% of observed ASes across Tier 1 AS
targets. Most of this is likely due to Peerlock-lite filtering, as
it is simpler to deploy. Moreover, fewer than 10% of the more
than 1,000 observed Tier 1 filtering rules exist between peers,
and only about 20% (236 rules) involved a Tier 1’s indirect
customers filtering leak updates. This suggests that ASes are
installing Peerlock-lite filters for all Tier 1s rather than simply
protecting their upstream providers.

Mutually Agreed Norms for Routing Security (MANRS) [6]
is an initiative whose ISP members agree to best routing prac-

8



(a) Blue lines show poison filtering; red lines depict Tier 1 leak filtering. (b) Blue bars show no. ASes in observation window; red bars show no.
ASes filtering at least 1 Tier 1 leak.

Fig. 7: Overall filtering of Tier 1 leaks, 2019/2020 measurements.

(a) Overall filtering levels for Tier 1 peer leaks. Max and likely poison
inferences match for this set.

(b) Tier 1 filtering of Tier 1 peer leaks (peers within clique excluded).

Fig. 8: Tier 1 peer leaks, 2019/2020 measurements.

tices (like AS path filtering) to secure inter-domain routing.
While Peerlock and Peerlock-lite are not specifically included
in MANRS expected filtering actions, they are both suggested
in the implementation guide [5]. Fig.9 displays as a CDF the
proportion of MANRS and non-MANRS ASes filtering Tier
1 leaks. 73 of 502 MANRS ASes fall within our observation
window; the proportion of observed MANRS ASes that filtered
Tier 1 leaks ranged from 2-18% depending on Tier 1 target.
Non-MANRS filtering over the same target set ranged from 2
to 12%.

As shown in Fig 7b, the proportion of ASes with Tier
1 leak filters rises with UCLA class [33]. Intuitively,
networks with larger customer cones have the resources for
sophisticated configurations and the imperative to prevent

issues for downstream customers, and have previously been
associated with differing responses to BGP events [41], [3].
This dynamic hampers systems requiring wide participation
like ROV [8] and IRR filtering [22], but does not limit
Peerlock or Peerlock-lite deployment.

Tier 1 Peer Leak Filtering: Our non-Tier 1 leak experi-
ments met with relatively sporadic filtering. For more than
80% of targets in this set, nearly every observation window
AS (>=98%) propagated leaks. As described in Section III,
Peerlock-lite filters for non-Tier 1 ASes require more careful
deployment. The outliers in this target set (see the long tail
in Fig. 8a) are invariably near-Tier 1 networks like AS 1273
Vodafone, AS 6939 Hurricane Electric, and AS 7843 Charter
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that are safe for most ASes to include in a Peerlock-lite filter.
Tier 1 filtering of this leak set was likewise reduced com-

pared to Tier 1 leaks. In general, Tier 1 networks deploy
fewer than 5 Peerlock filters for non-clique peers. Nearly
all of these cover near-Tier 1s like AS 7922 Comcast and
AS 1273 Vodafone, or ASes administered by Tier 1s e.g.
AS 702/703 Verizon and AS 3549 Level 3. Notably, three
networks extend protection to more than 15 non-peers (per
CAIDA’s inference). AS 2914 NTT’s non-peer filtering rules
all cover various Comcast ASNs, while AS 12956 Telefonica’s
rules appear to be regionally-based: zero rules are applied to
customer cone ASes, but 23/31 apply to other European ISPs
of varying size. 13/20 of AS 3320 Deutsche Telecom’s non-
peer filtering rules, on the other hand, cover ASes within its
customer cone.

In summary, Peerlock is widely deployed and expanding
within the peering clique. Deployment outside the peering
clique is relatively limited, however. Up to 20% of non-clique
networks also deploy Peerlock-lite (or a similar mechanism)
to filter leaks containing Tier 1 or near-Tier 1 ASes. These
deployments are proportionally more common in ISPs and
rarely seen in stub ASes within our observation window. Fortu-
nately, the effectiveness of Peerlock/Peerlock-lite deployments
is less sensitive to scattershot deployment than other filtering
solutions. Prior work [8] and our simulations in the following
Section V suggest that filtering by large ISPs can have an
outsize impact on global leak propagation.

Fig. 9: Tier 1 leak filtering for MANRS/non-MANRS ASes.

V. EXPLORING PEERLOCK’S PRACTICAL IMPACT

The substantial but limited Peerlock/Peerlock-lite filtering
measured in the previous section leads us to investigate these
systems’ protective benefit in partial deployment. We have
interest both in how well these systems protect the control
plane from Tier 1 leaks as deployed, and in the relative
effect of realistic additional deployment (e.g. adding filters
at large transit networks). To answer these questions, we
quantify Peerlock’s practical impact with Internet-scale leak
simulations against several filter deployment schemes.

A. Simulation Methodology

These experiments are conducted via extensions to a BGP
simulator, an approach consistent with prior work on this

topic [38], [37], [42], [49]. We construct a simulated AS-
level topology from CAIDA’s inferred relationship dataset
(Jan. 2020 data) [51]. ASes within the topology evaluate
and export routes using the BGP decision process; longest-
prefix matching, LOCAL PREF, and AS PATH guide path
selection, while route export is governed by local policy to
enforce valley-free routing. This ensures the simulator models
the central dynamic of control plane propagation - the Gao-
Rexford model [7], and allows for the closest approximation
of control plane behavior we can devise without ASes’ full
(private) routing policies.

Each simulation is driven by a protection scenario that
maps protector ASes to those they are protecting. As with
Peerlock in practice, these protectors drop all received routes
that transit a protected AS unless they arrive directly from that
AS. Some scenarios also include Peerlock-lite deployments;
for these experiments, some set of ASes filter all customer-
exported routes that transit Tier 1 ASes. Once we establish the
protection scenario, we iterate over all Tier 1 to Tier 1 links
(with 19 Tier 1 ASes, this is n = 19, n2 − n = 342 links).
These links describe a unidirectional connection from one Tier
1, called the link start, to another Tier 1, called the link end.

For every link in this set, we sample 20 ASes from the link
start’s customer cone to serve as leakers. Each leaker will,
in turn, randomly select a destination AS in the link end’s
customer cone, and advertise a route to the destination over
the link to all of its peers/providers (see Fig. 10). This models
a Type 1 route leak of a path over the peering clique [45]. After
the leak, we allow the topology to converge and measure how
many ASes 1) received leak updates and 2) installed the leak
path. Additionally, we capture all the AS PATH of all leak
updates for analysis. With 20 leaker/destination pairings per
link and 342 Tier 1 links, we simulate 6,840 leaks in total.

Fig. 10: Example simulated leak. Dashed red lines indicate
route leak to other providers/peers.

Our simulations focus on leaks with Tier 1 leaks for
two reasons. First, we do not find substantial real-world
Peerlock/Peerlock-lite protection of non-Tier 1 ASes as out-
lined in Section IV. Second, many consequential leaks are
propagated globally over the Tier 1 backbone, e.g. [27], [23],
[40], [11]. Some of our protection schemes will investigate
whether leaks can propagate throughout the Internet without
Tier 1 distribution.
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(a) Impact of various deployment scenarios on leak update propagation. (b) Note increased Peerlock-lite performance for path switching vs. leak
update propagation.

Fig. 11: Peerlock/Peerlock-lite simulation results.

B. Evaluation

We evaluate seven different protection schemes for Tier 1
leaks.

• No filters.
• Inferred: Tier 1 Peerlock levels observed during Internet

measurements.
• Full T1: All Tier 1s Peerlock for all other Tier 1s.
• Full T1 + large ISP lock: Same as full T1, but all

large ISPs (376 ASes in CAIDA Jan 2020 dataset [51])
Peerlock their Tier 1 peers.

• Full T1 + large ISP lite: Same as full T1, but all large
ISPs deploy Peerlock-lite to protect clique ASes.

• Full T1 + large ISP both: Same as full T1, but all large
ISPs deploy Peerlock-lite filters and Peerlock for their
Tier 1 peers.

• Inferred + large ISP lite: Same as inferred, but all large
ISPs deploy Peerlock-lite.

While it is simpler to filter customer-learned routes with
Peerlock-lite than to deploy Tier 1 Peerlock filters for large
ISPs, we include both Peerlock and Peerlock-lite filtering by
these ASes to study how leaks are propagated within the
topology. The results of these experiments are presented in
Fig. 11, which displays both the proportion of ASes in the
topology receiving leak updates (Fig. 11a), and the proportion
selecting/exporting the leak path (Fig. 11b).

A critical feature revealed by Fig. 11 is the insufficiency of
Tier 1 protection alone (blue lines). Full Tier 1 Peerlocking
prevents all distribution of studied leaks over the peering
clique, but leak updates still spread to the majority of the
topology for most experiments. Adding large ISP Peerlock
protection has a relatively significant impact on both propaga-
tion and installation.

Peerlock-lite deployment by these ASes (red lines) benefits
from more filterers with wider protection per filterer. Naturally,
these scenarios are much more effective at preventing prop-

agation. For most leak cases, less than 10% of the topology
receives leak updates. This highlights the leverage large ISPs
have within the topology; filtering at these ASes (<1% of all
networks) generates an extensive shielding effect. The distinct
"shoulder" on the Peerlock-lite curves in Fig. 11b suggests
the impact on ASes using the leak is even more pronounced.
There is virtually no impact on target link usage for 75% of
simulated leaks when Peerlock-lite is deployed by all large
ISPs. Interestingly, the combination of Peerlock and Peerlock-
lite filtering by large ISPs (green line) adds little value over
Peerlock-lite alone.

C. Discussion

Path Encoding: To analyze how each of these scenarios
shapes leak propagation (and route selection/export), we col-
lect the AS PATH of all leaks exported during the above
experiments. We use a novel path encoding whereby each
AS on leak AS PATHs is converted to a 2-tuple with the
form (relationship to next AS, UCLA class [33]). Only the AS
PATH segment from the first customer to provider link to the
leaker ASN - the leak segment - is encoded. This trimming
discards the "down" segment prepended as leaks propagate
within customer cones, as well as the the segment connecting
leaker and destination that is invariant across leaks. We include
AS relationship in the encoding because of its importance in
path export behavior as described in Section II-A; UCLA class
informs us regarding where leaks travel through the routing
hierarchy. Taken together, these factors help us understand
broadly the topological dynamics at play in leak propagation,
and to capture the dominant leak propagation vectors under
each protection scenario.

Relationship is encoded as "C" (customer), "R" (peer), or
"P" (provider). UCLA classes are indicated by "T" (Tier 1),
"L" (large ISP), "S" (small ISP), and "U" (stub). Example:
[LR, TP] encodes a leak path exported to a Tier 1 provider by
the leaker, who then passes the leak to a large ISP peer. The
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Common Leak Segment Encodings

Scenario/Encoding No. exporting ASes % of exporting ASes
No filters 141,797,992 100%
[LR, LP] 14,892,311 11%
[TP] 10,254,707 7%
[LR, LP, LP] 8,683,968 6%
Inferred 108,030,704 100%
[LP, LP] 14,325,960 13%
[LR, LP, LP] 8,675,841 8%
[SR, LP] 5,169,427 5%
Full T1 101,024,444 100%
[LR, LP] 14,246,024 14%
[LR, LP, LP] 8,978,175 9%
[SR, LP, LP] 5,163,786 5%
Full T1 + large ISP lock 69,638,282 100%
[LR, LP] 9,473,820 14%
[LR, LP, LP] 5,899,779 8%
[SR, LP] 3,310,842 5%
Inferred + large ISP lite 8,005,724 100%
[LR] 2,537,276 32%
[LR, TP] 1,281,620 16%
[LR, SP] 653,167 8%
Full T1 + large ISP lite 5,215,232 100%
[LR] 2,386,597 46%
[LR, SP] 679,076 13%
[SR] 412,399 8%
Full T1 + large ISP both 4,649,828 100%
[LR] 2,023,579 44%
[LR, SP] 584,124 13%
[SR] 407,661 9%

Table 2: Most common encodings with number and percentage
of ASes exporting leaks.

progress of the leak through the large ISP’s customer cone
would continue to the left of "LR", and the path from leaker
to destination would continue to the right of "TP", but these
segments are omitted as explained above.

We will use two tables in analyzing our results. Table 1 de-
picts the three most common leak encodings for each scenario;
these account for at least a quarter of leak paths regardless
of filter placement. We also list the sum and percentage of
ASes exporting leaks accounted for by each encoding. Table
2 gives summary statistics for leak segments, including their
average length and the percentage of leak segments transiting
each UCLA class. Because we do not encode customer cone
propagation in leak segments, stubs are transited in <10% of
paths across all protection scenarios, are are omitted from the
table.

First, we observe that even under the "no filters" scenario,
leaks re-transiting the Tier 1 clique are not the most common
path encoding in Table 1. Table 2 shows they are present
in <35% of leak segments under all scenarios. This result is
an artifact of the BGP decision process; paths learned from
customers are preferred over those exported by peers, and peer
routes are favored over provider-learned ones. So, with all
other selection criteria equal, routes exported from providers
"above" an AS in the topology - e.g. the peering clique -
will generally only be installed and exported if the AS has
not received an update from peers/customers "below". Since
Tier 1 providers cap the routing hierarchy, we expect ASes
will prefer non-Tier 1 routes when provided alternatives by
their connectivity. This dynamic explains why the additional

protection afforded by complete Peerlock within the peering
clique vs. current levels is muted in Fig. 11b.

This effect also brings large ISPs to the fore in our simula-
tions. As noted in [33], these networks are densely connected
with peering links. Their connectivity allows them to bypass
the Tier 1 clique for many routes - and makes them the primary
channel for leak propagation. The most common encoding
for every scenario in Table 1 includes a large ISP, and 18/21
of the top encodings transit at least one. More than 70% of
leak segments transit these ASes for all protection scenarios
(see Table 2). In fact, in the scenarios without Peerlock-lite
(top four listed), leak segments on average transit - and could
be filtered by - multiple large ISPs. These statistics motivate
the scenarios that place Peerlock-lite filtering at these ASes
(bottom three in tables).

Interestingly, Peerlock-lite diminishes leak usage and prop-
agation unequally as shown in Fig. 11. Fig. 11a shows about
20% of leak segments propagate to 20% or more of the
topology with large ISP Peerlock-lite deployment, but Fig. 11b
shows that fewer than 5% are installed/exported by at least
20% of ASes. Table 1 hints at why this is the case - a
third or more of leak segments in Peerlock-lite scenarios are
exported to large ISP peers, who propagate them directly into
their customer cones (indicated by [LR]). Large ISPs with
any customer-learned or preferential (e.g. shorter) peer-learned
paths to the leak destination will prefer their existing route,
so the [LR] only includes a subset of the leaker’s peers.
Large ISP peers advertising the leak to customers could reach
many ASes, but as a provider-learned route, the leak will be
disadvantaged in the BGP decision process.

We see in Table 1 and Fig. 11 that small ISPs do not
have the connectivity to propagate leaks globally when the
large ISP provider channel is blocked by Peerlock-lite. Under
all scenarios, most leak segments do not transit a small
ISP (though they may be transited during propagation into
customer cones). This feature suggests a less prominent role
in route exchange for these networks relative to large ISPs.

To summarize, we find large ISPs are the most critical
players in halting the spread and installation of Tier 1 leaks.
These networks are interconnected enough to globally dissem-
inate route leaks without the peering clique in many cases.
Moreover, adding simple Peerlock-lite filters at these ASes to
the currently deployed Peerlock filters in the peering clique
causes a 94% reduction in total leak export across 6,840 leak
simulations. Table 1 suggests that peer connections among
ISPs are the largest remaining vulnerability for Tier 1 leaks
given uniform large ISP Peerlock-lite deployment. These chan-
nels are out of reach for Peerlock-lite as described, but could
be mitigated by 1) additional peering relationships/Peerlock
rules to protect important leak targets and/or 2) complementary
leak prevention systems like IRR filtering.

VI. RELATED WORK

Smith et al.’s 2020 study on the efficacy of poison filtering
for inbound re-routing [41] similarly employed the PEERING
framework to probe the behavior of remote networks. That
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Transited AS Statistics

Scenario Segment Length Tier 1s Large ISPs Small ISPs
average std. dev % paths average std. dev % paths average std. dev % paths average std. dev

No filters 4.4 1.8 27% 0.2 0.4 89% 2.3 1.6 40% 0.7 0.8
Inferred 4.6 1.8 7% 0.5 0.2 98% 2.5 1.5 45% 0.8 0.9
Full T1 4.7 1.8 0% 0.0 0.0 98% 2.6 1.5 46% 0.8 0.9
Full T1 + large ISP lock 4.8 2.1 0% 0.0 0.0 98% 2.7 1.6 50% 0.9 1.0
Inferred + large ISP lite 2.9 1.0 35% 0.3 0.5 72% 0.6 0.5 42% 0.8 1.0
Full T1 + large ISP lite 2.7 1.1 0% 0.0 0.0 74% 0.6 0.5 47% 1.0 1.1
Full T1 + large ISP both 2.7 1.1 0% 0.0 0.0 71% 0.6 0.5 49% 1.0 1.1

Table 3: Analyzing leak segments by UCLA classes transited.

work encountered some evidence for poison filtering, and
noted that filtering rates increase with poisoned AS degree,
but did not seek to describe the underlying filtering mechanism
or measure which ASes filter poisons. Similarly, Birge-Lee et
al. [2] and McDaniel et al. [28] trialed poisons as primitives
for novel BGP attacks. Both studies encountered filtering
when attempting to poison large transit networks, but did not
examine filtering position or prevalence.

Hlavacek et al. [12] introduced the DISCO system for
preventing BGP hijacking. While not designed to prevent route
leaks, the approach taken by DISCO is ideologically similar
to Peerlock - DISCO emphasizes deployability/usability at the
expense of some security guarantees relative to RPKI/ROV
filtering. This line of thinking is informed by a long history
of glacial deployment rates for security features that harden
BGP including BGPSec [47] and the RPKI [8], [31].

Previous work that relies on BGP poisoning often assumes
1) unpoisoned ASes will forward poisoned updates and 2)
poisoned ASes will drop such updates (see Section II-D).
Katz-Bassett et al.’s LIFEGUARD fault detection and reme-
diation system [19], [20], for instance, employs poisoning
to steer ASes around link failures. Smith and Schuchard’s
Nyx defense [42] depends on rerouting with poisons for
DDOS/Link Flooding Attack mitigation. Anwar et al.’s path
discovery technique [1] is also driven by BGP poisoning.
While we discovered little evidence for general poison fil-
tering, the prevalence of Tier 1/large transit network filtering
could present an obstacle to these systems. Specifically, the
assumption that unpoisoned networks will propagate poisons
does not hold in all cases.

VII. CONCLUSION

This work probes the current deployment of
Peerlock/Peerlock-lite on the control plane with active Internet
measurements in Section IV. We find substantial evidence
for deployment of these leak defense systems, especially
in large transit networks, and measure a rise in Peerlock
deployment within the peering clique during our experiments.
While the range of protected networks is still narrow within
our observation window, with most filterers protecting only
Tier 1 ASes, many of the most disruptive recent route
leaks contain these networks. Defensive systems [42], [20],
measurement techniques [1], and attacks [2] that may poison
Peerlock-protected networks could inadvertently trigger these

filters, and must not assume poisons will be propagated
by unpoisoned networks. BGP simulators should likewise
account for the presence of Peerlock to faithfully reproduce
control plane behavior.

We also examine how the position and prevalence of fil-
tering impacts leak propagation in the AS-level topology in
Section V. Notably, we find that large ISPs filtering plays a
major role in global leak dissemination, signaling that Tier
1 clique deployment of Peerlock alone is not sufficient to
isolate leaks. Strategic placement of filters at these large transit
providers, which account for fewer than 1% of all ASes,
completely mitigates 80% of simulated Tier 1 route leaks.

The MANRS filtering guide encourages AS PATH filtering
by member ISPs, particularly for screening customer adver-
tisements, and gives Peerlock/Peerlock-lite as examples. But
these systems are not explicitly required, unlike IRR filter-
ing (see [5] Section 4.1.1.1). Given the many indirect/direct
customers these networks serve, ISPs are best equipped and
best incentivized to deploy effective filters. Moreover, neither
Peerlock nor Peerlock-lite is technically complex or burden-
some to configure. Therefore, we argue for broad application
of these common-sense leak prevention techniques by ISPs as
a meaningful step in securing inter-domain routing.

A. Operator Engagement

This study’s preprint was posted to the NANOG and RIPE
operator mailing lists in June and August 2020. While operator
response was limited, email correspondence around the study
did yield some helpful insights. One European AS operator
claimed that at least one (and possibly additional) transit
networks deployed techniques similar to Peerlock around
2007, roughly ten years before NTT’s codification of the
method [18]. Separately, a Tier 1 network operator suggested
that 1) differences in network automation sophistication could
account for observed uneven filtering within the peering clique
and 2) defensive filtering may have partially mitigated the
Verizon/Cloudflare leaks detailed in Section II-B. This idea
is supported by Cloudflare’s discussion on the incident [23].
Cloudflare identifies some networks that filtered the leaks
(including ASes 1299 Telia, 2914 NTT, and 7018 AT&T).
Bandwidth graphs presented in that post indicate little or no
impact on Cloudflare-to-AT&T data plane operation, while
Cloudflare traffic to leak propagator Verizon was drastically
reduced for hours after the incident.
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B. Future Directions

Widespread adoption of Peerlock will likely depend on
addressing scalability issues. Rule configuration currently re-
quires non-standard, manual out-of-band communication be-
tween protector/protected ASes. Automating this process is
a crucial step in extending Peerlock beyond core networks.
Communities designating authorized upstreams for routes, as
proposed in [16], could take the place of out-of-band com-
munication. Alternatively, RPKI registration of direct/indirect
customers [17] could distribute trusted topological information
relevant to filtering.
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APPENDIX

Update Propagation: Before (August 2019) and after (May
2020) conducting our control-plane experiments in Section IV,
we performed simple tests to measure 1) the time distribution
for BGP update arrivals at RIPE/RouteViews collectors for
normal and poisoned advertisements issued from PEERING,
and 2) the time distribution for unique ASes seen on AS
PATHs in those updates. The latter is most critical for our
experiments, as we build our filtering inferences from the
presence/absence of ASes on update AS PATHs.

These tests consisted of an explicit /24 withdrawal followed
by a one hour waiting period, then a normal /24 advertise-
ment. We listened for updates for the /24 at all BGPStream
collectors, and recorded the arrival times of updates for the
advertised prefix for one hour. We also noted when unique
ASes were first seen on the updates’ AS PATHs. This process
(withdraw, update, listen) was repeated five times. We con-
ducted the same process with a poisoned /24 advertisement,
for a total of 10 advertisements per experiment.

The results are shown below, Figs.12 and 13. About 80% of
updates triggered by a normal or poisoned /24 advertisement
that arrived within an hour were received within 30 minutes
post-origination in the August experiment. In May, more than
95% of updates fell within this period. More importantly, for
every experiment, all unique ASes seen on update paths over
the hour listening window arrived within the first 25 minutes
post-origination. Over 95% of unique ASes were seen within
7 minutes post-origination.
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(a) August results. (b) May results.

Fig. 12: Update arrival time CDF. Each of five propagation experiments is illustrated in a different color.

(a) August results. (b) May results.

Fig. 13: Unique AS arrival time CDF. Each of five propagation experiments is illustrated in a different color.
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