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synchronize does not contain “too many” timeservers that are
under the attacker’s (direct or indirect) control. As our results
below demonstrate, this assumption can easily be violated in
practice.

Our focus, in contrast to the above discussed directions, is
on investigating and addressing NTP’s vulnerability to strategic
attacks by malicious timeservers. The natural starting point for
our investigation is the NTP Pool Project [20], which central-
izes access to thousands of timeservers across many countries
and organizational domains and is used, by default, by most,
if not all, major open source OS distributions (including the
major Linux distributions), router vendors, home automation
systems, security cameras, household appliances, and more [5],
[18]. As evidenced by the many millions of systems that rely
on the NTP server pool for time synchronization, the NTP Pool
Project successfully facilitates accurate time synchronization
at scale. However, as our results shall demonstrate, the pool’s
mechanisms for assigning timeservers to clients are vulnerable
to hazardous attacks.

We consider two strategies for an attacker: compromising
existing NTP timeservers and injecting new timeservers into
the NTP server pool.

Control over fairly few existing NTP timeservers can
impact time at many clients. An NTP client that uses the NTP
server pool is periodically assigned timeservers to sync to by
the pool. Recent proposals [6] call for significantly increasing
the number of timeservers the client can potentially sync with
to avoid being overly dependent on the input of any single
timeserver. We observe, however, that even so, an attacker in
control of fairly few servers in the pool can inflict significant
harm. As explained next, the root cause for this vulnerability
is that the pool’s mechanism for assigning timeservers to
clients is oblivious to inter-server dependencies. Local time at
most NTP timeservers is derived from interaction with other
(lower strata [38]) timeservers. This implies that an attacker
in control of a low-stratum NTP timeserver can potentially
influence time at a client indirectly by manipulating time at
other (higher-stratum) timeservers. We show, through extensive
empirical analyses, how this can be leveraged by an attacker
for shifting time at country/state-scale, or even continent-scale,
adversely impacting the performance or security of various
applications. In particular, an attacker in control of merely
10s of timeservers in Europe or the US (out of thousands
of timeservers in Europe and many hundreds in the US) can
shift time forward/backwards by hours at many clients across
the entire continent/country, impacting various applications
of interest. We observe, however, that more effective, and

Abstract—The Network Time Protocol (NTP) synchronizes 
time across computer systems over the Internet and plays a 
crucial role in guaranteeing the correctness and security of many 
Internet applications. Unfortunately, NTP is vulnerable to so 
called time shifting attacks. This has motivated proposals and 
standardization efforts for authenticating NTP communications 
and for securing NTP clients. We observe, however, that, even with 
such solutions in place, NTP remains highly exposed to attacks 
by malicious timeservers. We explore the implications for time 
computation of two attack strategies: (1) compromising existing 
NTP timeservers, and (2) injecting new timeservers into the NTP 
timeserver pool. We first show that by gaining control over fairly 
few existing timeservers, an opportunistic attacker can shift time 
at state-level or even continent-level scale. We then demonstrate 
that injecting new timeservers with disproportionate influence 
into the NTP timeserver pool is alarmingly simple, and can be 
leveraged for launching both large-scale opportunistic attacks, and 
strategic, targeted attacks. We discuss a promising approach for 
mitigating such attacks.

I. INTRODUCTION

The Network Time Protocol (NTP) synchronizes computer 
systems across the Internet. Internet services and applications 
ranging from financial services to security mechanisms (TLS 
certificates, Kerberos, DNS and BGP security, BitCoin, and 
more [7], [21]–[23], [27], [43]), crucially rely on NTP for 
both correctness and security. Unfortunately, as highlighted by 
recent studies [24], NTP, designed over three decades ago, is 
vulnerable to many forms of attacks. Particularly disconcerting 
are time-shifting attacks, in which an attacker shifts the local 
time at an NTP client forward/backwards [6], [24]

Proposals for securing NTP have thus far focused on 
two complementary directions: (1) authenticating client-server 
communications through encryption [8], [9], and (2) altering 
the manner in which local time is computed at the client to 
minimize the impact of timeserver-provided erroneous time 
reports [6]. However, both approaches to NTP security are 
very limited in their ability to protect NTP against malicious 
timeservers. Clearly, when the timeserver with which an NTP 
client communicates is under the direct control of an attacker, 
encrypting client-server communications offers no protection. 
In addition, the security of client-side algorithms for syncing 
with timeservers is crucially dependent on the assumption 
that the set of timeservers to which a client can potentially
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also simpler to launch, attacks are feasible by injecting new
timeservers into the NTP server pool.

Influencing time computation at clients via the injection
of new timeservers is effective and simple. Entering a
new timeserver into the NTP server pool is remarkably easy.
Moreover, she/he entering the new timeserver, and operating
that timeserver, is trusted to provide truthful information about
the timeserver (e.g., its stratum [46]). We show how, through
the proper configuration of parameters, an attacker that enters
a timeserver into the pool can increase the number of clients
its timeserver is assigned to by the pool by three orders of
magnitude (compared to the default timeserver configuration).
As our empirical analyses establish, this translates to hundreds
of thousands of clients per hour trying to sync with that
timeserver. We show how this state of affairs can be leveraged
by an attacker for launching large-scale opportunistic attacks
(as with taking over existing NTP timeservers) but also for
launching strategic and stealthy attacks that target a specific
NTP client or group of clients. In addition, this attack strategy
is not limited in terms of the extent to which time can be
shifted and can be employed to shift time at clients by days,
weeks, months, and beyond, impacting a much broader range
of applications.

Towards mitigating attacks by malicious timeservers. The
manner in which the NTP server pool balances load across
timeservers when assigning timeservers to NTP clients reflects
differences across servers in terms of compute power and
network capacity, and in terms of the volume of NTP queries
the timeservers’ owners consent to support. Thus, any solution
for attacks on NTP by malicious timeservers must not only
preserve the time accuracy and precision of today’s NTP time
computation but also avoid overloading NTP timeservers. We
observe that promising recent proposals for “crowdsourcing”
NTP queries across many servers [6], namely, the Chronos
NTP client, if not applied with care, will not only fail to pro-
vide meaningful security benefits but also, if widely deployed,
increase the load on a large fraction of NTP timeservers in
the pool by 200x− 300x. We propose backwards compatible
changes to the NTP Pool Project’s server-assignment scheme
for mitigating attacks by malicious servers. We explain how
Chronos can be coupled with our server assignment scheme in
manner that yields significant security benefits without over-
loading timeservers or impacting today’s NTP time accuracy
and precision. Our solution is compatible with the ongoing
efforts to standardize Chronos at the Internet Engineering Task
Force (IETF).

Organization. We provide necessary background on NTP and
the NTP server pool in Section II. We then provide a high-level
overview of the two considered attack strategies in Section III.
We present our empirical analyses of the two attack strategies
in Sections IV and V. We discuss how better security can be
attained without compromising today’s NTP time accuracy and
precision, or overloading timeservers, in Section VI, present
related work in Section VII, and conclude in Section VIII.

Ethics statement. Some of our results rely on experiments
with servers injected by us into the real NTP server pool. These
involved either measurements without manipulation or targeted

our own NTP clients. When not queried by our own clients, our
servers, which synced with popular stratum 1 servers in their
regions, and passed the NTP pool’s monitor tests, provided
truthful responses.

II. BACKGROUND: NTP AND THE NTP POOL PROJECT

A. NTP Overview

We present below a high-level overview of NTP’s client-
server architecture, focusing on the elements needed for the
exposition of our results. We refer the reader to the Appendix
and to [31], [32], [38] for a detailed exposition of NTP.

NTP clients. An NTP client periodically queries a set of time-
servers. The client exchanges messages with these timeservers
to learn the current clock readings at the timeservers and to
estimate the network delay with respect to each timeserver.
Based on the estimated delay and the reported clock readings
of a time server, the client computes the offset with respect to
that timeserver, i.e., the estimated difference in time between
the client’s local clock and the timeserver’s local clock. We
henceforth refer to the local time at a timeserver queried by
an NTP client, as estimated by that client from the server’s
offset, as the timeserver-provided “time sample”. To update its
local time, the client feeds the time samples obtained from
the timeservers into an algorithm that discards outliers and
computes, from the “surviving” time samples, a time to update
the local clock to. Specifically, Marzullo’s algorithm [28]–[30]
is applied in standard NTPv4 clients to find a majority of
timeservers with accurate clocks (“truechimers” [1], [32]). See
Appendix A for a more thorough exposition of the NTPv4
client.

NTP timeservers. NTP timeservers are hierarchically ordered
according to strata. Stratum 0 devices are expected to be
highly accurate (e.g., atomic clocks, or clocks directly con-
nected to GPS antennas), and are not reachable via a network
connection. Stratum 1 timeservers are timeservers that use a
Stratum 0 device as a reference clock and are accessible via the
Internet. Stratum 2 timeservers are timeservers with Internet
connections that sync to Stratum 1 timeservers, and so on.

The NTP Pool Project. The NTP Pool Project centralizes
access to thousands of volunteer-provided NTP timeservers
across different countries and organizational domain. Prior
to the creation of the Project’s NTP timeserver pool, it was
customary to manually configure into an NTP client a hand-
ful of timeservers with which that client can synchronize.
Naturally, this entailed the risk of overloading these few
servers, as well as high vulnerability to faulty or compromised
timeservers. Reliance on a small set of timeservers is still
common for users of products by various vendors (Apple,
Microsoft, Alibaba, etc.), which synchronize with timeservers
offered by these vendors by default [18], [41]. The NTP Pool
Project was started following the abuse of a small number
of public timeservers and is used, by default, by most, if
not all, open source OS distributions (including all major
Linux distributions), router vendors, home automation systems,
security cameras, household appliances, and more [5], [18].

The pool utilizes DNS to assign timeservers to NTP clients
based on client geolocation and also balances load across
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Figure 1: The number of timeservers in several countries in Europe and North America.

Zone Pool size

Africa 46
Antarctica 0

Asia 307
Europe 2810

North America 915
Oceania 116

South America 56

Table I: The number of timeservers per zone

these servers. The server pool is divided into zones based
on continent (e.g., europe.ntp.pool.org and asia.pool.ntp.org)
and country (e.g., us.pool.ntp.org and cn.pool.ntp.org). Table I
presents the number of servers in continent-level zones [12]. As
can be seen in the table, the timeservers in Europe and North
America constitute roughly 90% of all timeservers in the pool.
In addition, as shown in Fig. 1, which specifies the number
of servers in different countries, there is high diversity in the
number of servers across countries (for instance, 30% of the
timeservers in Europe are in Germany, while France and the
Netherlands host about 15% and 7% of timeservers in Europe,
respectively). Moreover, only around 10% of timeservers in
the pool are stratum 1 servers.

New timeservers are entered into the pool via an interface
that enables specifying servers’ IP addresses and other config-
uration parameters. The best recommended practice for NTP
timeservers is to sync with a set of 4− 7 manually-configured
timeservers [13], which typically does not significantly change
over time.

The pool monitors servers’ health by periodically (every
roughly 12 minutes [20]) querying servers for time reports
from a pool-controlled monitor server and removing servers
from the pool if these are unresponsive, or if their time reports
deviate from the monitor’s local time by “too much”.

B. Time-Shifting Attacks

As highlighted by recent studies [24], [26], NTP clients are
highly vulnerable to time-shifting attacks, in which an attacker
shifts the local time at the client forward/backwards.

Recall that the local time at a client is determined based
on the clock readings received from the timeservers the client
interacts with and the delay with respect to these timeservers,

as estimated by the client. By reporting false clock readings
in NTP messages, or affecting the experienced delay between
the client and the timeservers, an attacker can induce wrong
decisions at the NTP client. In particular, if the attacker has
sufficient presence in the set of timeservers with which an NTP
client communicates, it can stealthily shift time at the client
forward/backwards by repeatedly pushing the client further
away from the actual time when queried by the client. For
instance, in ntpd v4.2.8p15 (released in June 2020), every
5 minutes, a malicious server can shift time at a client by
16 minutes, and so shifting the client’s local time by x
(seconds/minutes/hours/days/months/years) requires roughly x

3
time.

To accomplish this, the attacker must have sufficient pres-
ence in the set of timeservers the client syncs with. Such
attacks can be launched, e.g., by a man-in-the-middle attacker
capable of intercepting and tampering with NTP messages
between the client and (a significant subset of the) timeservers,
or by an attacker in direct control of (a subset of) the NTP
timeservers themselves.

To attack... Change Time by... To attack... change time by...

TLS Certs years Routing (RPKI) days
HSTS (see [44]) a year Bitcoin (see [4]) hours

DNSSEC months API authentication minutes
DNS Caches days Kerberos minutes

Table II: Impact of timeshifting attacks on different applica-
tions (taken from [24])

As shown in [24], time shifting attacks on NTP can serve as
building blocks for compromising many applications/services
of interest. Table II, taken from [24], presents several such
applications and the extent to which time at an NTP client
should be shifted needed to harm them.

C. NTP Security

To combat time-shifting (and other) attacks, NTP practi-
tioners and researchers have investigated two main approaches:

Authenticating NTP communications. While NTP supports
cryptographic authentication [7], [36], in practice NTP traffic
is very rarely authenticated for various reasons [11], [34], [40].
More importantly (1) even if NTP traffic is encrypted, an
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attacker capable of delaying/dropping traffic can still influence
time at the NTP client, and (2) encryption clearly does not
defend against an attacker in control of the NTP timeservers
themselves.

Client-side solutions: the Chronos NTP client. The recently
introduced Chronos NTP client [6], which is currently being
promoted at the IETF [42], reflects a different approach to NTP
security. Chronos distributes time queries across a large num-
ber of NTP timeservers and employs a theory-informed ap-
proximate agreement algorithm to discard outlying responses
and to update the local clock. Specifically, in Chronos, a set
of servers consisting of hundreds of timeservers is assigned to
a client and the IP addresses of these timeservers are stored
at the client. The client periodically queries a small subset
(say 10 − 15) of these servers, chosen uniformly at random.
By removing from consideration the lowest and highest time
samples gathered from the queried servers, and setting the local
time to be the average of the surviving time samples, Chronos
provably attains high time accuracy so long as the attacker
cannot influence time at “too many” of the servers assigned to
the client. We describe Chronos in more detail in Appendix B.

Intuitively (and as formalized and proven in [6]), by relying
on many timeservers for synchronization and employing a
secure methodology for computing local time from server-
reported time samples, Chronos sets a higher bar for the
attacker, forcing it to compromise a large fraction of the
timeservers to successfully shift time at the client. However,
as our results below shall demonstrate, even if relying on
many timeservers for synchronization, unless these servers are
carefully chosen, the attacker can gain (direct or indirect)
control of a large fraction of these servers, nullifying the
security benefits of such client-side solutions. We discuss our
scheme for secure assignment of timeservers to clients in
Section VI.

III. TWO ATTACK STRATEGIES

We next present a high-level overview of the two attack
strategies considered: (1) taking control of existing timeservers
and (2) injecting new timeservers into the pool. We present
empirical analyses of the described attacks in Sections III-A
and III-B, respectively.

A. Attack I: Utilizing Existing Timeservers

Recall (see Section II) that NTP timeservers in different
strata synchronize with timeservers in lower strata. This im-
plies that an attacker in control of an NTP timeserver might
potentially be able not only to influence time at a client
directly by misreporting that timeserver’s clock readings, but
also to influence time at the client indirectly by shifting time
at other timeservers (in higher strata) the client queries. We
next explain how such attacks can be launched.

Goals of the attack. We consider an opportunistic attacker
whose goal is to shift time at many clients in a certain
geographical region R (country or even continent) so as
to harm the performance or security of a certain Internet
application/service. The term “opportunistic” here is used to
indicate that the attacker does not target specific clients, but
rather means to wreak havoc at scale. (We will later explain

how targeted attacks can be facilitated by injecting new servers
into the pool.)

Threat model. The attacker is in control of a subset A
of the pool’s timeservers in region R. This encompasses a
variety of scenarios, including the following: (1) the attacker
is an organization that legitimately hosts NTP timeservers
with which other servers synchronize, (2) the attacker is
capable of compromising a subset of the servers (e.g., by
exploiting software vulnerabilities), and (3) the attacker can
attract traffic from NTP clients destined for subset A via off-
path attacks on DNS or BGP (like DNS cache poisoning or
IP prefix hijacking), taking advantage of the fact that NTP
communications are not authenticated to masquerade as the
timeservers in A.

The attack. By leveraging its control over timeserver subset
A, the attacker can, from some point in time onwards, respond
with inaccurate times to all queries issued to its servers by
higher strata timeservers, for the purpose of shifting time at
these servers and so, indirectly, at all clients in the region that
sync with them. We next discuss some important specifics.

• The attacker-controlled servers must be highly
influential. Clearly, if the attacker has direct control
over all timeservers in region R (that is, the set
A consists of all timeservers in R), or even over
a large fraction of these, it can succeed in shifting
time at many clients across that region. Our objective,
however, is to demonstrate that gaining control of a
fairly small subset of timeservers in the region is suf-
ficient. However, this requires the attacker-controlled
timeservers to be highly influential in the sense that
“many” higher strata servers crucially rely on the
attacker-controlled servers for time synchronization.
As we shall show in Section IV, small yet influential
subsets of timeservers indeed exist in many regions.
In particular, control of merely 10s of timeservers
in Europe or the US (out of thousands, and many
hundreds, respectively) is sufficient for shifting time
at continent/country scale. Moreover, the methodology
employed in our empirical analyses can be leveraged
by the attacker to identify such subsets of timeservers.

• How to shift time at higher strata servers? Higher-
strata servers that synchronize with attacker-controlled
servers do so by executing NTP’s client-side protocol
for synchronizing with timeservers (see Section II).
Hence, timeshifting attacks such as those discussed in
Section II-B can be executed by the attacker-controlled
servers to influence time at other servers.

• The pool’s monitor limits the harm that can be
inflicted by attacker. Recall that the pool’s monitor
periodically queries timeservers in the pool and, if the
gap between the responses of some timeserver and
its local time exceeds a certain threshold, the monitor
will remove that server from the pool. Timeservers
under the attacker’s direct control can evade being
spotted by the monitor simply by responding with
correct times when queried by the monitor, while con-
tinuing to report false times when queried by others.
However, this is not so for higher-strata timeservers
whose local times the attacker indirectly influences;
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these will respond with erroneous times when query
by all, including the monitor. Thus, after some time
(around 12 minutes or less [20], attacker-influenced
timeservers will be removed from the pool. However,
our empirical analyses show that many clients that
synchronize with some server will continue to do so
for 10s of minutes, and even hours, after that server’s
removal from the pool. This enables the attacker to in-
directly shift time at these clients by continuing to shift
time at a timeserver after its removal. While this is
sufficient for attacking some applications/mechanisms
of interest (e.g., BitCoin, API authentication, and
Kerberos), other applications (e.g., TLS certs, HSTS,
DNS caches, RPKI) [24], which require shifting time
at clients by days, weeks, or more, seem impossible
to attack using this strategy.

Ascertaining the feasibility of the attack. To demonstrate
the feasibility of this attack for the current implementations of
NTP client [2] and server software [20], as well as the current
pool monitor [20] implementation, we tested the attack on local
installations of NTP servers, the pool, and the monitor. We set
up four VMs, emulating an attacker-controlled server SA, an
(honest) higher-stratum server SH that syncs with it, the pool
P , and the pool monitor M . We then executed an attack by SA

on SH in which SA incrementally increases time at SH by 16
minutes every 5 minutes, using the attack technique presented
in [24]. When queried by M , SA was configured to respond
with its actual local time (so as to evade being detected by
the monitor). We verified that this resulted, as expected, in SA

succeeding to shift time at SH , and in SH being removed from
the pool P by M (and SA not being removed). We repeated
the same experiment, only this time both SA and SH were
registered into the actual NTP server pool, to verify that the
behaviors of the actual pool and monitor (in terms of server
removal) are as expected.

B. Attack II: Injecting New Timeservers

Entering a new timeserver into the timeserver pool is easy;
the attacker need only register as a timeserver and provide
an IP address and an e-mail address. The legitimacy of a
registered timeserver depends only on its availability and time
accuracy, which are monitored by the pool and are required
to be above very easy to pass thresholds [14], [20]. Indeed, in
our experiments, we were able to successfully register 10s of
new timeservers into the pool at various regions. In addition,
she/he entering the timeserver into the pool, and operating that
timeserver, is trusted to provide truthful information regarding
the server stratum, and so an attacker can always specify the
server stratum for its injected timeservers as 1. Somewhat
surprisingly, however, as we shall show in Section V, we
find that this type of “lie” does not really aid the attacker.
We identify, however, a much more effective strategy for the
attacker: manipulating the netspeed parameter.

The netspeed parameter. The specified “netspeed” of a
timeserver in the NTP pool is correlated with the volume
of NTP clients directed to the timeserver by the pool, with
higher netspeed yielding higher probability that the timeserver
be assigned to a client by the pool. As shall be discussed in
Section V, by setting the netspeed for its registered server to
be the maximum possible value, the attacker can increase the

chances that its injected server is assigned to any client by
orders of magnitude. This can enable the attacker to attain
critical mass in some regions with relatively few injected
servers.

Goals of the attack. We consider both opportunistic attackers,
who aim to shift time at many clients, as in Section IV, and
strategic attackers that wish to shift time at specific clients.

Threat model. As in Section III-A, the attacker is in direct
control of a subset A of the pool’s timeservers in region R,
which were all injected into the pool by the attacker. Note that,
unlike the attack in Section V, the attacker does not attempt to
shift time at other timeservers. Instead, the attacker’s mission
is to shift local time at clients by directly interacting with these
clients.

The attack. The attacker first creates new timeservers and reg-
isters these in the pool. Since the pool geolocates timeservers
to assign them to specific zones, to impact time at a client
located in a certain zone, the attacker’s injected timeservers
must be in that region. This is simple to do by leveraging
public clouds. In our experiments, for instance, Amazon AWS
was used to set up servers at multiple locations and register
these into the pool. When registering a timeserver, the attacker
configures the netspeed to the maximum value. Importantly,
there is no limit on the number of timeservers the attacker can
inject into the pool and so the attacker can arbitrarily increase
the probability that servers are assigned to a client in a certain
region by simply adding more servers in that region to the
pool. To determine how many servers should be added to the
pool, the attacker can employ our methodology in Section V.
Since the attacker is in direct control of the timeservers, it can
always report accurate times to the monitor (to prevent the
removal of its timeservers from the pool). In addition, it can
report accurate times to some clients and inaccurate times to
others, facilitating targeted attacks against specific clients. To
stealthily shift time at a client, the attacker can employ the
attack technique from [6], [24] to repeatedly increase/decrease
time by 16 minutes. Observe that since the monitor cannot
detect misdeeds by the attacker’s servers, the attack can persist
for as long as needed. Thus, unlike the attack in Section III-A,
this class of attacks enables arbitrary time shifts and so impacts
many more applications/mechanisms [24].

Ascertaining the feasibility of the attack. We report in
Section V on our experimentation with injecting new servers
into the actual server pool and interacting with real NTP clients
to which our injected timeservers have been assigned by the
pool.

IV. EMPIRICAL ANALYSIS OF ATTACKS EXPLOITING
INTER-SERVER DEPENDENCIES

We empirically quantify to what extent an attacker that
gains control of existing NTP timeservers can influence time
in its region. However, as discussed in Section III, the answer
to this question is dependent on two important factors: (1)
the extent to which the attacker-controlled timeservers can
impact time at other timeservers in the region, and (2) the
implications of attacker-influenced timeservers being detected
and removed from the pool. We next address each of these in
turn. We will show that an attacker already in control of fairly
few timeservers, or capable of gaining control of fairly few
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(a) North America (b) Europe

Figure 2: Distribution of the number of system peers revealed in North America and Europe

(a) The most popular NTP timeservers to sync with, in decreasing
order

(b) The /24 subnets containing popular NTP timeservers, in de-
creasing order

Figure 3: Inter-server dependencies in Germany, the UK, France, Switzerland, the Netherlands, the US, and Canada.

timeservers, can still impact time across its region. We will
then show that despite timeserver removals by the monitor,
the attacker can still succeed in shifting time by hours at many
clients in its region.

A. Control over Fairly Few Timeservers is Enough

Quantifying the extent to which a set of timeservers can
impact time at other timeservers involves inferring the depen-
dencies between timeservers, that is, which timeservers sync to
which other timeservers. This, however, is not straightforward,
as explained next.

An NTP timeserver provides, upon request, the identity
of a single timeserver to which it syncs, called the “system
peer”. Recall (see Section II-A) that an NTP client periodically
queries a set of timeservers, casts outliers, and derives, from
the “surviving” timeservers, a time to update its local clock
to. The surviving server whose time sample is “closest” to
the computed time (in terms of “root distance” [31] and other
parameters) is designated the “system peer” [31]. The system
peer of an NTP timeserver can be inferred by sending a query
to that server and examining the refid field in the server’s
response packet. For stratum ≥ 2 servers, if the system peer
is IPv4, the refid field contains its IPv4 address. If the system

peer is IPv6, the refid field contains the first four octets of the
MD5 hash of the IPv6 address. The IPv6 address of an IPv6
system peer can then be determined by finding a match of the
refid value to the hash of a known IPv6 server.

However, the system peer is typically only one of several
timeservers the NTP client syncs with and that influence the
local time at the client. Hence, merely learning the identity
of the system peer is not sufficient as the identities of other
timeservers that impact time at the client will remain hidden.

Building the timeserver dependency graph. The best prac-
tice for NTP timeservers is to sync with a set of 4 − 7
manually-configured timeservers [13], which is not expected
to significantly change over time (see Section II-A). Our aim is
to infer these sets, thus generating NTP’s server-dependency
graph. To this end, we applied the following methodology.
We first compiled the lists of timeservers in the NTP server
pool. This was accomplished by launching an NTP client
and repeatedly querying the NTP server pool for timeservers
in different geographical regions spanning the globe, once
every two minutes for over a week. E.g., the response for
a DNS query for the domains europe.pool.ntp.org and north-
america.pool.ntp.org will specify several timeservers, selected
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at random, in Europe and in North America, respectively. By
accumulating the responses, and generating the union of the
timeservers, we were able to learn the IP addresses of around
99% of all timeservers in the NTP timeserver pool worldwide
(the number of the timeservers in the pool is specified in [19]),
and also associate with each timeserver the country in which
it resides. We focus henceforth on NTP timeservers in Europe
and North America, which, put together, constitute roughly
90% of all timeservers worldwide. We choose to restrict our
attention to these two continents since only in these can
country-level pool zones that consist of hundreds of servers
be found. (When less timeservers are available an attacker in
control of 10s of timeservers can trivially impact time at many
clients.) For the same reason, we focus primarily on countries
with more than 300 servers: Germany, the UK, France, and
the US.

Figure 4: The fraction of timeservers in the UK, Germany,
France, Switzerland, the Netherlands, the US and Canada (the
y axis) for which x of the most popular NTP timeservers
constitute more than 50% of the Peer set.

Figure 5: The fraction of timeservers in Europe and North
America (the y axis) for which x of the most popular NTP
timeservers constitute more than 50% of the Peer set.

After replicating the list of timeservers in the NTP time-
server pool, we queried each of the timeservers for its system
peer 8 times per hour for several months (from July to
September 2019 and in July 2020). We denote the union of all
systems peers reported by each timeserver i by Peers(i). As
discussed above, Peers(i) might be a strict subset of the actual
set of timeservers that timeserver i can sync with and so there
might be (and likely are) even more dependencies between
timeservers than those revealed by our empirical investigation.
Fig. 2 plots the distribution of the size of the generated

Peer sets for timeservers in North America and Europe. The
distributions for specific countries such as Germany, the UK,
France, Canada, and the US, exhibit the same trends. Since
the exact size of the set of manually-configured timeservers a
certain timeserver i syncs with is unknown to us, we cannot tell
what fraction of this set is covered by Peer(i). In particular,
Peer(i) might be smaller than the recommended size of 4−7
timeservers either because timeserver i has configured a lower
number of timeservers than recommended or because some of
the timeservers in its configured set were not chosen by it as
the system peer in the course of our measurements.

We present below results for various countries in both Eu-
rope and North America: Germany, the UK, France, Switzer-
land, the Netherlands, the US, and Canada. Even though the
pool’s zones for these countries contain many NTP timeservers
(e.g., 818 and 337 NTP timeservers in Germany and the UK,
respectively), our results indicate that a fairly small-sized set of
timeservers can impact time at many of the other timeservers.
Fig. 3(a) plots for different timeservers in Germany, the UK,
France, Switzerland, the Netherlands, the US, and Canada (the
x axis), in decreasing order of popularity, the fraction of all
timeservers in the country that have these timeservers in their
system peer sets. Observe, for instance, that one timeserver in
Germany (at x = 1) is in the intersection of the Peer sets of
27% of the timeservers in Germany.

We observe also that the IP addresses of highly popular
timeservers are sometimes in the same /24 subnet and, in fact,
are sometimes even consecutive addresses. This implies that
a single organization might be in control of a several popular
NTP timeservers. Indeed, a closer inspection of our results
reveals that both the National Metrology Institute of Germany
(PTB) and the University of Erlangen-Nuremberg (FAU) in
Germany control 3 and 4 of the most popular timeservers
in Germany, respectively. This has important implications
for security: gaining control of an IP prefix, e.g., via BGP
hijacking [10], can enable even an off-path attacker to become
the destination of NTP queries with respect to multiple popular
timeservers. Fig 3(b) plots for different /24 IP subnets in
Germany, the UK, France, Switzerland, the Netherlands, the
US, and Canada (the x axis), ordered from most popular
downwards, the fraction of the timeservers in the country
whose Peer sets contains at least a single timeserver in the
subnet. Observe that for the /24 subnet in Germany that
corresponds to x = 1, at least 47% of the timeservers in
Germany have at least a single timeserver in their Peer sets
within this subnet.

Control of fairly few timeservers is sufficient for influencing
time at many other timeservers. Using the timeserver-
dependency graph, we quantify the fraction of the timeservers
in a country/continent whose local time can be influenced by
a fairly small number of timeservers.

We first present our results for timeservers in Germany,
UK, France, Switzerland, the Netherlands, the US, and Canada
in Fig. 4. A point (x, y) in the figure means that x of the
most popular NTP timeservers in the country constitute more
than 50% of the Peer set for y% of the timeservers in the
country. Thus, for instance, 20 of the most popular timeservers
in Germany constitute the majority of the timeservers in the
Peer sets of 52% of the timeservers in Germany. We point
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(a) Countries (b) Continents

Figure 6: The fraction of server weight (the y axis) for which x of the most popular NTP servers constitute more than 50% of
the Peer set.

out that no NTP client is protected from an attacker in control
of more than 50% of the timeservers in its Peer set [6]. In
fact, our results underestimate the influence of popular NTP
timeservers as, in practice, control of less than 50% of a client’s
Peer set might sometimes be sufficient for shifting time at a
client (see discussion in Section IV.D in [6]).

Fig. 5 presents our results for Europe and North America.
Observe that controlling as few as 50 timeservers in Europe
is sufficient for dominating the Peer sets of roughly 40% of
the 2, 810 timeservers in the continent. Similarly, controlling
44 timeservers in North America suffices for dominating the
Peer sets of 40% of the 915 timeservers in North America.

So far, we have quantified the influence of a set of
servers in terms of the fraction of servers whose Peer sets
are dominated. Recall, however, that different timeservers are
weighed differently by the server pool (according to their
configured netspeeds, see Section III-B). Fig. 6 thus quantifies
the influence of a set of timeservers in terms of the aggregate
weight of impacted timeservers. Specifically, a point (x,y) in
the figure indicates that x of the most popular NTP servers
in the country constitute more than 50% of the Peer set for
timeservers whose aggregate weight is y% of the total weight
across all servers in the country). Observe that quantifying
influence by weight yields the same trends as before.

B. The Implications of Timeserver Removals

As discussed in Section III-A, timeservers whose local
times are influenced by the attacker-controlled timeservers will
eventually be removed from the pool by the pool’s monitor
after responding to its queries with times that deviate from its
local time by “too much” (three seconds in the current im-
plementation). While these servers will no longer be assigned
to clients by the pool (until re-admitted to the pool), as we
show next, a large fraction of clients that already sync with
a removed server will continue to do so for 10s of minutes,
and even several hours, after that server is removed from the
pool. We conclude that this is due to these clients querying
the pool for new servers at these time granularities, and so
sticking with the timeservers assigned to them for extended
periods of time. Thus, the attacker can continue shifting time
at timeservers even after their removal, indirectly shifting time

Figure 7: The number of clients that sync with a removed
server.

at many clients by hours before the critical mass of clients
abandons the removed server.

To quantify the fraction of clients that continues syncing
with an NTP server after its removal from the pool, we
launched (in July 2020), NTP timeservers at various Amazon
AWS regions and registered these into the NTP timeserver
pool (we discuss timeserver registration in more detail in
Section V). The netspeed for all registered timeservers config-
ured to be 1000x the default value, so as to attract sufficient
traffic for the results to be meaningful. Once a timeserver
reached a steady number of queries from distinct IP addresses
per hour, we removed that server from the NTP pool and
continued tracking the number of distinct IP addresses from
which that server received NTP queries over time. We found
that, as presented in Fig. 7, a large fraction of the clients that
synchronized with our timeservers (around 20% or more in all
regions) continued to do so for hours after these timeservers
have been removed from the pool. In addition, the majority of
the other clients continued syncing with our timeservers for
10s of minutes after their removal.

V. EMPIRICAL ANALYSIS OF THE IMPLICATIONS OF
INJECTING NEW TIMESERVERS

We next quantify the effects of attacks that are based on
injecting new timeservers into the timeserver pool, as discussed
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Figure 8: Number of queries to our servers from distinct IP addresses per hour to our timeservers in Europe and North America.
S1 1 and S1 2 are two stratum 1 servers, whereas S2 and S3 are stratum 2 and stratum 3 servers, respectively.

in Section III-B. Registering a new timeserver into the time-
server pool entails providing an IP address and an e-mail. After
passing simple tests intended to establish the availability and
time accuracy of the server, the registered server is added to
the pool [14], [20]. The stratum of a timeserver is periodically
reported to the pool’s monitor whenever queried by the monitor
for the current time. While, intuitively, claiming to be a low-
stratum timeserver (e.g., a stratum 1 server), even when this
is not so, might seem beneficial, our results actually show that
this type of lie does not really aid the attacker. We identify,
however, a much more effective strategy for the attacker:
manipulating the netspeed parameter.

Figure 9: Number of queries from distinct IP addresses per
hour to our timeservers in the UK, Germany and the US with
default netspeed values.

Lying about your stratum is not helpful. To quantify
the benefits to the attacker of lying about the stratum of a
registered timeserver, we launched 4 NTP timeservers in the
same Amazon AWS region and registered these into the NTP
timeserver pool. We reported the strata of these timeservers to

Figure 10: The probability that our injected server is assigned
to a client in its region, averaged over the 4 injected servers
in each region.

be 1 for two timeservers, 2 for one timeserver, and 3 for one
timeserver. The netspeed for all timeservers (to be discussed
below) was configured to be 1000x the default value, so as
to attract sufficient traffic for the results to be meaningful. We
repeated this experiment for different choices of Amazon AWS
regions to show that the revealed trends do not vary based on
the geographical locations of the timeservers. We measured,
for each timeserver, the number of different IP addresses from
which it received NTP queries within the same hour, across 72
consecutive hours. Our results, shown in Fig. 8, establish that
all timeservers were contacted from roughly the same number
of distinct IP addresses regardless of their strata. This is to
be expected since the NTP client’s algorithm for selecting
between pool-assigned timeservers only examines the stratum
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Figure 11: Required number of injected servers to constitute
over 50% of the total weight of all timeservers in the region.

to discard timeservers with “unreasonable” strata (higher than
16 [45], [46]). The difference in numbers across regions can be
explained by the differences in the total number of timeservers
per client across regions.

The netspeed parameter. The specified “netspeed” of a
timeserver in the NTP pool is correlated with the volume
of NTP clients directed to the timeserver by the timeserver
pool, with higher netspeed yielding higher probability that the
timeserver be assigned to a client by the pool. Specifically,
suppose that the timeserver pool for a certain region, say, the
US, consists of n timeservers, and each timeserver i’s specified
netspeed is wi. When contacted by an NTP client in the US,
the NTP pool will select r timeservers to assign to the client as
follows: the first timeserver to assign to the client is selected by
sampling a single timeserver from the n timeservers according
to the probability distribution in which each timeserver j’s
probability of being selected equals its proportional weight
wj

Σiwi
; the next timeserver is then similarly selected from the

remaining n − 1 timeservers according to the proportional
weights after the removal of the first timeserver, and so on
until r timeservers are selected. See [16]. Our experiments
with different values of netspeed validate the above.

Configuring the netspeed to be high is highly effective. As
evident from the above discussion, by configuring the netspeed
parameter to be high, a timeserver can drastically increase the
number of clients directed to it by the timeserver pool. To
illustrate this point, we contrast the results in Fig. 8 with the
results of the same experiments with the netspeed set to be the
default value. Fig. 9 plots the averaged results for each region
across 24 hours of measurements. The difference in the number
of requests from clients between the two figures demonstrates
the huge benefits for the attacker from configuring its netspeed
to be high.

We next explore the probability that a timeserver intro-
duced by us into the NTP timeserver pool be assigned to
a client in its region. To this end, we launched an NTP
timeserver on Amazon AWS in different regions, as in the
above experiments, set its netspeed to 1000x the default value
(i.e., to the maximum permissible value), and queried the NTP

pool every 2 minutes over the course of a week from a client in
the same region. We deduce from the fraction of responses in
which our timeserver appears the probability that it be assigned
by the pool to a client in its region. Fig. 10 summarizes our
results. As shown in the figure, due to their high netspeed
values, the probability that each of our timeservers is assigned
to a client in its region is much higher than the probability had
all timeservers been uniformly sampled.

Based on these computed probabilities, we quantify the
number of timeservers an attacker needs to inject at a certain
region so that the aggregated weight of its injected timeservers
be more than half the total weight of timeservers in that
region. This would imply that (in expectation) the set of
servers assigned to a client by the pool is dominated by the
attacker. The results are shown in Fig 11. Note the diversity
across different regions, which reflects the different netspeed
distributions in different regions. Observe also that by injecting
10s of (properly configured) timeservers in regions such as
Canada and UK, an attacker can guarantee that (in expectation)
most of the timeservers assigned to a client by the pool be the
attacker’s.

VI. TOWARDS BETTER SECURITY

After highlighting NTP’s high vulnerability to malicious
servers, we now turn our attention to identifying possible ways
forward. To this end, we first outline the requirements from
any security solution and explain why previously considered
approaches fall short of achieving these. We then discuss
an alternative, more secure, methodology, which we view as
a promising first step. Our proposed approach is based on
coupling recent proposals for security-enhanced NTP clients,
namely, the Chronos NTP client [6], with a more secure
scheme for assigning timeservers to clients, and is compatible
with current efforts for standardizing Chronos by the IETF.

A. Requirements from Any Solution

Any solution for NTP’s alarming vulnerability to malicious
servers must satisfy three basic requirements: (1) preserve
the time accuracy and precision of today’s NTP, (2) respect
today’s load distribution over timeservers, and (3) enhance
NTP’s security against malicious servers.

Preserve NTP’s time accuracy and precision. Time accuracy
of an NTP client refers to the proximity of the local time
at a client to the Coordinated Universal Time (UTC). Time
precision of a client refers to the consistency of clock readings
over time. For instance, a clock whose local time jitters
uniformly at random around the UTC might be accurate (if
realized times are sufficiently close to the UTC) but not
precise. In contrast, a clock whose time progresses linearly,
might be precise, but not accurate (for instance, if the clock’s
local time progresses twice as fast as the actual time; increasing
local time by 2δt in every δt time interval). Both accuracy and
precision are important for the correct and secure operation of
different applications. Naturally, a solution for NTP’s security
problems will ideally not come at the expense of interfering
with NTP’s primary objective—providing accurate and precise
times.
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Figure 12: Distribution of timeservers’ netspeeds.

Respect today’s load distribution across timeservers. The
netspeed parameter, discussed in Section V, is used by the NTP
timeserver pool to load balance across timeservers, yielding
load distributions in which some timeservers’ probability of
being assigned to clients (and so the expected number of
clients that sync with these servers) is higher by three orders of
magnitude than others. This accounts for differences in hard-
ware/capacity across timeservers, and also reflects timeserver
contributors’ willingness to support different volumes of NTP
queries. Deviating from the current load distribution by “too
much” could lead to NTP servers being overloaded, resulting
in inaccurate times (due to local burden) or even server crashes.

Improve security. Naturally, any solution should address the
attack vectors presented in the previous sections.

B. A Failed Simple Server-Assignment Scheme

The Chronos NTP client [6] improves over NTPv4’s al-
gorithm for computing local time by applying a provably
secure approximate-agreement algorithm (see Appendix B) to
(randomly sampled) clock readings from a large timeserver set.
In [6], a simple heuristic for generating such a server set for
a Chronos client is presented. Specifically, the Chronos client
repeatedly issues DNS queries to the NTP pool for servers
to sync with, aggregating the IP addresses of servers received
in response until the number of distinct addresses exceeds a
desired threshold (say, several 100s of timeservers).

As we argue below, however, this heuristic for selecting
servers to sync with for Chronos clients leaves such clients
unprotected from the attack vectors discussed earlier and will
increase the load on a non-negligible fraction of NTP servers
by orders of magnitude. In addition, Chronos’ synchronization
process, which is optimized for accuracy, can potentially
lead to suboptimal precision. We next discuss why this is.
We then (in Section VI-C) explain how Chronos’ client-side
synchronization process can be coupled with an appropriate
server assignment scheme in a manner that meets our three
goals for NTP security (as described in Section VI-A).)

Security vulnerabilities. Chronos’ security guarantees are
conditioned on the attacker not controlling “too big” a fraction
of the server set the client can sync with. The simple heuristic
for assigning servers to Chronos clients proposed in [6], while
yielding a large server set for a client, is oblivious to the
dependencies between these servers and to their reputation.

As our results in Sections IV and V show, simply relying on a
large number of servers that the client can potentially sync with
is not enough. First, inter-dependencies between timeservers
could imply that even an attacker in direct control of a fairly
small fraction of the timeservers can impact time at a huge
fraction of the servers. Second, by injecting sufficiently many
servers into the pool, the attacker can easily dominate the set
of timeservers available to the client.

Suboptimal time precision. Even if all timeservers with
which the Chronos client communicates are honest, the pe-
riodic transition between different subsets of servers will
inevitably cause local time jitters due to variations in local time
readings across different servers, as well as different network
latencies between the client and the different servers queried.
(This should be contrasted with today’s NTPv4-clients, which
stick with the timeservers with which they synchronize for
long stretches of time to avoid bad time precision).

Overloading timeservers. We show that, if deployed at scale,
the above discussed simple heuristic for assigning servers to
clients, runs into the risk of inducing significant deviations
from today’s load distribution, in which a large fraction of the
timeservers experiences over 200x increase in load. Intuitively,
this is because today’s practice of assigning timeservers to NTP
clients with probability that is proportional to their netspeed
values (see Section III-B) is at odds with Chronos’ uniform
distribution of load across large sets of servers, irrespective
of their netspeed values (which is needed for establishing its
security guarantees [6]). Consequently, if the sets of servers
with which Chronos clients synchronize, and the frequency
of synchronization, are not chosen with care, low-netspeed
servers will experience a huge surge in load.

Estimating what the exact implications of high rise in load
on a substantial fraction of the server pool is hard as we do not
have visibility into NTP servers’ hardware and external (non-
NTP-related) load. That said, we point out that: (1) Beyond
the risk of NTP servers crashing, drastic rise in load can also
harm time accuracy due to the local computational burden
at servers. As the volume of NTP traffic keeps rising over
time, these risks might be further aggravated. (2) The netspeed
parameter enables those volunteering timeservers to the NTP
pool to control the (relative) number of NTP queries they will
support, thus keeping the entry bar low for new volunteers and
preventing the over-centralization of the system. Eliminating
this control might prove detrimental in this respect.

To establish that using the simple heuristic proposed in [6]
to assign timeserver sets to Chronos clients is problematic, we
first empirically infer today’s distribution of netspeed values
across timeservers. To this end, we repeatedly issued DNS
queries to the NTP timeserver pool (every two minutes over
the course of two weeks) to obtain timeservers in Europe (via
europe.pool.ntp.org) and in the US (via us.pool.ntp.org). The
ratio between the number of responses in which a timeserver
appears and the total number of responses approximates the
timeserver’s proportional weight. The distributions of netspeed
values of timeservers in Europe and the US are presented in
Fig. 12. Netspeed value of 1 in our figures stands for the
default netspeed value whereas 1000 represents 1000x the
default value (the maximum permitted). As can be seen in these
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Figure 13: The expected overload experienced by timeservers
with (normalized) netspeed 1 under uniform sampling.

figures, a large fraction of all NTP timeservers have netspeeds
≤ 3 (almost 25% in Europe and 20% in the US) and over 50%
of the timeservers in both regions have netspeeds no higher
than 50.

Chronos’ uniform sampling of servers to sync with effec-
tively equalizes load across the timeserver set assigned to a
Chronos client. We next quantify the effects of wide adoption
of this scheme on load balancing if timeserver sets are assigned
using the simple heuristic considered in [6]. Fig. 13 presents
the multiplicative factor by which the load on a timeserver
with default netspeed in various regions (in which hundreds
of timeservers are available) would increase had timeservers
been sampled uniformly at random from all timeservers in the
region. Observe that in all considered regions, the timeservers
whose netspeed is 1, which constitute a large fraction of all
timeservers in the region, will suffer an increase of 200−300x.
Observe also that this is not easily addressed by adding more
timeservers to a certain region (that is, to the appropriate NTP
pool zone), as the current number of servers in that region
would have to be increased by two orders of magnitude for
today’s low-netspeed servers to not experience an increase in
load.

C. Overview of Our Approach

Our objective, as discussed in Section VI-A, is to enhance
NTP’s security against malicious servers while not adversely
impacting its time accuracy and precision, nor the distribution
of load across timeservers. Another important design goal is
preserving the ability of the pool to continue scaling through
the continuous and easy-to-do addition of new timeservers at
diverse geographical locations.

Our solution is simple: each NTP client should simultane-
ously run two parallel synchronization processes. The first syn-
chronization process is precisely that used by today’s NTPv4
clients to sync with pool-assigned servers in their region.
This “primary” synchronization process is used, by default, to
determine the client’s local time. The second synchronization
process is run in “watchdog mode”; the client applies Chronos’
provably secure approximate agreement algorithm [6] to a
large timeserver-set consisting of pool-provided stratum 1
timeservers, called “Ananke”. So long as the watchdog’s time
does not deviate from the primary time by “too much”, the
primary sychronization process continues to update the local
time. If, however, the results of these two time calculations are

too far apart, which is indicative of an attack, the watchdog
takes over and updates the local time (until such a time when
the two computed times are close again).

We next discuss a few important details concerning this
scheme.

Why Ananke? Which timeservers should Ananke contain?
Since the local time at stratum 1 timeservers in the pool is not
dependent (by definition) on other NTP timeservers in the pool,
syncing with the timeservers in Ananke circumvents the inter-
server-dependency-induced security vulnerabilities discussed
in Section IV. That is, an attacker in control of a subset of
Ananke cannot impact time at any of the other servers in
Ananke. This, however, does not prevent timeserver-injection
attacks of the form discussed in Section V.

Ananke should not automatically consist of all stratum
1 timeservers in the pool. We argue that the addition of
timeservers into Ananke should be performed much more
cautiously than the addition of timeservers to other pool zones
(which can remain unaltered), and should involve some manual
auditing process (e.g., incorporating timeservers demonstrated
to belong to reputable organizations). This will significantly
raise the bar for an attacker while not impacting the pool’s
ability to continue expanding (as non-Ananke timeservers can
still be easily registered to the pool). In addition, servers in
Ananke should have acceptable compute power and capacity.

As a first step, we envision this manual auditing as being
done by the NTP pool project itself to offer a “secure mode”
of operation to interested parties. In the long run, global
authorities (such as IANA) could take responsibility for this
(as with other roots-of-trust for core Internet protocols).

How to avoid overloading the timeservers in Ananke?
Observe that today’s load distribution over timeservers not in
Ananke is trivially preserved since these are only relevant for
the primary synchronization processes (which are exactly as
in today’s NTPv4 time synchronization). To avoid overloading
the timeservers in Ananke, syncing with these timeservers in
our scheme occurs much less frequently than in the primary
synchronization process. We will discuss how this is achieved
while attaining good security guarantees in Section VI-F.

Today’s NTP time accuracy and precision are preserved.
Observe that the time accuracy and precision of today’s NTP
clients are trivially preserved by our scheme (since the primary
processes are identical to NTPv4 synchronization).

Remark: Simply applying Chronos to the NTP pool’s
stratum 1 servers is not good enough. Our solution should
be contrasted with simply applying Chronos to all stratum 1
servers (without imposing two synchronization processes that
operate at different time scales and are applied to different
sets of timeservers). Such a scheme, while simpler, suffers
from two significant drawbacks: (1) Our empirical results
show that the distribution of netspeeds within a region is
fairly constant across strata in both the North America and
Europe, as shown in Fig. 14. In addition, stratum 1 servers
constitute around 11% and 13% of all servers in Europe and
the North America, respectively. Thus, if Chronos clients were
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(a) Europe (b) North America

Figure 14: The distribution of netspeed across strata in Europe and North America

all to use stratum 1 servers, the load on a large fraction of
such servers would increase by three orders of magnitude
(due to them now carrying the burden previously placed on
higher-stata servers and equalizing the load on all stratum
1 servers regardless of netspeed); (2) As discussed above
(see Section VI-B), while this simple scheme might achieve
time accuracy, Chronos’ periodic transition between different
subsets of servers will inevitably cause local time jitters,
leading to suboptimal precision.

D. Realizing Our Approach

Algorithm 1 client-side synchronization pseudocode

1: Global count = 0
2: Global Ananke time = 0
3: procedure GetT ime(count)
4: NTPv4 time = GetNTPv4Time
5: if count == 0 then
6: Ananke time = GetChronosT ime(Ananke)

7: if |NTPv4 time−Ananke time| > ω+count·(Θ+
1) ·∆t then

8: new time = Ananke time+ count ·∆t
9: else

10: new time = NTPv4 time
11: count = (count+ 1)%F
12: return new time

ω an upper bound on the distance from the UTC of the local time
at any NTP server not injected by the attacker.

Θ an upper bound on the drift of the client’s local clock across time
[ms/sec]

∆t The estimated time interval from the last time GetNTPv4Time
was executed [sec].

F The number of times GetNTPv4Time is called for each time
GetChronosTime is called.

Table III: Notation Table

A new Ananke pool zone. Ananke can be realized as a new
NTP pool zone (see Section II-A), which a client can issue two
types of queries to: (1) requesting the list of all timeservers
in Ananke, and, (2) requesting a subset of the timeservers
in Ananke of predetermined size (m = 12 in our security

analysis) chosen uniformly at random from all servers in
Ananke (and not only those in the client’s region). We envision
the timeservers in Ananke as being geographically dispersed
across geographical, political, and organizational boundaries.
Ananke can be bootstrapped using a manually chosen subset
of the stratum 1 timeservers currently in the pool (which today
contains around 400 timeservers [41]).

Building on recent advances in client-side synchronization.
The pseudocode for the client-side synchronization procedure
employed by our scheme appears in Alg. 1. As explained
in Section VI-C, the client runs two parallel synchronization
processes. One exactly identical to NTPv4’s and another ap-
plying Chronos’ approximate-agreement scheme to the servers
in Ananke. The second synchronization process happens less
frequently than the first; once every F NTPv4 updates (where
the variable F captures the frequency ratio between the two
processes). Local time at the client (the new time parameter)
is the time computed by NTPv4 (NTPv4 time) by default,
unless the gap between the two computed time values exceeds
a certain threshold, which takes into account both the reason-
able distance of an honest NTP timeserver from the UTC (ω)
and the clock’s natural drift since the servers in Ananke were
last queried. When this occurs, Chronos’ computed time is
used to update the client’s clock. Table III presents the notation
used in the pseudocode.

We point out that the required client-side changes are
highly compatible with those currently being promoted at the
IETF [42]. Specifically, to benefit from Chronos’ [6] improved
security while preserving NTP’s time accuracy and precision,
Chronos’ approximate-agreement-based time synchronization
is intended to operate in the background (as a watchdog)
while traditional NTPv4 is used to update the local time
by default. Our scheme prescribes the set of servers with
which the Chronos watchdog process interacts (Ananke), and
the frequency of this interaction, to contend with attacks (by
malicious servers) and load-related considerations, which were
previously not considered by NTP security schemes.

E. Assigning Values to the Parameters F and ω.

The choice of values for the parameters in the pseudocode
of Alg. 1 has important implications. Specifically, the choice
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Figure 15: The average offsets measured from different locations with respect to timeservers at different levels of proximity.
Different possible locations for NTP timeservers the client syncs with appear above.

of F determines how frequently timeservers in Ananke will
be queried, and so the load on these servers. Another crucial
choice is determining the gap between NTPv4’s computed
time and Chronos’ computed time (for Ananke) required for
Chronos’ computed time to be used. The higher the gap is,
the more time can be shifted at the client before the watchdog
mode takes over; the lower the gap, the higher the risk that
the watchdog takes action without cause, harming the client’s
time accuracy and precision.

Implications of F for load on timeservers in Ananke. Recall
that stratum 1 servers constitute around 10% of timeservers in
the NTP server pool, amounting to around 400 servers. We
envision the set of Ananke servers as eventually consisting
of hundreds of servers with acceptable compute power and
capacity constraints (e.g., probably not include those that
currently have very low netspeed values configured). Even
so, if our scheme sees wide adoption, all NTP clients, which
currently sync with thousands of servers, will also be required
to periodically contact the timeservers in Ananke. To avoid
overloading the servers in Ananke, clients should query these
much less frequently than in the parallel NTPv4 synchroniza-
tion process. In our security analysis (Section VI-F), F = 10.
F could also set to higher values (resulting in lower loads
on Ananke timeservers) without significantly weakening the
security guarantees.

Implications of ω for time accuracy and precision. In our
scheme, a client c in a certain region might sync with a
stratum 1 server x in a distant region as part of the Chronos
synchronization process. The time at x, as computed by c,
also depends on the network latency between the two (see
Appendix A for an explanation). Hence, ω, which serves as
an upper bound on the distance between the local time at
an honest timeserver and the UTC, should be set to be high
enough to account to inaccurate time estimations due to long
and variable network latency. We show below, however, that
under normal conditions (i.e., when not under attack), these
two times are not far.

The time offset between an NTP client and an NTP server
is a value computed by the client that reflects the difference
between the local times at the client and at the server (see

Appendix A for a formal definition). Fig. 15 presents the
average time offsets measured at an NTP client by querying
timeservers at different levels of proximity to the client: (1)
timeservers in the client’s country, (2) timeservers in Europe
excluding the timeservers in the client’s country if located in
Europe, (3) timeservers in the US, and (4) timeservers across
the world excluding the timeservers in the US and Europe.
As can be seen from the results, the difference between the
average time offsets with respect to servers in the client’s
region and to faraway servers are merely several milliseconds
apart. ω = 25ms has been shown in [6] to be a good choice
when the client syncs only with servers in its own region.
Our offset analysis indicates that when syncing with servers
from other regions, setting ω to be sufficiently higher to also
account for inaccuracies of several milliseconds on average is
needed. We use the very conservative choice of ω = 50ms in
our security analysis.

F. Security Analysis

The security of our scheme is immediately derived from
Chronos’ security guarantees [6]. As explained in [6], the
expected time needed for the attacker to shift a Chronos client
by T seconds from the UTC can be approximated by

I(
P 2

3m,m

) T
E

, (1)

where I is the length of the time interval between two consec-
utive time updates, E is the maximum time-shift permitted in
each time update, m is the size of the subset of servers queried
in each update, and P 2

3m,m is the probability that at least two
thirds of the sampled subset of servers are controlled by the
attacker. In the case of our Chronos synchronization process
(the watchdog), I = F ·∆t, E = ω + F ·Θ ·∆t.

Recall that the time computed by the Chronos synchroniza-
tion process is only used to update the clock if the gap between
this time and that computed by the NTPv4 synchronization
process exceeds a certain threshold, which is upper bounded
by E (as defined above). Thus, the time computed by our
client can be at most further away from the UTC than the
Chronos synchronization process by an additive factor of E.
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This implies that the probability of an attacker to shift time at
a client using our scheme by T + E is as in Equation 1.
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Figure 16: The (expected) time required for the attacker to
succeed in shifting a client’s time by 1.1s.

To illustrate the security guarantees provided by our
scheme, we present the implications for security of specific
choices of values for the different parameters.

Theorem 6.1: When |Ananke| = 200, Θ = 50ms/hour
(as in [6]), ∆t = 1 hour (as in [6]), ω = 50ms, m = 12,
F = 10, and the attacker controls 1

7 of the timeservers in
Ananke, 26 years in expectation are needed for the attacker to
shift the client’s local time by 1.1sec or more from the UTC.

Thus, even if the timeservers in Ananke are queried 10x
less frequently than the “default” timeservers assigned by
the NTP server pool, shifting time by over 1.1s requires 26
years in expectation for an attacker with significant presence
in Ananke (which should not be trivial to accomplish, as
Ananke should consist of hundreds of geographically diverse
and manually audited stratum 1 servers). Consequently, even
a fairly powerful attacker is effectively incapable of shifting
time sufficiently to harm many applications of interest (see
Table II).

Fig. 16 presents the expected time (in years) required
for the attacker to shift a client’s clock by 1.1sec from the
UTC for different choices of m (the number of servers in
Ananke sampled by the client in each update), and for different
fractions of timeservers in Ananke controlled by the attacker.
The assignment of values to all other relevant parameters is
as in Theorem 6.1. Observe that the result in Theorem 6.1
corresponds to the value on the y-axis (26 years) for x = 12
(the number of timeservers in Ananke queried) of the curve
representing the scenario that the attacker controls 1

7 of the
timeservers in Ananke.

We note that even if the frequency of queries to Ananke
is further reduced (by, setting, e.g., F = 100), the security
bounds yielded by our theoretical analysis would still be
meaningful.

G. Another Proposed Defense: Deploying “Secret Monitors”

Our attacks leveraging injection of new timeservers into the
NTP pool build on the attacker’s ability to avoid being detected
by the NTP pool’s monitor. An attacker-controlled timeserver
can evade the monitor by providing accurate times to the
monitor when queried while selectively reporting erroneous
times to others. (Recall that the attack that utilizes existing
NTP servers takes into account that the attacker-controlled
server will eventually be detected by the monitor and removed
from the NTP server pool, as discussed in Section III-A).

Currently, the NTP pool employs a single monitor server,
whose IP can be easily inferred; when a new timeserver is
registered to the pool, the first NTP queries to that server are
made by the monitor. A natural defensive measure, then, is
to extend the pool’s monitoring infrastructure to contain many
monitors and attempting to keep the identities of these servers
hidden. We believe that this will indeed raise the bar for an
attacker and limit its ability to inflict harm. We point out,
however, that preserving the anonymity of “secret monitors”
might prove hard against strategic attackers, as such attackers
can periodically misreport times and keep track of the IPs of
the timeservers that queried them before their server scores
were decreased by the NTP pool.

VII. RELATED WORK

NTP, one of the Internet’s oldest protocols, is still widely
used throughout the world [5], [24], [27], [35]. However, NTP
suffers from many security vulnerabilities. Already in 1985, in
the context of the development of the Kerberos security model,
NTP’s inadequacy for achieving secure time synchronization
was pointed out [33].

The NTP pool was created in 2003 to provide better
reliability and scalability [41]. The current NTP pool is di-
vided into zones, (e.g., europe.pool.ntp.org, us.pool.ntp.org,
and de.pool.ntp.org [15], [17]). Thousands of timeservers in
different zones were analyzed in [41]. Similarly to our mea-
surements, [41] uses the “system peer” attribute to create a
dependency graph. In addition, [41] reports experience with
entering new timeservers into the pool. Our analysis differs
from that in [41] in that: (a) [41] primarily targets non-security-
related questions, with security-related discussions limited to
sparsely populated regions of the pool (where control of a
timeserver trivially grants the attacker immense power); (b)
Our measurements are at somewhat finer granularity (e.g.,
servers are queried more often in our experiments).

Recently, there have been several studies describing errors,
misconfigurations and attacks against NTP [5], [24]–[26], [43].
These studies demonstrate, for example, the ability of off-path
attackers to launch denial-of-service (DoS) attacks and also
to shift the local time at the client by exploiting weaknesses
in NTP’s implementation (e.g., via spoofed Kiss-o’-Death
packets) [24], [25]. Recently introduced patches to NTP’s im-
plementation eliminate/mitigate some of these vulnerabilities.

Many efforts to secure NTP focus on authentication and en-
cryption [3], [7]–[9], [11], [34], [36], [39], [40]. The Chronos
NTP client [6] reflects an orthogonal, client-side approach that
leverages approximate-agreement algorithms for secure time
synchronization. We believe that this constitutes a promising
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Figure 17: Time-offset computation (taken from [6])

approach for protecting NTP clients. However, our results
indicate that to attain meaningful security guarantees and to
avoid unacceptable load distributions on NTP timeservers, this
approach should be coupled with an appropriate scheme for
assigning timeservers to clients.

VIII. CONCLUSION

NTP is crucial for the correct and secure operation of many
Internet services. We showed that NTP is highly vulnerable to
attacks by malicious servers. We examined two such types of
attacks: (1) attacks where the server is in control, or gains
control, of existing timeservers in the NTP server pool, and
(2) attacks where the attacker introduces new timeservers into
the server pool. We also presented an agenda for enhancing
NTP’s security against malicious timeservers. Our proposed
scheme balances different goals, namely, preserving today’s
NTP time accuracy and precision, improving security, and not
overloading timeservers.
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APPENDIX

This appendix contains additional details about the NTPv4
and Chronos clients.

A. The NTPv4 Client

The time synchronization process between NTPv4 clients
and NTP timeservers consists of two steps: (1) the poll process,
in which the client exchanges messages with timeservers
to collect servers’ time samples, and (2) discarding outliers
and computing the new local time from the remaining time
samples. We next elaborate on each of these two steps [1],
[31], [32].

The poll process. An NTPv4 client periodically queries a
set of NTP timeservers to learn the clock readings at these

Algorithm 2 Pseudocode for Chronos’ Time Sampling Scheme
[6]

1: counter := 0
2: while counter < K do
3: S := sample(m) . gather time samples from m

randomly chosen servers
4: T := bi-sided-trim(S,d) . trim d lowest and highest

values
5: if (max(T )−min(T ) <= 2ω) and (|avg(T )− tC | <
ERR+ 2ω then

6: return avg(T)
7: counter++

. panic mode
8: S := sample(n)
9: T := bi-sided-trim(S,n3 ) . trim bottom and top thirds

10: return avg(T)

servers. Through interaction with each server, the client obtains
4 distinct timestamps per query: (1) T1, the local time at the
client when the query is sent, (2) T2, the local time at the
server when the query is received, (3) T3, the local time at the
server when the response is sent, and (4) T4, the local time at
the client when the response is received.

These timestamps are then used to compute the offset θ =
1
2 ((T2 − T1) + (T3 − T4)) [24], [37], which is intended to
capture the difference between the local times at the client and
at the server. See Fig. 17 (taken from [6]) for an illustration.
The client queries each server several times to obtain several
offsets associated with that server.

Computing the local time at the client. After computing
these offsets, the client applies a 5-step algorithm to compute
a new time to update its local clock to, as described in Fig. 18
(taken from [6]). For each timeserver, the offset associated with
the lowest network delay measured with respect to that server
is identified. Marzullo’s algorithm [28]–[30] is applied to these
offsets to identify a “majority clique of truechimers” [1], [32],
i.e., a large cluster of servers with accurate clocks. This set of
time samples can be further pruned, with the aim of improving
accuracy, by removing all but some predetermined number of
time samples that are within the smallest distance of each other.
Lastly, a weighted average of the offsets of the remaining time
samples is computed. If this value is “far” from the current
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local time (and so the current local time is viewed as “stale”),
the local time is updated to the computed time value.

B. The Chronos NTP Client

The Chronos [6] NTP client is a security-enhanced NTP
client. Chronos’ time synchronization process applies a prov-
ably secure approximate-agreement algorithm to a large set of
timeservers. Specifically, a Chronos NTP client periodically
obtain clock readings from m (say, 10 − 15 servers) out of
a large fixed set of servers S (ideally, containing 100s of
servers). Then, the offsets with respect to these servers are
ordered from lowest to highest and the bottom d and top d
offsets according to this order are removed from consideration
(choosing d = m

3 ) is shown in [6] to yield good security
guarantees). If the surviving time samples are “not far” from
each other and are (on average) close to the client’s local
clock, the local time is updated to be the average of these time
samples. Otherwise, a new server set of size m to sync with is
re-sampled from S. In the event of reaching k consecutive re-
samplings, the Chronos client enters “panic mode” and queries
all timeservers in S, again eliminating the top and bottom
outliers and averaging over the rest, to determine its new local
time. Chronos’ pseudocode is presented in Algorithm 2.
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