
OblivSketch: Oblivious Network Measurement as a
Cloud Service

Shangqi Lai∗, Xingliang Yuan∗, Joseph K. Liu∗, Xun Yi†, Qi Li‡§, Dongxi Liu¶ and Surya Nepal¶
∗Faculty of Information Technology, Monash University, Australia

†School of Computer Science and Information Technology, RMIT University, Australia
‡Institute for Network Sciences and Cyberspace, Tsinghua University, China

§ Beijing National Research Center for Information Science and Technology (BNRist), China
¶Data61, CSIRO, Australia

Email: {shangqi.lai, xingliang.yuan, joseph.liu}@monash.edu, xun.yi@rmit.edu.au
qli01@tsinghua.edu.cn, {dongxi.liu, surya.nepal}@data61.csiro.au

Abstract—Network function virtualisation enables versatile
network functions as cloud services with reduced cost. Specif-
ically, network measurement tasks such as heavy-hitter detec-
tion and flow distribution estimation serve many core network
functions for improved performance and security of enterprise
networks. However, deploying network measurement services in
third-party multi-tenant cloud service providers raises critical
privacy and security concerns. Recent studies demonstrate that
leaking and abusing flow statistics can lead to severe network
attacks such as DDoS, network topology manipulation and
poisoning, etc.

In this paper, we propose OblivSketch, an oblivious network
measurement service using Intel SGX. It employs hardware
enclave for secure network statistics generation and queries.
The statistics are maintained in newly designed oblivious data
structures inside the SGX enclave and queried by data-oblivious
algorithms to prevent data leakage caused by access patterns
to the memory of SGX. To demonstrate the practicality, we
implement OblivSketch as a full-fledge service integrated with
the off-the-shelf SDN framework. The evaluations demonstrate
that OblivSketch consumes a constant and small memory space
(6MB) to track a massive amount of flows (from 30k to 1.45m),
and it takes no more than 15ms to respond six widely adopted
measurement queries for a 5s-trace with 70k flows.

I. INTRODUCTION

Network Function Virtualisation (NFV) decouples network
functions from hardware appliances and pushes forward the de-
ployment of software network functions in the cloud [6], [23],
[66]. Enterprises can subscribe to versatile network functions
from cloud service providers with high scalability and reduced
cost. Among others, network measurement tasks [49], [77]
such as estimating flow frequencies, tracking heavy-hitters, and
counting distinct flows are crucial to improved performance
and security of enterprise networks. They serve numerous core
network functions such as traffic engineering, load balancing,
and anomaly detection.

Despite this growing adoption, the provisioned network

measurement services in third-party multi-tenant cloud ser-
vice providers raise critical privacy and security concerns.
Those pivotal services analyse global flow statistics collected
from enterprise networks. Such information (e.g., flow counts
and network topology) can be proprietary and private to an
enterprise [43] and should be kept confidential at any time
from the cloud service provider or other co-tenants. Moreover,
flow statistics are important auxiliary information which can
be exploited by several network attacks. Recent research has
demonstrated that leaking and abusing network statistics can
facilitate DDoS attacks [75], network topology manipulation
and poisoning [37], [51], etc.

To guard network measurement services in the cloud,
one direction is to design cryptographic protocols to evaluate
network measurement tasks over encrypted flow data. Relevant
attempts have been made via secure multi-party computation
(SMC) [7], [14], [22], [43], [78] and homomorphic encryp-
tion [11]. Although these protocols provide provable security
without hardware assumptions, they confront obstacles on un-
satisfactory performance in networked contexts. For example,
an SMC-based protocol takes over 10 minutes to extract heavy-
hitters from only 4 thousand flows [43].

A practical alternative for securing network measurement
services is to resort to hardware-assisted security, i.e., Intel
SGX, a trusted execution environment. Due to its advan-
tages on functionality and performance, SGX has recently
been applied to develop a wide spectrum of secure net-
worked applications and systems, e.g., IDS [27], [58], load
balancer [31], [58], and firewall [27], [58]. At first glance,
migrating existing implementation of network measurements
into the SGX enclave would solve the problem. Unfortunately,
several security, performance, and deployment challenges are
yet to be resolved.

A. Technical Challenges

Challenges I: How to perform data-oblivious network
measurement tasks? In practice, two data structures are
commonly implemented to enable network measurement tasks,
i.e., a sketch to estimate flow sizes and a list to cache flow
IDs within an epoch of measurement [38], [49]. For instance,
a network operator can use flow IDs from the list to retrieve
flow sizes from the sketch for heavy-hitter detection. A naive

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24330
www.ndss-symposium.org

Enterprise Network

OblivSketch

Network Application: Firewall, IDS, Load Balancer …

Oblivious Sketch Oblivious Flow List

Heavy-Hitter Heavy-Change

Flow Size Cardinality Flow Distribution

Flow Entropy

Cloud Server

Fig. 1. OblivSketch handles network measurement queries via SGX-enabled
oblivious primitives. It prevents leakages of flow statistics from traditional
data breaches as well as memory access pattern side-channels against SGX.

solution for protecting flow sizes and IDs is to move the above
data structures into the enclave; then network measurement
tasks are performed inside it. However, it is not sufficient to
guarantee the privacy of flow data. It is known that adversaries
may exploit the memory access side-channels to recover the
data even stored in enclaves [9], [13], [32], [45], [46], [60],
[69], [76]. In our context, the memory access against the sketch
and flow list is not data-oblivious. Furthermore, measurements
require algorithms like sorting and swapping, and these algo-
rithms implemented in the SGX standard library are also not
data-oblivious. The above data-dependent access or execution
patterns would be leveraged to infer the flow data and statistics.

Challenges II: How to perform oblivious network mea-
surements for large networks efficiently? Practical network
measurement services handle a large number of flows. A
sketch is a randomised data structure which is able to track
massive flows in low memory footprint; millions of flow sizes
can be cached in a KB-level sketch with high accuracy [21].
Obviously, the memory consumption of sketch is negligible
to the enclave. But keeping the list with all flow IDs inside
would exceed the memory limit of SGX (96MB). As a result,
this treatment will trigger SGX paging and lead to long delay
on data access, i.e., can be 5× slower and even worse for
memory-intensive tasks [65].

A straightforward approach to avoid paging is to store the
encrypted flow list in the untrusted memory, where existing
ORAM-like indexes based on SGX (e.g., Oblix [53] and Ze-
roTrace [59]) can be adopted to carry out secure and oblivious
access of data. Those primitives relieve the enclave from the
memory shortage but incurring new performance bottleneck.
That is, transitions between the enclave and untrusted part
are costly because they require encryption/decryption and
memory I/O operations when passing data in between. A recent
study [72] shows that such transition takes 3 - 10× higher
delay compared with memory read/write within the enclave.

B. Contributions

In this paper, we propose OblivSketch, an oblivious net-
work measurement service via Intel SGX (see Figure 1).
OblivSketch can protect private flow data from the cloud and
other co-tenants while performing network measurement tasks.
It integrates newly proposed oblivious data structures and
algorithms into the enclave to address powerful adversaries
who can compromise the software stack and exploit memory
access pattern leakages against SGX. Besides, the oblivious
data structures are carefully customised to fit memory and I/O

restrictions of the enclave for stringent performance require-
ments in network functions. We also make non-trivial system
efforts to implement a full-fledged service that integrates with
the Software-Defined Network (SDN) framework with six
representative measurement tasks, i.e., flow size estimation,
heavy-hitter detection, heavy-change detection, cardinality es-
timation, flow distribution estimation, and flow entropy esti-
mation [49], [77].

Design Choice. Tackling the challenges above is non-trivial.
We have made thoughtful design choices and built new oblivi-
ous primitives from the ground up to resolve those challenges
simultaneously. First of all, we decide to deploy the oblivi-
ous data structures and algorithms for network measurements
inside the enclave. The reason is that storing the encrypted
flow list outside avoids SGX paging, but can still induce long
query latency due to the adoption of ORAM for obfuscating
external memory access. Note that even the flow data is moved
inside the enclave, we also need to ensure that the computation
and access against internal data structures are data-oblivious to
defeat memory access side-channels [1], [25], [29], [53], [59].

Approaches. Starting from the above choice, we craft a new
and compact oblivious data structure dedicated to network
measurements, which can handle a large number of flows in a
secure and scalable manner. Our insight is that not all flow
IDs are needed during measurements. Particularly, network
measurement tasks may analyse the sizes of all flows, but they
only ask for the flow IDs of heavy flows, which are known
to be rare within a certain period of time [5]. To this end, we
consider using a fixed-size flow list to keep the flow ID of
all heavy flows, along with a Count-Min sketch [21] that only
keeps the sizes of other flows. Since the size of the flow list
is small and fixed, linear-scan can be applied to obliviously
insert and query the flow ID. To take the dynamics of network
flows into consideration, we devise a secure eviction operation
that can obliviously evict the flow from the flow list into
the sketch. To make the sketch data-oblivious, we adapt the
structure of Path ORAM1 [63]. Note that the stash (an ORAM
client data structure) is accessed via linear-scan, as suggested
by existing SGX-based ORAM structures [53], [59]. But unlike
prior works, the data in the ORAM is no longer encrypted by
the ORAM protocol, since the entire ORAM is maintained
inside the enclave. More details are provided in Section V-B.

To shield the entire process of network measurements, we
further analyse the query algorithm of each measurement task
and recognise several sub-routines that leak the access pat-
tern, i.e., sorting, conditional-branching, swapping and direct
memory accessing. We then transform the implementation of
these sub-routines to corresponding trace-oblivious versions,
i.e., sorting network [4], oblivious selector, oblivious swapping
and linear-scan. More details can be found in Section V-C.

Requirements of Service Deployment. Only implementing
the above primitives is not sufficient to deploy our network
measurement service for enterprise networks. To demonstrate
the practicality of our design, we develop a full-fledged service
that can integrate with the modern network framework, i.e.,
SDN. There are two practical requirements for our design goal.
First, our proposed primitives only harden the data security
inside the enclave. The communications between other parties

1We explain the reason of adapting Path ORAM in Section III-B

2

of SDN (i.e., data planes and network applications) and the
enclave need to be secured to protect the flow data from being
collected to being processed. Second, the above requirement
expects to be realised in a minimally intrusive way. Modifica-
tions in software switches and network applications should not
affect other functionalities of SDN. The development efforts
of using our service should be lightweight.

Implementation Efforts. OblivSketch provides an enclave
deployed in the cloud. It receives the encrypted local statistics
sent by the switch periodically. Upon receiving the encrypted
query from network applications like load balancer and stateful
firewall, the enclave processes the corresponding measurement
tasks and returns the encrypted result to the application.

To fulfil the security requirement on flow data transmission,
we design a secure memory channel and a secure gateway
which jointly offer a transparent communication service be-
tween the enclave and other parties (i.e., switches, applications)
of OblivSketch. Messages of our service will pass through
the gateway to the memory channel on the measurement
service, which can be assessed in an exit-less fashion by the
enclave. We also make careful security considerations like
hiding header information and payload sizes in the above
designs (see Section VI-B for details).

We implement the data plane via Open vSwitch (OVS)
with 180 lines of code modification. We also provide a library
for network applications and software switches to invoke the
secure gateway via only one API. For the controller, we
integrate our design with the OpenFlow protocol and provide
a library with three APIs for the controller to access the secure
memory channel. Another 120 lines of code are added to let
the controller process requests/responses to OblivSketch.

Snapshot of Results. We conduct extensive evaluations over
OblivSketch on two CAIDA datasets [15] with 4 million and
8.9 million flows, respectively. OblivSketch features a constant
and small memory consumption (6MB) for keeping the flow
statistics within the enclave. We also evaluate the performance
of each oblivious primitive invoked in OblivSketch. Our results
indicate that the proposed oblivious data structure can insert
and query a flow within 20µs. Moreover, all the oblivious
algorithms, i.e., oblivious sorting, oblivious selector, oblivious
swapping and linear-scan, take less than 12ms to finish under
a 600KB oblivious data structure. Last, with 70k flows in our
sketch (typical for the backbone trace in a 5s-period [15]), our
service can respond to measurement queries in a timely fash-
ion, i.e., no more than 15ms for each query. OblivSketch incurs
2 - 8× overhead compared to the non-oblivious baseline. When
paging is triggered on the baseline, OblivSketch outperforms
the baseline by 15× at most. Finally, OblivSketch is highly
scalable: querying on a larger dataset does not introduce extra
query delay on measurement tasks.

II. RELATED WORK

Software-Centric Private Network Measurements and
Routing Functions. There exist several protocols without
relying on secure hardware which can securely analyse and
monitor encrypted traffic data. Most of these existing designs
are built upon secure multiparty computation (SMC) tech-
niques [7], [14], [22], [43], [78]. They distribute the secret

shares of the local statistics to a set of untrusted-but-non-
colluded servers to compute an aggregated statistical result
and respond to queries. However, the above protocols may
incur long latency to process a query on a large number of
flows. As a generic secure computation technique, SMC can be
used to implement secure inter-domain routing protocols [2],
[18], [35], which ensure that each domain cannot learn the
routing information (e.g., routing tables and policies) of other
domains. These protocols target on different network functions
in routing, which are not our focus.

Another line of research adopts differential privacy [11],
[28] to protect local statistics privacy against untrusted service
providers. They add noise on local statistics and ask authorised
parties [11] or SMC protocols [28] to aggregate the statistics.
The untrusted service provider can publish the aggregated
result but can hardly learn private information about local
statistics. Those designs normally bring accuracy loss for
aggregation tasks and do not protect the results by default.

Hardware-Assisted Secure Networked Systems. Our work
is also related to secure networked systems based on Intel
SGX [27], [31], [36], [58], [67]. With the help of trusted
hardware, these systems can securely process network traffic
for a variety of network functions, e.g., IDS [27], [31],
[36], [67], firewall [27], [31], [58], load balancer [31], [58],
NAT [58], etc. We note that the above systems do not consider
mitigating side-channel attacks against Intel SGX.

SGX Side-Channels and Data-Oblivious Systems. In the past
few years, many attacks targeting SGX have been developed.
They can be divided into several categories, and one of the
broad categories is the attacks on memory access patterns.
This includes the attacks using page fault [13], [69], [76],
cache timing [9], [32], [60], branch predication [46], and
memory bus [45]. To mitigate these attacks, some system-
level mitigations have been put forward (e.g., [42], [61]).
Unfortunately, it could be difficult to address all sorts of the
existing and future side-channels on memory access patterns
with system patches, because that involves extra system-level
work and may lead to new bugs in the system [41].

Recent studies [1], [19], [25], [29], [30], [53], [59] tend to
design data-oblivious systems to mitigate the memory access
pattern leakage. Specifically, those systems adopt oblivious
data structures (e.g., ORAM [63]) and algorithms to hide
the access pattern on data as well as the code, which are
the core sources exploited by the above attacks. A wide
range of applications have been implemented via oblivious
systems, such as file system [1], database [29], collaborative
analytics [25], and indexing system [53], [59]. Recent works
propose generic programming frameworks [19], [30] that can
compile any algorithm as an oblivious circuit running in the
enclave. However, all the above systems are not designed and
optimised for network measurements.

There are other side-channels such as speculative exe-
cution [12], [17], [50], communication patterns [55], power
analysis [54] and others [34], [41]. We note that these attacks
can be mitigated by some complementary works [8], [16], [20],
[56]. More discussions are given in Section IV-B.

Plaintext Network Measurements. In the plaintext domain,
extensive work [3], [38], [49], [77] has been done to enable

3

efficient and accurate network measurements over large-scale
networks. These systems only work for unencrypted data.

III. BACKGROUND

A. Intel SGX

Intel SGX [40] is a set of CPU instructions that offer a
trusted execution environment (TEE) to the user application
running upon the Intel CPU. SGX separates an application
into an untrusted and trusted part, and it executes the trusted
part in an isolated environment known as an enclave. The
code and data within the enclave are isolated in a protected
memory region called the enclave page cache (EPC). The other
processes on the same CPU, including OS and hypervisor,
cannot access the enclave memory and tamper its content.
SGX also offers remote attestation (RA), which enables remote
service providers (e.g., public clouds) to prove to a client that
their enclave code is executed unaltered in the remote device.
Also, RA establishes a secure channel between the client and
the enclave to transmit secrets. We will discuss the threat
model of SGX in Section IV-B. More details about Intel SGX
can be found in [24].

B. Path ORAM

Path ORAM [63] is an ORAM protocol that allows a client
to outsource data to the remote storage and access the data
without leaking access patterns to the remote server. In this
protocol, the server memory is arranged as a full binary tree
with N tree nodes; each node contains Z blocks with equal
size B. If a node has less than Z valid blocks, the node will
be padded with dummy blocks to ensure that each node has a
fixed size (Z×B). The client maintains two data structures: a
stash S, which hosts all blocks that have not yet been written
to the server (can be new blocks or the blocks read from the
server); a position map position, which keeps the mapping
between blocks and the leaf nodes in the binary tree.

The Path ORAM protocol comprises of four algorithms:

• (T, position, S) ← ORAM.Init(N,Z,B): Given the
tree node number N , node size Z and block size B,
the server allocates N × Z × B memory space and
arranges it as a full binary tree T with dlog2Ne levels.
The client generates an empty position map position,
a stash S and an encryption key k.

• b ← ORAM.ReadBlock(T, position, bid): On input
the binary tree T , the position map position and a
block ID bid, the client gets the leaf node lf ←
position[bid] from position. Then, it fetches all the
blocks from the root of T to lf and inserts all these
blocks into the stash S. The client finally reads the
block b with the given bid from S and decrypts it with
k. Meanwhile, it assigns a new random leaf node id
to bid in position to ensure that the next access to this
block goes to a random path.

• ORAM.WriteBlock(T, position, S): To write the
blocks in S back to T , the client gets the leaf node
lf ← position[bid] for each bid inside S. Later, it
constructs nodes in the path between the specific
leaf node lf and the root node. Specifically, for each
block in S, the client scans the node from the leaf
node level lf to the root node level and tries to fit

the block in a node on these levels. If a node at the
current level has enough space, the client uses k
to encrypt the block with a randomised encryption
scheme (AES-CBC) and evicts the encrypted block
from the stash to that node. Otherwise, the block
remains in the stash. Finally, the nodes are written
back to the memory on the server.

• ORAM.Access(Op, T, position, S, bid, b): All Path
ORAM accesses (Read/Write) consists of the above
two operations. Particularly, the client firstly runs
ORAM.ReadBlock(T, position, bid) and gets a block
from S. Then, if Op = Read, it copies the block
to b; otherwise, it copies b to the block. Finally,
the client runs ORAM.WriteBlock(T, position, S) to
write some blocks from S to T .

In the Path ORAM protocol, each access incurs path
read/write operations in a tree path specified by the client.
Since the accessed block will be re-assigned to a random tree
path, the adversary on the server can only see a sequence of
random accesses on the Path ORAM tree which is independent
of real memory access patterns.

Path ORAM is one of the most efficient ORAM schemes
in terms of computational cost. Since OblivSketch keeps the
ORAM client and server in the enclave with limited size (see
Section V-B for details), the storage cost is more important
than the bandwidth cost. Thus, we do not consider the scheme
such as SSS ORAM [64], which is bandwidth-efficient but
occupying more memory. Moreover, we do not use secure mul-
tiparty computation and pursue an optimised ORAM circuit in
this work, so we also exclude circuit ORAM [70].

C. Network Measurement and Sketches

We aim to design a secure network measurement service
that supports general network measurement tasks based on
network flows. Like the plaintext systems [38], [77], each flow
in this paper is identified by a unique flow ID, which is a
5-tuple, i.e., protocol, source IP, source port, destination IP,
destination port. We focus on collecting the following common
flow-based network statistics, which is extensively studied in
the plaintext literature [38], [77]. Note that these works are all
based on sketches due to its high efficiency and high fidelity.

• Flow size estimation: reports an estimated size of any
flow upon on a given flow ID.

• Heavy-hitter detection: reports the flow IDs with top-
k flow sizes.

• Heavy-change detection: reports the flow IDs whose
sizes are changed (increase or decrease) beyond a pre-
set threshold T between two adjacent time windows.

• Cardinality estimation: reports the number of distinct
flow IDs.

• Flow distribution estimation: reports the distribution
of flow sizes.

• Flow entropy estimation: reports the entropy of flow
sizes.

In this work, we employ the Count-Min Sketch (CMS-
ketch) [21] to conduct measurement tasks. CMSketch offers a
summarised view on the network statistics with a theoretical
guarantee on its memory consumption and accuracy, i.e., A

4

+1

+1

+1

w = 6

d = 3

hash functions: ℎ1, …, ℎ3

ID

packet

ℎ𝑖 ID

Fig. 2. Example of Count-Min Sketch.

40KB CMSketch with ten hash functions and 2000 32-bit
counters achieves 0.01% error at the probability of 0.01%.
As shown in Figure 2, a CMSketch comprises d arrays with
w counters as well as d independent hash functions. For each
new packet, the sketch hashes its flow ID (i.e., the 5-tuple)
to a counter in each of the d rows and then increases the
counters accordingly. To query flow size with a given flow ID,
the sketch returns the minimum of d hashed counters in each
row as an estimation. Intuitively, CMSketch supports the rest
of measurement tasks by collecting all the per-flow size esti-
mation. Note that other existing counter-based sketches [38],
[77] can readily be implemented in our service. In this work,
we use CMSketch to demonstrate our design, which is one of
the widely adopted sketches for network measurements.

IV. SERVICE OVERVIEW

A. Architecture

We consider that enterprises outsource the network mea-
surement service to the cloud service provider. As shown in
Figure 3, our targeted scenario comprises an enterprise network
with switches, a cloud server with the network measurement
service and network applications subscribed to by enterprises.
Network applications like NAT, load balancer, and stateful
firewall require network statistics to operate [44]. The cloud
service maintains statistics of the entire enterprise network, i.e.,
a high-value target for adversaries [26], [43]. OblivSketch aims
to hide flow statistics from the cloud server while providing
essential network measurement services.

The workflow of OblivSketch is outlined below. The en-
terprise deploys standard traffic monitoring gadgets on each
switch and maintains a set of counters associated with the flow.
Before providing local statistics, the switch runs the remote
attestation2 (see Section III-A) to attest the integrity of remote
modules in the server. That also establishes a secure channel
between each switch and the enclave in the server, which
allows the switch to share its secret key to the enclave. The
cloud server periodically receives the encrypted local statistics
from switches and passes them to a statistic module inside the
enclave. This module maintains a small amount of memory
as the oblivious sketch to aggregate the monitoring results,
which provides a “one-big-switch” abstraction [44] for the
whole network. After that, network operators can specify the
monitoring tasks according to network applications. When an
application asks for the statistics, it runs the attestation to check
the integrity of the enclave and establish a secure channel
in between. The application also sends its secret key to the
enclave via the above secure channel. Upon receiving the query
from an application, the statistic module queries the sketch and
obliviously performs the measurement task to get the result.
The encrypted result is returned to the application.

2Switches do not require to equip with SGX-enabled hardware for the
remote attestation. They rely on Intel’s attestation service to verify the enclave.

Enclave
Oblivious
Statistic
Module

Applications

Update

Query

OblivSketch

Encrypted Query/Result

Attestation

Encrypted
Flow

StatisticsEnterprise Network Cloud Server

Trusted Untrusted

…

…

Attestation

Fig. 3. Service Overview of OblivSketch.

B. Threat Model

In our scenario, essential statistical flow data regarding
enterprise networks is supplied to untrusted third-party ser-
vices. Therefore, enterprises expect to protect the private flow
statistics from the cloud or other co-tenants. Besides, exposure
of flow statistics can lead to severe consequences, e.g., creating
opportunities and surfaces for emerging network attacks [10],
[37], [51], [74], [75]. For example, revealing the network topol-
ogy, flow statistics and traffic forwarding behaviours makes
DDoS attacks much easier to launch. We aim to keep flow
statistics confidential throughout the network measurement
tasks, which is crucial to the security of networks.

Meanwhile, we address a powerful adversary under Intel
SGX, who fully controls the user programs and even OS of the
cloud server. He can see the entire memory trace of the network
measurement service, and obtain and tamper any communi-
cation between the enterprise network and the cloud, or the
network measurement service and network applications. The
only exception is that the adversary cannot access the processor
and collect information from it. The goal of OblivSketch is to
operate network measurement tasks obliviously in the presence
of the above adversary. The term “obliviously” indicates that
the adversary cannot learn the underlying contents of network
statistics and query results from the memory access pattern
during the entire procedure of network measurement services.
The above security level mitigates a combination of software
side-channel attacks on cache [9], page table [13], [76], and
branch history [46] under generic TEEs, including SGX.

There exist some other side-channel attacks against TEEs.
Particularly, those attacks are based on speculative execu-
tion [12], [17], [50], communication patterns [55], denial-
of-service [34], power analysis [54] and vulnerabilities in
implementations [41]. Those attacks are out of the scope of
OblivSketch. Nonetheless, existing countermeasures such as
resolving race-conditions in hyperthreading [16], data shuf-
fling/padding [55], [56] and SGX code analysis tool [20] can
be readily applied to handle these attacks. Moreover, hard-
ware enclaves can be updated in the microcode or hardware-
level [8], [24] to tackle the above attacks.

We do not assume threats on software switches since
enterprises can configure their switches as “only approachable
via a strict policy” [62]. We do not focus on malicious appli-
cations such as infiltrating shared data stores to get sensitive
information or disrupting other services [26], [68]. We assume
that applications are subscribed and authenticated by network
operators who can decide which application(s) can access
measurement results [6].

5

C. Strawman Design

We first present a strawman design and highlight why it
fails to meet both the security and efficiency requirements.
A naive approach of designing a network statistic module is
to maintain a flow list consisting of (ID, occurrence)-tuple
within the enclave. In detail, this module first extracts the ID
in the (ID, counter)-tuple collected from enterprise networks
and puts it in the flow list. Then, the module computes the
hash of ID and refers to the counter to update the sketch. At
the end of each epoch, the statistic module uses all received
flow IDs to query the sketch and derive the occurrence of each
flow. The above module can enable the measurement tasks in
Section III-C with trivial operations.

Limitations. Although the strawman design is easy to imple-
ment, it faces security and efficiency issues. First, it cannot
reach the desired security level due to the current limitation of
SGX. The reason is that the access on the sketch or flow list is
deterministic as it is based on hash functions. Thus, adversaries
can conduct inference attacks [9], [13], [32], [45], [46], [60],
[69], [76] from the above access pattern within the enclave.
Those attacks allow adversaries to gain rich information about
network statistics. Second, storing a flow list with all flow IDs
can be prohibitively burdensome to the enclave memory. Recall
that SGX only has 96 MB protected memory for applications,
if an application consumes more than 96 MB memory, the
extra memory will be loaded on-demand via EPC paging.

V. PRIMITIVES

We first overview OblivSketch’s core primitives to illus-
trate how they achieve data-obliviousness while ensuring the
efficiency of network measurements. First of all, we design
an oblivious data structure, named oblivious sketch, to support
all relevant data accesses obliviously with a small, constant
memory cost. The oblivious sketch consists of two parts: an
OCMSketch is a CMSketch stored within the Path ORAM
structure, and an oblivious bucket (OBucket) is a fixed-size
flow list storing the flow ID and size of heavy flows. Both
parts are kept inside the enclave.

In OCMSketch, the counters of CMSketch are stored in the
Path ORAM tree. To access these counters within the enclave,
we deploy an oblivious Path ORAM client, which runs normal
ORAM access operations on the tree but leveraging linear-scan
to access the stash of Path ORAM. As a result, the access on
OCMSketch is fully oblivious in the view of untrusted servers.
OBucket contains a fixed number of entries, and these entries
are also placed in the Path ORAM tree. Each entry has multiple
buckets to store (ID, counter)-tuples. The enclave retrieves
the corresponding entry and uses linear-scan to obliviously
access the target bucket when accessing it. We also design an
oblivious eviction strategy to capture the dynamics of network
flows. The eviction performs linear-scan on the updated entry
and also obliviously evicts a flow, which will be inserted into
OCMSketch (see Section V-B for details).

Our proposed sketch natively supports the oblivious flow
size query. For other queries, we utilise data-oblivious al-
gorithms to compute over the data fetched from the sketch.
In particular, we leverage oblivious sorting to enable heavy-
hitter detection. For heavy-change, cardinality, flow distribu-
tion and flow entropy, we employ linear-scan algorithms for

Algorithm 1 OREAD
Input: The key-value list C; the search key k
Output: A value C[k], 0 if C[k] does not exist in C
OREAD(C, k)

1: res← 0

2: for i = 1 : |C| do
// if the current C[i].key = k, assign C[i].value to res; otherwise, keep
the recent res
3: res← oselector(C[i].value, res, C[i].key = k)

4: End for
5: Return res

Algorithm 2 OSWAP
Input: The input value x and y; the control bit b
OSWAP(x, y, b)

// if b = 1, run t← x, x← y, y ← t obliviously; otherwise, run
t← y, x← x, y ← y obliviously
1: t← oselector(x, y, b)

2: x← oselector(y, x, b)

3: y ← oselector(t, y, b)

both OCMSketch and OBucket to ensure these queries are
data-oblivious (see Section V-C for details).

We next provide the detailed design of the oblivious
network measurement primitives. In the rest of the section,
we use an oblivious operation oselector(x, y, b) which runs
(x & b) | (y & ¬b) to select x or y as the output obliviously.
Specifically, oselector(x, y, b) outputs x if the control bit b =
1; otherwise, it outputs y. We also utilise the bitonic sort [4]
with O(n log2(n)) complexity of sorting n elements. This
sorting algorithm executes a fixed-sequence of comparisons
for any given size of inputs (i.e., trace-oblivious) so we use it
in OblivSketch (osort). In addition, some basic oblivious al-
gorithms like oblivious reading (OREAD), swapping (OSWAP)
are given in Section V-A.

A. Basic Algorithms

Algorithm 1 outlines the oblivious read procedure in the
stash of Path ORAM. This algorithm enables the client of Path
ORAM to access the stash obliviously.

Algorithm 2 outlines the oblivious swapping algorithm. It
ensures that each element will be accessed equivalently during
the swap process, and it is unknown for the adversary whether
the input x and y are swapped. We employ this algorithm in
OBucket (see Algorithm 4) to obliviously swap the input flow
ID and the minimal flow ID in each entry.

B. Oblivious Sketch

We present the construction of the oblivious sketch, i.e.,
OCMSketch and OBucket. For each part, we explain the
underlying data structure and the corresponding algorithms for
insertion and query.

Oblivious CMSketch. OCMSketch exactly follows the CMS-
ketch algorithm to insert and query flow information. The only
difference is that we customise a Path ORAM tree to store the
counters of CMSketch. In particular, we do not specifically
encrypt the data in the Path ORAM tree. Instead, we rely on the

6

Algorithm 3 OCMSketch
Input: The number of counters w; the number of hash functions d; ORAM
parameter Z and B
Output: The Path ORAM structure (T, position, S); a hash function set
{Hi}di=1;
SETUP(w, d, Z, B)

1: (T, position, S)← ORAM.Init(d× w,Z,B)

2: Choose d hash functions that map their inputs to [1, w], [w+1, 2w], ...,
[(d− 1)× w + 1, d× w], respectively
3: Return (T, position, S) and {Hi}di=1

Input: The flow ID flowID and its value v; a hash function set {Hi}di=1;
the Path ORAM structure (T, position, S)

INSERT(flowID , v, {Hi}di=1, (T, position, S))

1: for i = 1 : d do
2: Compute bid← Hi(flowID)

3: Retrieve b from ORAM.Access(Read, T, position, S, bid, b)
4: b.value← b.value+ v

5: ORAM.Access(Write, T, position, S, bid, b)
6: End for

Input: The flow ID flowID ; a hash function set {Hi}di=1; the Path ORAM
structure (T, position, S)

Output: An estimated flow size v̂
QUERY(flowID , {Hi}di=1, (T, position, S))

1: v̂ ← INT.MAX

2: for i = 1 : d do
3: Compute bid← Hi(flowID)

4: Retrieve b from ORAM.Access(Read, T, position, S, bid, b)
5: v̂ ← MIN(v̂, b.value)

6: End for
7: Return v̂

SGX memory encryption engine [40] to protect the memory
space allocated for OCMSketch. Note that linear-scan is also
data-oblivious to access the sketch, but Path ORAM is more
efficient as its complexity is O(log n), while linear-scan is
O(n) when there are n data blocks to be stored.

The original Path ORAM protocol considers its client as
a trusted party, so the client-side routine is not oblivious. But
in OCMSketch, the statistic module plays the role of the Path
ORAM client, and the module is a part of the enclave. When
the statistic module updates OCMSketch or retrieves results
for queries, the client has a deterministic process based on the
block ID when accessing the blocks in the stash, which leaks
the pattern about those IDs. Hence, it is important to re-design
the client to make it data-oblivious. Therefore, we replace the
above process with linear-scan. After fetching blocks from
a tree path to the stash, the statistic module will find the
requested block by visiting the entire stash (cf. Algorithm 1).
This approach raises a concern about its efficiency: if there are
many blocks in the stash, the linear-scan will be expensive.
To address this issue, we use a fixed-size stash rather than
an unlimited stash. As in [63], one can use a stash with 105
blocks at most by tolerating a negligible false positive rate
(2−128) when each tree node contains five blocks (Z = 5).

As shown in Algorithm 3, the ORAM is initialised with
d×w tree nodes (same size as the plaintext CMSketch). Also,
the hash function maps its input to a value between 1 to d×w,
which is treated as the block ID bid for the ORAM to read and
write blocks. Such a mapping enables OCMSketch to access

𝒉 ID1 , v1
(ID9, v!, 0) (ID7, v", 0) (ID1, v#, 0) v$# + 𝟎

… …

... … ... …

(ID1, 0)

Eviction CounterBucket

OCMSketch

(a) Case 1

𝒉(ID2), v2
… … … …

(ID4, v!, 0) (ID5, v", 0) (ID6, v#, 0) v$% + 𝐯𝟐
... … ... …

(ID2, v2)

Eviction CounterBucket

OCMSketch

(𝐯𝐞𝟐+𝐯𝟐)/𝐯𝐦𝐢𝐧 ≤ 𝛉

(b) Case 2

(IDmin, v!"#)𝒉(ID3), v3
… … … …
… … … …

(ID8, v8, 0) (ID3, v3, 1) (ID0, v0, 0) 0

Eviction CounterBucket

OCMSketch

(𝐯𝐞𝟑+𝐯𝟑)/𝐯𝐦𝐢𝐧 	 > 𝛉

(c) Case 3

Fig. 4. The structure of OBucket and the eviction when inserting a new
flow. During insertion, OBucket scans all coloured buckets in a selected entry.
Then, it evicts a flow based on the eviction counter and availability of buckets.
The above three figures cover the case when (a) an empty bucket is available;
(b) no available bucket and cannot find a small flow to evict; (c) no available
bucket but one smaller flow is evicted to fill the new flow (bold in counters
denotes changes after the operation).

each underlying counter value obliviously since it is now stored
in the Path ORAM tree. The detailed Path ORAM operations
are given in Section III-B.

Oblivious Bucket. Since only the flow IDs of heavy flows
are needed by common measurement tasks [77], we devise
OBucket to keep those flow IDs. As shown in Figure 4, the
data structure is split into multiple entries, and each entry
has multiple buckets to store the flow information. Each
bucket consists of three elements: the flow ID, its count and
a tag indicating whether the eviction has happened on it.
Note that OBucket keeps multiple buckets within the same
entry to reduce the collision rate when inserting bulk flow
information. Note that this strategy has been employed in
plaintext measurement systems such as [77].

To make OblivSketch adaptive to the dynamics of the flow
size, the last bucket of each entry is reserved for storing an
‘eviction count (ve)’. It is increased when OblivSketch fails
to insert a flow into the bucket. Once the ratio of veviction to
the minimum size in the entry vmin exceeds a threshold θ, the
corresponding flow IDmin will not be considered as a heavy
flow and will be moved to OCMSketch.

To ensure the obliviousness of OBucket, all entries are
also kept in Path ORAM, and the selected entry will be fully
scanned when inserting or querying a given flow. The above
eviction covers three cases as shown in Figure 4: 1) there is
an empty bucket, or the flow ID1 exists on a bucket. Then,
OBucket updates the bucket and outputs (ID1, 0); 2) there is no
empty bucket, and OblivSketch cannot evict a bucket because
of ve2+v2

vmin
≤ θ. Then, OBucket updates the eviction bucket by

adding v2 and outputs (ID2, v2); 3) there is no empty bucket,
but OblivSketch finds a bucket to evict (ve3+v3vmin

> θ). OBucket
replaces the (IDmin, vmin) with (ID3, v3) and sets tag3 to 1.
Then it resets ve3 to 0 and outputs (IDmin, vmin).

7

Algorithm 4 Oblivious Bucket

Input: The number of entries d; the number of buckets for each entry L;
the bucket size s; ORAM parameter Z
Output: the Path ORAM structure (T, position, S); a hash function set H;
SETUP(d, L, s, Z)

1: (T, position, S)← ORAM.Init(d, Z, L× s)
2: Choose a hash function that maps its input to [1, d]
3: Return (T, position, S) and H

Input: The flow ID flowID and its value v; a hash function H; the
OBucket parameter L; the Path ORAM structure (T, position, S); the swap
threshold θ
Output: An evicted flow ID swap key and its value swap value
INSERT(flowID , v, H , L, (T, position, S), θ)

1: Compute bid← H(flowID)

2: Retrieve b from ORAM.Access(Read, T, position, S, bid, b)
// flag indicating whether the insertion is successful
3: success← false

4: min val← b[0].value

// scan the entire entry and try to fill one bucket of it
5: for i = 1 : L− 1 do
// flag indicating whether the current bucket is empty
6: empty ← (b[i].key = 0) // true or false
// if the current bucket is empty and no successful insertion, flowID and
value will be inserted; otherwise, the current bucket remains unaltered
7: b[i].key ← b[i].key|(flowID&(empty ∧ ¬success))
// if flowID is not found, b[i].value+ = 0, else b[i].value+ = v

8: found← (b[i].key = flowID)

9: b[i].value← b[i].value+ found & v

// update min val if the b[i].value is smaller; otherwise, keep the current
min val

10: min val← oselector(min val, b[i].value,min val ≤ b[i].value)
// insertion is successful if an empty bucket or the repeated flowID is found
11: success← success ∨ (empty ∨ found)
12: End for
13: swap key ← ID

// if insertion is successful, set swap value to 0 (no swap is needed);
otherwise, set it to the input flow value v
14: swap value← oselector(0, v, success)

// if insertion is successful, b[L].value← b[L].value+ 0, else
b[L].value← b[L].value+ v

15: b[L].value← b[L].value+ v & ¬success
//swapping is needed when no successful insertion happened and the
eviction count is large enough

16: swap← ¬success & (
b[L].value
min val

> θ)

17: swap success← false

// scan the entire entry and substitute the bucket with the minimal flow size
18: for i = 1 : L− 1 do
19: target← (min val = b[i].value)

// perform swap if: swapping is needed, current bucket contains the minimal
flow size and no swap was performed
20: OSWAP(b[i].key, swap key,¬swap success ∧ swap ∧ target)
21: OSWAP(b[i].value, swap value,¬swap success ∧ swap ∧ target)
// set tag to 1 if the current bucket is swapped
22: b[i].tag ← oselector(1, b[i].tag,¬swap success ∧ swap ∧ target)
// swap is successful if swap is needed and the current bucket contains
min val

23: swap success← swap success ∨ (swap ∧ traget)
24: End for
// if swap is successful, reset b[L].value, else keep the recent b[L].value
25: b[L].value← oselector(0, b[L].value, swap success)

26: ORAM.Access(Write, T, position, S, bid, b)
27: Return swap key, swap value

Input: The flow ID flowID ; a hash function H; the Obucket parameter L;
the Path ORAM structure (T, position, S)

Output: A bucket entry f
QUERY(flowID , H , L, (T, position, S))

1: Compute bid← H(flowID)

2: Retrieve b from ORAM.Access(Read, T, position, S, bid, b)
3: f.key ← flowID , f.value← 0, f.tag ← 0

// scan the entire entry and obliviously get the query result
4: for i = 1 : L− 1 do
5: f.value← oselector(b[i].value, f.value, b[i].key = flowID)

6: f.tag ← oselector(b[i].tag, f.tag, b[i].key = flowID)

7: End for
8: Return f

As shown in Algorithm 4, OBucket has three algorithms.
The SETUP algorithm initialises the Path ORAM data structure
with a pre-defined size of each bucket.

The INSERT algorithm can obliviously insert one flow into
OBucket. In particular, the algorithm first computes the hash
of the given flow and finds the corresponding entry from the
ORAM. Then, it scans the selected entry and tries to insert
the flow into one of the buckets in the entry. During this
process, each bucket in the entry will be accessed, and which
also obliviously finds the minimal flow in that bucket (line
5 - 12 in INSERT). The above process decides whether the
flow is inserted or not, and this result is stored in a buffer
obliviously (line 13 - 14 in INSERT). Later, the algorithm
scans the entry again and obliviously swaps (cf. OSWAP in
Algorithm 2) the input flow and minimal flow. Note that the
flow is only swapped if it is not inserted and the ratio between
the eviction counter and minimal flow size is larger than θ.
Otherwise, the input flow is outputted as a result (line 18 - 27
in INSERT).

The QUERY algorithm can obliviously query a flow size
in OBucket. Similar to INSERT, it computes the hash of the

given flow and finds the corresponding entry. Then, it scans the
whole entry and obliviously assigns the value and tag based
on the input flow ID and the key of each bucket. The output
flow will be filled with a positive value if it is found in the
entry. Otherwise, it is set to 0.

Overall Protocol. We summarise the insertion and query
protocols of the oblivious sketch as follows:

• Insertion: Upon receiving the flow information
((ID, counter)-tuples), OblivSketch computes the
hash of the flow ID and retrieves the entry to insert in
from the Path ORAM tree. Then it runs linear-scan on
the entry to insert the flow information (cf. INSERT in
Algorithm 4). After insertion, OBucket outputs a flow,
which is inserted into OCMSketch (As in Figure 4).

• Query: Upon receiving the flow ID to query, OblivS-
ketch computes the hash of the flow ID and gets
the entry to search in OBucket. Then, it runs linear-
scan on the entry to find the flow information (cf.
QUERY in Algorithm 4). It finally retrieves a bucket
from OBucket. Later, it queries OCMSketch with

8

the same ID to get v̂ and sums the value from the
bucket with oselector(v̂, 0, f.tag), i.e., accumulating
the value from OCMSketch if eviction had happened.

The above procedure guarantees obliviousness during inser-
tion and query on the sketch. The adversary who can observe
memory traces sees the same (indistinguishable) access pattern
for each insertion or query. However, he cannot determine
where the actual flow information (i.e., in OBucket, OCMS-
ketch or both) is and the relationship between any two flows
(i.e., whether they are hashed into the same bucket/counter or
not). The security definition and proof of the oblivious sketch
are given in Appendix B.

Protocol Complexity. The complexities of insertion and query
in OblivSketch comprise the insertion and query complexities
on its two data structures (OCMSketch and OBucket). For
each data structure, the insertion and query operations involve
the following three essential operations: 1) hash function
evaluation; 2) Path ORAM access3; 3) Linear-scan, and the
complexities of them are: 1) O(1); 2) O(logN), where N is
the number of tree nodes in ORAM; 3) O(|X|), where |X| is
the size of the array X to be scanned.

For OCMSketch, its insertion and query protocols follow
a similar procedure (see Algorithm 3): It firstly evaluates d
hash functions. Then, it leverages these hash values as the key
to retrieve the corresponding blocks from the ORAM; those
blocks will be evicted to the ORAM after access (d ORAM
accesses). For each retrieved blocks, OCMSketch should scan
the stash S to read (for query) or update (for insertion) it
to ensure the obliviousness. Thus, the time complexity of the
above process is O(d+ d logN + d|S|).

The insertion and query on OBucket (see Algorithm 4) only
need to evaluate one hash function and perform one ORAM
access to retrieve an entry from the ORAM. Also, it scans the
stash once to get the target entry. On the other hand, for each
retrieved entry b, OBucket scans all buckets on that entry to
hide the read/update pattern. Thus, the complexity of the above
process is O(1 + logN + |S|+ |b|) ≈ O(logN + |S|+ |b|).

Accuracy. We briefly compare the accuracy of the oblivious
sketch and the strawman. In particular, the accuracy of the
above approaches is bounded by the number of packets stored
in CMSketch. Since our design keeps heavy flows in OBucket,
the number of packets in CMSketch is noticeably reduced.
Therefore, the accuracy of our new protocol is highly improved
compared with the strawman. We note that the above strategy,
i.e., storing heavy and light flows separately to increase the
accuracy, has been adapted in plaintext systems [49], [77]. We
refer readers to [77] for the theoretical accuracy and proof of
this improved approach.

C. Oblivious Network Measurement

We now present how OblivSketch supports the measure-
ment tasks obliviously via the proposed primitives and opera-
tions.

Flow Size Estimation. It is straightforward to estimate the
flow size with the query protocol of the oblivious sketch.

3The read/write operations in Path ORAM are the same process [63].

Heavy-Hitter Detection. To detect heavy-hitters, OblivSketch
scans the whole OBucket and copies the flow ID and value into
a map. Then, it calls osort to sort the values in the map and
return the top-n (pre-defined parameter) as the heavy-hitters.

Heavy-Change Detection. To detect the heavy-changes,
OblivSketch keeps the OBuckets of two consecutive epochs.
These two OBuckets are scanned and copied to two maps,
respectively. Later, OblivSketch takes all flows from the current
epoch (denoted as (k1, v1)) and the flows from previous epoch
(denoted as (k2, v2)) and computes v′ = oselector(|v1 −
v2|, 0, k1 = k2). If v′ is larger than the pre-defined threshold,
it is then added into the heavy-change list.

The oblivious algorithms of the following three tasks
are adapted from the native implementation in plaintext sys-
tems [77]. All tasks perform linear-scan on OCMSketch to get
a counter distribution array {n} = (n0, n1, ..., n255), where ni
is the number of counter with value i (cf. OCMSKETCHSCAN
in Algorithm 6). Then, they use the distribution array to
compute the following metrics.

Cardinality Estimation. OblivSketch leverages the linear
counting algorithm [73] (see Algorithm 5) to estimate the
number of flows from the distribution array. Then, it scans
OBucket to count the number of flows. The sum of the above
two results is the cardinality of network flows.

Flow Distribution Estimation. The distribution array reflects
the flow size distribution of OCMSketch. OblivSketch up-
dates it with the flow size in OBucket to get the flow size
distribution of the current epoch. As shown in Algorithm 6
(OBUCKETSCAN), the flow size is recomputed with the flow
information in OBucket. The new value is updated into the
distribution array after dynamically resizing the array.

Flow Entropy Estimation. After computing the distribution,
it is uncomplicated to compute the entropy based on the
distribution. In particular, OblivSketch uses the distribution set
{n} to compute m = Σ

|{n}|
i=1 ni, and the entropy is computed

as −Σ
|{n}|
i=1

ni

m log ni

m . The above process accesses the whole
distribution set, so it is also an oblivious process.

Security. All the above protocols protect data access patterns
with the help of the oblivious primitives. Our service only
reveals which data structure is accessed (OBucket or OCMS-
ketch) and how the enclave accesses this data structure (i.e.,
linear-scan or ORAM access). Given the pre-set parameters, all
insertions and queries in every measurement epoch will result
in the same data access patterns disregarding the change of
network statistics. Therefore, the adversary can only infer the
type of tasks running in the enclave but cannot learn the flow
data or statistics. We provide a detailed security analysis on
each measurement task in Appendix C.

VI. IMPLEMENTATION

In this section, we show how OblivSketch can be deployed
as a plug-in service for modern network infrastructures. We
incorporate OblivSketch with the SDN framework.

A. Implementation Overview

We first overview our implementation to show how it
is seamlessly integrated with SDN. As shown in Figure 5a,

9

Software
Switch

Cloud

Secure Memory
Channel

Enclave

Oblivious
Measurement

ModuleSe
cu

re

G
at

ew
ay

Secure
Gateway

Network Application

Secure
Gateway

Datapathin
Monitoring

Gadget
Packet
Handlerpacketsin

Local statistics

Datapathout packetsout

Local Statistics
Queries

Network
Functions

Measurement
Queries

Query
Result

(a) architecture
0 4 8 12 16

(b) protocol message

Fig. 5. The service implementation overview: (a) presents the architecture
of OblivSketch service; (b) presents the formation of protocol messages
transmitting in OblivSketch.

OblivSketch’s implementation is involved with a network mea-
surement daemon in the cloud, network applications running
upon it and software switches. The network measurement
daemon computes the statistics of network flows and handles
queries from applications; the switch is responsible for collect-
ing and reporting local statistics to the measurement daemon;
the network applications query measurement statistics from the
service to fulfil their requests.

Network Measurement Daemon. Our service runs a dae-
mon program which comprises three components: a secure
memory channel in its untrusted part, the secure gateway and
OblivSketch primitives inside the enclave. The shared memory
channel is a managed memory space sharing between the
untrusted part and trusted part. In particular, it pairs with the
secure gateway located in the switch, application and enclave.
The gateway and shared memory channel jointly provide a
transparent encryption and decryption service for all ingress
and egress messages. In addition, this channel enables the
network measurement daemon to communicate with the switch
and network applications without exiting the enclave.

Software Switch. The software switch using our service
consists of the ordinary SDN switch with the monitoring
gadget and secure gateway. The monitoring gadget is deployed
on each software switch and maintains a set of counters
associated with the flows. It sends the local statistics in the
form of (ID, counter) to the daemon via the secure gateway.
To eliminate redundancy, the monitoring gadget is set to
monitor the ingress packets only. Each switch also equips with
the secure gateway, which transparently encrypts and transmits
the encrypted statistics to the secure memory channel.

Network Applications. Network applications also utilise a
secure gateway to communicate with the network measurement
daemon. An application can send its query to the gateway and
retrieve the corresponding result from it. All communication
through it is encrypted.

Deployment. To deploy OblivSketch, the first step is to start

up the adapted software switch and the network measurement
daemon. In this work, we choose Open vSwitch [48] as our
software switch due to its popularity. After that, switches run
remote attestation to attest the integrity of remote modules
in the enclave. Remote attestation also establishes a secure
channel between each switch and the enclave, which is used
to securely share the encryption key for the secure gateway
and secure memory channel. When an application starts, it
runs attestation (either local or remote, depending on where
the application is) with the enclave and shares the encryption
key via the secure channel.

Communication. We customise an application header to assist
the network measurement daemon in deciding the measure-
ment types and processing the updates from the switch. The
structure of that header is in Figure 5b. It includes the follow-
ing fields: 1) MAC: the MAC digest of a message; 2) UID: the
unique identifier of an application, it is set to -1 if the message
is from switches; 3) Type: the message type (discussed below);
4) Payload Size: the length of Data; 5) Data: the payload of
the message. The switches and applications employ the above
formatted message to communicate with the daemon, i.e.,
committing statistics, issuing queries and receiving responses.
The message types are defined below to carry those messages:
1) STAT: sent by switches and encapsulates the encrypted
statistics as payload; 2) FLOW SIZE, HEAVY HITTER,
HEAVY CHANGE, CARD, DIST, ENTROPY: sent by the
application, requesting the result of the corresponding mea-
surement type; the controller uses the same data type to reply;
3) STOP: sent by the administration application to shut down
the daemon. Note that this header can be used independently
when OblivSketch is deployed as an independent service. Also,
it can integrate with the SDN protocols such as OpenFlow [57]
as the request/response body of original protocols.

B. Secure Memory Channel

The goals of implementing a secure memory channel
are to 1) minimise the transition cost between the enclave
and the untrusted parts of the service; 2) hide the message
information including the header from other untrusted parts
of the service. To achieve the above goals, the secure memory
channel is allocated on the untrusted memory space but shared
with the enclave. The enclave thus enjoys an exitless fashion
when sending and receiving messages from other parts of
the service. Meanwhile, this channel maintains a pre-shared
key in the enclave and leverages it to provide a transparent
encryption/decryption service to the OblivSketch primitives.
The primitives can read messages from and write messages to
the channel without manually calling cryptographic operations.

Figure 6 illustrates the architecture of the secure memory
channel. The secure gateway takes charge of encapsulating,
decapsulating the message and performing cryptographic op-
erations. Each switch and application will deploy a gateway
that is paired with the one resided inside the enclave. The
secure memory channel also implements a shared memory pool
to allocate memory space for messages in advance. All the
secure gateways request memory from the pool to mitigate the
allocation cost on-the-fly.

Another core component in the secure memory channel
is two queues for the messages: one for transmitting (TX)

10

Secure Gateway

Message
Pool

Resource
Request

RX QueueTX Queue

Enclave

Secure
Memory
Channel

Secure Gateway

Resource
Request

Encrypted
Message

Encrypted
Message

Fig. 6. The architecture of secure memory channel.

and the other for receiving (RX). These queues are initialised
in the untrusted memory with the user check parameter [39]
provided by SGX SDK. The data structure with the user check
parameter can be shared as a raw pointer address accessible
by the enclave and untrusted domain. In the secure memory
channel, the pointers of TX and RX queues are shared among
all secure gateways, including the one within the enclave. The
secure gateway within the enclave will read the TX queue for
any incoming messages and decrypt it into EPC for further
processing. It also encrypts the processed query and puts it
on the RX queue as the query output. Conversely, the secure
gateways outside put encrypted updates/queries into the TX
queue and receive results from the RX queue. The above
process helps reduce the transition cost because the enclave
no longer invokes an ocall when it sends a message out.

After initialisation, the secure gateways establish either
a remote connection (TCP socket) or a local connection (in
shared memory) to the secure memory channel. Each time the
gateway sends messages, it firstly acquires memory from the
message pool. Then, it segments and encrypts the message
including the header via AES-GCM, and stores the MAC
digest generated from AES-GCM in the MAC field of the
header. The secure memory channel stands by to receive the
message from the connection, fill it into the acquired memory
space and push the message into the queue. Upon receiving a
read request, the gateway decrypts the incoming message in
the queue to the trusted memory space. Finally, it returns an
emptied message to the pool for future use.

Security. Besides the security guarantee offered by our oblivi-
ous primitives, our service can thwart the adversary who targets
the communication channel. In this work, proactive adversaries
modifying the message will be detected via authenticated
encryption. Particularly, the secure memory channel ensures
that the adversary only learns the MAC digest of a message but
nothing more. This is because the whole message, including
the header, is encrypted. Also, the message is segmented to a
pre-set size given by the message pool. Thus, the adversary
capturing the unencrypted TCP packets cannot obtain the real
size of a message.

C. Integration with the SDN Framework

We integrate OblivSketch with Open vSwitch (OVS) [48],
one of the most widely used software switches. For the
deployment of OVS, we embed the monitoring gadget into the
datapath, which is responsible for receiving and routing all
the packets. Upon receiving a packet, the monitoring gadget

TABLE I. THE STATISTICS OF TEST TRACE WITH DIFFERENT TIME
INTERVALS (K: THOUSAND, M: MILLION).

Intervals 1s 5s 10s 30s 60s 120s 240s
CAIDA1 30k 70k 100k 190k 280k 440k 690k
CAIDA2 42k 112k 175k 370k 590k 908k 1.45m

extracts the flow ID from the packet and puts it in a buffer. At
the end of each monitoring epoch, it sends the local statistics to
the secure gateway. To optimise the performance of OblivS-
ketch, our service utilises the DPDK [47] datapath of OVS.
The DPDK datapath allows the user-space program access
to the NIC buffer directly, which eliminates the overhead
from the memory copy and context switch between the kernel
and user space. Meanwhile, our implementation aggregates
the same flow ID on the local statistics before sending to
the network measurement service. This treatment reduces the
number of oblivious operations in the enclave by 10× and
highly improves the performance of sketch generation.

We slightly modified the secure gateway. It adds an Open-
Flow header with the OFPT EXPERIMENTER type upon
the message described in Section VI-B. Then, it relies on
the original network connections between switches/controller
or applications/controller to send the OpenFlow packet to
the controller. The controller will extract messages from
OpenFlow packets, acquire memory space from the secure
memory channel and transmit messages to the enclave for
sketch generation and query processing. Upon receiving a
result from the RX queue, the controller packs it with the
OpenFlow header and sends it back to the application.

We implement the service depicted above4. The implemen-
tation consists of roughly 2700 lines of C/C++ code. This
includes 300 lines of code modification in OVS, a library
for applications and switches to access the secure gateway
with one API call, and a library with three APIs for the
controller to access the secure memory channel. Note that our
realisation and implementation on the network measurement
service can integrate with the existing SDN controller directly.
As mentioned, it is an independent daemon program which
can be deployed in the controller OS and approached by the
secure gateway.

VII. EVALUATION

A. Setup

Platform. We deploy our service in an SGX-enabled work-
station equipped with Intel Core i7-8850H 2.60GHz CPU
(6 cores with multi-threading) and 32GB RAM. Both the
service daemon and software switches are deployed on the
above workstation, and the secure gateway establishes the
local connection with the secure memory channel (i.e., shared
memory). We also test our service after integrating it with
the test-controller provided by OVS [57]. To eliminate the
interference from other SDN messages in the evaluation, we
implement a simulated switch, which only reads the offline
traffic dump and sends it to the daemon periodically. Namely,
it does not participate in any network communication such as
routing, forwarding packets. We also deploy another secure
gateway locally to simulate the application and send measure-
ment queries to the daemon.

4Source code: https://github.com/MonashCybersecurityLab/measurement

11

Dataset. We use two one-hour traces collected in Equinix-
nyc (CAIDA1) and Equinix-chicago (CAIDA2) monitor from
CAIDA [15]. CAIDA1 includes 1.56 billion packets and 4
million flows with distinct sources (source IP), while CAIDA2
has 1.83 billion packets and 8.9 million flows. We divide the
trace into various measurement time intervals (1s, 5s, 10s,
30s, 60s, 120s and 240s). The average number of flows for
each interval is given in Table I. And we follow plaintext
systems [77] to use 5s as the default measurement interval.

Baseline. We implement two baseline services for comparison.
The first baseline (strawman baseline) adopts the strawman
protocol described in Section IV-C to substitute the OblivS-
ketch protocol in Figure 5, while the other components in
OblivSketch remain unchanged. We compare the performance
of the baseline with OblivSketch to show that our oblivious
design is practical in the real-world network. Our comparison
also shows that OblivSketch outperforms the strawman when
the paging is triggered, as it brings enormous delays on tasks as
shown in Section VII-C. Also, the performance of the heavy-
hitter and heavy-change detection in OblivSketch is better than
the strawman even if the paging is not triggered, because of
OblivSketch keeps few flow IDs than that in the strawman.

The second one (SMC baseline) implements [43] to support
flow size and heavy-hitter queries. As in [43], the SMC
baseline equips two daemons that collect the secret sharing
of local statistics and sort/merge them into a flow list with
(ID, counter)-tuple (as a list of secret shares). Then, it uses
a garbled circuit to scan the entire list to get the flow size.
For heavy-hitter queries, it implements the bitonic sorting as a
circuit which sorts the flow list and returns the top-n result
as the heavy-hitters. Thus, the SMC baseline is also data-
oblivious. The SMC baseline is implemented with C/C++ and
emp-toolkit (an optimised garbled circuit library) [71].

Sketch Settings. We set the default sketch size to 600KB
for both the strawman and oblivious designs (src IP as flow
ID). For the CMSketch in the strawman protocol, we follow
the recommendation in [33] to use three hash functions. For
the oblivious sketch, we use an 8-bit counter and one hash
function in OCMSketch, as well as seven flow buckets in each
entry of OBucket [77]. To ensure the accuracy of the heavy-
hitter and heavy-change detection, we set OBucket to 150KB
(see Section VII-D for a detailed analysis). OBucket has 2400
entries stored in a Path ORAM structure, and each ORAM
node has five 64-byte blocks (64-byte is the size of entries in
OBucket). In OCMSketch, we initialise a Path ORAM with
450K nodes, and each node has five 1-byte blocks. Also, we
accept a negligible false positive rate (2−128) in Path ORAM
and the resulting size of the stash is 105. As mentioned in
Section V-B, this setting noticeably improves the efficiency of
the ORAM while retaining its security guarantee. We note that
the memory consumption is much larger than the pre-defined
parameter (600KB) due to the padding and position map of
Path ORAM occupies extra space. Nonetheless, this is a fair
comparison since most of the blocks in the ORAM are dummy
blocks, and thus the valid blocks are still 600KB in total.

Remark: The above settings are dedicated to the large-scale
network trace dataset we used (CAIDA dataset is collected
from backbone networks). If the service is deployed in rela-
tively small networks such as enterprise networks, the network

7 7
1

13
7 4

16
7 6

29

7
15

44

7

27

70

7

53

99

7

107

30k 70k 100k 190k 280k 440k 690k

of Flows

0

50

100

M
e

m
o

ry
 (

M
B

)

Heap Size (Strawman)

Heap Size (Oblivious)

Stack Size

Fig. 7. The enclave memory consumption in strawman and OblivSketch.

administrator can use a smaller sketch. The query delay can
be further reduced with the new sketch settings.

Task Optimisations. For the measurement tasks like cardi-
nality, flow distribution and flow entropy, processing those
queries involve heavy computational costs, while their re-
sults are unchanged within an epoch. We observe that the
flow distribution and flow entropy are estimated based on a
counter distribution array. In addition, the cardinality query
routine is highly overlapped with the counter distribution array
generation process, so they can be calculated together. The
process is costly as it performs linear-scan on OBucket and
OCMSketch (see Algorithm 6). To improve the performance,
OblivSketch precomputes the distribution array and cardinality
when generating the sketch and saves it within the enclave.
This optimisation introduces an additional 181 - 185ms delay
upon precomputing the array. However, it brings a 50 - 170×
speed-up on the query of the above three queries.

Evaluation Goals. The major goal of our evaluations is to
show OblivSketch can answer measurement queries before the
current epoch elapsed. This ensures that OblivSketch can pro-
vide a real-time measurement result regarding the underlying
network. It is also consistent with the design goal of plaintext
measurement systems [49], [77]. Meanwhile, we present a
comparison between the strawman and OblivSketch for each
individual query. The result demonstrates how our design
mitigates the security and efficiency issues of employing Intel
SGX with an acceptable cost from oblivious primitives.

The rest of this section is organised as follows: Sec-
tion VII-B compares the memory usage of OblivSketch and the
strawman. Then, Section VII-C demonstrates the micro bench-
mark of each oblivious primitives as well as the delay and
throughput of each measurement task. Finally, Section VII-D
examines the accuracy of OblivSketch.

B. Memory Management and Usage

Our first evaluation compares the enclave memory con-
sumption of OblivSketch with the strawman design. In par-
ticular, we generate the sketch on the trace with different
measurement time intervals. Here, we use the SGX Enclave
Memory Measurement Tool (EMMT) [40] to track the memory
usage within the enclave.

Figure 7 demonstrates the memory consumption in the heap
and stack of the enclave, respectively. In particular, the heap
keeps the computed statistics, and it resides in the memory for
future queries; The stack will be released after the generation
process, so it does not affect the performance of queries.

We can see that OblivSketch features a constant memory
consumption on the heap (7MB), where the sketch is located.

12

300 350 400 450 500 550 600

of Blocks (10
3
)

10

12

14

16

T
im

e
 (

s
)

Insertion

Query

(a) OCMSketch access

1 1.5 2 2.5 3

of Elements 10
4

150

200

250

300

350

400

T
im

e
 (

s
)

(b) OBucket scan

300 350 400 450 500 550 600

of Blocks (10
3
)

6

8

10

12

T
im

e
 (

m
s
)

(c) OCMSketch scan

1 1.5 2 2.5 3

of Elements 10
4

150

200

250

300

T
im

e
 (

s
)

(d) osort

Fig. 8. Latency of oblivious data structure and function.

0.10.8 0.22.5 0.3
4.3 0.7

11.0

1.2

20.5

2.9

41.1

7.9

101.3

60k 200k 368k 900k 1.6m 3.3m 6.6m

of (ID, counter)

0

50

100

G
e

n
e

ra
ti
o

n
 T

im
e

 (
s
) Strawman

Oblivious

Fig. 9. Sketch generation time in strawman and OblivSketch.

On the other hand, the strawman design incurs an increasing
demand for the heap memory when it computes long-term
statistics because it keeps all flow IDs in the heap. The
stack of the enclave is used to keep the incoming statistics
from software switches, so it is a fixed value for a given
measurement time interval.

Figure 7 also indicates that the memory consumption of
the strawman design exceeds the SGX memory limit during
the sketch generation when the measurement interval is 120s
(123MB). This causes an extra delay for paging in the gen-
eration process. Obliviously, if the time interval is increased
to 240s, the size of strawman’s heap (99MB) also exceeds
the SGX limit, and this leads to a noticeable delay on the
following measurement queries. Compared to the strawman,
although OblivSketch surpasses the memory limit when the
time interval is 240s, it still achieves practical performance
when processing queries, because paging will not be triggered
after releasing the stack. More evaluation results about the
generation cost and query delay are given in Section VII-C.

C. Measurement Performance

Micro Benchmarks on Primitives. We begin by evaluating
the performance of our oblivious data structure and functions.

1) oblivious sketch insertion and query: The oblivious sketch
consists of an OBucket and an OCMSketch. In the following
evaluation, we evaluate their insertion and query performance
separately. The overall insertion and query delay of the oblivi-
ous sketch can be simply computed by accumulating the access
time on each part.

For OBucket, the access time is fixed under the fixed bucket
size of each entry. In our default setting (150KB, 7 buckets
per entry), it takes 10µs to insert and 3µs to query OBucket.

For OCMSketch, the insertion and query time depends on
the performance of the underlying Path ORAM. Thus, we vary
the size of the sketch (i.e., the number of blocks in the ORAM)
and report the operation time under different block sizes. We
observe from the result (Figure 8a) that our customised ORAM
can respond the insertion and query within 20µs, which means
OblivSketch can access it frequently with a low delay. We also
observe that the insertion is slightly slower than the query. This
delay is consistent with our design, where the insertion needs
to retrieve the corresponding counter for update and then write
it back, while the query only reads the counter value.

2) OCMSketch scan: To evaluate the linear-scan cost, we run
a sum function on both OBucket and OCMSketch to sum all
values in these two parts. The evaluation results are listed
in Figure 8b and Figure 8c. We find that the linear-scan
on OBucket is finished within 400µs as it contains fewer
elements. On the other hand, linear-scan on OCMSketch can
take 5 - 10ms, which is the heaviest operation among all
oblivious functions. Therefore, we further consider reducing
the frequency of invoking this function. In the query delay
evaluation, we will demonstrate that we can reduce the invoca-
tion of the linear-scan algorithm after applying the optimisation
mentioned in Section VII-A. It improves the performance of
queries (i.e., cardinality, flow distribution and flow entropy)
that rely on linear-scan.

3) osort: Figure 8d evaluates the performance of osort. The
number of elements in the table is corresponding to the size of
OBucket (100KB, 150KB, 200KB and 250KB) in the protocol.
The result shows that the osort can sort OBucket within
300µs. Note that only a 200KB OBucket can achieve 100%
precision and recall, so the evaluation reflects the performance
of OblivSketch in practice.

4) oselector: The oselector can be finished within 0.01µs, and
the cost is negligible in our service.

Sketch Generation Time. As shown in Figure 9, both straw-
man and oblivious designs generate the sketch before the next
statistics coming in. By doing so, they are able to answer
the measurement query within each epoch. Again, the result
demonstrates the impact of paging. We can see that the
generation time increases disproportionally to the number of
flows if the memory exceeds the SGX limit. For the strawman
design, the generation time is 2.5 - 2.8× longer than the one
on a smaller trace, even if the trace only enlarges by 2×.
The same phenomenon happens for OblivSketch if paging is
triggered: the generation time slows down by 2.8× with a 2×
larger trace. Nonetheless, we highlight that OblivSketch can
process more flow information per epoch before paging is on,
i.e., the strawman needs paging to process 3.3m flows, but
OblivSketch does not. The above performance is sufficient for
OblivSketch to monitor very large-scale networks [15].

Query Delay. We present the query delay incurred by each
measurement task in Figure 10. First, our result further con-
firms the impact of paging during the query. In the strawman,
the query delay surges when the sketch size exceeds the limit
of the enclave. It makes the query slower than the correspond-
ing oblivious query although it is theoretically faster. Next, we
analyse the results of different measurement queries:

1) Flow Size: Both the strawman and OblivSketch cost a
constant time when querying the flow size of a given flow ID

13

30k 70k 100k 190k 280k 440k 690k

of Flows

0

10

20

30

40

T
im

e
 (

s
)

Strawman

Oblivious

(a) Flow size

30k 70k 100k 190k 280k 440k 690k

of Flows

0

20

40

60

T
im

e
 (

m
s
)

Strawman

Oblivious

(b) Heavy-hitter (top 20)

30k 70k 100k 190k 280k 440k 690k

of Flows

0

500

1000

1500

2000

2500

T
im

e
 (

m
s
)

Strawman

Oblivious

(c) Heavy-change (≥0.05%)

30k 70k 100k 190k 280k 440k 690k

of Flows

0

10

20

30

T
im

e
 (

s
)

Strawman

Oblivious

(d) Cardinality

30k 70k 100k 190k 280k 440k 690k

of Flows

0

100

200

300

400

500

T
im

e
 (

m
s
)

Strawman

Oblivious

(e) Flow distribution

30k 70k 100k 190k 280k 440k 690k

of Flows

10
0

10
1

T
im

e
 (

m
s
)

Strawman

Oblivious

(f) Flow entropy

Fig. 10. The query delay of each measurement task.

(see Figure 10a). That is because our design is based on the
sketch, and it has a constant query complexity as mentioned
in Section III-C. Moreover, our service is 14% faster than the
strawman when paging is triggered.

2) Heavy-Hitter: The query delay of heavy-hitter queries is
in Figure 10b. We can see that the strawman design requires
more time to compute the result while OblivSketch requires
a constant time to process the query. This is because of our
protocol has a fixed-size OBucket as the input of the sorting
algorithm. Furthermore, in OBucket, the number of elements
to sort is much smaller compared to the total number of flows
as we can see in Section VII-A. Therefore, OblivSketch out-
performs the strawman design, even if the complexity of the
sorting algorithm in the strawman (O(n), n is the number of
elements to sort) is lower than OblivSketch (O(n log2 n)).

3) Heavy-Change: Similar to the heavy-hitter detection, heavy-
change queries in OblivSketch take a constant time to process
(see Figure 10c). In the strawman, the query delay increases
with the size of the heap. In addition, it needs to linear-scan
and compares two heaps, which is memory-intensive. Hence,
the strawman triggers paging with a significant delay (15×).

4) Cardinality: The cardinality query of OblivSketch is much
slower than that in the strawman since OblivSketch needs
linear-scan on OBucket and OCMSketch to get the result,
while the strawman only invokes the standard C++ function
on the map. After applying the optimisation in Section VII-A,
the query performance can be improved to the same magnitude
as in the strawman (9µs).

5) Flow Distribution: As shown in Figure 10e, the distribution
query delay is proportional to the number of flows due to the
linear-scan algorithm in both implementations. Fortunately, the
precompute strategy significantly boosts its performance: The
enclave only needs to return the distribution array back now.
It only involves encryption/decryption and transmission costs,
which are negligible comparing to the linear-scan time.

6) Flow Entropy: Both implementations rely on the flow
distribution to compute the entropy. Since the flow distribution
is precomputed in OblivSketch, OblivSketch and the strawman

TABLE II. THE MEASUREMENT TASK THROUGHPUT (QUERY/EPOCH)
COMPARISON BETWEEN THE STRAWMAN AND OBLIVSKETCH.

measurement interval: 5s
Measurement

Tasks Flow Size Heavy-Hitter Heavy-Change Cardinality Flow
Distribution

Flow
Entropy

Strawman 372317 2858 305 537792 172 17286
OblivSketch 112875 473 217 263376 13242 7981

measurement interval: 240s
Measurement

Tasks Flow Size Heavy-Hitter Heavy-Change Cardinality Flow
Distribution

Flow
Entropy

Strawman 9672583 4563 96 13655411 533 15460
OblivSketch 6606942 27700 12720 15416198 614 14993

achieve similar performance (see Figure 10f) except when
paging is triggered (the strawman is 60% slower).

After integrating OblivSketch with the SDN framework, we
re-run the sketch generation time and query delay evaluations.
We realise that the SDN framework introduces a 5ms extra
delay when processing the above measurement queries. This
extra cost results from the network round-trip communication
as well as the protocol processing procedure in the controller.

Throughput. To confirm the practicality of our service, we
measure the throughput of measurement tasks. Here, the
throughput we measured is the number of queries that can
be answered for the current epoch after generating the sketch.
For each measurement task, we compare its throughput result
between OblivSketch and the strawman. Table II presents
the throughput result for OblivSketch and the strawman. In
the first table, all the results are collected under the default
settings (see Section VII-A for details). Our results show that
even though the throughput of OblivSketch decreases to some
extent, it can answer a significant number of queries. Note
that the network management applications (i.e., routing, load-
balancing, anomaly detection) will neither change the network
parameter nor scan for anomaly frequently [52]. Hence, the
throughput loss in OblivSketch is affordable: it is still viable
to respond to a large number of queries (from 200 to 260k for
the default settings) while it highly improves the security of
measurement tasks.

The second table shows the throughput performance when
the measurement interval is 240s, where the paging is triggered

14

TABLE III. THE QUERY DELAY OF DATASETS WITH DIFFERENT SIZES

measurement interval: 5s
Measurement

Tasks Flow Size Heavy-Hitter Heavy-Change Cardinality Flow
Distribution

Flow
Entropy

CAIDA1 20µs 5ms 10ms 9µs 179µs 301µs
CAIDA2 20µs 5ms 10ms 9µs 181µs 317µs

measurement interval: 240s
Measurement

Tasks Flow Size Heavy-Hitter Heavy-Change Cardinality Flow
Distribution

Flow
Entropy

CAIDA1 20µs 5ms 10ms 9µs 6ms 10ms
CAIDA2 20µs 5ms 10ms 9µs 6ms 10ms

TABLE IV. THE RUNTIME PERFORMANCE OF THE SMC BASELINE

Measurement
Tasks Generation Flow Size Heavy-Hitter

CAIDA1 65s 1.3s 18s
CAIDA2 70s 2.1s 32s

for the strawman. Under this setting, all the tasks throughput of
OblivSketch are close to or higher than that in the strawman ex-
cept the flow size. For the memory-intensive tasks like heavy-
change, OblivSketch’s throughput is 132.5× higher than the
strawman. This result illustrates the impact of paging in a large
network, and OblivSketch can effectively eliminate paging to
achieve better performance for the long-term statistics.

Scalability. We leverage two CAIDA datasets with a different
number of flows to demonstrate the scalability of OblivSketch.
The evaluation is running with two measurement intervals:
the first one is 5s, where CAIDA2 has 60% more flows than
CAIDA1. The second interval is 240s, where the number
of flows in CAIDA2 is doubled comparing to CAIDA1 (see
Table I). The other settings (sketch parameters) remain un-
changed. As shown in Table III, even the number of flows is
doubled in CAIDA2, the query delay of OblivSketch does not
change. The reason is that the query delay of OblivSketch is
only affected by the sketch setting but not the traffic size. Note
that the only exceptions are flow distribution and flow entropy
queries since a larger measurement interval indicates a longer
distribution array to be processed.

Compare with the SMC Baseline. Table IV illustrates the
query delay of the SMC baseline when querying a 5s-trace.
The delay includes the circuit generation and evaluation time.
The table shows that the SMC baseline takes 1.3 - 2.1s
when executing flow size queries. This is much slower than
OblivSketch, which only needs 20µs. Thus, the SMC baseline
can answer 2 - 3 queries only, and it cannot handle the query
if there are more than three applications submitting flow size
queries at the same time. For heavy-hitter queries, the SMC
baseline requires 18 - 32s to respond a query on the trace of a
5s-interval. It indicates that the SMC baseline cannot respond
to any heavy-hitter query before the current epoch elapsed.
Note that the above result does not consider the generation
time of the flow list, which is about 65 - 70s. After taking the
generation time into consideration, the SMC baseline cannot
answer any query within the 5s-epoch.

D. Accuracy

Finally, we perform a comparison of the accuracy on the
flow size, heavy-hitter and heavy-change. We choose these
three tasks because we observe that the measurement tasks
in OblivSketch either rely on OBucket only (heavy-hitter

TABLE V. ACCURACY COMPARISON (ARE) BETWEEN PLAINTEXT
SKETCHES, STRAWMAN AND OBLIVSKETCH. WE FIX THE SIZE OF

OBUCKET TO 150 KB.

Sketch size (KB) 200 400 600 800 1000
Strawman/CMSketch 6.93 2.84 1.61 1.04 0.73

OblivSketch 4 0.84 0.48 0.33 0.26
ElasticSketch [77] 3.97 0.81 0.44 0.31 0.27

and heavy-change) or the flow size (other tasks). Hence, the
accuracy results of the selected tasks can depict the accuracy
characteristics of OblivSketch precisely. We compare the accu-
racy of OblivSketch with the strawman as well as the plaintext
sketches, i.e., CMSketch [21] and ElasticSketch [77]. Note
that the CMSketch-based solution is exactly the same as the
strawman except that it does not run within the enclave. Also,
ElasticSketch [77] adopts the same design philosophy (split
heavy flows and light flows and count them with different data
structures) as OblivSketch. We perform the evaluation upon the
CAIDA1 dataset. The evaluation shows that, with comparable
memory usage, OblivSketch achieves higher fidelity than the
strawman/CMSketch.

We use the following metrics to measure the accuracy [77]:

• Average Relative Error (ARE): ARE can evaluate the
accuracy of flow size estimations. It is computed as
1
nΣni=1

|fi−f̂i|
fi

, where n is the number of flows, fi is
the flow size and f̂i is the estimated flow size. If all
estimated size is exactly the same as the real size,
ARE is 0.

• F1 score: F1 score can evaluate the accuracy of
the heavy-hitter and heavy-change detection. It is
computed as 2×PR×RR

PR+RR , where PR is the precision
rate (the ratio of correct flows in the reported flows)
and PP is the recall rate (the ratio of correct flows
reported among all correct flows). If F1 score is 1, the
estimation result is exactly the same as the real result.

For the accuracy of the heavy-hitter and heavy-change,
OBucket achieves the same accuracy level as [77] when they
use the same size of memory to keep heavy flows. When they
use 150KB memory (our default setting, 19200 buckets) to
keep the heavy flows, F1 score reaches 1 (100% accuracy).
Hence, we fix the default setting on OBucket and evaluate the
accuracy of the flow size estimation. In the flow size estima-
tion, we vary the size of sketch from 200KB to 1000KB (note
that only the OCMSketch of OblivSketch and the light part
of [77] will be increased). We found that OblivSketch achieves
better performance in accuracy: as shown in Table V, the ARE
of OblivSketch is 3.5× smaller than the strawman/CMSketch
under the default settings. Even though the sketch size is set
to 1000KB, the ARE of OblivSketch is still 2.8× lower than
the strawman/CMSketch. On the other hand, the accuracy of
OblivSketch is close to [77] (less than 0.1 difference in ARE),
whereas OblivSketch provides advanced security features.

VIII. CONCLUSION

In this paper, we propose OblivSketch, which is an oblivi-
ous and efficient network measurement service based on hard-
ware enclaves. OblivSketch contributes customised oblivious
data structures and algorithms that can integrate with the
hardware enclaves to support a wide range of important net-
work measurement tasks. OblivSketch service is integrated into

15

the existing SDN framework with minimised modifications.
Finally, we leverage large-scale network traces to demonstrate
its practicality.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and constructive suggestions.
The work was supported in part by the Monash University
Postgraduate Publications Award, the Data61-Monash Col-
laborative Research Project (D61 Challenge: E01), the ARC
Discovery Projects (DP180102199, DP200103308), the NSFC
Grant (61572278) and the BNRist Grant (BNR2020RC01013).

REFERENCES

[1] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A Data
Oblivious Filesystem for Intel SGX,” in NDSS, 2018.

[2] G. Asharov et al., “Privacy-Preserving Interdomain Routing at Internet
Scale,” Proceedings on Privacy Enhancing Technologies, vol. 2017,
no. 3, pp. 147–167, 2017.

[3] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz,
“Network-Wide Routing-Oblivious Heavy Hitters,” in ANCS’18, 2018.

[4] K. Batcher, “Sorting Networks and their Applications,” in ACM
SJCC’68, 1968.

[5] T. Benson, A. Akella, and D. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in ACM IMC’10, 2010.

[6] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: A Cloud
Networking Platform for Enterprise Applications,” in ACM SoCC’11,
2011.

[7] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk, “Rmind: A Tool for
Cryptographically Secure Statistical Analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 3, pp. 481–495, 2016.

[8] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas,
“MI6: Secure Enclaves in a Speculative Out-of-Order Processor,” in
MICRO’19, 2019.

[9] F. Brasser et al., “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in USENIX WOOT’17, 2017.

[10] P. Bright, “Can a DDoS Break the Internet? Sure. . . Just Not
All of It,” https://arstechnica.com/information-technology/2013/04/can-
a-ddos-break-the-internet-sure-just-not-all-of-it/ [online], 2013.

[11] J. W. Brown, O. Ohrimenko, and R. Tamassia, “Haze: Privacy-
Preserving Real-Time Traffic Statistics,” in ACM SIGSPATIAL’13, 2013.

[12] J. V. Bulck et al., “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution,” in USENIX
Security’18, 2018.

[13] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling Your Secrets Without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution,” in USENIX Security 17, 2017.

[14] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “SEPIA:
Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics,” in USENIX Security’10, 2010.

[15] “The CAIDA UCSD Anonymized Internet Traces,” https://www.caida.
org/data/passive/passive dataset.xml [online], CAIDA, 2018.

[16] G. Chen et al., “Racing in Hyperspace: Closing Hyper-Threading Side
Channels on SGX with Contrived Data Races,” in IEEE S&P’18, 2018.

[17] ——, “SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves
via Speculative Execution,” in IEEE EuroS&P’19, 2019.

[18] M. Chiesa, D. Demmler, M. Canini, M. Schapira, and T. Schneider,
“SIXPACK: Securing Internet eXchange Points Against Curious on-
looKers,” in CoNEXT’17, 2017.

[19] J. I. Choi et al., “A Hybrid Approach to Secure Function Evaluation
using SGX,” in AsiaCCS’19, 2019.

[20] T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery and Ex-
ploitation of Memory Corruption Vulnerabilities in SGX Enclaves,” in
USENIX Security’20, 2020.

[21] G. Cormode and S. Muthukrishnan, “An Improved Data Stream sum-
mary: The Count-Min Sketch and its Applications,” Journal of Algo-
rithms, vol. 55, no. 1, pp. 58–75, 2005.

[22] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics,” in USENIX NSDI’17, 2017.

[23] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “NaaS: Network-
as-a-Service in the Cloud,” in USENIX HotICE’12, 2012.

[24] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint
Archive, Report 2016/086, 2016.

[25] A. Dave, C. Leung, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Oblivious
Coopetitive Analytics Using Hardware Enclaves,” in EuroSys’20, 2020.

[26] V. H. Dixit, A. Doupé, Y. Shoshitaishvili, Z. Zhao, and G.-J.
Ahn, “AIM-SDN: Attacking Information Mismanagement in SDN-
datastores,” in ACM CCS’18, 2018.

[27] H. Duan et al., “LightBox: Full-stack Protected Stateful Middlebox at
Lightning Speed,” in ACM CCS’19, 2019.

[28] T. Elahi, G. Danezis, and I. Goldberg, “PrivEx: Private Collection of
Traffic Statistics forAnonymous Communication Networks,” in ACM
CCS’14, 2014.

[29] S. Eskandarian and M. M. Zaharia, “ObliDB: Oblivious Query Pro-
cessing for Secure Databases,” Proceedings of the VLDB Endowment,
vol. 13, no. 2, pp. 169–183, 2019.

[30] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and Private
Function Evaluation with Intel SGX,” in ACM CCSW’19, 2019.

[31] D. Goltzsche et al., “EndBox: Scalable Middlebox Functions using
Client-Side Trusted Execution,” in IEEE DSN’18, 2018.

[32] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache Attacks on
Intel SGX,” in EuroSec’17, 2017.

[33] A. Goyal, H. D. III, and G. Cormode, “Sketch Algorithms for Estimat-
ing Point Queries in NLP,” in EMNLP-CoNLL’12, 2012.

[34] D. Gruss et al., “Another Flip in the Wall of Rowhammer Defenses,”
in IEEE S&P’18, 2018.

[35] D. Gupta et al., “A New Approach to Interdomain Routing Based on
Secure Multi-Party Computation,” in HotNets’12, 2012.

[36] J. Han, S. Kim, J. Ha, and D. Han, “SGX-BOX: Enabling Visibility on
Encrypted Traffic Using a Secure Middlebox Module,” in APNet’17,
2017.

[37] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility
in Software-Defined Networks: New Attacks and Countermeasures,” in
NDSS, 2015.

[38] Q. Huang et al., “SketchVisor: Robust Network Measurement for
Software Packet Processing,” in ACM SIGCOMM’17, 2017.

[39] “Refining The Enclave with Proxy Functions,” https://software.intel.com
/content/www/us/en/develop/articles/intel-software-guard-extensions-
tutorial-part-7-refining-the-enclave.html [online], Intel, 2016.

[40] “Intel Software Guard Extensions (Intel SGX),” https://software.intel
.com/en-us/sgx [online], Intel, 2019.

[41] J. J. Lee et al., “Hacking in Darkness: Return-Oriented Programming
against Secure Enclaves,” in USENIX Security’17, 2017.

[42] J. J. Seo et al., “SGX-Shield: Enabling Address Space Layout Random-
ization for SGX Programs,” in NDSS, 2017.

[43] N. A. Jagadeesan et al., “A Secure Computation Framework for SDNs,”
in HotSDN’14, 2014.

[44] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the “One Big
Switch” Abstraction in Software-Defined Networks,” in CoNEXT’13,
2013.

[45] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa, “An Off-Chip
Attack on Hardware Enclaves via the Memory Bus,” in IEEE S&P’20,
2020.

[46] S. Lee et al., “Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing,” in USENIX Security’17, 2017.

[47] “DPDK: Data Plan Development Kit,” https://www.dpdk.org [online],
Linux Foundation, 2020.

[48] “Open vSwitch,” https://www.openvswitch.org [online], Linux Founda-
tion, 2020.

[49] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in ACM SIGCOMM’16, 2016.

16

[50] M. M. Schwarz et al., “ZombieLoad: Cross-Privilege-Boundary Data
Sampling,” in ACM CCS’19, 2019.

[51] E. Marin, N. Bucciol, and M. Conti, “An In-depth Look Into SDN
Topology Discovery Mechanisms: Novel Attacks and Practical Coun-
termeasures,” in ACM CCS’19, 2019.

[52] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller Architecture,” in IEEE WoWMoM’14,
2014.

[53] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
Efficient Oblivious Search Index,” in IEEE S&P’18, 2018.

[54] K. Murdock et al., “Plundervolt: Software-based Fault Injection Attacks
against Intel SGX,” in IEEE S&P’20, 2020.

[55] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss,
and D. Sharma, “Observing and Preventing Leakage in MapReduce,”
in ACM CCS’15, 2015.

[56] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks,”
in USENIX ATC’18, 2018.

[57] “OpenFlow Switch Specification,” https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.4.0.pdf [online], Open Net-
working Foundation, 2013.

[58] R. Poddar, C. Lan, R. Popa, and S. Ratnasamy, “Safebricks: Shielding
Network Functions in the Cloud,” in USENIX NSDI’18, 2018.

[59] S. Sasy, S. Gorbunov, and C. Fletcher, “ZeroTrace: Oblivious Memory
Primitives from Intel SGX,” in NDSS, 2018.

[60] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in DIMVA’17., 2017.

[61] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in NDSS,
2017.

[62] E. Siron, “What is the Hyper-V Virtual Switch and How Does
it Work?” https://www.altaro.com/hyper-v/the-hyper-v-virtual-switch-
explained-part-1/ [online], 2020.

[63] E. Stefanov et al., “Path ORAM: An Extremely Simple Oblivious RAM
Protocol,” in ACM CCS’13, 2013.

[64] E. Stefanov, E. Shi, and D. Song, “Towards Practical Oblivious RAM,”
in NDSS’12, 2012.

[65] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
Paging Overheads in SGX with Efficient Integrity Verification Struc-
tures,” in ACM ASPLOS’18, 2018.

[66] “Nokia Makes its Network Functions Available on AWS,” https://
telecoms.com/500959/nokia-makes-its-network-functions-available-on-
aws/ [online], Telecoms, 2019.

[67] B. Trach et al., “Shieldbox: Secure Middleboxes using Shielded Exe-
cution,” in SOSR’18, 2018.

[68] B. E. Ujcich et al., “Cross-App Poisoning in Software-Defined Net-
working,” in ACM CCS’18, 2018.

[69] W. Wang et al., “Leaky Cauldron on the Dark Land: Understanding
Memory Side-Channel Hazards in SGX,” in ACM CCS’17, 2017.

[70] X. Wang, H. Chan, and E. Shi, “Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound,” in ACM CCS’15, 2015.

[71] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient Mul-
tiParty Computation Toolkit,” https://github.com/emp-toolkit [online],
2016.

[72] O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in ACM ISCA’17,
2017.

[73] K.-Y. Whang, B. Vander-Zanden, and H. Taylor, “A Linear-Time
Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, 1990.

[74] F. Xiao et al., “Unexpected Data Dependency Creation and Chaining:
A New Attack to SDN,” in IEEE S&P’20, 2020.

[75] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the Brain:
Races in the SDN Control Plane,” in USENIX Security’17, 2017.

[76] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems,” in IEEE
S&P’15, 2015.

[77] T. Yang et al., “Elastic Sketch: Adaptive and Fast Network-Wide
Measurements,” in ACM SIGCOMM’18, 2018.

[78] Y. Zhang, A. Steele, and M. Blanton, “PICCO: A General-Purpose
Compiler for Private Distributed Computation,” in ACM CCS’13, 2013.

Algorithm 5 Linear Counting
Input: The distribution array {n} = (n0, n1, ..., n255) of OCMSketch; The
OCMSketch parameter w
Output: An estimated cardinality
LINEARCOUNTING({n}, w)

1: Initialise sum← 0

2: for i = 0 : 255 do
3: card+ = ni

4: End for
5: ratio← (w − card)/w
6: Return −w × ln(ratio)

APPENDIX A
OBLIVIOUS ALGORITHMS FOR OCMSKETCH AND

OBUCKET

Linear Counting of OCMSketch. Algorithm 5 is the native
linear counting algorithm in [73]. It leverages a hash function
to put all elements into an array and then refers to the number
of unused counters in the array to estimate the size (cardinality)
of the dataset. This algorithm sums all values in the distribution
array to learn how many counters are accessed in the current
epoch and deduces the unused counters (line 2 - 4). This
information allows the enclave to compute the maximum
likelihood estimation of the cardinality in OCMSketch (line 5
- 6). Linear counting is data-oblivious because it always scans
the entire distribution array and does the same computation to
get the cardinality.

Linear-Scan of OCMSketch and OBucket Algorithm 6
outlines how OblivSketch scans OBucket and OCMSketch
to get the flow distribution, respectively. In each part, the
algorithm aims to scan the entire data structure and return
a distribution array. Particularly, OCMSKETCHSCAN solely
scans the blocks in Path ORAM to get the distribution array.
On the other hand, OBUCKETSCAN aims to get the entire
flow distribution of the network. Therefore, it takes as input
the distribution array from OCMSKETCHSCAN and scans the
buckets in OBucket. For each flow ID in OBucket, it queries
OCMSketch to get the actual size of the flow (line 3 - 4
in OBUCKETSCAN). It then updates the distribution array
coordinately (line 5 - 7 in OBUCKETSCAN). To ensure its
obliviousness, we design RESIZE (line 5 in OBUCKETSCAN).
This function leverages an oblivious map to scale up the array
when needed. Hence, the memory access on {n} is randomised
even if OblivSketch accesses the same position in {n} since
the array is moved to a new place.

APPENDIX B
SECURITY OF OBLIVIOUS SKETCH

In this section, we formalise the security model of the
oblivious bucket and provide a proof sketch.

The security of the oblivious sketch is defined under the
real/ideal paradigm: In the real world, the adversary interacts
with a real oblivious sketch SReal, while in the ideal world,
the adversary interacts with a simulator SSim of the oblivious

17

Algorithm 6 Linear Scan
Input: The Path ORAM tree T ; the ORAM parameter Z and N
Output: A distribution array {n} = (n0, n1, ..., n255)

OCMSKETCHSCAN(T , Z, N)

1: Initialise {n} with 0 in all position
2: for i = 1 : Z ×N do
3: j ← T [i].value

4: nj+ = oselector(0, 1, T [i].bid = −1)
5: End for
6: Return {n}

Input: The distribution array {n} = (n0, n1, ..., n255); the Path ORAM
tree of OBucket TH ; the ORAM parameter Z and N of OBucket; The
OBucket parameter L; The OCMSketch hash function set {Hi}di=1; The
OCMSketch data structure (TL, positionL, SL)

Output: An updated distribution array {n}
OBUCKETSCAN({n}, TH , Z, N , L, {Hi}di=1, (TL, positionL, SL))

1: for i = 1 : Z ×N do
2: for j = 1 : L− 1 do
3: vcur ← OCMSKETCH.QUERY(TH [i][j].key, {Hi}di=1,

(TL, positionL, SL))

4: vnew ← TH [i][j].value+ oselector(vcur, 0, T [i][j].tag)

5: RESIZE({n}, oselector(vnew, {n}.size(), vnew > {n}.size()))
6: nvcur− = 1

7: nvnew+ = 1

8: End for
9: End for
10: Return {n}

sketch. For both experiments, the adversary can initialise the
oblivious sketch and supply any number of flow insertions and
queries. Then, the adversary can observe the memory access on
server including the that protected by enclaves. The following
theorem states the security of the oblivious sketch:

Theorem 1. The oblivious sketch is data-oblivious, assuming
that the Path ORAM protocol is data-oblivious.

Proof: In this proof, we construct a simulator that can
simulate the oblivious sketch in the view of adversaries on
the server. For an adaptively selected flow tuple (ID, v), the
simulator uses the simulator of Path ORAM SORAM to select
an entry in OBucket and scans all the buckets in that entry.
Then, it updates the eviction count and obliviously swaps the
input flow and minimal flow in the bucket. As a result, the
insertion on OBucket is oblivious since the access pattern for
each insertion is exactly the same: the adversary can only see
a random entry is scanned, then the entry’s eviction counter
is updated. OBucket outputs a flow at the end of the insertion
process, and this flow will be inserted into OCMSketch. We
can invoke SORAM to simulate this process.

For the query process, the simulator computes the random
oracle of flow ID and scans the corresponding entry retrieved
by SORAM . It will return a result no matter whether the
flow ID is in the entry or not (the size is 0 if it does not
exist). Then the simulator leverages the flow ID to query
OCMSketch, which can be simulated by the simulator of Path
ORAM. Finally, the query process gets two results (one from
OBucket and another from OCMSketch) and accumulates them

obliviously as the final output. Thus, the query process is also
oblivious since the adversary can only see the random accesses
on entries and paths in OBucket and OCMSketch, respectively.

We can conclude that the oblivious sketch is data-oblivious
for its insertion and query process, i.e., each access has the
same pattern independent of the given flow ID and size. Hence,
an adversary cannot infer the sensitive network statistics via
memory access side-channels on Intel SGX.

APPENDIX C
SECURITY OF MEASUREMENT TASKS

We analyse the security of each task by providing the
simulator of each task as follows:

• Flow size estimation: The security of this task is
guaranteed by Theorem 1 because it is based on the
query process of the oblivious sketch.

• Heavy-hitter detection: To simulate the heavy-hitter
detection, the simulator scans the whole OBucket and
loads the content of each bucket into a map, then it
invokes the simulator of bitonic sorting to sort the map
and returns the top-k flows as results.

• Heavy-change detection: To simulate the heavy-
change detection, the simulator scans the OBucket
of current epoch and previous epoch and loads the
content of each bucket into a map, then it leverages
a nested-loop to compare the flows in the above two
maps. All the flows that have more than T changes
will be returned as results.

• Cardinality estimation: The simulator of the cardi-
nality estimation first scans OBucket to count the num-
ber of flows in it. Then, it scans the all Path ORAM
blocks of OCMSketch and adds the value of each
block to a distribution array (c.f. OCMSKETCHSCAN
in Algorithm 6). The distribution vector is then further
scanned via the linear counting (c.f. Algorithm 5) to
estimate the number of flows in OCMSketch. The
simulator returns the sum of the above value as result.

• Flow distribution estimation: To simulate the flow
distribution estimation, the simulator scans the all Path
ORAM blocks of OCMSketch and adds the value of
each block to a distribution array (cf. OCMSKETCH-
SCAN in Algorithm 6). Then, the simulator scans
OBucket to update distribution array (cf. OBUCK-
ETSCAN in Algorithm 6). In particular, OBUCK-
ETSCAN leverages each flow ID in OBucket to query
in OCMSketch and get the actual flow size of a heavy
flow. Then, it updates the distribution array according
to the new flow size.

• Flow entropy estimation: The simulator of the flow
entropy estimation is based on the one for flow distri-
bution estimation. After getting the final distribution
array, the simulator can scan the whole array and
compute the entropy.

As the above simulators are either been simulated by the
simulator of oblivious primitives or based on linear-scan, they
are data-oblivious in the presence of an adversary who can
observe the memory space of a untrusted server.

18

