
ROV++: Improved Deployable Defense against BGP Hijacking

Reynaldo Morillo
University of Connecticut

reynaldo.morillo@uconn.edu

Justin Furuness
University of Connecticut

jfuruness@gmail.com

Amir Herzberg
University of Connecticut
amir.herzberg@uconn.edu

Cameron Morris
University of Connecticut

cameron.morris@uconn.edu

Bing Wang
University of Connecticut

bing@uconn.edu

James Breslin
University of Connecticut
james.breslin@uconn.edu

Abstract—We study and extend Route Origin Validation
(ROV), the basis for the IETF defenses of interdomain routing.
We focus on two important hijack attacks: subprefix hijacks
and non-routed prefix hijacks. For both attacks, we show that,
with partial deployment, ROV provides disappointing security
benefits. We also present a new attack, superprefix hijacks,
which completely circumvent ROV’s defense for non-routed prefix
hijacks.

We then present ROV++, a novel extension of ROV, with
significantly improved security benefits even with partial adop-
tion. For example, with uniform 5% adoption for edge ASes
(ASes with no customers or peers), ROV prevents less than 5%
of subprefix hijacks, while ROV++ prevents more than 90% of
subprefix hijacks. ROV++ also defends well against non-routed
prefix attacks and the novel superprefix attacks.

We evaluated several ROV++ variants, all sharing the im-
provements in defense; this includes “Lite”, software-only vari-
ants, deployable with existing routers. Our evaluation is based
on extensive simulations over the Internet topology.

We also expose an obscure yet important aspect of BGP,
much amplified by ROV: inconsistencies between the observable
BGP path (control-plane) and the actual traffic flows (data-plane).
These inconsistencies are highly relevant for security, and often
lead to a challenge we refer to as hidden hijacks.

I. INTRODUCTION

BGP, the Internet’s inter-domain routing protocol, does not
have authentication mechanisms, and suffers from frequent
misconfigurations and attacks, often with wide-ranging im-
pacts, e.g., [47], [58], [2], [60], [5]. By far, the most common
and effective attacks are prefix and subprefix hijacking, where
a rogue or misconfigured autonomous system (AS) announces
an IP address block (prefix or subprefix) not assigned to it.

The standardized defense against prefix and subprefix hi-
jacks is Route Origin Validation (ROV), which is expected to be
the first and most important application of the Resource Public
Key Infrastructure (RPKI) [32], [7], [17], [61], [54]. ROV is
also the prerequisite for BGPsec [37], the other standardized
defense for BGP, and for other inter-domain routing security
mechanisms, such as soBGP [63] and path-end validation [15].

Reports from NIST RPKI monitor [6] and a recent longi-
tudinal study [14] show that, despite a slow start, adoption of
RPKI—esp. issuing of routing certificates and Route Origin
Authorizations (ROAs)—has finally taken off, mainly since
2018. Importantly, misconfigurations that were abundant in
the past have become quite rare; there are also proposals for
further supporting (correct) deployments, e.g., [24]. As a result,
it appears that RPKI is coming of age, and can finally be
deployed by ROV to filter and drop invalid announcements.
Another recent study [57] shows that ROV has gone from
being non-existent two years ago to being used by more ISPs
(e.g., AT&T [1]) to filter BGP announcements, which has led
to benefits for the ASes that use RPKI.

Deployment of ROV is, however, still slow, as shown in
multiple works [29], [30], [62], [48], [19], [12], [25], [24].
Furthermore, Gilad et al. [19] have shown that, until it is
widely deployed, ROV only leads to limited benefits.

The security benefits of partially-deployed ROV are es-
pecially meager against subprefix hijacks; even for adopting
ASes, the benefits are meager, unless almost all top ASes
adopt ROV [19]. Note that an adopting AS will never use
an invalid announcement; however, its traffic may still be
hijacked due to routing via a non-adopting transit AS, through
which the packets will be routed to the attacker because of
the preference of more-specific routes. We refer to this as
data-plane hijack, since, although the routing table (control
plane) indicates a path to the correct origin, the traffic itself
(data plane) is hijacked (see §II). Analyzing BGP routing data
provided by RouteViews [49], we see approximately 343K
prefixes are shorter than /24 as of July 2020, which are
susceptible to subprefix hijacks, endangering roughly 2B IP
addresses, approximately half of the Internet. For ROV to be
effective against data-plane subprefix hijacks, it requires an
extremely widespread deployment, which is not expected in
the foreseeable future.

We also study the security of ROV against another impor-
tant threat: non-routed prefix hijacking. Non-routed prefixes
are widely abused, esp. for spam, phishing and DDoS attacks;
see [60]. In addition, we introduce a novel variant of non-
routed prefix hijacks, involving superprefix announcement. We
show that ROV is less effective against non-routed prefix
hijacks, and completely fails against the superprefix variant
of this attack.

Better defenses? Introducing ROV++! We present
ROV++, an extension of ROV, with much improved security

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual 
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24438
www.ndss-symposium.org



against subprefix and non-routed hijacks, including the new
superprefix hijacks. ROV++ defense is effective even with
limited deployment, with improvements to both adopting and
non-adopting ASes. We present several variants of ROV++,
and evaluate them using large-scale simulations. The results
show clear improved security of ROV++ (compared to ROV),
and tradeoffs between the different ROV++ variants.

We refer to several variants as Lite; these can be deployed
very easily—using existing routers. These Lite versions have
nearly the same security guarantees as their non-Lite versions,
all of which are certainly much more secure than ROV.

A. Main Contributions

• Design of ROV++, an improved security extension to
ROV (§III). We identify common scenarios, in which ROV
fails to prevent (data-plane) hijacking, and present correspond-
ing extensions, ROV++, versions v1, v2 and v3, which prevent
the hijacks. ROV++ v1 prevents interception for each prefix
in one of two ways. The first is to select an announcement
received from a neighbor who did not send a hijacked an-
nouncement for a subprefix. If no such announcement exists,
the traffic sent to the hijacked subprefix is dropped. ROV++ v2
announces a path to the hijacked subprefix when the AS cannot
correctly route to it, in addition to blackholing this traffic
(as in v1). This blackhole announcement competes with the
subprefix hijack, and therefore may protect other ASes from
being hijacked. Note, however, that blackhole announcements
may also increase the number of ASes whose packets cannot
reach the subprefix. ROV++ v3 returns to the case handled
by v1, where an AS receives from one neighbor a subprefix
hijack, and from another neighbor, an announcement with the
correct origin for the prefix, which it then announces. In such
cases, to help other ASes reach the correct origin, the v3 AS
will send preventive subprefix announcement, using the same
path. Like the blackhole announcements of v2, the preventive
announcement competes with the subprefix hijack. If these
preventive announcements are successful, traffic would reach
the correct origin, hopefully improving reachability.

• ROV++ security analysis (§IV). We show that an AS that
adopts ROV++ does not introduce hijacks beyond what would
have happened if the AS used BGP or ROV.

• Detailed evaluation of ROV and ROV++ (§V): To eval-
uate and fine-tune ROV++, we implemented a detailed BGP
simulator, incorporating BGP announcement and withdrawal
mechanisms. Using large-scale simulations over empirically-
derived datasets, we performed extensive measurements of
partial deployments of ROV and different variants of ROV++.
Our experiments cover adopting ASes and non-adopting ASes
(“collateral benefit”), results for subprefix hijacking and non-
routed prefixes, data-plane and control-plane results, impact on
different categories of ASes (edge, top-tier, others), and more.
The results show dramatic benefits of ROV++, esp. for early
adoption scenarios. In particular, for adoption at just 5%, about
95% of the adopting edge ASes fall victim to subprefix hijacks
due to “collateral damage” with ROV, compared to only 5%
with all variants of ROV++.

• Non-routed prefixes: evaluation of ROV and ROV++, and
the superprefix-attack (§V). We present the first evaluation

of the effectiveness of ROV and ROV++ against hijacking of
non-routed prefixes, widely abused for malicious applications
such as spam and DDoS [60]. We also present the superprefix
hijack attack, a novel way to hijack a non-routed prefix,
where the attacker announces a superprefix of the non-routed
prefix, together with (or even instead of) sending a hijack
announcement for the non-routed prefix. ROV is quite helpless
against this attack; in contrast, all versions of ROV++ defend
well against it, even with minimal deployment.

• Lite ROV++: software-only, readily-deployable design
(§VI). To facilitate implementation and fast adoption, we
designed the ROV++ Lite versions, which can be readily im-
plemented and deployed using existing routers. Our extensive
simulation results demonstrate that ROV++ Lite variants are
almost as effective as the corresponding non-Lite ROV++
versions.

• Recommendations (§VII). Our results seem to indicate a
clear recommendation for deployment: ROV++ v1 for routed
prefixes, and ROV++ v2 (or a variant) for non-routed prefix
hijacks. We recommend the Lite version for both cases since it
is easier to deploy and has similar performance as the non-Lite
version.

B. Related Work

Security of inter-domain routing. Security vulnerabili-
ties of inter-domain routing have long been recognized (see
summary in [45], [28], [8], [23], [42], [52], and common
misconfigurations in [39]). A large number of security solu-
tions have been proposed [34], [63], [21], [3], [26], [55], [64],
[31], [9], [59], [15], [53]; the effectiveness of BGP security
protocols are compared in [13], [20]. In addition, techniques
have been proposed to detect security problems, e.g., invalid
multiple origin AS [65] and BGP serial hijackers [56]. IETF
has standardized approaches for secure inter-domain routing,
namely, RPKI [32], [17], [61] and BGPsec [37], for origin
and path authentication, respectively. RPKI is the prerequisite
for more comprehensive security solutions, including BGPsec.
The studies in [5], [20], [35] show that RPKI can already
provide significant benefits in improving inter-domain routing
security; path-security solutions (such as BGPsec) only pro-
vides moderate benefits over RPKI, especially under partial
deployment [35], [15].

RPKI deployment and security. A number of studies [29],
[30], [62], [48], [19], [12], [25], [24], [6] investigate the
deployment status of RPKI, including the issuing of ROAs and
the adoption of ROV, and investigate how to improve adoption.
A recent study [14] uses 8 years’ data to show that after a
gradual start, RPKI has seen rapid adoption in the past two
years and misconfigurations have become rare. As a result,
the authors advocate using ROV to identify and drop invalid
announcements to increase routing security. The study in [57]
shows that ISPs (e.g., AT&T [1]) have started adopting ROV
to filter BGP announcements recently.

Several works study security concerns with RPKI, e.g., the
threat of misbehaving RPKI authorities [16], [22], [33]. These
concerns are orthogonal to our study.

2



II. MOTIVATING ROV++ BY USE CASES

Brief background on RPKI and ROV. RPKI facilitates
the issuing, distribution, and authentication of (signed) Route
Origin Authorizations (ROAs). A ROA R is a signed tuple
R = (R.p,R.o,R.l), indicating that the AS R.o is authorized
to be the origin of BGP announcements for prefix p ⊆ R.p,
unless p is longer than R.l (in which case, we say that p is too
specific). A BGP announcement A for prefix A.p with origin
A.o is considered valid if there is a properly-signed ROA R,
which indicates that A.o is authorized to announce A, i.e.,
A.o = R.o, A.p ⊆ R.p and len(A.p) ≤ R.l. In contrast,
an announcement A is invalid if a properly signed ROA R
binds the announcement’s prefix to some origin (i.e., A.p ⊆
R.p), but A.o 6= R.o or len(A.p) > R.l. The status of an
announcement is unknown if it is neither valid nor invalid. We
focus on prefixes covered by correct ROAs [32], [36], [19],
except for superprefix in §III-D for the reasons explained there.

ROV: Sub-optimal security benefits? While ROV pro-
vides origin authentication, it does not make the best use of
the ROAs to improve security. In particular, ROV often fails
to prevent data capture via subprefix hijacks; furthermore, it
often hides the subprefix hijacks, resulting in hidden hijacks
(see more details below), which are not visible from the routing
tables, and may mislead network operators and hijack defenses
to believe that the data is not hijacked. In this section, we
discuss several use cases that illustrate the suboptimal benefits
of ROV, and how ROV++ provides better security benefits
given the same ROAs. The detailed design of ROV++ and
deployment/implementation issues are deferred to §III and §VI.

Valley-free and other routing assumptions. We make
the standard simplifying assumptions about the policy used by
ASes. Most significantly, we assume valley-free (Gao-Rexford)
routing is used by all ASes [18]. That is, for any given prefix,
an AS forwards the best announcement that it receives from its
customers to all the neighboring ASes (customers, providers
and peers); if none was received from customers, then it
forwards the best announcement that it receives from a peer—
or, if none, from a provider—but only to its customers. If, for
some prefix, there is more than one announcement with the
“best” relationship, then the AS selects the one with a shorter
AS-path; if the length is also the same, the AS uses some
tie-breaking rule. While existing studies have shown that real-
world routing is not always valley-free [44], [38], [41], [4], we
adopt this simple policy as in most existing studies on routing
security (e.g. [13], [20], [19]) due to lack of better models.

We also assume that BGP selects one announcement, if
available, for every prefix, regardless of the existence of an-
nouncements for sub-prefixes and super-prefixes. In particular,
we assume no prefix aggregation.

Note that as a result of these assumptions and the strong
connectivity of the Internet AS topology, if a prefix is an-
nounced by an AS, then an announcement for it would reach
almost every other AS. In particular, if a prefix p is announced
only by one origin AS, say AS a, then almost all ASes
would receive the announcement for p with origin a. This is
the case for the announcements sent in the attacks we focus
on: subprefix hijack, non-routed prefix hijack, and superprefix
hijack.

Hidden hijacks occur when IP packets sent by an AS to

666

88

44

1.2.3/24

BGP ROV Hijacked data flow
Announcements

99

Provider Customer
Attacker

1.2/16

1.2/16, 99

1.2/16, 88-99

(a)

666

88

44

1.2.3/24

99
1.2/16

1.2.3/24, 666

78 1.2/16, 88-99
1.2.3/24, 88-666

(b)

Peer Peer

1.2.3/24, 
77-666

1.2/16, 78-88-99

1.2/16, 99

77
1.2.3/24, 666

Figure 1. Illustration of hidden hijacks with (a) BGP and (b) ROV.

some prefix are hijacked, even though all the BGP announce-
ments received by the AS contain the correct origin. Hidden
hijacks are possible with ROV, ROV++ and even BGP. Fig. 1(a)
shows an example, where due to valley-free routing, AS 44
will fall victim to a subprefix hijacking without receiving the
subprefix-hijack announcement. This is because AS 88 does
not send the subprefix-hijack announcement to AS 44, since
AS 88 received this announcement from a peer, while AS 44
is a provider of AS 88; on the other hand, traffic from AS
44 to the subprefix 1.2.3/24 will be hijacked anyway once
reaching AS 77. ROV may also create hidden hijacks, e.g.,
as in Fig. 1(b). In this example, the ROV adopting AS 78
is hijacked and, because AS 78 drops the subprefix hijack
announcement, the subprefix hijack will be hidden from AS
44, whose traffic to 1.2.3/24 will be routed to the attacker and it
will not know the change in data flow. If AS 78 did not adopt
ROV, the hijack would have been visible at AS 44. Hidden
hijacks are a significant obstacle in securing BGP without
perfect knowledge of the data plane. We formally define hidden
hijacks and describe hidden hijacks in ROV++ in §IV.

Three versions of ROV++. In the following, we present
the three basic mechanisms of ROV++, which are incorporated,
progressively, into three versions (ROV++ versions v1, v2 and
v3). ROV++ v1 has the first mechanism, ROV++ v2 has the
first two mechanisms, and ROV++ v3 has all three mecha-
nisms. In the figures below, blue ovals and yellow rectangles
represent the ASes that run BGP and ROV, respectively. An
AS that adopts ROV++ is represented as a green rectangle,
topped by a triangle containing the version number.

A. Preventing Visible Hijacks (ROV++ v1)

The simplest type of data-plane hijack that is not prevented
by ROV occurs when a ROV-deploying AS receives, from
the same neighbor, both a valid announcement for a prefix
(say, 1.2/16) and an invalid announcement for a subprefix (say,
1.2.3/24); this is the scenario for both ASes 77 and 78 in
Fig. 2(a). Suppose that this is either the only announcement
received for the prefix (as is the case for AS 77) or the best
announcement for the prefix (as is the case for AS 78). In both
cases, ROV will discard the invalid subprefix announcement
and use the prefix announcement—e.g., in Fig. 2(a), both ASes
77 and 78 will use the announcement received from AS 44.
As a result, they will forward data packets with destination IP
addresses in 1.2/16 to AS 44. Since AS 44 is using plain BGP,
however, it will route these packets directly to the attacker, AS
666. This is a data-plane hijack; it applies to all traffic sent

3



666

88

44

1.2.3/24

1.2/16

99

1.2.3/24, 44-666
1.2/16, 44-99

1.2/16,77-44-99

BGP ROV

Hijacked data flow

ROV++

Announcements

11

Provider Customer

Attacker

Blackhole

12

86

1.2/16, 88-86-99

1.2/16, 78-44-99

1.2.3/24, 44-666
1.2/16, 44-99

Dropped data flow
Correct data flow

78

77

(a)

666

44
1.2.3/24

88

99

1.2.3/24, 44-666
1.2/16, 44-99

11 12

86

1.2/16, 88-86-99

1.2/16, 78-88-86-99

1.2.3/24, 44-666
1.2/16, 44-99

1.2/16,77-44-99

1.2/16

77
v1

78
v1

(b)

Figure 2. ROV++ v1 prevents visible data-plane subprefix hijacks. (a) ASes 77 and 78 adopt ROV, and yet their traffic to 1.2.3/24 is hijacked, (b) the hijack
is prevented using ROV++ v1, by blackholing at AS 77 and by preferring a secure alternative path at AS 78. ASes 77 and 78’s adoption of ROV++ also protect
their customers.

from ASes 77 and 78, as well as from their customers (ASes
11 and 12), to the subprefix 1.2.3/24.

Notice that AS 77 and AS 78 could have deduced that any
traffic to 1.2.3/24 routed to AS 44 would be hijacked, since
they also received from AS 44 the subprefix hijack announce-
ment, and hence they “knew” that traffic to the subprefix would
be hijacked. In other words, the data-plane subprefix hijack
was visible to the ROV-deploying AS. However, ROV fails to
take this into account, and traffic to 1.2.3/24 is hijacked.

Alternative behaviors for AS 77 and AS 78 are depicted in
Fig. 2(b), which show improved resilience to visible hijacks.
AS 78 prefers a different path to the 1.2/16 prefix, which
goes via AS 88, thereby avoiding the hijack. AS 77 can only
route via AS 44—that is, it has no “safe route” that it could
prefer and reach the origin, AS 99; instead, it blackholes
the “doomed” traffic to 1.2.3/24. While this is not the most
desirable outcome, as it results in the loss of this traffic,
it is still much better than having the traffic hijacked. The
blackholing and preference mechanisms by ASes 77 and 78
also benefit their customers (ASes 11 and 12, respectively).

We use the term ROV++ v1 to refer to the extension
of ROV that provides a preference to a secure path and
blackholing when no secure path exists. The actual design also
addresses more complex scenarios, explored in the next sec-
tion. Note that ROV++ v1 differs from another route validation
policy, Drop Invalid if Still Routable (DISR) [53]. In Fig. 2(b),
if AS 78 deploys DISR, then it will drop the subprefix
announcement 1.2.3/24 since it can route traffic (going to
1.2.3/24) using the less specific prefix, 1.2/16. However, in
that case, the traffic from ASes 78 and 12 to 1.2.3/24 will be
routed using a shorter path, i.e., via AS 44, and hence hijacked.

B. Blackhole Announcements (ROV++ v2)

As discussed above, subprefix hijack announcements—
like every announcements of a prefix p sent only with a
single origin AS a—typically reach almost every AS in the
Internet. This holds even when a few of these announcements
get dropped, as would happen with partial deployment of
ROV or ROV++ v1. For example, in Fig. 3(a), AS 77 drops
the subprefix-hijack announcement; however, its customers,
e.g., AS 11, still receive the subprefix hijack announcement,
since they are also connected via AS 55. And while AS 77
blackholes traffic sent to the hijacked subprefix 1.2.3/24, this

will only apply to packets sent from AS 77 itself; packets from
ASes 11, 32 and 33 will not reach AS 77 at all because AS
11 will forward them to AS 55, since routers always relays
packets to the most specific (longest) prefix. As a result, their
traffic will be hijacked.

ROV++ v2 introduces an additional mechanism, whose
goal is to prevent hijack of traffic from customer ASes by “at-
tracting” it and then blackholing it. This is done by having the
AS send BGP blackhole announcements, i.e., announcing the
blackholed prefix; these would “compete” with any subprefix
hijack announcements received from non-adopting ASes.

For example, with ROV++ v2, AS 77 would send a subpre-
fix announcement for the hijacked subprefix, thereby attracting
such traffic away from the attacker and then blackholing it.
Blackhole announcements are illustrated In Fig. 3(b), where
AS 77 adopts ROV++v2, and sends blackhole announcement
for subprefix 1.2.3/24 to AS 11. As a result, traffic to IP
addresses in the subprefix 1.2.3/24 from ASes 11, 32 and 33,
and of course from AS 77 itself, would be blackholed rather
than hijacked (as it was in Fig. 3(a)).

Blackhole announcements against prefix hijack attacks?
Should a ROV++ v2 AS send blackhole announcements upon
receiving prefix-hijack announcements for a given prefix?
For instance, in Fig. 3(b), suppose AS 77 received a hijack
announcement for prefix 1.2/16, should it send blackhole
announcements for 1.2/16? Such announcements would com-
pete with prefix-hijack announcements, which may result in
blackholing traffic that would otherwise be hijacked. How-
ever, such announcements may also compete with legitimate
announcements for the prefix, which may result in blackholing
traffic that would otherwise be routed successfully to the
destination. It seems preferable, therefore, not to send the
blackhole announcement for prefix hijacking and only send
them for subprefix hijacking. In fact, even for subprefix hijack-
ing, blackhole announcements can, rarely, cause blackholing
of traffic that would otherwise be routed successfully to the
legitimate destination, as we show in §V.

Note, however, that blackhole announcements should be
used for non-routed prefix hijacks, i.e., announcements of
prefixes which are known to never be legitimately announced.
The RPKI specifications allow ROAs to identify non-routed
prefixes by using the special AS number of zero [27]. In this
case, there is no risk of blackholing traffic that will otherwise

4



666

11

44

1.2.3/24

1.2/1699

1.2.3/24, 44-666
1.2/16, 44-56-99

1.2/16,77-44-56-99

BGP ROV

Hijacked data flow

ROV++

Announcements
Provider Customer

Attacker
Blackhole

54

55

1.2.3/24, 55-54-44-666
1.2/16, 55-54-44-56-99

56

Dropped data flow

32 33

77
v1

(a)

666

44
1.2.3/24

1.2.3/24, 44-666
1.2/16, 44-56-99

1.2/16,77-44-56-99
1.2.3/24, 77-44-666

1.2/16,11-77-44-56-99
1.2.3/24, 11-77-44-666

1.2/1699

11

54

55
1.2.3/24, 55-54-44-666
1.2/16, 55-54-44-56-99

1.2/16,11-77-44-56-99
1.2.3/24, 11-77-44-666

56
77
v2

33
v232

(b)

Figure 3. ROV++ v2: Blackhole announcements protect downstream ASes. (a) AS 77 runs ROV++ v1 and blackholes the traffic to 1.2.3/24. However, the data
from ASes 11, 32 and 33 to 1.2.3/24 is routed via AS 55, and hijacked. (b) AS 77 runs ROV++ v2; it sends a blackhole announcement to AS 11, which protects
downstream ASes: traffic from ASes 11 and 32 to 1.2.3/24 is attracted to AS 77 and dropped there; AS 33 directly blackholes the traffic going to 1.2.3/24.

reach the correct destination, and therefore blackholing should
be applied. Hijacking non-routed prefixes is a common attack,
allowing the use of such IP address blocks for unauthorized
purposes such as sending spam, phishing, and Denial-of-
Service traffic; see [60]. As we shall see in §V, ROV++ v2
is significantly more effective than ROV in mitigating non-
routed prefix hijacks.

Contents of blackhole announcements. The goal of
blackhole announcements is to “compete” with the subprefix
hijack announcements by attracting and blackholing traffic that
would otherwise be hijacked. To conform to BGP and avoid
any unexpected side-effects, this is done by forwarding the
subprefix hijack announcement, just as it would have been
forwarded if the AS has simply used BGP without ROV or
ROV++.

Blackhole announcements: when and to whom to send?
In ROV++ v2, blackhole announcements are only sent to the
customers, as per the valley-free rule [18], and only when
receiving a subprefix hijack announcement from peers or
providers, not from customers. The rationale is that customers
are usually connected only to a few providers, and therefore,
when a provider blocks a hijack announcement from a cus-
tomer, there is a fair chance of blocking the hijacks for other
customers, even without sending a blackhole announcement to
them. Our evaluation (§V) confirms the advantage of the above
restrictive rule.

ROV++ v2a: aggressive non-routed blackhole an-
nouncements. ROV++ v2a is a “more aggressive” version of
ROV++ v2 that, upon receiving non-routed prefix hijacks, from
any neighbor, sends a corresponding blackhole announcement
according to export policy. The reasoning for the “aggressive”
v2a is that non-routed prefixes should not be announced at all,
and hence there is no danger of competing with the legitimate
announcement. Our evaluation in §V confirms that ROV++ v2a
is significantly more effective than ROV++ v2, and surely than
ROV, in defeating non-routed prefix hijacks.

C. Preventive Announcements (ROV++ v3)

Consider an ROV++ v2 AS that receives only a legitimate
prefix announcement from one provider and a subprefix hijack
announcement from another provider; see, for example, AS
33 in Fig. 4(a). Since AS 33 has a valid path, via AS 87,
for the entire 1.2/16 prefix, it will obviously not send a

subprefix blackhole announcement. The lack of a blackhole
announcement from AS 33, however, may cause AS 33’s
customers to fall victim to the attack. Specifically, consider AS
22, a customer of AS 33 as well as of AS 54. AS 22 receives
from both ASes 54 and 33 a legitimate prefix announcement
for 1.2/16. However, AS 22 also receives from AS 54 the
hijacked subprefix announcement for 1.2.3/24, since all ASes
along this path (44-53-54) use BGP. Following the longest
prefix matching, AS 22 will therefore route traffic to the
subprefix 1.2.3/24 via AS 54, causing this traffic to be hijacked.

In ROV++ v3, we introduce an additional mechanism,
called preventive announcements, whose goal is to “compete”
with the hijack announcement, much like the blackhole an-
nouncements of v2, but do it also when there seem to be a
route to the legitimate origin (i.e., no need to blackhole). In a
preventive announcement, an ROV++ v3 AS, e.g. AS 33, sends
a BGP announcement for the hijacked subprefix; the AS-path
in this announcement, however, will be a path to the legitimate
origin of the prefix that contains the hijacked subprefix. Since
both the preventive and hijacked announcements are for the
same subprefix, the preventive announcements may prevent
some traffic interception.

This is illustrated in Fig. 4(b), where AS 33 deploys
ROV++ v3. As before, AS 33 routes correctly the entire 1.2/16
prefix, via AS 87; however, now AS 33 also sends a preventive
announcement to AS 22, with the subprefix 1.2.3/24 and the
path 33-87-99 routing back to the authorized origin of the
prefix. AS 22 also receives the subprefix hijack announcement
from AS 54, but prefers the route 33-87-99, since it is shorter.
As a result, its traffic reaches the correct origin (AS 99), and
is neither hijacked nor blackholed.

For similar reasons as explained for blackhole announce-
ments, preventive announcements are only generated when
receiving a subprefix hijack announcement from peers or
providers, and are only sent to customers. Additional mech-
anisms are included to constrain the sending of preventive
announcements to avoid routing loops; see more details in §III.
Since a preventive announcement is created by a ROV++ v3
AS, without actually receiving such an announcement from
the origin, it will not work when certain path authentication
mechanisms (e.g., BGPsec [37]) are in place; we discuss the
pros and cons of ROV++ v3 in more detail in §VII-A.

5



44

1.2.3/24

1.2/16

99

1.2.3/24, 44-666
1.2/16, 44-99

22

54 87

666
53

1.2/16, 87-99

1.2.3/24, 54-53-44-666
1.2/16, 54-53-44-99

1.2/16, 33-87-99

33
v2

BGP ROV

Hijacked data flow

ROV++

Announcements
Provider Customer

Attacker

Correct data flow

(a)

44

1.2.3/24

1.2/16
99

1.2.3/24, 44-666
1.2/16, 44-99

22

54 87

666
53

1.2/16, 87-99

1.2.3/24, 54-53-44-666
1.2/16, 54-53-44-99

1.2.3/24, 33-87-99 
1.2/16, 33-87-99

33
v3

(b)

Figure 4. ROV++ v3: Preventive announcements help to route data to the legitimate origin. (a) Although AS 33 runs ROV++ v2, the traffic from AS 22
to 1.2.3/24 is still routed via AS 54, following the longest-prefix routing rule, and hence is hijacked. (b) When AS 33 runs ROV++ v3 and sends preventive
announcements to AS 22, the traffic of AS 22 to 1.2.3/24 is routed via AS 33 (shorter path) and reaches the legitimate origin.

III. ROV++: GOALS, MODEL AND DESIGN

In this section, we first describe the design goals of ROV++
and the attack model, then describe the detailed design of the
ROV++ mechanisms.

A. Design Goals

The first goal is simple: the adoption of ROV++ by an AS
should not cause hijack of traffic from that AS, beyond what
would have happened if the AS used BGP or ROV.

Goal 1 (Do no harm 1: no hijack due to ROV++). If traffic
from AS X to prefix p is hijacked when AS X deploys ROV++,
then this traffic would also have been hijacked if X used plain
BGP or ROV.

The second goal considers the impact of one AS’s adoption
of ROV++ on hijacks of traffic from other ASes. It would have
been great if we could extend the first goal, and require that
adoption of ROV++ by any AS X would not cause hijack of
traffic from any other AS. However, due the complexity of
BGP relationships and Internet topology, this extended goal
seems hard to achieve for any reasonable policy; indeed, it
does not hold for ROV. Therefore, we set a more modest goal,
which only requires improvement in the hijack probability for
a random edge AS. We require this to hold for any rate of
adoption, although we are especially interested in the impact
in the early adoption phase.

Goal 2 (Prevent hijacks (on average)). Let x be the percentage
of ASes adopting ROV++, and let PHijack,SubP (x) (resp.
PHijack,NonR(x)) be the probability that traffic from a random
edge AS is hijacked by a subprefix hijack (resp. non-routed
prefix hijack). Then both probabilities should monotonically
decrease in x. Furthermore, for any given x, PHijack,SubP (x)
and PHijack,NonR(x) should be less than the corresponding
values for ROV.

The previous goal focuses on reducing the probability of
hijacks. However, it does not necessarily translate to increase in
the probability of successful connections to the correct origin,
since some ASes may be disconnected from some prefixes.
Indeed, ROV++ would often only be able to prevent hijack,
but it may not be able to find a secure path to the correct
origin. We therefore consider a more modest, no-harm goal:

to have successful connection rates not much worse than those
of ROV, and preferably better.

Goal 3 (Do no harm 2: maintain successful connections). Let
PROV (x) (resp. PROV++(x)) be the probability that traffic
from a random edge AS reaches the correct origin during a
subprefix hijack, where x is the percentage of the ASes that
adopt ROV (resp. ROV++). Then, PROV (x) / PROV++(x)
for all (or most) values of x.

Finally, we mention two non-quantifiable yet important
goals: simplicity and ease of deployment.

Goal 4 (Keep It Simple). ROV++ design should be as simple
as possible.

Goal 5 (Easy to Deploy). ROV++ design should be easy to
implement and deploy.

In the above, Goals 1 to 3 are security-oriented goals, while
Goals 4 and 5 are system-oriented goals.

ROV++ meets the goals. In §IV, we prove that ROV++
achieves Goal 1 (see Corollary 1). Our simulation results in
§V show that Goals 2 and 3 are also achieved. In §VI we
present the Lite versions of ROV++, which meet the system
goals. The “do no harm” property achieved by ROV++ is
with respect to what is listed in Goals 1 and 3; ROV++ may
lead to non-necessary disconnections (e.g., due to blackhole
announcements in ROV++ v2).

B. The Prefix-hijack Attack Model

Many studies in cryptography and network security are
designed against arbitrary attack strategies and often assume
very powerful attack models such as MitM. ROV and ROV++
focus on the prefix-hijack attack model, a more specific attack
model that allows only a restricted set of attacker operations.
We next explain this attack model and justify why we adopt
it for this study.

The prefix-hijack attack model considers an attacker who
controls an AS. The attack method that the attacker exploits
is to send misleading BGP announcements from this AS to
other ASes with whom it has a connection (and relationship).
The misleading BGP announcements incorrectly indicate the
attacking AS as the origin of an IP prefix p, not assigned to

6



the attacker; the main evaluation metric is the amount of traffic
to prefix p that the attacker succeeds in intercepting. We do
not consider impersonation and MitM attacks since there are
widely-deployed mechanisms to prevent them, e.g., IPsec and
TLS.

The main reason that we do not consider other attacks
such as path manipulation or route leakage is that, if not
prevented, prefix hijacks are more effective than other attacks.
Specifically, in other attacks, by definition, the attacker will
not be the origin, and hence the announcement it sends
will contain AS-path of length at least two, while a prefix
hijack for the same prefix will send announcements with
AS-path containing only the attacking AS. Since ASes give
preference to announcements with shorter AS-path, the prefix-
hijack announcements are more likely to attract the traffic to
the prefix, compared to similar announcements with longer
AS-path (e.g., due to path manipulation or route leakage). The
fact that prefix hijack is a more effective attack was confirmed
by simulations, e.g., in [15].

Within the prefix-hijack attack model, we focus on pro-
tecting prefixes protected by a ROA. Namely, we assume that
an AS that deploys ROV or ROV++ can identify prefix/sub-
prefix hijacks reliably and correctly through ROAs. This is a
reasonable assumption given that misconfigurations of ROAs
have become rare [14]; dealing with ROA failures is out of
the scope of this paper.

C. Detailed Design

As illustrated in §II, a basic mechanism in ROV++ (all
three variants) is to support data-plane blackholing and prefer-
ence to safer paths. For this purpose, each ROV++ AS identi-
fies and maintains holes for incoming announcements, defined
as follows. Suppose an AS X receives a valid announcement
ann and an invalid announcement ann′, both from the same
neighbor, and ann′ has a subprefix (i.e., ann′.pre ⊂ ann.pre),
then X marks that ann has a hole to indicate that if it uses the
path in ann to route data to subprefix ann′.pre, then the data
will be hijacked. Whenever possible, X chooses a path that
has no hole (i.e., prefer safe path), and blockholes subprefix
ann′.pre if no safe path is available.

Specifically, X maintains a table of invalid announcements,
denoted as H. Each announcement hole ∈ H includes the
prefix hole.pre and the neighbor AS, hole.from, from which
hole was received. Let A denote the set of non-invalid an-
nouncements (i.e., classified as valid or unknown by ROV).
Similarly, each announcement ann ∈ A has ann.pre and
ann.from, with three additional attributes: ann.rel that rep-
resents the relationship between ann.from and X (i.e., peer,
provider, or customer), ann.path that represents the AS-path,
and ann.hole that represents the set of holes in ann.pre. Initially
ann.hole is empty, and holes will be added to ann.hole once
identified (see details below).

In ROV++, the incoming announcements can be standard
BGP announcements (update, withdraw), blackhole announce-
ments (in ROV++ v2 and v3), or preventive announcements (in
ROV++ v3). In the following, we first describe the marking of
blackhole and preventive announcements so that a ROV++ AS
can identify them (If only v1 is used, this aspect is not needed).
We then describe the handling of an incoming announcement.

Markings in blackhole announcements. A ROV++
AS marks a blackhole announcement, allowing subsequent
ROV++ ASes to be aware that the traffic would be blackholed
(dropped). Marking should be transitive, i.e., be propagated
also by ASes which use ROV or plain BGP, to reach ROV++
ASes without requiring direct connections between ROV++
ASes. This can be done in different ways; the best may be
to use an optional transitive BGP attribute [46]. A blackhole
announcement is treated mostly like an invalid announcement
(see details later).

Markings in preventive announcements. Preventive an-
nouncements are marked similarly so that they can be identi-
fied by ROV++ ASes, and not flagged as invalid and dropped
by the ROV mechanism. For example, suppose AS 99 owns the
IP address block 1.2/16, and the issued ROA has the maximum
length of 16. Then a preventive announcement of 1.2.3/24 with
the origin as AS 99 will be flagged as invalid (since 24 is
larger than the maximum length in the ROA) if not marked;
see the full version [43] on detailed examples that show the
advantage of marking preventive announcements. A preventive
announcement is treated mostly like a legitimate announcement
(see details later).

Handling incoming announcements. Algorithm 1 sum-
marizes how ROV++ handles incoming announcements. For
clarity, it does not include the handling of withdrawal an-
nouncements, which are handled in the same manner as in
BGP. Only the most essential procedures are defined in Algo-
rithm 1; the others are defined in Appendix A. The description
is for ROV++ v3, which includes all the three mechanisms in
ROV++; the operations in ROV++ v1 and v2 are (mostly) a
subset, as marked in Algorithm 1.

Consider an incoming announcement ann. We consider two
cases. (i) The announcement ann is determined as valid or
unknown by ROV, i.e., indicated by PASSROV(ann) as being
true, or it is a preventive announcement. In this case, the router
uses UPDATEHOLE(ann,H) to check whether any hole needs
to be added to ann. After that, ann is added to A, and the
router uses DECIDEBESTROUTE to find the best route. If the
best route is a new route (i.e., differs from the currently used
best route), then the router needs to perform a sequence of
actions, including removing blackhole, blackhole or preventive
announcements that were set up or sent due to the old route,
and actions for the new route. For the new route, if there
is no alternative safe route for a subprefix, the router sets
up a local blackhole for that subprefix; it further creates a
blackhole announcement for that subprefix if it is received from
a provider or peer, and sends it to customers (in ROV++ v2 or
v3) or according to export policy (in ROV++ v2a). Otherwise,
i.e., there is a safe route, the router decides whether to send
a preventive announcement through SENDPREVENTIVEANN
(to be described later). (ii) The announcement ann is an
invalid or blackhole announcement. In this case, the router
invokes UPDATEHOLE (A, ann), which updates the holes for
all the announcements in A based on ann. If the holes of an
announcement a ∈ A have been updated, then the router uses
DECIDEBESTROUTE to find the best route for prefix a.pre.

In the above, the procedure UPDATEHOLE takes two sets,
one containing valid announcements whose holes need to
be updated and the other containing one or more invalid
announcements. In the procedure, each valid announcement a

7



Algorithm 1 ROV++ Handling Incoming Announcements.
1: procedure INCOMINGANNOUCEMENT (ann)
2: if PASSROV (ann) or ISPREVENTIVE (ann) then
3: UPDATEHOLE (ann, H)
4: A = A ∪ ann
5: DECIDEBESTROUTE (ann.pre)
6: else
7: // invalid or blackhole announcement
8: H = H ∪ ann
9: UPDATEHOLE (A, ann)

10: if ∃a ∈ A s.t. a.hole has been updated then
11: DECIDEBESTROUTE (a.pre)
12: end if
13: end if
14: end procedure

15: procedure UPDATEHOLE (annSet, holeSet)
16: for ∀a ∈ annSet and ∀b ∈ holeSet do
17: if b.pre ⊂ a.pre and a.from = b.from then
18: a.hole = a.hole ∪ b
19: end if
20: end for
21: end procedure

22: procedure DECIDEBESTROUTE (pre)
23: Let u ∈ A be the currently used route for prefix pre; set

to NULL if no route exists
24: a = FINDBEST (pre)
25: if a 6= u then
26: USE (a)
27: if u.hole 6= ∅ then
28: for all hole ∈ u.hole do
29: REMOVEBLACKHOLE (hole)
30: // Only for ROV++ v2 and v3
31: WITHDRAWBLACKHOLEANN (hole)
32: end for
33: else
34: // Only for ROV++ v3
35: for all hole ∈ H s.t. hole.pre ⊂ u.pre do
36: WITHDRAWPREVENTIVEANN (u, hole.pre)
37: end for
38: end if
39: if a.hole 6= ∅ then
40: for all hole ∈ a.hole do
41: BLACKHOLE (hole)
42: // Only for ROV++ v2 and v3
43: if ISPARENTORPEER (hole.from) then
44: SENDBLACKHOLEANN (hole)
45: end if
46: end for
47: else
48: // Only for ROV++ v3
49: for all hole ∈ H s.t. hole.pre ⊂ a.pre do
50: SENDPREVENTIVEANN (a, hole.pre)
51: end for
52: end if
53: end if
54: end procedure

is checked with each invalid announcement b. If a.pre contains
b.pre (i.e., b.pre ⊂ a.pre), and the two announcements
have the same upstream AS (i.e., a.from = b.from), then
a.hole = a.hole ∪ b.

The procedure FINDBEST applies a set of rules, in a
priority order, to find the best route for a destination prefix.
We use the following priority rules: first based on relationships
(i.e., prefer the route from a customer over that from a peer
over that from a provider), and then prefer the route with no
(or least) holes. If there are still ties, prefer the route with
shortest path. The rationale is that this order first considers
the economic incentives of the ASes, and then security, and
performance last.

The procedure SENDPREVENTIVEANN decides whether to
send a preventive announcement or not in ROV++ v3. This is
a bit delicate; ROV++ v3 uses multiple measures to prevent
unsafe paths from propagating in the network, which may
harm convergence or cause loops. First, when a ROV++ v3
AS sends an announcement, it includes a transitive field to
indicates whether the announcement contains holes or not,
which can be recognized by other ROV++ v3 ASes. Second, an
ROV++ v3 AS X only generates a preventive announcement
about a subprefix subp if (i) X receives a subprefix hijack an-
nouncement subp from a provider or peer, and (ii) X receives a
legitimate announcement pre, s.t. subp ⊂ pre, that contains no
holes (as indicated by the transitive field) from some neighbor
AS Y that did not send subp to X . Third, X sends the
preventive announcement only to customers from which it has
not received pre, to prevent routing loops. Suppose a customer
of AS X , say AS Z, receives a preventive announcement from
X on subp, and later sends an announcement with prefix pre to
X . Then X will withdraw the preventive announcement from
Z, and Z will in turn withdraw it from other ASes.

D. Non-routed Prefix and Superprefix Hijacks

So far, the ROV++ design focuses on mitigation of sub-
prefix hijacks. We now discuss minor extensions that have
significant impact on other important hijack scenarios.

Non-routed prefix hijacks. These are hijacks on IP ad-
dresses that are normally non-routed, i.e., not part of any
(legitimately) announced IP prefix. Somewhat surprising, there
are plenty such IP addresses, typically owned by organizations
that were allocated large address blocks in the early days
of the Internet, and never got to utilize them. As shown
in [60], non-routed prefixes are often hijacked, and then used
to launch different attacks such as spam and DDoS. The main
motivation of the attackers is to foil blacklists: once one such
hijacked prefix is blacklisted, they just move to another one.
Indeed, a significant fraction of the non-routed address blocks
is blacklisted at any given moment, due to such attacks.

RPKI allows ROA to specify origin AS zero to signal a
non-routed prefix so that ROV ASes will drop these announce-
ments, and thereby not send packets to the non-routed prefixes,
as desired. This completely prevents hijacking of packets sent
by a ROV-deploying AS to non-routed prefixes. ROV also
provides some defense to non-adopting ASes, but this defense
is quite limited. We present the first evaluation of the defense
that partial-adoption of ROV provides to non-adopting ASes
against non-routed prefix hijacks (see §V), which shows a

8



significant improvement, almost linearly as adoption of ROV
grows. However, we next explain how a simple adaptation
of the ROV++ blackhole announcement mechanism provides
much improved security (to non-adopting ASes).

ROV++: non-routed blackhole announcements. To bet-
ter defend against non-routed hijacks, ROV++ sends black-
hole announcements as follows. An AS that receives an
announcement for a prefix with non-routed ROA (identified as
origin AS being zero [27]) sends the corresponding blackhole
announcement, following either the v2 or v2a rules. This
announcement will now compete with the attacker’s non-
routable prefix hijack, preventing hijack of traffic from more
non-adopting ASes. Our evaluation in §V confirms the benefits
of this improvement.

In superprefix hijack of non-routed prefix, an attacker
announces a superprefix of a non-routed prefix. Since the
prefix is not announced, then packets whose destination IP
address is in the non-routed prefix, will be routed following the
superprefix announcement directly to the attacker. This attack
circumvents ROV; if there is no ROA for the superprefix, which
is the common case, then ROV will announce the superprefix,
and the attack succeeds. For example, suppose prefix 1.2.3/24
is non-routed and protected by a ROA with origin AS 0.
An attacker, AS 6, wants to hijack 1.2.3/24, and therefore
announces superprefix 1.2.0/22. It is reasonable to assume that
no other AS announces 1.2.0/22 and no corresponding ROA
was published (due to concerns that issuing such a broad ROA
may invalidate legit announcements of many prefixes that are
not yet covered by ROAs [19]). Using ROV (and BGP), the
announcement of 1.2.0/22 is likely to reach almost all ASes,
including ROV ASes and their customers. As a result, AS 6
will successfully hijack almost all traffic sent to 1.2.3/24 or
any other unannounced subprefix of 1.2.0/22.

ROV++ blackholing defeats superprefix hijack of non-
routed prefix. ROV++ always blackholes all traffic sent to
non-routed prefixes. This suffices to completely foil the super-
prefix hijack of non-routed prefixes. Further, this provides
some benefits to non-adopting ASes; see evaluation in §V.

Extensions foiling reflection-DDoS. The fact that ROV++
blackholes traffic sent to non-routed prefixes foils many ex-
ploits of non-routed prefixes. In particular, it foils spam,
since the spammer will not be able to establish the SMTP
connection. However, this alone may not provide the best
defense against the common threat of reflection-DDoS attacks.
Improved defense can be achieved through another minor
extension: the AS should also blackhole traffic whose source
IP is in a non-routed prefix.

Superprefix+prefix hijack prefix. The superprefix attack
may also be combined with a prefix-hijack attack, i.e., to hijack
traffic sent to a prefix which was announced by its legitimate
origin AS, and protected by a ROA. The goal would, again, be
to reduce the effectiveness of ROV to defend against hijack—
in this case, to protect against prefix hijack. Let us explain the
attack using an example. As the name implies, the attacker
sends a prefix hijack announcement, say for prefix 1.2.3/24,
but also announces the superprefix, say 1.2.0/22. As before,
we assume that 1.2.0/22 is not covered by a ROA. Consider,
for simplicity, a stub AS that uses ROV, and assume this AS
received the hijack announcement for 1.2.3/24; due to the use

of ROV, this announcement is dropped. However, like almost
all ASes, this AS will almost surely receive the superprefix
(1.2.0/22) announcement. As a result, the AS will send packets
with destination IP in 1.2.3/24 to its provider, and from there,
these packets will be routed to the attacker, since the provider
is using the hijacked announcement.

Defenses. The blackhole mechanism makes ROV++ adopt-
ing ASes immune to this improved attack. It is possible to foil
the superprefix attacks by issuing non-routed ROAs (origin
AS set to zero) for superprefixes of ROA-protected prefixes.
However, this may cause any unknown prefix covered by the
superprefix to be considered invalid, and hence needs to be
applied carefully.

IV. SECURITY ANALYSIS

It is challenging to identify the exact properties of rout-
ing security mechanisms, including ROV++, especially under
partial deployment. We present some preliminary results, and
leave further analysis for future work.

As mentioned earlier, hidden hijacks have significant impli-
cations on ROV and ROV++. We next formally define hidden
hijacks and visible hijacks, and then compare the extent of
hidden/visible hijacks when deploying ROV++ versus ROV,
and show that ROV++ achieves better security than ROV and
BGP.

Definition (visible and hidden hijacks). Suppose that an
AS A0 selects the path (A1, . . . , An) for routing packets for
the entire prefix pre (no subprefixes). If A0 sends a packet to
an IP address x ∈ pre, and this packet does not reach An,
then we say that it was hijacked. If A0 received from A1 an
announcement for a subprefix subp ⊂ pre with an AS-path
that does not terminate in An, we say this was a visible hijack;
otherwise, we say this was a hidden hijack. See examples of
hidden hijacks in Fig. 1. An example of visible hijack is in
Fig. 2(a). There, AS 77 receives two announcements from AS
44: one with path (44, 99) for prefix 1.2/16, which if valid and
selected by AS 77, and one with path (44, 666) for subprefix
1.2.3/24, which is invalid and dropped. However, the traffic
from AS 77 to 1.2.3/24 is still hijacked, which is a visible
hijack since AS 77 received the subprefix hijack announcement
from AS 44.

Hidden hijacks in ROV and ROV++. As shown in
§II, ROV ASes are vulnerable to visible subprefix hijacks.
In addition, since ROV ASes drop illegitimate subprefix an-
nouncements, it can create hidden hijacks, i.e., causing other
ASes to fall victim to hidden hijacks; see one example in
Fig. 1(b), where AS 44 will suffer from hidden hijacks because
ROV AS 78 drops the subprefix hijack announcement. This is
a significant weakness of ROV, and a concern for mixing ROV
with ROV++ and other defense mechanisms, including BGP
hijack detection services and the Artemis defense [51].

In contrast, ROV++ does not suffer from visible subprefix
hijacks. This is by design—even in ROV++ v1—an ROV++
AS either blackholes the subprefix or uses an alternative
safe path (if available) to prevent visible subprefix hijacks.
Therefore, all subprefix hijacks in ROV++ are hidden hijacks.
In addition, ROV++ ASes will never create hidden subprefix
hijacks. These properties are formally stated below; we assume

9



the relevant RPKI ROAs are correct, i.e., if PASSROV(ann) is
invalid, then ann is a prefix or subprefix hijack announcement

Lemma 1. Consider a ROV++ AS X that receives a visible
hijack announcement ann, i.e., PASSROV(ann) is invalid,
from neighbor ann.from. Then X will not send packets to
ann.from for any packet whose destination IP is in ann.pre.

The lemma follows from the design of ROV++ (all vari-
ants). Note that if a stub AS receives a visible hijack for
some prefix pre, then it would not send any traffic to pre,
i.e., become disconnected from it (rather than allow the traffic
to be hijacked).

We next show that ROV++ achieves Goal 1, if we do not
have two concurrent hijacks of different sub-prefixes of the
same prefix.

Corollary 1 (Goal 1 is achieved, for a single hijack). If traffic
from AS A0 to prefix pre is not hijacked when A0 is using BGP
or ROV, then traffic from A0 to pre will also not be hijacked
if A0 uses (any variant of) ROV++, provided that at most one
subprefix of pre is hijacked.

Proof: Consider any IP address x ∈ pre. Let A1 be the
AS to which A0 is forwarding packets with destination x,
when A0 uses BGP/ROV. If, when running ROV++, A0 is
also forwarding packets to x, or A0 cannot route packets to x,
the claim follows trivially. Hence, assume that when A0 runs
ROV++, it sends packets whose destination is x to another
neighbor, A′

1 6= A1. In all versions of ROV++, this happens
only if A0 detects hijacking of a subprefix subp ⊂ pre. If
x ∈ subp, then x would be hijacked if A0 used ROV/BGP.
Otherwise, then x is not in any hijacked (sub)prefix, since we
assumed at most one subprefix of pre is hijacked; hence, x
must be routed correctly also when A0 uses ROV++.

The claim and proof also extend to the ROV++ Lite
versions, presented in §VI, even without the restriction to a
single hijack. The proof is omitted due to length restrictions.

Hidden hijacks in BGP and ROV++. Interestingly, hidden
hijacks can also occur in BGP-only networks, where an AS that
uses BGP does not receive a subprefix hijack announcement
from any neighbor, yet the data traffic to the subprefix is
hijacked; see one example in Fig. 1(a). In a BGP-only network,
a subprefix hijack announcement will normally reach almost
all the ASes, leading to visible subprefix hijacks; but some
(usually few) ASes may not receive the subprefix hijack
announcement (e.g., due to valley-free routing as in Fig. 1(a)),
and suffer from hidden subprefix hijacks. Our analysis (see full
version [43]) shows that BGP ASes generally make subprefix
hijacks visible by forwarding the subprefix announcement,
hence the hidden hijack rate in BGP-only network is low (the
visible subprefix hijacks rate is, however, close to 100%). In
contrast, ROV can create hidden hijacks, leading to higher
hidden hijack rate.

ROV++, unlike ROV and BGP, never creates hidden hi-
jacks. However, ROV++ cannot completely prevent hidden
hijacks, since an AS A0 cannot detect that traffic may be
hijacked when routed via a neighbor A1, if A0 did not receive
a (visible) hijack announcement for a subprefix subp ⊂ pre
from A1. Furthermore, unlike BGP, ROV++ never outputs a
visible hijack—and, as a result, may quite often propagate

hidden hijacks, i.e., output a hidden hijack—when receiving a
hidden hijack announcement. This happens when the hidden
hijack announcement is selected, which may happen quite
often, esp. considering ROV++ “prefers” it, hoping it does
not result in hijack. This causes an interesting phenomenon in
the evaluations, where hijacking from ROV++ ASes somewhat
increases as adoption increases (up to about 40%), due to the
higher proliferation of (BGP-induced) hidden hijacks. This is
more pronounced in ROV++ v3, where an adopting AS that has
selected the hidden hijack announcement will use the hijacked
path to generate preventive announcements. Any neighbor that
uses this preventive announcement will then be subject to
hidden hijack.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ROV++ in
comparison with ROV using simulation. We first describe the
simulation setup, and then present the results.

A. Simulation Setup

We evaluate the performance of the multiple ROV++
variants and ROV using a simulator that we developed. This
simulator provides detailed simulation of BGP announce-
ment propagation, including both update and withdrawal of
announcements. It further incorporates simulation of route
validation, best path decision making and export policy.

All evaluation uses an empirically-derived Internet-scale
AS topology (each edge marked with an AS relationship)
from CAIDA [10] (using the serial-2 dataset for July, 2020).
For an AS that adopts plain BGP or ROV, the best path
decision making follows three standard rules in order: (i) local
preference (i.e., prefer announcements from customers, over
those from peers, and those from providers), (ii) shortest path,
and (iii) breaking ties randomly. For a ROV++ adopting AS,
preference to routes with no blackholes is placed right after
local preference, so that the economic interests of the AS is still
considered first. The routing follows the commonly assumed
valley-free routing [18].

For each ROV or ROV++ policy, we assume a certain
percentage of ASes adopts the policy, while the others run
plain BGP. The percentage of adoption varies from 0%-100%
for a given policy1. For each setting, we run over 2000 trials,
each with a random attacker and victim from the edge ASes,
and present the average results with 95% confidence intervals.
We consider three categories of ASes: top 100 ASes (obtained
from ASRank [11] on July 23rd, 2020), edge ASes (those
without customers or peers), and the other ASes (those that
are not among top 100 or edge ASes). The results we present
use uniform adoption among these three categories of ASes,
as in most previous works, although we also tested results for
non-uniform adoption; results were quite similar.

We focus on two types of hijacks: (i) subprefix hijacks,
where a prefix, say 1.2/16, is announced by its legitimate
origin, and an attacking AS announces itself as the origin of
a subprefix of 1.2/16, say 1.2.3/24; attacker and victim pairs
are randomly chosen from the edge ASes, and (ii) non-routed

1In 0% adoption, only the tested AS adopts the policy; in 100% adoption,
all but the tested AS adopts the policy. This treatment allows us to present
the trend for adopting and non-adoption ASes separately.

10



Figure 5. Subprefix hijack rates in
control and data planes.

Figure 6. Subprefix hijack: overall
hijack rate.

prefix hijacks, where we consider two cases, one assuming that
an attacker announces a non-routed prefix, say 1.2.3/24, that is
protected by a ROA with origin AS 0, and the other assuming
that the attacker announces a superprefix, say 1.2.0/22 (i.e.,
superprefix hijack of non-routed prefix, see §III). No other AS
announces the prefix/superprefix.

For subprefix hijacks, the performance metrics include (i)
hijack rate, i.e., the percentage of ASes whose traffic to the
subprefix is hijacked by the attacker, (ii) successful connection
rate, i.e., the percentage of ASes whose traffic to the subprefix
is routed successfully to the victim, and (iii) disconnect rate,
i.e., the percentage of ASes whose traffic to the subprefix is
dropped, and routed to neither the victim nor the attacker.
For non-routed prefix hijacks, the performance metrics is only
the hijack rate, since no victim is supposed to receive such
prefixes; the disconnect rate is simply the complementary of
the hijack rate.

B. Data Plane vs. Control Plane Results

Before presenting the results, we first highlight the impor-
tance of quantifying the various performance metrics based
on the data plane (i.e., the actual paths for the data packets),
instead of the control plane (i.e., the absence or presence
of a subprefix/prefix in the routing table). Fig. 5 shows an
example. It plots the hijack rate when 0 to 100% of the ASes
adopt ROV under subprefix hijacks. For adopting ASes, the
control-plane hijack rate is always zero, since all these ASes
drop the hijacked subprefix; the actual data-plane hijack rate,
however, begins at essentially 100% and then decreases with
adoption rate; this is due to data-plane hijacks, as described in
§II-A. Also for non-adopting ASes, data-plane hijack rates are
significantly higher (worse) than the control plane hijack rate.

The above example demonstrates that results in the control
plane can lead to significant underestimation of hijacks. Hence,
all the results in the rest of this section are obtained from
the data plane, which provide accurate characterization of the
actual performance of ROV and various ROV++ policies.

C. Subprefix Hijacks

For subprefix hijacks, we first present the overall hijack
rate for all ASes, with different percentages adopting (and the
rest non-adopting). We then present the results for adopting
and non-adopting ASes separately. For adopting ASes, the
results quantify the security benefits from adopting the policy,
while for non-adopting ASes, the results quantify the collateral
benefits such ASes obtained from the adopting ASes. The
results for both cases are important—a policy is more likely to
see wider adoption when it provides higher security benefits

to the adopting ASes and higher collateral benefits to the non-
adopting ASes. For all the above, we obtain the results for the
three categories of ASes, i.e., top 100 ASes, edge ASes and
others. In the interests of space, we only present the results for
the edge ASes, which account for over 75% of the ASes, and
used by most hosts; the results for the other two categories
show similar trends and are found in Appendix B.

Overall hijack rate. Fig. 6 plots the average hijack rate
over all the edge ASes (including both adopting and non-
adopting ASes) versus adoption rate. The results show that on
average, the hijack rate for all variants of ROV++ decreases
with the adoption rate, achieving Goal 2 for subprefix hijacks.
We further observe that all three ROV++ variants (v1-v3)
have similar hijack rates, all significantly lower than that of
ROV for low to medium adoption rate. As expected, ROV++
v2a is more aggressive in mitigating hijacks (at the cost of
significantly higher disconnection rate, as we show below). We
next show the detailed results for adopting and non-adopting
ASes, respectively.

Results for adopting ASes. Fig. 7 presents the results
for the adopting ASes. We see from Fig. 7(a) that the hijack
rate of ROV is much higher than that of the ROV++ variants,
particularly under low adoption rate: with 10% adoption, the
hijack rate for edge ASes of ROV is still above 94%, vs. less
than 10% for ROV++ variants. As expected, ROV++ v2a has
the lowest hijack rate, followed by ROV++ v1 and v2 (which
have very similar hijack rate). ROV++ v3 has slightly higher
hijack rate than the other ROV++ variants.

Counter-intuitively, the hijack rates for ROV++ adopting
nodes gradually increase until reaching a peak at about 40%
adoption, and only then gradually decrease. This surprising
“bump” is due to hidden hijacks, as explained in §IV.

Notice that hidden-hijacks behave in a similar manner also
for ROV. This cannot be seen directly from the blue line in
Fig. 7(a), representing hijack rate for ROV, since that line
includes also many visible hijacks. However, we also measured
separately the number of hidden hijacks in ROV, and the result
is also shown in Fig. 7(a). In fact, the result was so close to
that of ROV++v3 (not visually distinguishable) that we use the
line for ROV++ v3 to represent also the hidden hijack rates
for ROV.

The successful connection rate of all ROV and ROV++
policies (see Fig. 7(b)) increases with the adoption rate. As
expected, ROV++ v3 has the highest successful connection
rates, due to its preventive announcement mechanism. How-
ever, the improvement is not that significant, and we doubt it
would justify the use of v3, which is more complex and has
somewhat higher hijack rates. Close behind are the successful
connection rates of ROV, ROV++ v1, and ROV++ v2, all of
which are so close that we present them by a single line (of
v1, but one really cannot tell them apart anyway). ROV++ v2a
definitely has significantly inferior successful connection rates,
and therefore, does not appear to be a good choice to protect
against subprefix hijacks.

Fig. 7(c) shows the disconnection rates, which are simply
the complement of the hijack rates plus the successful con-
nection rates. Considering that the goal is to have low hijack
rates and high successful connection rates, it seems that the
disconnection rate alone should not be a measure to compare

11



(a) Hijack rate (b) Successful connection rate (c) Disconnect rate

Figure 7. Subprefix hijacks: Data plane results for adopting edge ASes with 95% confidence intervals (a curve marked with multiple policies presents the
result for the first policy; the others are visually indistinguishable and hence not plotted for clarity).

(a) Hijack rate (b) Successful connection rate (c) Disconnect rate (y-axis up to 60%)

Figure 8. Subprefix hijacks: Data plane results for non-adopting edge ASes with 95% confidence intervals (a curve marked with multiple policies presents the
result for the first policy; the others are visually indistinguishable and hence not plotted for clarity).

the mechanisms. Not surprisingly, ROV++ v2a has the highest
disconnection rates, and ROV has almost no disconnections
(since it has many hijacks). The results of ROV++ v1 and v2
are very close (indeed visually indistinguishable), while v3 has
slightly lower disconnection rates.

Results for non-adopting ASes. Fig. 8 presents the results
for non-adopting ASes. For all ROV and ROV++ policies,
the hijack rate decreases with increased adoption, showing
collateral benefits, i.e., the non-adopting ASes benefit from the
adopting ASes; however, the advantage is not very significant,
definitely much less than for adopting ASes. The different
ROV++ variants have quite close hijack rates, except v2a,
which has significantly lower (better) hijack rates, but that
comes at the cost of very significantly reduced successful con-
nection rates. Excluding ROV++ v2a, it is clear that ROV++
v3 is the best for non-adopting ASes, having both the highest
successful connection rates and the lowest hijack rates, but not
by much, esp. when compared to ROV++ v1 and v2 (it has a
bit more advantage over ROV).

We see from Figures 7(b) and 8(b) that ROV++ v2 has
similar successful connection rates as v1, for both adopting
and non-adopting ASes, indicating that although the blackhole
announcements in ROV++ v2 can potentially compete with
legitimate prefix announcements, causing failed delivery of
traffic to the legitimate destination, this rarely happens based
on our extensive evaluation. ROV++ v2a, on the other hand,
leads to much lower successful connection rate than v1 due to
its aggressive propagation of blackhole announcements.

Figure 9. Prefix hijack on non-
routed prefix: Data plane hijack rate
for non-adopting edge ASes. The re-
sults for ROV and ROV++ v1 over-
lap; the results of ROV++ v2 and v3
overlap, and are the same for the Lite
versions. The hijack rate for ROV
and ROV++ (all variants) adopting
ASes is zero (figure omitted).

Figure 10. Superprefix attack on
non-routed prefix: Data plane hijack
rate for non-adopting edge ASes. Re-
sults are for the case where attacker
announces both the non-routed prefix
and its superprefix, and are the same
for the Lite versions. ROV++ adopt-
ing ASes have no hijacks; for ROV,
all traffic is hijacked for adopting and
non-adopting ASes (figures omitted).

D. Hijack of Non-routed Prefixes

We now present the results for hijacking of non-routed
prefixes. Our evaluation is in two cases: (i) the classical
prefix-hijack attack on a non-routed prefix, where the attacker
announces the non-routed prefix, and (ii) the novel superprefix
attack on a non-routed prefix, introduced in §III-D, where the
attacker announces a superprefix of the non-routed prefix. The
results were essentially the same whether the attacker also
announces the non-routed prefix itself of not.

Prefix-hijack attack on a non-routed prefix. In this type
of hijack, the hijack rate is zero for all adopting ASes—for

12



both ROV and all ROV++ variants. This is because adopting
ASes drop the non-routed prefix, and hence have no route to
the (non-routed) prefix—i.e., the attack fails—adopting ASes
are always disconnected (as desired to foil abuse of non-routed
prefixes).

Hence, we focus on non-adopting ASes; Fig. 9 plots
the hijack rate for the non-adopting edge ASes. For ROV,
the results show roughly linear decrease in hijack rate with
increased adoption; ROV++ v1 has identical results as ROV,
since in this case, there is no need to blackhole packets as
the adopting AS would not have any route to the (non-routed)
prefix. ROV++ v2 has noticeably lower hijack rates than v1,
due to the blackhole announcement mechanism, and v3 has
identical results as v2, since there are no valid routes to the
prefix to begin with—preventive announcements are irrelevant.
As expected, ROV++ v2a has the best (lowest) hijack rates,
due to its aggressive propagation of blackhole announcements.
We also confirmed that the Lite version of ROV++ v2 and
v2a, presented in §VI, has visually indistinguishable results
as their non-lite version; we mention this explicitly (and in
the legend of the figure), since this result is significant to our
recommendations later on.

Summarizing the results for adopting and non-adopting
ASes, the overall hijack rate for all variants of ROV++
decreases with the adoption rate (figure omitted), achieving
Goal 2 for non-routed prefix hijacks.

Superprefix attack on a non-routed prefix. In this type
of hijack, introduced in §III-D, the attacker announces a
superprefix of the non-routed prefix, and the superprefix is not
covered by a ROA. As explained in §III-D, ROV fails to block
this attack, since almost all ASes would have the superprefix
path and there is no blackholing of packets.

The result is completely the opposite for ROV++ adopting
ASes, since they all blackhole traffic to (and from) non-routed
prefixes, or, more precisely, prefixes covered by a ROA with
origin AS zero (indicating being non-routed). Note that traffic
to any subprefixes with valid ROA is not blackholed. Hence,
there are absolutely no hijacks from ROV++ adopting ASes.

It remains to consider the results for non-adopting ASes,
with different adoption rates of ROV++ (as explained, ROV
adoption is completely useless). Fig. 10 shows the results for
a variant of the attack, where the attacker also announces the
non-routed prefix. The non-routed prefix announcement causes
ROV++ ASes, except v1, to send blackhole announcements,
which reduce hijack rates, most effectively for v2a. However,
the attacker is better off sending only the superprefix, in which
case the results for all ROV++ variants become as shown for
v1. In both cases (i.e., whether the attacker sends or not sends
the non-routed prefix), the Lite versions will have exactly the
same results, since there are no “holes” as in subprefix hijacks
(see §VI).

E. Summary of Main Results

To summarize, ROV++ improves dramatically upon ROV,
for both subprefix and non-routed prefix hijacks, especially
with low adoption. We observe tradeoff among the various
ROV++ variants. For subprefix hijacks of routed prefixes,
ROV++ v1 achieves similar performance as ROV++ v2/v3,
while is simpler and easier to implement and deploy; ROV++

Figure 11. Subprefix hijacks: hijack rate of ROV++ v1 Lite and ROV++ v1:
differences between Lite and “regular” are very small. We only show results
for hijack rates, since for successful connection and disconnection rates, there
is no visible difference between the Lite and “regular” versions.

v2a has much lower hijack rate than the other variants at
the cost of significantly lower successful connection rate. For
hijacks involving non-routed prefixes, the blackhole announce-
ment mechanism introduced in v2 leads to significantly lower
hijack rate for non-adopting ASes, esp. for v2a.

The above observations focus on the performance of the
ROV++ variants. In §VII, we further discuss other issues
(e.g., susceptibility to abuse, ease of deployment, incentive of
deployment) and provide recommendations on which ROV++
variant(s) to choose for subprefix hijacking and non-routed
prefix hijacking, respectively.

VI. IMPLEMENTATION, DEPLOYMENT AND ROV++ LITE

The blackholing, blackhole announcement and preventive
announcement mechanisms in ROV++ are easy to implement
on existing routers. The preference to safe paths (included in
all ROV++ variants), however, requires changes to the BGP
path selection process, which requires changes to BGP routers
and possibly also the configuration parameters and scripts used
by network operators. We design ROV++ Lite that removes
this preference mechanism for easy implementation and de-
ployment, while only leads to slightly degraded performance
compared to its non-lite counterpart as we show below.

ROV++ Lite: a plug-and-play design. ROV++ Lite differs
from ROV only in that it “gives up” the ROV++ safe-path
preference mechanism. Specifically, it uses the standard BGP
best path selection process. If the selected path contains holes,
then it sets up data-plane blackholing, which is ROV++ Lite
v1. ROV++ Lite v2 and v3 further include the blackhole an-
nouncement mechanism, and ROV++ Lite v3 further includes
the preventive announcement mechanism. All Lite versions can
be implemented on legacy BGP routers (see below).

Performance of ROV++ Lite. For non-routed prefix hi-
jacking, the performance of the Lite version is identical to
that of the non-Lite version (for all variants), since the safe-
path preference mechanism is irrelevant for such hijacks. For
subprefix hijacking, our evaluation shows that the Lite version
is very much on par with the non-lite version. Fig. 11 shows
one example by comparing the hijack rate of ROV++ v1 Lite
and the non-lite version for both adopting and non-adopting
ASes. We see that the Lite version only has slightly higher
hijack rate than the non-Lite version for adopting ASes; for
non-adopting ASes, their performance is almost identical. We
observe similar results for successful connection rate and
disconnect rate (figures omitted).

13



(a) ROV++ Lite server design (b) Deployment of ROV++ Lite server

Figure 12. The design and deployment of ROV++ Lite server for implementing ROV++ Lite.

ROV++ Lite Implementation. ROV++ Lite can be de-
ployed in any AS with legacy BGP routers, assuming only
several standard mechanisms available in most BGP routers:
ROV, BMP [50], and BGP FlowSpec [40]. We implement
ROV++ Lite through a ROV++ Lite server as shown in Fig. 12.
A ROV++ Lite server, deployed in an AS, can communicate
with multiple routers in the AS.

The Lite server needs to be aware of any incoming hijack
announcement to take the corresponding countermeasures,
beginning with blackholing (already from v1). To achieve
this, it obtains all the incoming BGP announcements to the
routers through BMP [50]. Next, the Lite server needs to
identify invalid announcements (i.e., suspected hijacks). This
is achieved similarly to the regular ROV implementation2.
Namely, the Lite server receives updated RPKI information
(ROAs and RCs) from the standard RPKI repositories, and then
caches and validates them. We use the RIPE implementation,
and the RTR protocol to set the ROV rules in the routers.

After identifying a hijack, the Lite server applies the
ROV++ policy and countermeasures: blackholing (from v1),
blackhole announcements (from v2) and preventive announce-
ments (from v3). In particular, to implement blackholing, it
uses BGP FlowSpec [40]. Listing 1 shows an example of
blackholing prefix 1.2.3/24 using FlowSpec on JunOS, by
specifying the action for the matching prefix as discard. A
similar set of commands can be used for Cisco IOS.

Listing 1. Blackholing with FlowSpec on JunOS
e d i t r o u t i n g−o p t i o n s f low r o u t e BLK PRE
e d i t match
s e t source 1 . 2 . 3 . 0 / 2 4
s e t then d i s c a r d
commit

To issue blackhole announcements (from v2) and preven-
tive announcements (v3), the Lite server uses a software BGP
router that is part of the Lite ROV++ server package. Note
that blackhole announcements are merely BGP announcements
with additional flag information posted in the transitive at-
tribute section of a BGP announcement. Reading the flag
from the transitive attribute, the Lite server can execute the
blackhole specified using the commands in Listing 1.

2Our implementation supports optional non-standard mechanisms to identify
hijacks, but these are not related to ROV++ and therefore out of scope.

Table I. SUMMARY: PROS, CONS AND OUR RECOMMENDATION.

Subprefix hijacking Non-routed prefix hijacking

v1 recommended: performance on par with
v2 and v3, not susceptible to abuse not recommended

v2
not recommended: seems like propagating
hijack, deployment more complex than v1,
while performance comparable to v1

recommended, lower (better)
hijack rate than v1, aligned
with economic incentives

v2a
not recommended: has much
lower successful connection rate,
albeit lower hijack rate

recommended, but hard
to deploy, albeit significantly
better (lower) hijack rate

v3
not recommended: violates BGP ann.
mechanism, has risk of abuse by attacker,
while performance comparable to v1

not recommended, higher
complexity, performance same
as v2, risk of abuse

Lite versions recommended
Comparable results, much easier to deploy.

Feedback from Network Operators. We are currently
working with network operators to get feedback about our
design and implementation, to understand their concerns and
desires from a system such as ROV++, and to coordinate
deployment. The network operators with whom we communi-
cated have shown keen interest in the potential of ROV++ to
defend against DoS attacks, a major concern of many network
operators. This seems to provide an incentive for operators to
deploy ROV++, particularly the blackholing mechanism, that
does not exist in ROV, while requires little effort to implement
and deploy. Overall, the responses from the network operators
are positive, and we hope that this would indeed translate to
experimental (and later, hopefully, long-term) deployments. We
will continue to work with operators to improve our design,
install and deploy ROV++ Lite, and receive more feedback.
We are very grateful for their cooperation.

VII. RECOMMENDATION AND DISCUSSION

A. ROV++ Variants: Pros, Cons and Recommendations

We next summarize the pros and cons of the various
ROV++ variants (both non-Lite and Lite versions), and present
our recommendation on which variant(s) to adopt for routed
and non-routed prefix hijacks, respectively. The summary is in
Table I.

• Lite versions recommended. We recommend the easier-to-
deploy Lite versions (§VI), since in our experiments, they were
on par with the “regular” versions; e.g., see Fig. 11.

• Subprefix hijacking. (i) For subprefix hijacking, we rec-
ommend only using ROV++ v1. This is because, as shown
in Figures 7 and 8, ROV++ v1 provides similar performance

14



as ROV++ v2/v3, but is simpler and easier to implement. (ii)
We do not recommend ROV++ v2 or v3, since their hijack
rate is only slightly lower than that of v1, and they are harder
to deploy and implement; also, the blackhole announcement
in v2 can attract legitimate traffic, causing unnecessary dis-
connection. Furthermore, there may be concerns about abuses
and unexpected side-effects of the blackhole and (even more)
preventive announcements. (iii) We do not recommend ROV++
v2a because of its significantly lower successful connection
rate than other variants.

• Non-routed prefix hijacking. (i) We recommend ROV++
v2a for non-routed prefix hijacking (including the novel super-
prefix hijacking). This is because it has the lowest hijack rate;
its aggressive blackhole announcement propagation does not
cause adverse impact since the prefixes are non-routed (i.e.,
should not be announced at all), and hence there is no risk
of competing with legitimate traffic. On the other hand, a v2a
AS will send blackhole announcements to its providers and
peers, and then drop the attracted traffic, which will lead to
deployment challenges (the v2a AS attracts traffic from its
provider and peers to prevent them from being hijacked, while
not being compensated for the traffic, since it has to drop
the traffic instead of forwarding the traffic to its customers).
(ii) Considering both performance and deployment incentives,
we also recommend v2. This is because v2 outperforms v1
and ASes may have more economic incentives to adopt v2
than v2a (v2 ASes only send blackhole announcements to
their customers, and will be compensated for attracting and
dropping the traffic from their customers).

Our recommendation above considers multiple aspects,
including ease of deployment, risk of abuse, performance
and deployment incentives. In general, routing is a social
operation: when an AS sends routing announcements, there
is potential impact on other ASes. It is therefore necessary to
carefully consider the potential impact of any proposed change
in routing, and ensure that it meets the do no harm principle.
We discuss ethics of routing security in more detail in the full
version [43].

B. Mixed Deployments of ROV and ROV++ Variants

We next briefly discuss how ROV++ interacts with ROV,
and how the three ROV++ variants interact with each other.

• ROV may often result in hidden hijacks, preventing ROV++
ASes (all versions) down the path from receiving hijack an-
nouncements and hence damaging their capability in mitigating
the attacks. In contrast, doing any version of ROV++ and then
ROV reduces the risk of hidden hijacks due to the ROV ASes
(they may select announcements created by ROV++ v2 or v3,
which will not create new hidden hijack), reducing the harm
from ROV.

• Mixing higher versions of ROV++ with lower versions can
reduce the impact of the higher versions. As an example, if the
path contains a ROV++ v1 AS followed by a v3 AS, then the
v3 AS may not be aware that the v1 AS blackholes traffic to
the subprefix, and send a preventive announcement with the v1
AS in the path, and the traffic is blackholed (while otherwise
there may have been a path allowing delivery); the v3 AS may
also not be aware of the hijack at all, and hence does not send
a preventive announcement.

• ROV++ never introduces hidden hijacks in all mixed deploy-
ment scenarios, including mixed deployment of ROV++ and
ROV, and mixed deployment of multiple ROV++ variants.

VIII. CONCLUSIONS AND FUTURE WORK

We presented and evaluated ROV++, an improvement of
the ROV standard. ROV++ extends ROV by including several
mechanisms with different impacts and tradeoffs. Extensive
evaluation based on detailed simulations demonstrates that
ROV++ significantly improves upon ROV, significantly re-
ducing hijack rates for attacks on both subprefixes and non-
routed prefixes, and especially with low adoption. We further
developed and evaluated ROV++ Lite versions, which can be
easily deployed on existing routers. Last, we discussed the
pros and cons of the various ROV++ variants, and provided
recommendations for deployment.

As future work, we are exploring in the following three
directions: (i) develop techniques to further reduce the impact
of hidden hijacks, (ii) explore scenarios with mixed deploy-
ments of ROV and ROV++, (iii) explore other ROV extensions
that will provide defense even when adoption happens only,
or almost only, at the edge ASes, and (iv) evaluate the per-
formance of ROV++ under more realistic simulation settings,
e.g., by taking account of real-world routing decisions, instead
of only using valley-free routing, and considering the current
deployment locations of ROV (e.g., as reported in [57]), instead
of or in addition to random locations.

We hope that our study raises the awareness of the security
limitations of ROV and motivates further studies addressing
these limitations. A collective effort of the community can lead
to a stronger foundation to continue building the momentum
of RPKI adoption and improve inter-domain routing security.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
insightful and constructive feedback, and our shepherd Dr.
Samuel Jero for his helpful guidance. We also thank Joel
Halpern, Shuai Hao, John Kristoff, Louis Poinsignon, Lars
Prehn, Kotikalapudi Sriram, Celia Testart, and Russ White for
their comments and suggestions on earlier drafts of the paper.
Our collaborating partners, Connecticut Education Network
(Rick Cheung, Ryan Kocsondy, and Michael Pennington)
and UConn IT Services (Robert Kent, Michael Mundrane,
and Michael Williams) provided us valuable feedback on
deployment and operation aspects of this project. We are
grateful for the great work by the project team at UConn,
including Jack Aaron, Abhinna Adhikari, Matthew Jaccino,
Sam Kasbawala, Shariq Khan, Pablo Rodriguez, Sam Secondo,
Nicholas Shpetner, and Tony Zheng. This work was partially
supported by NSF under award OAC-1840041 and by the
Comcast Corporation. The opinions expressed in the paper are
those of the researchers and not of their university or funding
sources.

REFERENCES

[1] AT&T/as7018 now drops invalid prefixes from peers. https://seclists.
org/nanog/2019/Feb/140.

[2] Indosat a Quick Report. http://www.bgpmon.net/
hijack-by-as4761-indosat-a-quick-report/.

15

https://seclists.org/nanog/2019/Feb/140
https://seclists.org/nanog/2019/Feb/140
http://www.bgpmon.net/hijack-by-as4761-indosat-a-quick-report/
http://www.bgpmon.net/hijack-by-as4761-indosat-a-quick-report/


[3] W. Aiello, J. Ioannidis, and P. McDaniel. Origin authentication in
interdomain routing. In Proc of CCS, 2003.

[4] Ruwaifa Anwar, Haseeb Niaz, David Choffnes, Italo Cunha, Phillipa
Gill, and Ethan Katz-Bassett. Investigating Interdomain Routing Poli-
cies in the Wild. In Proc. of ACM IMC, Oct. 2015.

[5] Hitesh Ballani, Paul Francis, and Xinyang Zhang. A Study of Prefix
Hijacking and Interception in the Internet. In Proc. of ACM SIGCOMM,
pages 265–276, 2007.

[6] O. Borchert, O. Kim, L. Hannachi, D. Montgomery, and K. Sriram.
NIST RPKI Monitor and Test System, NIST Test and Measurement
Tool. https://rpki-monitor.antd.nist.gov/.

[7] R. Bush and R. Austein. The Resource Public Key Infrastructure (RPKI)
to Router Protocol. RFC 6810 (Proposed Standard), January 2013.
Updated by RFC 8210.

[8] Kevin Butler, Toni R. Farley, Patrick McDaniel, and Jennifer Rexford.
A survey of BGP security issues and solutions. Proceedings of the
IEEE, 98(1):100–122, 2010.

[9] Kevin Butler, Patrick McDaniel, and William Aiello. Optimizing bgp
security by exploiting path stability. In Proceedings of ACM Conference
on Computer and Communications Security (CCS), pages 298–310,
New York, NY, USA, 2006. ACM.

[10] CAIDA. The CAIDA AS Relationships Dataset.
http://www.caida.org/data/as-relationships/, January 2016.

[11] CAIDA. ASRank CAIDA’s Ranking of Autonomous Systems. https:
//asrank.caida.org/, 2018.

[12] B. Cartwright-Cox. Measuring RPKI adoption via the data-plane. nlnog
day 2018.

[13] Haowen Chan, Debabrata Dash, Adrian Perrig, and Hui Zhang. Mod-
eling Adoptability of Secure BGP Protocols. In Proc. of SIGCOMM.
ACM, 2006.

[14] Taejoong Chung, Emile Aben, Tim Bruijnzeels, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce Maggs, Alan Mislove,
Roland van Rijswijk-Deij, John Rula, and Nick Sullivan. RPKI is
Coming of Age: A Longitudinal Study of RPKI Deployment and Invalid
Route Origins. In Proc. of IMC. ACM, 2019.

[15] Avichai Cohen, Yossi Gilad, Amir Herzberg, and Michael Schapira.
Jumpstarting BGP security with path-end validation. In Proc. of ACM
SIGCOMM, pages 342–355. ACM, 2016.

[16] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and S. Goldberg. On
the risk of misbehaving RPKI authorities. In Proc. of HotNets. ACM,
2013.

[17] Remy de Boer and Javy de Koning. BGP Origin Validation (RPKI).
Technical report, Univeristy of Amsterdam, Systems and Network
Engineering Group, July 2013.

[18] Lixin Gao and Jennifer Rexford. Stable Internet Routing without Global
Coordination. IEEE/ACM Trans. Netw., 9(6):681–692, 2001.

[19] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and
Haya Shulman. Are We There Yet? On RPKI’s Deployment and
Security. In NDSS. The Internet Society, 2017.

[20] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How Secure are
Secure Interdomain Routing Protocols? In Proc. of SIGCOMM. ACM,
2010.

[21] Geoffrey Goodell, William Aiello, Timothy Griffin, John Ioannidis,
Patrick Drew McDaniel, and Aviel D. Rubin. Working around BGP:
An Incremental Approach to Improving Security and Accuracy in
Interdomain Routing. In NDSS. The Internet Society, 2003.

[22] Ethan Heilman, Danny Cooper, Leonid Reyzin, and Sharon Goldberg.
From the consent of the routed: improving the transparency of the RPKI.
In Proc. of ACM SIGCOMM, pages 51–62, 2014.

[23] Amir Herzberg, Matthias Hollick, and Adrian Perrig. Secure Routing for
Future Communication Networks (Dagstuhl Seminar 15102). Dagstuhl
Reports, 5(3):28–40, 2015.

[24] Tomas Hlavacek, Italo Cunha, Yossi Gilad, Amir Herzberg, Ethan Katz-
Bassett, Michael Schapira, and Haya Shulman. DISCO: Sidestepping
RPKI’s deployment barriers. In Proceedings of the 2020 Network and
Distributed System Security (NDSS) Symposium, February 2020.

[25] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waidner.
Practical Experience: Methodologies for Measuring Route Origin Vali-

dation. In IEEE/IFIP International Conference on Dependable Systems
and Networks - DSN, June 2018.

[26] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: secure path vector routing for
securing BGP. In Proc. of ACM SIGCOMM, September 2004.

[27] G. Huston and G. Michaelson. Validation of Route Origination Using
the Resource Certificate Public Key Infrastructure (PKI) and Route
Origin Authorizations (ROAs). RFC 6483 (Informational), February
2012.

[28] G. Huston, M. Rossi, and G. Armitage. Securing BGP: A literature
survey. IEEE Communications Surveys & Tutorials, 13(2):199–222,
2011.

[29] Daniele Iamartino. Study and Measurements of the RPKI Deployment,
2015.

[30] Daniele Iamartino, Cristel Pelsser, and Randy Bush. Measuring BGP
Route Origin Registration and Validation. In Jelena Mirkovic and Yong
Liu, editors, PAM, volume 8995 of Lecture Notes in Computer Science,
pages 28–40. Springer, 2015.

[31] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Pretty Good BGP:
Improving BGP by Cautiously Adopting Routes. In ICNP, pages 290–
299. IEEE Computer Society, 2006.

[32] S. Kent and K.seo. An Infrastructure to Support Secure Internet
Routing. RFC 6480, The Internet society, February 2012.

[33] S. Kent and D. Mandelberg. Suspenders: A Fail-safe Mechanism for
the RPKI, 2013.

[34] Stephen Kent, Charles Lynn, and Karen Seo. Secure Border Gateway
Protocol (S-BGP). IEEE Journal on Selected areas in Communications,
18(4):582–592, 2000.

[35] Robert Lychev, Sharon Goldberg, and Michael Schapira. BGP security
in partial deployment: Is the juice worth the squeeze? ACM SIGCOMM
Computer Communication Review, 43(4):171–182, 2013.

[36] Lepinski M., Kong D., and Kent S. A Profile for Route Origin
Authorizations (ROAs), February 2012.

[37] M. Lepinski (Ed.) and K. Sriram (Ed.). BGPsec Protocol Specification.
RFC 8205, September 2017.

[38] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. iPlane Nano: Path Prediction for Peer-to-Peer
Applications. In Proce of NSDI, 2009.

[39] Ratul Mahajan, David Wetherall, and Thomas E. Anderson. Under-
standing BGP Misconfiguration. In Proc. of SIGCOMM, pages 3–16.
ACM, 2002.

[40] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and D. McPher-
son. Dissemination of Flow Specification Rules, August 2009.
https://tools.ietf.org/html/rfc5575.

[41] R. Mazloum, M. Buob, J. Auge, B. Baynat, D. Rossi, and T. Friedman.
Violation of Interdomain Routing Assumptions. In Proc. of Passive and
Active Measurement Conference (PAM), March 2014.

[42] Asya Mitseva, Andriy Panchenko, and Thomas Engel. The state of
affairs in BGP security: A survey of attacks and defenses. Computer
Communications, 124:45–60, June 2018.

[43] Reynaldo Morillo, Justin Furuness, Cameron Morris, James Breslin,
Amir Herzberg, and Bing Wang. ROV++: Improved deployable defense
against BGP hijacking. https://sidr.engr.uconn.edu, 2021. Full version.

[44] W. Mühlbauer, A. Feldmann, O. Maennel, M. Roughan, and S. Uhlig.
Building an AS-topology model that captures route diversity. In Proc.
of SIGCOMM, 2006.

[45] S. Murphy. BGP Security Vulnerabilities Analysis, IETF draft-ietf-idr-
bgp-vuln-00. February 2002.

[46] Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). A Border Gateway
Protocol 4 (BGP-4). RFC 4271 (Draft Standard), January 2006. Updated
by RFCs 6286, 6608, 6793, 7606, 7607, 7705, 8212, 8654.

[47] Renesys. The New Threat: Targeted Internet Traffic Misdirection. http:
//www.renesys.com/2013/11/mitm-internet-hijacking/.

[48] Andreas Reuter, Randy Bush, Ítalo Cunha, Ethan Katz-Bassett,
Thomas C. Schmidt, and Matthias Wählisch. Towards a Rigorous
Methodology for Measuring Adoption of Rpki Route Validation and
Filtering. CoRR, abs/1706.04263, 2017.

[49] RouteViews. University of Oregon Route Views Project. http://www.
routeviews.org/routeviews/, 2018.

16

https://rpki-monitor.antd.nist.gov/
https://asrank.caida.org/
https://asrank.caida.org/
https://sidr.engr.uconn.edu
http://www.renesys.com/2013/11/mitm-internet-hijacking/
http://www.renesys.com/2013/11/mitm-internet-hijacking/
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/


[50] J. Scudder (Ed.), R. Fernando, and S. Stuart. BGP Monitoring Protocol
(BMP). RFC 7854 (Proposed Standard), June 2016. Updated by RFC
8671.

[51] Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dim-
itropoulos, Danilo Cicalese, Alistair King, and Alberto Dainotti.
Artemis: Neutralizing bgp hijacking within a minute. IEEE/ACM
Transactions on Networking, 26(6):2471–2486, 2018.

[52] Muhammad S. Siddiqui, Diego Montero, Rene Serral-Gracia, Xavi
Masip-Bruin, and Marcelo Yannuzzi. A survey on the recent efforts
of the Internet Standardization Body for securing inter-domain routing.
Computer Networks, 80:1–26, April 2015.

[53] K. Sriram, O. Borchert, and D. Montgomery. Origin Validation
Policy Considerations for Dropping Invalid Routes, IETF Internet Draft
(Standards Track, SIDROPS Working Group), May 2020.

[54] K. Sriram and D. Montgomery. Resilient Interdomain Traffic Exchange:
BGP security and DDoS Mitigation. December 2019. NIST SP 800-
189.

[55] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz. Listen
and whisper: Security mechanisms for BGP. In Proc. of NSDI, 2004.

[56] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark. Profiling
BGP Serial Hijackers: Capturing Persistent Misbehavior in the Global
Routing Table. In Proc. of IMC. ACM, 2019.

[57] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark. To Filter or
Not to Filter: Measuring the Benefits of Registering in the RPKI Today.
In Proc. of Passive and Active Measurement Conference (PAM), January
2020.

[58] Andree Toonk. Turkey Hijacking IP Addresses for Popular Global DNS
Providers. BGPMon.

[59] Paul C van Oorschot, Tao Wan, and Evangelos Kranakis. On in-
terdomain routing security and pretty secure BGP (psBGP). ACM
Transactions on Information and System Security (TISSEC), 10(3):11,
2007.

[60] Pierre-Antoine Vervier, Olivier Thonnard, and Marc Dacier. Mind Your
Blocks: On the Stealthiness of Malicious BGP Hijacks. In NDSS, 2015.

[61] Matthias Wählisch, Olaf Maennel, and Thomas C. Schmidt. Towards
detecting BGP route hijacking using the RPKI. In Proc. of ACM
SIGCOMM, pages 103–104, 2012.

[62] Matthias Wählisch, Robert Schmidt, Thomas C. Schmidt, Olaf Maennel,
Steve Uhlig, and Gareth Tyson. RiPKI: The Tragic Story of RPKI
Deployment in the Web Ecosystem. In Jaudelice de Oliveira, Jonathan
Smith, Katerina J. Argyraki, and Philip Levis, editors, Proceedings of
the 14th ACM Workshop on Hot Topics in Networks (HotNets), pages
11:1–11:7. ACM, November 2015.

[63] R. White. Deployment Considerations for Secure Origin BGP (soBGP).,
June 2003.

[64] Meiyuan Zhao, Sean W. Smith, and David M. Nicol. Aggregated path
authentication for efficient BGP security. In Proc. of CCS, 2005.

[65] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. Wu, and L. Zhang.
Detection of invalid routing announcements in the Internet. In Proc. of
IEEE DSN, 2002.

APPENDIX A
AUXILIARY PSEUDO-CODE IN ROV++

In Alg. 2, we present the pseudo-code of several procedures
in ROV++ that are not described in Section III-C. Let B denote
the set of blackholes that is set up at a router. Initially B is
empty. For a hole ∈ H, let hole.path denote the AS path in
the announcement. Similarly, for an announcement ann ∈ A,
let ann.path denote the AS path in the announcement.

APPENDIX B
OTHER PERFORMANCE RESULTS

Figures 13 and 14 show the results for the adopting and
non-adopting ASes, respectively, under subprefix hijacks in
the category of top 100 ASes. Figures 15 and 16 show the

Algorithm 2 Auxiliary procedures in ROV++
1: procedure FINDBEST (pre)
2: Set S = {a | a ∈ A, a.pre ⊇ pre}
3: Find the best route a ∈ S following priority rules in the

order of relationship, minimize-holes, and path length
4: return a
5: end procedure

1: procedure BLACKHOLE (hole)
2: B = B ∪ hole.pre
3: Set up routing table to drop all traffic to destination IP

addresses in hole.pre
4: end procedure

1: procedure REMOVEBLACKHOLE (hole)
2: B = B \ hole.pre
3: Remove blackhole on hole.pre from the routing table
4: end procedure

1: procedure SENDBLACKHOLEANN (hole)
2: //only do so if hole.from is a provider or peer
3: Create a blackhole announcement ann with prefix as

hole.pre and AS path as hole.path
4: Set transitive flag in ann to mark that it is a blackhole

announcement
5: Send ann to customers in ROV++ v2 and according to

export policy in ROV++ v2a
6: end procedure

1: procedure WITHDRAWBLACKHOLEANN (hole)
2: Withdraw blackhole announcements with prefix hole.pre

that were sent to other ASes
3: end procedure

1: procedure SENDPREVENTIVEANN (a, subp)
2: if ISCUSTOMER (a.from) then
3: return
4: end if
5: if a has a transitive field indicating hole then
6: return
7: end if
8: Create a preventive announcement ann
9: ann.pre = subp

10: ann.path = a.path
11: Set transitive flag in ann to mark that it is a preventive

announcement
12: Send ann only to customers that have not sent a.pre to

this AS
13: end procedure

1: procedure WITHDRAWPREVENTIVEANN (a, subp)
2: Withdraw preventive announcements with prefix subp that

was sent to other ASes due to announcement a
3: end procedure

corresponding results for the ASes in the category of other
ASes (i.e., not in top 100 and not edge ASes).

17



(a) Hijack rate. (b) Successful connection rate. (c) Disconnect rate.

Figure 13. Subprefix hijacks: Data plane results for adopting ASes in the category of top 100 ASes.

(a) Hijack rate. (b) Successful connection rate. (c) Disconnect rate.

Figure 14. Subprefix hijacks: Data plane results for non-adopting ASes in the category of top 100 ASes.

(a) Hijack rate. (b) Successful connection rate. (c) Disconnect rate.

Figure 15. Subprefix hijacks: Data plane results for adopting ASes in the category of other ASes.

(a) Hijack rate. (b) Successful connection rate. (c) Disconnect rate.

Figure 16. Subprefix hijacks: Data plane results for non-adopting ASes in the category of other ASes.

18


	Introduction
	Main Contributions
	Related Work

	Motivating ROV++ by Use Cases
	Preventing Visible Hijacks (ROV++ v1)
	Blackhole Announcements (ROV++ v2)
	Preventive Announcements (ROV++ v3)

	ROV++: Goals, Model and Design
	Design Goals
	The Prefix-hijack Attack Model
	Detailed Design
	Non-routed Prefix and Superprefix Hijacks

	Security Analysis
	Performance Evaluation
	Simulation Setup
	Data Plane vs. Control Plane Results
	Subprefix Hijacks
	Hijack of Non-routed Prefixes
	Summary of Main Results

	Implementation, Deployment and ROV++ Lite
	Recommendation and Discussion
	ROV++ Variants: Pros, Cons and Recommendations
	Mixed Deployments of ROV and ROV++ Variants

	Conclusions and Future Work
	References
	Appendix A: Auxiliary Pseudo-code in ROV++
	Appendix B: Other Performance Results

