KUBO: Precise and Scalable Detection of User-triggerable
Undefined Behavior Bugs in OS Kernel

Changming Liu
Northeastern University
liu.changm @northeastern.edu

Abstract—Undefined Behavior bugs (UB) often refer to a wide
range of programming errors that mainly reside in software
implemented in relatively low-level programming languages e.g.,
C/C++. OS kernels are particularly plagued by UB due to their
close interactions with the hardware. A triggered UB can often
lead to exploitation from unprivileged userspace programs and
cause critical security and reliability issues inside the OS. The
previous works on detecting UB in kernels had to sacrifice
precision for scalability, and in turn, suffered from extremely
high false positives which severely impaired their usability.

We propose a novel static UB detector for Linux kernel, called
KUBO which simultaneously achieves high precision and whole-
kernel scalability. KUBO is focused on detecting critical UB that
can be triggered by userspace input. The high precision comes
from KUBO’s verification of the satisfiability of the UB-triggering
paths and conditions. The whole-kernel scalability is enabled by
an efficient inter-procedural analysis, which incrementally walks
backward along callchains in an on-demand manner. We evaluate
KUBO on several versions of whole Linux kernels (including
drivers). KUBO found 23 critical UBs that were previously
unknown in the latest Linux kernel. KUBO’s false detection rate
is merely 27.5%, which is significantly lower than that of the
state-of-the-art kernel UB detectors (91%). Our evaluation also
shows the bug reports generated by KUBO are easy to triage.

I. INTRODUCTION

OS kernels provide critical system services and hardware
abstractions to applications. Its security and stability have
been the top priority for OS developers. However, bugs and
vulnerabilities are often inevitable in practice when developing
such large and complex codebases. As shown in the NVD
survey [1], on average over 400 new vulnerabilities are found
in the Linux kernel each year.

One class of the often exploited vulnerabilities in kernels
is Undefined Behavior (UB) bugs, which, broadly speaking,
consist of all undefined behaviors specified by the language
standard, for example, ANSI C [9] explicitly specifies many
behaviors to be undefined for softwares implemented in C
language. Typical examples of UB are integer overflow, division
by zero, null pointer deference, out-of-bound access, etc. UBs
are much broader in scope than many other specific bugs and
can cause a wide range of security and reliability issues [17],
[36].

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual

ISBN 1-891562-66-5

https://dx.doi.org/10.14722/ndss.2021.24461
www.ndss-symposium.org

Yaohui Chen
Facebook Inc.
yaohway @gmail.com

Long Lu
Northeastern University
Llu@northeastern.edu

When viewed individually out of program context, a UB
may seem fairly obvious and easy to detect because almost
every type of UB has its well-understood triggering condition
(i.e., UB condition) and is caused only by a few distinctive
instructions (i.e., UB instructions). For instance, an integer
overflow occurs when the result of an integer arithmetic
instruction goes out of the integer value range.

The previous works on detecting UB in the kernel mostly
followed the same basic idea. They focus on UB instructions in
code and try to determine if the corresponding UB conditions
can be satisfied. Some UB detectors [5] follow the dynamic
analysis approach and instrument every potential UB instruction
with runtime checks on the UB conditions. This approach
suffers from extra overhead and incompleteness i.e., struggle to
cover all code. Other UB detectors [38], [37] are purely static
and thus in theory can be complete. However, they trade preci-
sion for scalability by limiting themselves to intra-procedural
analysis. Therefore, these detectors produce extremely high
volumes of false positives (i.e., the majority of the detected
UBs are in fact infeasible or non-triggerable because the UB
conditions can never be met, which cannot be determined
by regional or intra-procedural analysis). Moreover, previous
works generally do not consider the actual consequence of
detected UBs. As shown in [13], many UBs, even if triggerable,
do not have a real harmful impact on programs as they are
often sanitized right after being triggered.

As a consequence, a scalable UB detector that can produce
high-quality bug reports is desired. However, the existing
detectors all fall short and often require an impractical amount
of manual efforts to validate reported bugs. For instance,
KINT [37] generated 125,172 bug reports on the Linux kernel
but only 17 of them were confirmed after the team conducted
two bug review marathons that covered merely 838 of the
reports.

In this work, we propose KUBO (Kernel-Undefined Behavior
Oracle), trying to bridge this gap that calls for scalable and
precise detection for critical UBs in the kernel.

KUBO focuses on critical UBs, which are triggerable by
userspace input. For instance, if the denominator of a division
operation is directly sourced from userspace input, it is con-
sidered a critical Denial-of-Service (DoS) bug as it can cause
an instant kernel panic. KUBO incorporates a new backward
userspace input tracking technique to check if a UB condition
is modified by such input.

To achieve scalable and high precision detection, KUBO
performs an on-demand incremental inter-procedural analysis,

starting from each UB instruction and tracing back to potential
userspace input sites. Named incremental call chain upwalk,
this analysis only backtracks to a selected caller function on a
callchain when needed. The need is determined by an empirical
UB triggerability indicator, called Bug Triggerability Indicator
(BTI). After BTI is analyzed to be true, KUBO then scans the
dependent parameters and only dive into the callers that taint
them. This design of inter-procedural analysis allows KUBO to
scale and analyze the entire kernel codebase without sacrificing
the detection precession or ignoring inter-procedural data and
control dependencies as the previous work did.

KUBO collects path constraints along the way and solves
them together with the UB condition using an SMT solver[15],
which ensures that every detected UB is reachable and con-
trollable by userspace input. Thanks to the on-demand and
incremental nature of this analysis, KUBO overcomes the path-
explosion problem that prevents standard symbolic execution
from being scalable and analyzing large codebases. Finally,
KUBO analyzes the consequence of each detected UB via a
post-bug analysis, which checks if the value affected by a UB
instruction is later used in an unintended way.

Based on our evaluation § V, KUBO is able to scale to
the entire Linux kernel (including all drivers) and finishes
analyzing 27.8 million LoC in under 33 hours whilst 95%
of the subsystems are finished in 15 hours. We apply KUBO to
the latest Linux kernel. KUBO found 23 critical UB bugs that
are triggered by userspace inputs and pose a real impact on
the system. We report all these bugs to kernel developers and
received prompt and positive responses:

“Thanks for the bug report. The violating code enable
accessing the memory regions controlled by the BMC,
opening a security hole. It’s certainly not expected
behavior and should be fixed...”

14 reported bugs have been confirmed or patched so far.
Moreover, motivated by our report, one developer proposed to
replace all char with u8 in a module due to our findings of
the signed integer overflows directly triggerable by userspace
1nputs.

We also evaluate KUBO in terms of its precision in two
controlled experiments using independently established ground
truth. When tested on an old kernel version, which contains 19
known UBs (CVEs), KUBO detects 12 of the 19 UBs (i.e., a
false negative rate of 36.8%). When tested on the latest kernel
version, KUBO reported a total of 40 UBs, among which 29 are
manually verified to be true bugs, scoring a false detection rate
of 27.5%. This is significantly lower than that of the existing
UB detectors that can work on large codebases [37] (91%). A
false detection rate as low as ours was only achieved by some
UB detectors [29], [33], [43] that use much heavier analysis
techniques, solely focus on a subset of UB and cannot scale
to large codebases such as Linux kernels.

Overall, this paper makes the following contributions:

e Userspace triggerable bugs. KUBO focuses on detecting
UBs in OS kernel that can be triggered by userspace inputs.
It uses a light-weight, summary-based dataflow analysis to
track UB’s dependencies on data fetch from userspace. As

a result, 23 critical userspace-triggerable UBs were found
in the Linux kernel. 14 of them have been confirmed or
patched so far.

e High-precision detection. Unlike the previous works on
detecting UB in the kernels, which suffer from high false
positives, KUBO features a new inter-procedural analysis
that tracks data and control dependencies across function
calls.

e Scalable inter-procedural analysis. The on-demand, in-
cremental call chain upwalk analysis, centering around
user-controlled data, allows KUBO to analyze entire Linux
kernels by tracking inter-procedural dataflows.

e Open source. The source code of KUBO is available at
https://github.com/RiS3-Lab/kubo.

The rest of the paper is organized as follows. §II provides
the background of UB in kernel and the motivation of KUBO.
§IIT and §IV present the system design and implementation
details. We evaluate the effectiveness and precision of KUBO
in §V and discuss the limitations of KUBO in §VI. Finally, we
compare KUBO with related works in §VII and conclude the
paper in §VIIL

II. BACKGROUND AND MOTIVATION
A. Undefined behaviors in kernel

Undefined behaviors(UBs) , especially UBSan [4] instru-
mentable UBs, introduce both security and reliability problems
into the kernel. As studied by Xi et al. [38], when a code frag-
ment exhibits behaviors designated as undefined by language
standard, the compiler is entitled to do aggressive optimization
by falsely assuming that UB would never happen and cause
disastrous side effect.

Other security issues caused by UB are also frequently
reported. For instance, integer overflow may lead to kernel space
code execution(CVE-2018-8781 [3]). To get a full picture of
the damages UB can cause, we surveyed the CVEs in Linux
kernel directly linked to a UB. Although there is no specific
common weakness enumeration (CWE) entry dedicated for
UB-related vulnerabilities, we found a large part of CWE-682
and its children to be relevant. We further expanded the list to
CWE 128, 190-197, 369, 468, 681, 682. Then we filtered out
the CVEs that either its patch is unavailable or it is not directly
caused by a UB. As a result, we collected a set of 78 CVEs
caused by UB in the Linux kernel. The consequences of these
CVEs are shown in Table I. As shown in the table, a good
many of them have security implications, they are either directly
exploitable (e.g., a malicious user may craft a malformed input
and exploit the bug) or causing the system to crash (e.g., nullptr
dereference).

We further divide these 78 CVEs into two different groups,
the first group, Seyqi, contains 19 most recent CVEs which
we use as groud truth to evaluate our tool’s accuracy. The
remaining 59 CVEs forms Syy,ey Which is used to help us
make informed design choices.

B. Prior efforts on finding UB

Due to the severe problems introduced by UB, previous
researches [38], [37], [13], [29] trying to eradicate such bugs
face major drawbacks: They either cannot scale to large

DoS Privilege Escalation =~ Memory Corruption

Arbitrary Code Execution

Information Leak Unknown

47 15 7

5 3 1

TABLE I: Survey for consequences caused by 78 UB related CVE in the Linux kernel obtained from CVE vulnerability description.

codebases like the kernel or struggle to produce high precision
results, which contains large number of false positives or low
impact bugs.

The reasons for these limitations are two folds. Firstly,
static analysis based approaches [40], [37] struggle to balance
between scalability and precision. On one hand, expensive
inter-procedural analysis (that are flow- and context- sensitive)
consume too much resource when analyzing the kernel. On
the other hand, light-weight analysis often has limited analysis
scope, thus suffers from a high volume of false positives due
to the loss of inter-procedural context. For instance, KINT [37]
focus on finding integer overflows in the kernel, reported over
125K cases, and only a fraction of them was confirmed as true
bugs.

The second, which is unique to UB, is that the tool needs
to prove the triggered UB indeed has a real impact on the
program (e.g., correctness, stability, or security). Such impact
varies largely in different program contexts. For instance,

SAVIOR [13] is a hybrid fuzzing tool aiming to detect UB bugs.

It instruments the program under test with Undefined Behavior
Sanitizer (UBSAN) [4]. As a result, all the UBs reported by
SAVIOR are considered true bugs'. However, out of the 481
UBSAN bug reports, 238 of them are deemed harmless by the
developers (i.e., triggering these bugs does not have any impact
on the affected program). We refer interested readers to their
paper for a more detailed discussion.

Due to this extra level of complexity, simply submitting
the bug reports from existing automatic tools without first
conducting a non-trivial manual analysis may face strong
pushback from the developers. As one example:

“You need to make deep investigations on your own,
before sending mails to the developer mailing list.
Static analysis tools having too many false positive
are not worth the time spent by humans.”

Such experience motivates us to develop an automatic UB
detector for the kernel that only reports high precision and
critical UBs, namely, the UB is triggerable by userspace inputs
and once triggered, has real system impact.

C. Severity of kernel UBs

if (flags != TIMER_ABSTIME) {
ktime_t now = alarm bases[type].gettime();
- exp = ktime_add (now, exp);

+ exp = ktime_add_safe (now, exp);
}

1
2
3
4
5
6
7 restart->nanosleep.expires = exp;

Fig. 1: CVE-2018-13053: A low severity UB in kernel caused by
inputs that is not directly user controllable.

These UBs are triggered by fuzzing during run time.

One major factor affecting the severity of UB in the kernel is
whether the UB can be easily triggered by malicious userspace
code, namely how much effort does it take for an ill-intent actor
to exploit the UB.

As mentioned in Section II-B, the impact of UBs varies
greatly under different program contexts, they range from
harmless low severity to critical exploitable bugs. For instance,
if an array index can be set to an arbitrary value without
checking via triggering an integer overflow, and the value is
directly passed in from userspace (e.g.,ioct1l), such a bug is
considered high severity as the system can be easily exploited
by userspace code. On the contrary, if the triggering condition
is out of the user’s control or even purely random, such a bug
would be considered having less impact. For instance, Figure 1
shows a UB patch for CVE-2018-13053. In order to trigger
this bug, a large timeout is required to overflow this value. As
a result, this bug is rated as low severity—with very minimal
impact and exploitability [2].

Inspired by this observation, we aim to focus our automatic
analysis on finding UBs that are directly triggerable or con-
trolled by the most straightforward attack surface—user-facing
interfaces such as data fetch [40] and system calls (e.g.,1oct1).
As shown in Section V, this design choice allows us to find
more critical UBs—those with security impact on the kernel.

ITI. KUBO SYSTEM DESIGN
A. Key concepts and terms

Before we discuss the design details of KUBO, here we
explain several key concepts and terms necessary for under-
standing our design.

Userspace input: This represents a range of inputs to the
kernel from userspace programs. Such inputs are untrusted

TABLE II: All types of supported UB, and their triggering conditions.
V denotes the value that is instrumented and checked by UBSan for
the corresponding UB. i,ii... are the different conditions that if anyone
is met, the UB is deemed triggered.

UB condition

.V<0ii.V>1
i,V > array bound
i.V > enum max value

Supported UBs |
out-of-bound bool
out-of-bound array index
out-of-bound enum

if unsigned: i.V > max (uint)
if signed: i.V > max (sint)
ii.V <min(sint)

integer overflow

divide by zero
null pointer dereference
out-of-range object size

pointer overflow

i. V>object size
1.V > max (uint)

for V1 left/right shift by V2:
i.V1<0
ii.V2<0
if left shift: iii. V1#2Y2 overflows
if right shift:iiiV2 >= bitwidth(V)

shift out of bound

(i.e., should be properly validated) by the OS and may enter
the kernel space via several different interfaces. According to
our survey, 71% (42) of the CVEs in Sgyrvey shown in Table I
can be directly attributed to missing or incomplete validation
on userspace inputs, which justifies our design choice to focus
on detecting UBs triggered by userspace inputs. Guided by
Ssurvey, below we list the supported userspace input channels
by KUBO.

1) parameters of syscall/ioctl: The most common system
interfaces exposed by the kernel or the device drivers
for receiving service requests from userspace. As a con-
sequence, the parameters of these functions are directly
provided by the user.

2) sysctl/sysfs: This mechanism lets a privileged user/pro-
gram read or write kernel global variables in the form of
file access, such as files under /proc/sys and /sys
directories usually for the purpose of being able to con-
figure the kernel on the run. These kernel variables form
a channel for userspace inputs.

3) Memory data transfer functions: Apart from user di-
rectly feeding input to the parameters of syscall/ioctl
functions, userspace input can also be fetched from user
programs by kernel via designated transfer functions
(e.g.,copy_~from_user ()), which take as input a user-
supplied pointer to a userspace memory buffer. Such
pointers should be annotated using the __user macro in
the kernel code, preventing direct (accidental) dereference
by the kernel.

We note that there exist other types of untrusted UB-triggering
inputs, such as network payload flowing through the kernel and
input from I/O devices. However, based on our survey, these
inputs account for a fairly small portion of our surveyed CVEs.
Also covering them requires synergy from other lines of works
that tries to precisely identify these inputs e.g., PeriScope [32]
did a good job identifying input from I/O devices. As a result,
as a userspace input oriented approach, KUBO does not consider
these untrusted inputs in its design. We discussed the limitation
of not considering these inputs in Section VI-A.

Discussed UB scope and triggering condition: As the popular
open source OS such as Linux and FreeBSD are implemented
in C, the types of UB this paper discussed are also C related.
In this context, UB, as specified in the C language standard,
has a wide range of causes and it covers varieties of bugs such
as uninitialized read and integer overflow, just to name a few.
In this paper, we focus on the most typical and critical UBs
that are covered by UB sanitizers [4]. Table II lists these UBs
and the condition for each type of UB to be triggered (called
UB conditions). All UBs observed in S,y are covered in
this table.

UB instruction: If an instruction can directly produce a UB
(i.e., a UB condition is met immediately after the execution of
the instruction), it is referred to as a UB instruction.

B. System overview

Previous work [38], [37] on statically detecting UB in
kernels used simple intra-procedural analysis, which can scale
up to the whole kernel but scarifies accuracy and thus suffers

from high false positives (i.e., the majority of reported UBs
are in fact false or non-triggerable).

In comparison, KUBO performs a backward and on-demand
inter-procedural analysis, which simultaneously achieves the
whole-kernel scalability and a much lower false detection rate.
Moreover, KUBO is focused on detecting critical UBs that are
triggered by userspace inputs.

Figure 2 shows the high-level workflow of KUBO. It starts
from each potential UB instruction (flagged by UBSan) and
traverses back along the code paths to verify whether the
UB is triggerable by userspace inputs. KUBO determines
the triggerability based on two requirements pertaining to a
traversed code path P: (R1), the variable(s) involved in the
UB condition must fully depend on (or be solely modified by)
userspace inputs; (122), the path constraints on P and the UB
condition are satisfiable.

KUBO verifies R1 by statically tracking the data and control
dependencies of each UB triggering variable (§ III-D). If R1
cannot be determined in the current function (@ in Figure 2,
e.g., the data sources of a UB conditional variable or its
dependence are yet to be found), KUBO checks whether an
inter-procedural analysis is needed in this case by checking an
empirical indicator called BTI. If BTI is true (®), KUBO can
have high confidence that the UB can be triggered by userspace
inputs (§ III-E). BTI reduces the number of inter-procedural
paths that KUBO needs to analyze. If BTI is false (®), KUBO
launches the incremental call chain upwalk and continues the
backward analysis into selected caller functions, to verify if R1
holds (i.e., UB conditional variables take values solely from
userspace inputs). The incremental call chain upwalk chooses
one caller function at a time and sends the data-flow summary
of the function to the input tracking component (@) for another
round of checking on R1. This process stops when either R1
is confirmed/defined or the number of function hops reaches a
limit (§ III-F).

After R1 is confirmed (either @ or ®), as part of the post-
bug analysis (§ III-G), KUBO verifies R2 by checking if the
path constraints and UB conditions are satisfiable using an
SMT solver. If R2 is met as well, KUBO then performs the rest
of the post-bug analysis, which finally confirms whether the
UB may cause unintended consequences, and if so, produces
a bug report (®).

From each
uB Instiuction
Bug Report
Backward 1.R1 not met_y! BTI Calculation =
Userspace Input | ~ (Section I1I-E) _l _n
Tracking 3 False 2 True 6
& UB Condition v 0
Ar}alysis -4 Callchgin Upwalk POSt—Bl}g Analysis
(Section III-D) (Section I11-F) (Section III-G)
e 5 -R1 is met *

Fig. 2: KUBO workflow overview

C. Identifying UB instructions

To identify all potential UB instructions, KUBO applies the
UB Sanitizer (UBSan) [4] on the whole kernel source code and
analyzes the code instrumentations done by UBSan (UBSan

TABLE III: Data tags and propagation rules of the back-ward user-
space input tracing.

Variables: v € V/
Tags: & = {N,U,C}, where N > U > C
Tag query on v: u(v) — ¢
Tag update on v: p[v — @)

Symbol
Definitions

’ ’ ’
¢ =p(vy) p :#[v%d;]UNIOP

pv=(uniop)vy~pu

! 7 ’
¢ :"L‘lw(u("n)vif(vz)) 3 :}L/['Uﬁqb I BINOP
pw=vy (binop)vg~p
u =pl[xptry —U]
Tag ;L._f@tch(dst:ph‘l,s/?‘c:ptrQ,...}w
Propagation e =pleptro Nl ALY
Rules Hyfoo(ptr,..)~p
=plptror@)] grORE

i, store(ptr,v)~pu
’

- FETCH (userspace)
u

" =u[vﬁu(*'p”)]/ LOAD
w,v=load(ptr)~pu
ifu(l-)::z\r,u/:u[values defining v— N] BRANCH
,if v then goto vy else vg~mp’

instruments every instruction that may produce a UB by placing
a simple UB condition assertion right before it). Although
comprehensive, the majority of the potential UB instructions
identified this way is false due to its non-triggerability.

This is not an issue for UBSan, a dynamic sanitizer, because
the false UBs never happen during runtime and thus the
assertions are never invoked. Being a static analyzer, KUBO
treats the UB instructions identified by UBSan merely as
possible UB candidates and takes multiple analysis steps
(Figure 2) to filter out false UBs and identify true UBs that
can be triggered by userspace input.

D. Backward userspace input tracking & UB condition analysis

Starting from each potential UB instruction, KUBO first
performs a backward slicing to the beginning of the enclosing
function. The slice contains all instructions that the UB
instruction has data- or control-dependence on. KUBO then
performs a path- and field-sensitive data-flow analysis on the
slice, checking if R1 is met (i.e., whether a path exists that
allows the UB condition to be solely influenced by userspace
input). Specifically, for each path in the slice, KUBO tracks the
propagation of the following data tags:

e Userspace Input: Values originated from the userspace
sources (§ III-A) are assigned this tag.

e Const: This tag is assigned to constant values.

e Not known yet: This tag is assigned to values whose
source cannot be determined yet and further backward
tracking (inter-procedural) might be needed. Function
parameters and some global variables are examples of
values with this tag.

The tag propagation rules are defined in Table III using the
operational semantics in the form of:

calculation

context, analyzed statement ~~ new context M
Table III listed some of the most important rules for tag prop-
agation given that the overall principle of this tag propagation
is simple: When two tags are merged together through a
binary operation, the result of this operation takes the most
significant tag carried by the operands. The tags, ranked by
their significance from high to low, are N, U, and C.

Apart from the merging rule, some other rules worth
noting are 1). If a U tagged variable is compared with a
N tagged variable, first, the result boolean variable will be
tagged N according to the BINOP rule, secondly, if this
boolean variable is used in a UB-control-dependent branch
instruction (the BRANCH rule), the U tagged variable must
also be changed to N as this branch instruction exert unknown
constraint onto this U tagged variable. 2). If a pointer is passed
into a call instruction, then the tag assigned to the content it
points to must be changed to N.

This order among the tags and the propagation rules are
defined to enable quick determination of R1.

After analyzing the current slice, KUBO checks the tag
propagated to the UB conditional variable. If it is tagged as U,
KUBO confirms that R1 is met and it has found a path through
which some userspace inputs fully modify the UB condition. If
the UB conditional variable is tagged as N (i.e., its data source
has not been fully identified yet), KUBO needs to calculate BTI
and determines if the backward userspace input tracking needs
to be continued to upstream caller functions.

E. Bug triggerability indicator (BTI)

We introduce BTI as an optimization to KUBO. As KUBO
seeks to trace the input source dependencies for a targeted UB,
we found cases where a full scale search is not necessary, thus
we can early report with confidence without really diving into
other function(s). We use BTI to distinguish these cases. BTI
helps reduce the number of cases where KUBO may otherwise
perform inter-procedural userspace input tracking. These cases
represent UBs that can be reported with high confidence without
fully tracking the origins of all UB conditional variables e.g.
meeting the requirement R1.

The idea behind BTI is fairly simple, which can be demon-
strated using a snippet of real kernel code shown in Figure 3.
On Line 8, a signed integer overflow/underflow UB can be
triggered solely by knowing that sr.1_start is userspace
input (tagged U) fetched on Line 5, even though the other
operand, namely £ilp->f_pos,is tagged N, i.e., do not know
it can be influenced by userspace input or not. In cases like
this, we can confidently report the UB without further tracking
input sources of UB conditional variables.

Base on this idea, we define BTI, a boolean value for
indicating if a UB is already detected even when some inter-
procedural data dependencies of the UB condition are not fully
established yet. BTI is set to True when KUBO’s backward
input tracking finds that an integer arithmetics operation takes
at least one operand whose value originates from userspace (i.e.,
the operand is tagged as U); otherwise, BTI is set to False
and KUBO continues onto the incremental call chain upwalk to
further analyze UB data sources and the UB condition.

F. Incremental call chain upwalk

KUBO performs on-demand and efficient inter-procedural
analysis, called incremental call chain upwalk, for resolving
the data dependencies of the UB condition. This analysis
is another technical contribution of our work and sets KUBO
apart from the previous work, which had to limit themselves
to intra-procedural techniques in order to analyze the whole

1 int ioctl_preallocate (struct file xfilp,void __ user
< *argp)
{

struct space_resv sr;

if (copy_from_user (& 8¥ , argp, sizeof(sr)))
6 return -EFAULT;

8 sr.l start += filp->f_ pos;

Fig. 3: A real example demonstrating the basic idea of BTI

kernel. Without knowing the inter-procedural context and data
dependencies, the previous work suffers from very high false
positive rates.

The incremental call chain upwalk allows KUBO to achieve
both whole-kernel scalability and high precision when detecting
UBs. It is on-demand and incremental in that the analysis
only backtracks to the selected function callers and does so
one layer at a time. To speed up the analysis and avoid
repetition, KUBO generates per-function dataflow summaries.
When the incremental call chain upwalk reaches a function,
KUBO retrieves the dataflow summary for the function, plugs
it into the callchain analyzed so far and quickly performs the
userspace input tracking on the extended call chain.

Per-function dataflow summary: The dataflow summary
captures how, inside a function, the parameters and userspace
inputs, if any, propagate outside the function (e.g., via calls and
returns). Userspace inputs are identified by the list of system
interfaces discussed in § III-A. A summary is generated via
a path- and field-sensitive dataflow analysis. The summary
generation happens offline. During the incremental call chain
upwalk, KUBO adds the dataflow summary of the most recently
traversed function to the dataflow model of the call chain, on
which a new round of tag propagation can be quickly performed
as described in § III-D.

Caller selection: By checking the dataflow summaries of all
the functions that may call the current function, the incremental
call chain upwalk only selects the caller instructions that can
propagate their parameters and/or userspace input to the UB
condition variables in the current function. This avoids unnec-
essary backtracks into caller functions that cannot influence the
UB conditions.

For example, when we are about to backtrack a caller
function foo which has 3 parameters namely p1, p2, p3. Through
analyzing the current function, we can obtain the information
of what are the parameters that the current UB is depending on,
say, p1 and po. We first collect all the call instructions that call
this function foo from the call graph, for example, ¢y, c2...c10.
Then we look at the dataflow summary that contains each call
instruction. More specifically, in each dataflow summary, we
check whether or not the userspace input can propagate outside
the function through the specific dependent parameter(s), e.g.,
p1 and ps in this case. If yes, then this caller is kept, otherwise
discarded. KUBO then keeps the selected caller functions in
a queue and analyzes the possible callchains in breadth-first
search order.

Number of hops (callchain length): The incremental call
chain upwalk continues until either R1 is confirmed or the

m Surveyed
20 CVEs

18
15
10
8
| |
0 1 2 3 4

5

e
N B

Number of CVEs
o

O N B OO ®©

Number Of Hops

Fig. 4: For each input-related UBs in Se¢yq:, how many hops are
required to trace to where the input can be identified. Turns out 52
out of 53 UB-related CVEs requires tracing 4 or less hops.

1 int blk_ioctl_zeroout (struct block_device xbdev,
— fmode_t mode,unsigned long arg) {
uint64_t start = /+ from user space x*/
uint64_t len = /«+ from er space */
end = start + len - 1;

if (end < start)
return -EINVAL;
truncate_inode_pages_range (mapping, start, end);

® w9 w A W

Fig. 5: A sanity check which eliminate the overflow after it happens

callchain length reaches a limit. We took an empirical approach
to find a proper hop limit that allows KUBO to quickly exit from
unfruitful callchain upwalks while not missing real UBs. As
shown in Figure 4, 98% of the UBs in Ssyyvey (excluding the
six not triggered by untrusted source) can be triggered on a
callchain involving four or fewer calls. As a result, we use four
as the max number of hops to trace during incremental call
chain upwalk.

G. Post-bug analysis

After finding a code path through which some userspace
input controls the UB condition (R1), KUBO performs the
post-bug analysis, which first checks R2 (the path and UB
conditions are satisfiable) and then confirms the consequences
of the UB before reporting it as a valid bug. The check on R2
uses standard path-based symbolic execution and SMT-based
constraint solving techniques. The UB consequence check is
described below.

Some UBs, such as divide by zero, can cause imme-
diate consequences, while other UBs might not exhibit the
impact until a later use site of the corrupted value, such as
integer overflow and out-of-bound shift. KUBO
keeps analyzing these consequence-delayed UBs beyond the
value corruption site. This check is needed because we found
many UBs are patched via code inserted after a UB instruction
and before any consequence may occur. Figure 5 shows an
example of a patched UB, where an integer overflow can happen
on Line 4, and a patch is added at Line 6. Without the post-bug
analysis, many patched or inconsequential UBs could be falsely
reported as bugs.

For each valid UB (i.e., R1 and R2 are met at the UB

instruction), KUBO checks its consequence by extending the
check on R2 from the UB instruction to the subsequent use
sites of the corrupted value. This extended check makes sure
that value corrupted by the UB instruction can indeed reach
a later operation. Our current implementation of the post-bug
check does not go beyond function boundaries because most
UBs are fixed/checked in the same function where the UB
occurs.

Consider again the example in Figure 5. After identifying
the overflow on Line 4, KUBO finds the value is used as a
parameter passed to the function call on Line 8. It collects
the path constraints from Line 4 to Line 8 and adds them to
the previously accumulated path constraints and UB conditions.
Obviously, the new constraints are no longer satisfiable (due to
the check on Line 6) and therefore KUBO concludes that this
UB does not have an impact.

IV. IMPLEMENTATION
A. Call graph & taint analysis

KUBO needs the taint summary of each function and the
call graph in order to conduct cross-function data flow back-
tracking. The taint summary is collected with a tool developed
based on Dr_Checker [27], a soundy inter-procedural taint
analysis for Linux drivers.

As Dr_Checker only considers ioctl function, we added
extra userspace input discussed in § III-F into the taint set. 2
notable additions are the __user annotated variables and sysctl
variables.

For __user annotated variables, since they would disap-
pear after it is compiled down to LLVM IR, we modify the
clang frontend to preserve the annotation. For sysctl variables,
we scan through the compiled and linked modules looking
for struct.ctl_table global variables and arrays. Within each
struct.ctl_table entry, a global variable and a proc_handler are
specified. The specified global variable will be recorded as the
user-writable global variable, and its proc_handler is often used
to specify its range. For example, if the associated proc_handler
is proc_dointvec, it means this global variable can be written
to whatever value its type can possibly get. However, if the
associated proc_handler is proc_dointvec_minmax, as its name
suggests, a constant limit is exerted to this variable. We record
this range, as it can improve the accuracy of the later symbolic
solving.

The call graph is generated by [42], [24]. In these works,
a structured type analysis is used to refine the call target of
indirect calls, we directly apply this tool to the tested Linux
kernel source code, and reuse the constructed call graph to
facilitate the inter-procedural analyses developed in KUBO.

B. Backward tracking & symbolic solving

These are the main components of KUBO which is imple-
mented based on LLVM v9.0 and Z3(C interface) v4.5. It can
be applied to the latest Linux kernel (version 5.6.13 at the time
of writing).

KUBO takes the generated dataflow summaries and call
graphs as input from the above two procedures. We implement
the static data flow analysis of backtracing and post-bug

analysis based on the LLVM analysis framework. The symbolic
execution is built atop DEADLINE [40] where a symbolic
modeling and solving for doule fetch bug is implemented. We
instead modeled the control- and data- dependencies of the
instrumented UB instruction and added the inter-procedural
analysis for us to fulfill the callchain upwalk analysis and post-
bug analysis.

Overall KUBO consists of over 16,000 lines of code written
in C++.

V. EVALUATION

KUBO is evaluated to to answer the following questions
regarding its performance:

e Q1 : How accurate and complete is KUBO at finding
critical UB Bugs? (§ V-A)

e ()2 : How does each key technique of KUBO contribute
to the bug finding process? (§ V-B)

e (93 : How does KUBO compare with the state-of-the-art
kernel dynamic testing tool like syzkaller[7]? ((§ V-C))

e (94 : How much manual effort is needed for triaging KUBO
bug reports? (§ V-D)

e ()5 : What is the performance overhead of KUBO when
analyzing the entire Linux kernel? (§ V-E)

Experiment setup: All experiments reported in this section
were conducted on a server with a 10-core 2.20 GHz Intel
Xeon Silver 4114 CPU and 64 GB of RAM. This server runs
Ubuntu 16.04 with gcc 5.4.0 and LLVM 9.0 installed.

For the comparison with dynamic analysis, we used the
latest version of syzkaller at the time of writing (commit
3alf32e). Syzkaller was running in the same environment as
KUBO. Both of them were running in one process with a single
thread for a fair comparison.

A. Controlled experiments on completeness & accuracy

To study the completeness and accuracy of KUBO’s UB
detection, we measured the false negative rate (FNR) and false
detection rate (FDR) of KUBO via two controlled experiments
based on manually established ground truth. In the first exper-
iment, we chose a relatively old Linux kernel (4.1) for testing,
which contains 19 CVEs (S.,,;) that are confirmed UB. Via
applying KUBO on this kernel and then examining how many
of the 19 CVEs KUBO misses, we derived the false negative
rate. We chose this Linux version because it is the oldest that
LLVM 9.0 can compile and contains the highest number of
known UB vulnerabilities. For the CVEs in Sy yey, since the
LLVM 9.0 cannot generate bitcode for them given that they
are not compatible, they are not evaluated by this experiment.

In the second experiment, to measure the false detection rate,
we used the most recent Linux kernel (5.6.13) and manually
verified all bug reports produced by KUBO. Next, we discuss
the details of each experiment and share our findings on when
KUBO may miss certain bugs or report false bugs.

1) False negatives: We used S¢,,; which is based on Linux
kernel v4.1 released on June 2015, to evaluate the false negative
rate of KUBO. KUBO correctly detects 12 of the 19 CVEs in

the tested kernel, a false negative rate of 36.8%. We manually
studied the missed cases and present the details below.

Non-user data: As by the design choice, KUBO does not
consider UB triggered by non-user input thus does not track
such data in the analysis (i.e., only userspace data entering the
kernel is considered highly dangerous if it may trigger a UB).
Although a minority, we did observe in this experiment five
UB CVE:s triggered by non-user data or hardware input, includ-
ing timer (CVE-2018-13053), network (CVE-2019-11477,CVE-
2017-7542), DMA (CVE-2016-8636), and kernel global vari-
ables (CVE-2020-12826). As expected, KUBO missed these
cases. We further examined all the 78 UB CVEs in Linux
kernels and found that only 10 (less than 13%) were triggered
by non-user input. Table IV shows the breakdown of the sources
of inputs triggering the 78 UB CVEs. This result justifies our
design choice of focusing on UB triggered by userspace inputs.

Loop unrolling: The other two UBs missed by KUBO in this
experiment are due to the insufficient loop unrolling, which
iterates each loop only twice in a path-sensitive fashion (§ III).
Although simple, this customized strategy is very lightweight
and works well in general of UB detection. It may prevent
KUBO from detecting a UB if the triggering condition is
satisfied only when a loop has to be unrolled three times or
more. For example, below the snippet shows the patch for CVE-
2018-12896, an integer overflow happens only when 1, the loop
counter is greater than 32 (i.e., after 32 iterations).

1 incr = timer->it.cpu.incr;

3 éé; (i = 0; incr < delta - incr; i++)

4 incr = incr << 1;

5 for (; 1 >= 0; incr >>= 1, i--) {

6 if (delta < incr)

7 continue;

8 timer->it.cpu.expires += incr;
timer->it_overrun += 1 << i;
timer->it_overrun += 1LL << 1i;

1 delta —-= incr;

It is worth noting that, with the simple loop unrolling
strategy, KUBO can detect common loop-induced UB, such as
CVE-2017-7294 because the triggering condition for UB can
often be statically determined after iterating a loop twice (e.g.,
summing up an array of integers fetched from userspace from
zero). Moreover, we found that only 7 out of 78 UB CVEs (less
than 9%) are triggered through loops (Table IV). Therefore,
KUBO’s simple customized loop unrolling strategy suffices in
practice.

2) False alarms: In the second experiment, we measure
KUBO’s false detection rate based on the most recent version
of the Linux kernel (5.6.13). This experiment also aims to
demonstrate KUBO’s ability to detect previously unknown
UB bugs in the latest Linux kernel. Same as the previous
experiment, KUBO analyzed the whole kernel with all KConfig
entries enabled and drivers included. That is 166 kernel modules
in total and 320,937 UBSAN instrumentations checking for
potential UB bugs. As for the results, KUBO generated 40 UB
bug reports. We manually examined each report and confirmed
29 of them to be true UB bugs (11 false bugs), a false detection
rate of 27.5%. This rate is significantly lower than that of the

existing UB detectors that can work on large codebases [37],
whose false detection rates is 91%. This false detection rate
was barely achieved by some UB detectors [29], [33], [43] that
use much heavier analysis techniques, solely focus on a subset
of UB on much smaller codebases.

Through the communications with the kernel developers
and our own investigation, we found that KUBO generated the
11 false positives for two reasons:

Const kernel globals: sysct1 allows userspace programs to
overwrite certain kernel-space global variables. KUBO treats
such global variables as a source of userspace inputs. However,
these global variables may not always take their values from
userspace inputs. In fact, some may be initialized with constant
values in the __init functions. Two false positives were
caused by KUBO mistakenly treating a variable writable by
sysctl as userspace input. KUBO can eliminate this kind
of false positives by treating all sysctl variables defined in
__init functions as constants.

Limited post-bug analysis: The post-bug analysis performed
by KUBO is intra-procedural by design. This is because the use
of a UB variable usually remains local (the affected value is
used right after the bug). However, in very few cases, the UB
affected value is passed to another function where a UB check
takes place. Nine detected UB bugs fall into this category
where the bug is triggered but its check is performed in a
different function which means these bugs have been noticed
and handled, so we mark them as false positives.

/% Check Source
if (laccess_ok(source + dest_offset, count)) {
IVIVFB_WARN ("Invalid userspace pointer
<~ %p\n", source);

return -EINVAL;

As shown in the code snippet above, the parameters
source, dest_offset, and count are all directly from
userspace, so source+dest_offset could overflow but
function access_ok eliminates the possibility of UB by
making sure memory from source+dest_offset to
source+dest_offset + count is a piece of valid
userspace memory.

3) Previously unknown bugs: For the 29 detected true
positive UBs which have not been handled or checked, 14
of them have been confirmed as new and critical bugs and
patched correspondingly. Seven still await response. Two are
confirmed as true positive but will not be fixed. Since the other
six of them are later validated to be an intentional violation or
benign wrap-around, we did not report it with the developer.
The status of each report is shown in Table V.

Intentional UB is referred to as a UB that appears to
be undefined but its result is somehow defined and expected.
This can be done, for example, by forcing the signed integer
overflow which by design is undefined to be well-defined e.g.,
2’s complement, via specifying certain compiler flag during
compilation; Wrap-around means unsigned integer overflow
which is essentially well-defined modulo arithmetic for C

attack vector ioctl fetch syscall sysctl

disk timer

network global variable loop

count 26 20 7 3

3 2 6 4 7

TABLE IV: Attack vectors of the collected benchmark. The first four vectors directly introduce userspace inputs.

error modules Function Status hops implication

1 u+ block blk_ioctl_discard acknowledged 0 OOB Write

2 ux drivers:infiniband uverbs_request_next_ptr will not fix 3 User Pointer Overflow
3 enum drivers:media ccde_data_size_max_bit patched 2 DoS

4 u+ drivers:rapidio rio_mport_maint_rd submitted 0 OOB Read

5 u+ drivers:rapidio rio_mport_maint_wr submitted 0 OOB Write

6 array drivers:staging:gasket gasket_partition_page_table submitted 2 OOB Read

7 u+ drivers:misc genwqge_unpin_mem submitted 1 OOB Write

8 u+- drivers:soc aspeed_p2a_region_acquire acknowledged 1 Arbitrary Write
9 s- drivers:message mptctl_gettargetinfo submitted 0 OOB Write
10 trunc drivers:usb sisusb_setreg patched 1 Logical Error
11 trunc drivers:usb sisusb_setidxregor patched 3 Logical Error
12 s+ drivers:usb sisusb_setidxreg patched 3 OOB Write
13 s+ drivers:usb sisusb_getidxreg patched 3 OOB Read
14 s+ drivers:usb sisusb_setidxregandor patched 3 OOB Write
15 s+ drivers:usb sisusb_setidxregmask patched 3 OOB Write
16 shift drivers:usb sisusb_write_mem_bulk patched 0 DoS

17 u+- drivers:video kyro_dev_overlay_viewport_set will not fix 1 N/A

18 S+ fs kern_select submitted 0 Logical Error
19 shift drivers:video led_cfg_vertical_sync acknowledged 1 DoS

20 shift drivers:video led_cfg_horizontal_sync acknowledged 1 DoS

21 shift sound snd_hwdep_dsp_load patched 0 Data Confusion
22 u+ sound snd_emux_hwdep_ioctl submitted 1 OOB Read
23 s+ kernel panic acknowledged 0 Zero Delay Panic

TABLE V: New UB detected by KUBO and reported to the kernel developers. Each line is a reported bug. For each bug, we list its error
operation with the bug (s+ stands for signed integer overflow etc.), the corresponding module, the function name where the bug resides, its
current status, how many hops it requires to trace the bug and its security implication, specially we shade the bugs that are evaluated to have

security implication.

language [6]. However, if not handled with care, it still can lead
to security breach such as CVE-2018-5848, bug #1 and #8 in
Table V, mainly because such a wrap-around is not anticipated
by the developer.

One example of a detected, purely benign wrap-around is
shown below, where the name array from the userspace is
hashed by (ab)using unsigned integer overflows.

1 static void warn_on_bintable (const int *name, int

— nlen)
2
3 int 1i;
4 u32 hash = FNV32_OFFSET;
5 for (i = 0; i < nlen; i++)
6 hash = (hash ~ name[i]) * FNV32_PRIME;
7 .

Only two out of the 23 bugs we reported were rejected
(will not be fixed) by the kernel developers, namely Bug #2
and #17 in Table V. For Bug #2, the developer acknowledged
that the overflow can happen and may cause userspace faults
but failed to see any harm to the kernel thus chose not to fix it.
For Bug #17, the developer stated that although the UB bug is
valid, the code is for legacy hardware. Without access to the
hardware, it’s hard to evaluate the impact of this overflow.

We manually evaluate the security implication by observing
how the detected UB is used and impact the system. 17 out of
the 23 reported bugs (74%) are considered to be critical with
obvious security implications (shaded rows in Table V).

1 if (unlikely (copy_from_user (&maint_io, arg,
— sizeof (maint_io))))
return -EFAULT;

if ((maint_io.offset

(maint_io.length

(maint_io.length % 4)

wrap-ar happen here

o u e W

| | (maint_io.length + maint_io.offset)
— RIO_MAINT_SPACE_SZ)

7 return -EINVAL;

8 buffer = vmalloc (maint_io.length);

We use 2 typical examples to demonstrate the exploitability
of the found bugs. In one example shown in the figure above,
maint_io.length and maint_io.offset are fetched directly from
userspace, and the sum of these 2 variables are compared with
a constant RIO_MAINT _SPACE _SZ which is 16MB. However,
since this sum can wrap-around, an arbitrary kernel buffer
can be allocated. Such a buffer will subsequently be used to
communicate and iterate data from/to userspace to/from device,
possibly leading to either memory leak or arbitrary write which
can be used as primitive for further exploitation.

1 uint64_t range[2], start,
if (copy_from_user (range,
— sizeof (range)))

len;
(void __user #)arg,

return -EFAULT;
start = range[0];
len = range[l];

1 wrap

aroun

9 if (start + len > i_size_read(bdev->bd_inode))
EINVAL;

10 return

ange

//wrong)
14 err = truncate_bdev_range (bdev, mode, start,
15 start + len - 1);

Another example, as shown in the snippet above, a wrap-
around could happen for the addition of the start and length
of a piece of memory, as they are coming from userspace.
However, a wrap-around check is missing, thus one can
bypass the check at line 9 and the overflowed value is
passed into truncate_bdev_range which is a wrapper of trun-
cate_inode_pages_range, possibly truncating a wrong piece of
memory and causes memory corruption issues.

In summary, the results from the two experiments reported
in this sub-section (§ V-A) show that KUBO detects critical user-
space triggerable UB bugs in Linux kernels with significantly

lower false negative and false detection rates than previous
works.

B. Component-wise evaluation

In this section, we evaluate and justify each design choice
in KUBO based on the collected statistics of analyzing the latest
kernel.

u SMT Solver Unsat
Post-Bug Analysis

m Callchain Upwalk
m User Input Unrelated
m Reported

0.68%

Fig. 6: The percentage of the UBs filtered out by each technique
among the all UB instrumentations. If solely using SMT solver, only
8.55% UB instrumentation can be deemed false. In the meantime, a
large portion of UB instrumentation can be removed because they are
not related to userspace input.

40%

35%

15%

,_.
o
3

29%
5%

34%
18%
3%
0,
I I B2 % o% ow
- —
2 3

%
2%
| |
0 1 4 5 6 7 8 9

= Number of dependent under-constrained values for each UB

5%

Percentage of each number in total cases
S
3

2
X

11

Fig. 7: Distribution of number of dependent under-constrained values
for instrumented UB. 98% of the instrumented UB depend on at least
one under-constrained values. 83% of them depends on 3 or less
under-constrailed values.

1) User-input centric detection: To evaluate the effective-
ness of each technique, we summarized how many instrumented
UBs are filtered out in each stage in Figure 6. As shown in
the figure, SMT solver can only remove 8.55% UB instrumen-
tations i.e., 91.45% of the UBs will be deemed satisfiable thus
being kept. This high satisfiability rate is the major evidence of
the significant gap between the theoretically satisfiable UB and
the real UB in reality which makes previous works struggle
with FP. KUBO bridges this gap by searching for userspace input.
As Figure 6 shows, generally only 10.2% (8.55%+1.65%) UBs
are caused directly by userspace input, yet, according to our
survey, they account for the majority of the exploitable real-
world vulnerabilities.

2) Incremental call chain upwalk: In this subsection, we
evaluate how incremental call chain upwalk affects the scalabil-
ity and detection result of KUBO. We further present the results
based on different hop limits to study how the configuration

10

hop 0 1 2 3 4 5 6

of UB
instrumentation

T+

320937 106240 | 29256 27451 24794 13176 7003 4557

of bugs
detected

FDR

15 27 32 38 40 40 40 NA

20.0% 22.2% 28.1% 23.7% 27.5% 27.5% 27.5% NA

(a) Per-hop evaluation for detected bugs and false alarms
hop 0 1 2 3 4 5
of bugs 14 11 9 7 7 7
missed
FNR 733% | 519% | 414% | 368% | 368% | 36.8%

(b) Per-hop evaluation for false negatives.

TABLE VI: Per-hop evaluation for FDR and FNR. For FDR (sub-
table VIa), we report how many UB instrumentations are processed
by this hop (row 2). How many bugs are detected up to this hop
(row 3) and the corresponding false detection rate (row 4). For FNR
(subtable VIb), we report how many bugs are missed out of the 19
bugs ground truth for each hop (row 2) and the corresponding false
negative rate (row 3).

of hop limit may affect the effectiveness of incremental call
chain upwalk.

Effect on scalability: As shown in Figure 7 where we survey
the number of under-constrained values for each instrumented
UBs, 98% UBs depends on at least one under-constrained value,
this high percentage of dependency on under-constrained values
makes it necessary to trace back to the callers to gain more
visibility. When we trace back the callers, instead of blindly
scaling up to each possible caller, we only select the callers that
can taint all UB-dependent under-constrained values. During
this selection, 46.07% of callers are filtered out because they
cannot taint all under-constrained values, this big reduction is
the key factor for KUBO to scale up.

Per-hop evaluation: To better understand how the configura-
tion of different hop limits affects the result for false detection
rate (FDR) and false negatives rate (FNR), we first measured
how many UB instrumentations are processed by each hop
in the lastest kernel experiment. As shown in Table VI, the
number of hops dropped dramatically at the first 3 hops. This
largely alleviates the path explosion problem that most symbolic
execution tools have. As for false positive rates, with the
number of hops getting larger, the FDR remains consistent
around 25% and plateaued after 5 hops. This suggested that
increasing hops does not effectively detect more bugs mainly
because a fairly large portion of UB instrumentations e.g., about
91%, has been processed in the first 3 hops.

In the experiment of different hops for false negative
evaluation, as shown in Figure VIb. False negatives benefit
a lot from the increasing number of hops as it dropped by
half from hop 0 to hop 3, and also plateaued afterward. This
indicates the intrinsic limitation of KUBO which is being unable
to handle other sources of input and loops. And this cannot be
simply solved by increasing the hops.

3) Post-bug analysis: As the kernel grows more and more
sophisticated over time, an increasing number of UB is being
noted and properly handled. Unlike other types of bugs that
can be eliminated completely, the UB is usually sanitized after

id Modules Testable? ‘Why (not)?
block built-in
fs built-in
sound built-in
kernel built-in

virtual driver
AM4x Cortex-A9 specific
physical device required
physical device required
physical device required
ASpeed BMC SoC specific
physical device required
usbfuzzer
virtual driver

drivers:infiniband
drivers:media
drivers:rapidio
drivers:staging:gasket
drivers:misc
drivers:soc
drivers:message
drivers:usb
drivers:video

Nl e Y N

10
11
12
13

“<Y DD DD DB <<

TABLE VII: Summarization of testability of syzkaller for all modules
where KUBO found bugs. 7 modules are testable while other 6 are not.
For testable modules, built-in means this module can be tested in the
default setting; virtual driver means it’s a driver for software e.g. rxe
for infiniband; usbfuzzer means syzkaller emulated usb stack, thus
making usb driver testable. For untestable modules, it can be either it’s
unique to certain chip e.g. 6 and 10, or a physical device is required.

Modules Found UB buggy function True bug? Why not?
block No NA NA NA
fs No NA NA NA
sound shift snd_timer_user_ccallback n post-bug check
shift ext4_fill_super n post-bug check
kernel s* yura_hash y NA
s* __ntfs_write_inode n non-reproducible

No
No
s+

NA NA
NA NA
__v412_find_nearest_size n

NA
NA
post-bug check

drivers:infini
drivers:usb
drivers:video

TABLE VIII: UB Bugs found by running syzkaller for each testable
modules for 48 hours. 5 UB bugs were reported for these 7 modules.
For each found bug, we recorded their UB type, the corresponding
function, whether if it’s a true bug, and the reason why if we validate
it to be a false bug.

it actually happens. This challenges all UB detectors to not
only ensure the UB is triggerable but also to go beyond the
UB instruction to make sure the triggered UB is unhandled and
can cause unintended consequences. For discussion of a better
post-bug analysis, please see Section III-G. In our experiment,
if without post bug analysis, the false detection rate will be
increased from 27.5% to 68.3%.

C. Comparing with syzkaller

1) Setting up syzkaller: In this experiment of comparing
with syzkaller, the kernel image of the same version where
KUBO found unknown bugs was compiled with the default rec-
ommended configuration from syzkaller and additional UBSan
instrumentation enabled. For each subsystem where KUBO has
found bugs, we launched a syzkaller instance where only the
relevant syscalls are enabled so that syzkaller can focus on that
specific subsystem e.g., for sound subsystem, we only enabled
syscalls specified in dev_snd_seq.txt and other related syscalls
description files.

There are two exceptions for the above procedure, one
is for the instance launched for kernel subsystem where we
did not specify any syscall, so every syscall can be tested;
Another one is for the device drivers since most of the device
drivers are not testable in the syzkaller VM as they need to
communicate with a real physical device; Worse still some of
the device drivers are unique to certain chip or architecture,
thus cannot be compiled into the kernel image on a regular
server environment. We summarized the testability situation
in Table VII. The untestability problem is solved either by 1)

11

syzkaller’s emulation of the hardware stack e.g. usbfuzzer [8] or
2) testing a virtual driver (driver communicating with software).

2) Syzkaller reported bugs: We ran each instance of
syzkaller testing individual kernel module for 48 hours and
the UBSan reports are summarized in Table VIII. As shown
in this table, five UBs were detected in total across 3 different
kernel modules. However, after manual validation, four of them
were determined to be false bugs. For these four false bugs,
three of them are because they are checked right after the UB
takes place, another one of them is because it was decided as
un-reproducible by syzkaller.

There is one true bug in yura_hash, as shown in the figure
below, which is a signed overflow. However, according to
our previous communication with the developers, all signed-
overflow are converted to 2’s complement wrap-around in the
kernel module, making this overflow purely benign. Question
has been submitted to the developer in regard to whether this
overflow is harmful or not.

u32 yura_hash (const signed char

{

*msg, int len)

1
2
3 int j, pow;
4 u32 a, c;

5 int i;

6 for (pow = 1,
7 pow = pow =
9

>nould e ur

Based on the above reported results, KUBO has two ad-
vantages over syzkaller: 1) directly applicable to (any) kernel
code despite the lack of customized hardware. It is also worth
noting that it takes non-trivial effort to set up syzkaller to test
against different drivers, for example, configuring the kernel
with driver-specific KConfig entries and installing extra user-
space libraries for virtual drivers e.g., RDMA Core Userspace
Libraries for rxe driver are usually required. and 2) lower false
detection rates mainly thanks to post-bug analysis.

However, we note that there are bugs easily found by
syzkaller but difficult for a static analysis tool (e.g., the bug
in yura_hash requires unrolling the loop for at least 10 times).
This makes KUBO and the dynamic testing approach a good
complement for each other.

D. Triaging efforts

Since static analysis reports usually take a huge amount
of manual efforts to triage, in this section, we measure the
time spent on manually verifying the bug reports. We invited
a graduate student to validate all the bugs detected by KUBO.
In this process, the validator needs to check if the bug can
be triggered via user-controlled data, and the triggered UB
has a real system impact. Thanks to the modest number of
reports, and well-marked attack vector, it only costs the student
5 hours to validate all the reports. Compared to the traditional
symbolic execution based static approach like KINT, where two
bug review marathons were used to validate only 0.6% of the
125,172 generated reports, we believe our userspace focused
detection approach is more actionable and usable in practice.

Out of the 23 submitted reports, despite the fact that we
were unable to provide a PoC program to cause any sensible
consequence. Only via the description of the data sources
and the UB found by KUBO, the developers were able to

Performance of each analysis stage
for different modules

5
0.5 2
O ——

Taint analysis Call Graph Analysis KUBO main analysis
m 95% of the modules ® 5% of the modules

0.06 0.1

Fig. 8: Total time spent in each analysis phase. Although processing
time varies between different modules due to their varying complexity,
and all tasks were put into a thread pool, most of the modules can be
finished within 16 hours (0.5h+4m+15h) (blue bar), a few extremely
complex modules take much longer with the worse case scenario being
33 hours (2h+6m+30h) (red bar) detailed in § V-E.

quickly acknowledged 14 of them, thanks to the inherent
security implications that they can be directly triggered by
user-controlled data. The average turn-around time is 44 hours.

E. Performance

In this subsection, we report the time cost in each analysis
stage, the result is presented in Figure 8. Note that, for each
analysis stage, instead of analyzing each module one by one,
all tasks were put into a thread pool, and we measured the time
of an individual module from the moment it entered the thread
pool until it finished.

For taint analysis, most of the subsystems take half an hour
to generate the per-function taint summary while drivers/net
drivers/infiniband drivers/gpu and drivers/net take about 2 hours.
The call graph analysis takes all modules for less than 6
minutes.

As for KUBO, the main analysis, 161 subsystems are finished
within the first 15 hours since the analysis starts. Only 5 subsys-
tems take extra 15 hours due to the high volume of annotated
sanitizers and complexity of the codebase, these subsystems are
fs, drivers:video, drivers:gpu, net and drivers:scsi. In conclusion,
KUBO can produce high-quality bug reports without introducing
too much overhead, the whole analysis can be finished in a
reasonable human time.

VI. DiIscuUSSION & FUTURE WORK

A. Model hardware input

KUBO does not handle hardware input sources at the
moment, and this contributes to 5 of the missing bugs out
of Ssurvey- Hence, we identified several unique challenges to
model hardware inputs.

First of all, hardware interfaces are much more diverse due
to various hardware specifications (e.g., DMA, MMIO). Thus
when identifying untrusted input coming from hardware, it
usually needs to be analyzed case by case. Also, the data from
the device are often structurized thus a field-sensitive analysis

12

is generally required. Last but not least, the data sent from
the device to the driver can be pre-processed by the device
firmware, this requires the analysis tool to understand the full
software stack including the firmware, in order to complete the
constraints. Given that there has been works studying the driver-
device interaction like PeriScope [32] which tries to identify
the untrusted input from the devices, it would be interesting to
see how to incorporate these two lines of works to facilitate the
detection of more bugs in the kernel, we leave this to future
exploration.

B. Improve for less false alarms

As we can see from the evaluation § V-Al, 80% of
KUBO’s false positives are caused by the incomplete post-
bug analysis due to its limitation of being intra-procedural.
In addition, understanding the semantics at a UB sink site is
also important in order to precisely screen the non-impactful
UBs, since ultimately it is the developer’s intention that needs
to be understood by the analysis [33], [29], [10]. And such
an intention is expressed in various ways and can be hard to
enumerate.

Existing works [29], [31], [33] trying to distinguish between
harmful UBs and benign ones generally hinge on the idea
that the undefined/overflowed values being used in sensitive
functions is definitely not intended by the developer. This poses
advantages for false alarms but is theoretically unsound in the
sense that sensitive functions are hard to enumerate and the
sinks (UB impacting site) apart from the sensitive functions
can be also critical. KUBO takes the first step (towards a
generic approach) to model the constraints of the UB’s use sites,
however, the post-bug analysis is still bounded by being intra-
procedural for performance concerns. As a result, understanding
more about the possible ways of how an undefined value can be
used and a (possibly) efficient inter-procedural analysis to locate
the dangerous sinks can be interesting for future exploration
and warrants a more extensive study.

VII.
A. Undefined behavior detection/fixing

RELATED WORK

Previous works reason very well about why undefined
behavior exists and the conditions to trigger each of them. Wang
et al. [36] study the causes and consequences of all kinds of
undefined behaviors. STACK [38] [39] investigates the unstable
code which might be optimized out due to the compiler’s
false assumption of all user’s programs being well-defined.
Dr’Silva et al. [18] studied UB, among other issues, introduced
by compiler optimizations. Chris et al. [21] systematically study
the causes and consequences of UB in C and propose extra
semantics to handle the undefinedness in C. Lee et al. [22]
tries to address the undefined behavior in the design of LLVM
IR instruction set by introducing new instruction.

This line of works, in terms of efforts to detect UB, typically
uses limited intra-procedural or local analysis and does not
consider UB triggerability by user inputs. As a result, they
usually report overwhelmingly high volumes of bug reports
and false positives, which are extremely difficult to vet in
practice. As for the UB fixing methods, they generally rely on
new security features implemented through program rewriting.
These techniques are generally not applicable to programs as

large and complex as the OS kernel. In comparison, KUBO
focuses on detecting critical UB triggered by userspace input
with a much lower false detection rate, thanks to its scalable
and accurate data and call chain analysis.

B. Integer overflow (10) detection

Integer overflow/error is a common type of UB, which
attracts a lot of research attention. KINT [37] is a static
integer integrity checker applicable to the Linux kernel. It
relies on range analysis and user-annotated taint input to infer
if an integer can overflow. In comparison, KUBO expands the
problem scope to all types of UBs. Moreover, unlike KINT,
whose context-insensitive range analysis and intra-procedural
symbolic execution together result in extremely high false
detection rate, KUBO achieves scalability i.e. finish analysis
within 33 hours, to the entire Linux kernel without sacrificing
much the accuracy i.e. FP rate is 27.5%.

SIFT [23] generates input filters for programs to prevent
integer errors during runtime. However, its approach is not
directly applicable to OS kernels or complex software whose
input channels are numerous and diverse. DIODE [31] uses a
targeted branch enforcement strategy to find a path that can
trigger 10 at memory allocation sites. Despite being relatively
precise, it is narrowly focused on IOs at the memory allocation
sites and cannot scale up to big programs like OS kernels.

Another line of work on detecting IOs including
IntScope [35], IntFlow [29], IntEq [33], Osiris [34], and In-
tRepair [28], trying to detect IO using various techniques.
IntScope [35] and IntFlow [29] use taint analysis to locate
the overflow affected by untrusted input source under the
observation that the harmful integer errors often stem from un-
trusted input and the triggered error must affect certain sensitive
functions e.g. memcpy. Osiris [34] targets the IOs in the smart
contract. IntRepair [28] aims at automatically detecting and
repairing IO through program rewriting. IntEq [33] formally
defines what’s a benign 10 and achieves high accuracy in
distinguishing benign 10s from harmful ones. This idea is a
great complement to our post-bug analysis to mute more false
positives, however since it also requires the overflowed value
to flow into a critical sink which might be far from the UB
instruction, it still has the problem of not being able to find a
meaningful sink. This might not be a big problem for small
program, but for code as complex as the kernel, how to locate
the sink is an issue.

Idea-wise, our motivation to focus on input from userspace
agrees with their observation that user-input affected UB is
critical, but KUBO distinguishes from these works in that
1). Prior works [29] use a flow-based method which only
utilized coarse-grained data-flow analysis while KUBO strictly
distinguishes userspace input from under-constrained memory
and assert that only when a UB is solely affected by userspace
input can it be regarded as a true bug, for other likely cases,
we use BTI to model the likelihood. 2). Their observation
in [35], [29], [33] that only the overflows whose value affects
sensitive functions can be regarded as meaningful, might be
generally true for userspace code. For kernel, however, given the
compactness of semantics an integer could represent and how
critical certain integers could be, any unintended or unintended
undefinedness and wrap-around are worth being paid attention

13

to. As a result, the scope should not be limited to a set of pre-
defined sensitive functions. Lastly, the benchmark adopted in all
of these works are generally small to medium sized userspace
program which is an indicator that they might not scale to large
codebase like the kernel. As stated in IntRepair [28] which
neither has false positive nor false negative, "we expect that in
even more complex and large real-world programs, INTREPAIR
would report false positives.

C. Symbolic execution for bug finding

Symbolic execution has been widely used with SMT
solvers [16] for finding bugs [19], [12], [30], [26], [14], [11].
These works, along with the aforementioned STACK and
KINT, made great progress towards analyzing large codebases.
However, there is always a trade-off between scalability and
precision. In particular, works like UCKLEE and KINT tried
to gain better scalability by performing symbolic execution on
partial program paths starting from certain interesting functions
within the kernel and carry on forward. As a result, they suffer
from high false detection rates. KUBO also adopts the general
approach of symbolic execution and path constraint solving.
However, KUBO differs from previous works in that it focuses
on each instrumented bug and analyzes its triggerability via
an efficient backward inter-procedural analysis, enabled by on-
demand call chain upwalk and per-function taint summaries.
This analysis scales to the whole kernel and combats path
explosion through actively pruning potential UBs that are not
triggerable by userspace input.

D. Non-UB bug detection in kernel

KMiner [20] is a static analysis tool for detecting memory
corruption bugs in the Linux kernel. It is based on value
flow analysis and can reason about potential wrong operations
on memory, e.g. free on specific memory objects. PEX [42]
generates a whole-kernel call graph and uses static call chain
analysis to detect privilege checking errors in the kernel.
APISan [41] and Unisan [25] aims at finding API misuse.
However, their intra-procedural analysis suffers from high false
detection rates, especially when used for detecting integer
overflows, due to the inability of tracking where and how API
parameters flow into the API. Unlike these previous works,
KUBO uses a scalable and efficient inter-procedural analysis
and is focused on detecting critical UB that can be triggered
by userspace inputs.

VIII. CONCLUSION

This paper presents KUBO, a precise and scalable static
analysis framework to detect undefined behavior bugs in OS
kernel. KUBO identifies UB bugs that are triggerable by
userspace inputs. By using a novel inter-procedural analysis
that tracks data and control dependencies across function calls,
KUBO can produce highly precise results. By only analyzing
paths that are directly affected by userspace inputs, and with
the on-demand, incremental call chain analysis, KUBO can
significantly reduce the number of paths to analyze. Going
beyond triggering the UBs, KUBO also tracks the post-bug
triggering paths in order to filter out UBs that have been handled
and does not pose security implication to the system. KUBO
can finish analyzing 27.8 million lines of code in the latest
Linux kernel under 33 hours. In total, KUBO found 23 UBs,

including 17 critical ones, 14 of them are quickly accepted or
patched.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their insightful comments and Meng Xu for his releasing
the DEADLINE source code and consultation during our
development of KUBO prototype.

This project was supported by the National Science Founda-

tion (Grant#: CNS-1748334) and the Office of Naval Research
(Grant#: N0O0014-18-1-2660). Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the
funding agencies.

[2]

[3]
[4]

[5]

[6]

[7]
[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Common vulnerabilities and exposures about linux kernel.
https://nvd.nist.gov/vuln/search/statistics ?form_type=Advanced&
results_type=statistics&search_type=all&cpe_vendor=cpe%3A%2F%
3Alinux&cpe_product=cpe%3A%2F%3 Alinux%3Alinux_kernel.
Accessed: 2020-6-18.

Common vulnerability scoring system calculator cve-2018-
13053. https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=
CVE-2018-13053&vector=AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:
L&version=3.0&source=NIST.

Cve-2018-8781. https://nvd.nist.gov/vuln/detail/CVE-2018-8781.

Undefined behavior sanitizer - clang documentation. http://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks.

The undefined behavior sanitizer - ubsan. https://www.kernel.org/doc/
html/v4.14/dev-tools/ubsan.html.

specification of integer overflow. https://www.gnu.org/software/autoconf/
manual/autoconf-2.64/html_node/Integer-Overflow-Basics.html, 2020.

syzkaller - kernel fuzzer. https:/github.com/google/syzkaller, 2020.

syzkaller - usb fuzzer. https://github.com/google/syzkaller/blob/master/
docs/linux/external_fuzzing_usb.md, 2020.

ANSI/ISO. Iso/iec 9899:2018. https://www.iso.org/standard/74528.
html, 2018.

BRUMLEY, D., SONG, D. X., CHIUEH, T. C., JOHNSON, R.,
AND LIN, H. Rich: Automatically protecting against integer-based
vulnerabilities. In Network & Distributed System Security Symposium
(2007).

CADAR, C., DUNBAR, D., AND ENGLER, D. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (USA, 2008), OSDI’08, USENIX
Association, p. 209-224.

CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. Exe: Automatically generating inputs of death.
ACM Trans. Inf. Syst. Secur. 12, 2 (Dec. 2008).

CHEN, Y., L1, P.,, XU, J., Guo, S., ZHOU, R., ZHANG, Y.,
WEI, T., AND LU, L. Savior: Towards bug-driven hybrid testing. In
2020 IEEE Symposium on Security and Privacy (SP) (Los Alamitos,
CA, USA, may 2020), IEEE Computer Society, pp. 2-2.

Cul, H., Hu, G., Wu, J., AND YANG, J. Verifying systems
rules using rule-directed symbolic execution. In Proceedings of
the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA,
2013), ASPLOS ’13, Association for Computing Machinery, p. 329-342.

DE MOURA, L., AND BIGRNER, N. Z3: An efficient smt solver.
In Tools and Algorithms for the Construction and Analysis of Systems
(Berlin, Heidelberg, 2008), C. R. Ramakrishnan and J. Rehof, Eds.,
Springer Berlin Heidelberg, pp. 337-340.

DE MOURA, L., AND BIGRNER, N. Satisfiability modulo theories:
Introduction and applications. Commun. ACM 54,9 (Sept. 2011), 69-77.

14

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

(32]

DIETZ, W., L1, P., REGEHR, J., AND ADVE, V. Understanding
integer overflow in c/c++. ACM Trans. Softw. Eng. Methodol. 25, 1
(Dec. 2015).

D’SI1LVA, V., PAYER, M., AND SONG, D. The correctness-
security gap in compiler optimization. In 2015 IEEE Security and
Privacy Workshops (2015), pp. 73-87.

ENGLER, D., AND DUNBAR, D. Under-constrained execution:
Making automatic code destruction easy and scalable. In Proceedings
of the 2007 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2007), ISSTA 07, Association for Computing
Machinery, p. 1-4.

GENS, D., ScHMITT, S., DAVI, L., AND SADEGHI, A.-R.
K-miner: Uncovering memory corruption in linux. In NDSS (2018).

HATHHORN, C., ELLISON, C., AND ROUNDEFINEDU, G.
Defining the undefinedness of c. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (New York, NY, USA, 2015), PLDI ’15, Association for
Computing Machinery, p. 336-345.

LEE, J., KIiM, Y., SONG, Y., HUR, C.-K., DAS, S., MAJNE-
MER, D., REGEHR, J., AND LOPES, N. P. Taming undefined
behavior in llvm. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (New York,
NY, USA, 2017), PLDI 2017, Association for Computing Machinery,
p. 633-647.

LoNG, F., SIDIROGLOU-DoOUSKOS, S., KiM, D., AND RI-
NARD, M. Sound input filter generation for integer overflow errors.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (New York, NY, USA, 2014),
POPL ’14, Association for Computing Machinery, p. 439-452.

Lu, K., AND Hu, H. Where does it go? refining indirect-call
targets with multi-layer type analysis. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (New
York, NY, USA, 2019), CCS ’19, Association for Computing Machinery,
p. 1867-1881.

Lu, K., SoNG, C., KiM, T., AND LEE, W. Unisan: Proactive
kernel memory initialization to eliminate data leakages. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (New York, NY, USA, 2016), CCS 16, Association for
Computing Machinery, p. 920-932.

MA, K.-K., YIT PHANG, K., FOSTER, J. S., AND HICKS,
M. Directed symbolic execution. In Static Analysis (Berlin, Heidelberg,
2011), E. Yahav, Ed., Springer Berlin Heidelberg, pp. 95-111.

MACHIRY, A., SPENSKY, C., CORINA, J., STEPHENS, N.,
KRUEGEL, C., AND VIGNA, G. Dr. checker: A soundy analysis
for linux kernel drivers. In Proceedings of the 26th USENIX Conference
on Security Symposium (USA, 2017), SEC’17, USENIX Association,
p. 1007-1024.

MUNTEAN, P., MONPERRUS, M., SUN, H., GROSSKLAGS,
J., AND ECKERT, C. Intrepair: Informed repairing of integer
overflows. IEEE Transactions on Software Engineering (2019), 1-1.

Pomonis, M., PETs1ios, T., JEE, K., POLYCHRONAKIS, M.,
AND KEROMYTIS, A. D. Intflow: Improving the accuracy of arith-
metic error detection using information flow tracking. In Proceedings of
the 30th Annual Computer Security Applications Conference (New York,
NY, USA, 2014), ACSAC ’14, Association for Computing Machinery,
p. 416-425.

RAMOS, D. A., AND ENGLER, D. Under-constrained symbolic
execution: Correctness checking for real code. In 24th USENIX Security
Symposium (USENIX Security 15) (Washington, D.C., Aug. 2015),
USENIX Association, pp. 49-64.

SIDIROGLOU-DOUSKOS, S., LAHTINEN, E., RITTEN-
HOUSE, N., PISELLI, P., LONG, F., KiM, D., AND RINARD,
M. Targeted automatic integer overflow discovery using goal-directed
conditional branch enforcement. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2015),
ASPLOS ’15, Association for Computing Machinery, p. 473-486.

SONG, D., HETZELT, F., DAS, D., SPENSKY, C., NA, Y.,
VOLCKAERT, S., VIGNA, G., KRUEGEL, C., SEIFERT, J.-
P., AND FRANZ, M. PeriScope: An effective probing and fuzzing

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cpe_vendor=cpe%3A%2F%3Alinux&cpe_product=cpe%3A%2F%3Alinux%3Alinux_kernel
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cpe_vendor=cpe%3A%2F%3Alinux&cpe_product=cpe%3A%2F%3Alinux%3Alinux_kernel
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cpe_vendor=cpe%3A%2F%3Alinux&cpe_product=cpe%3A%2F%3Alinux%3Alinux_kernel
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2018-13053&vector=AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L&version=3.0&source=NIST
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2018-13053&vector=AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L&version=3.0&source=NIST
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2018-13053&vector=AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L&version=3.0&source=NIST
https://nvd.nist.gov/vuln/detail/CVE-2018-8781
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks
https://www.kernel.org/doc/html/v4.14/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/ubsan.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.64/html_node/Integer-Overflow-Basics.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.64/html_node/Integer-Overflow-Basics.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

framework for the hardware-OS boundary. In Network and Distributed
System Security Symposium (NDSS) (2019).

SUN, H., ZHANG, X., ZHENG, Y., AND ZENG, Q. Inteq:
Recognizing benign integer overflows via equivalence checking across
multiple precisions. In Proceedings of the 38th International Conference
on Software Engineering (New York, NY, USA, 2016), ICSE ’16,
Association for Computing Machinery, p. 1051-1062.

TORRES, C. F., SCHUTTE, J., AND STATE, R. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the
34th Annual Computer Security Applications Conference (New York,
NY, USA, 2018), ACSAC 18, Association for Computing Machinery,
p. 664-676.

WANG, T., WEI, T., LIN, Z., AND Z0OoU, W. Intscope: Auto-
matically detecting integer overflow vulnerability in x86 binary using
symbolic execution.

WANG, X., CHEN, H., CHEUNG, A., JIA, Z., ZELDOVICH,
N., AND KAASHOEK, M. F. Undefined behavior: What happened
to my code? In Proceedings of the Asia-Pacific Workshop on Systems
(New York, NY, USA, 2012), APSYS ’12, Association for Computing
Machinery.

WANG, X., CHEN, H., JIA, Z., ZELDOVICH, N., AND
KAASHOEK, M. F. Improving integer security for systems with
kint. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (USA, 2012), OSDI’12, USENIX
Association, p. 163-177.

WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND
SOLAR-LEZAMA, A. Towards optimization-safe systems: Analyzing
the impact of undefined behavior. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, Association for Computing Machinery, p. 260-275.

WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND
SOLAR-LEZAMA, A. A differential approach to undefined behavior
detection. ACM Trans. Comput. Syst. 33, 1 (Mar. 2015).

XU, M., QI1AN, C., Lu, K., BACKES, M., AND K1M, T. Pre-
cise and scalable detection of double-fetch bugs in os kernels. pp. 661—
678.

YuN, I., MIN, C., S1, X., JANG, Y., KiM, T., AND NAIK,
M. Apisan: Sanitizing api usages through semantic cross-checking. In
Proceedings of the 25th USENIX Conference on Security Symposium
(USA, 2016), SEC’16, USENIX Association, p. 363-378.

ZHANG, T., SHEN, W., LEE, D., JUNG, C., AZAB, A. M.,
AND WANG, R. Pex: A permission check analysis framework for
linux kernel. In 28th USENIX Security Symposium (USENIX Security
19) (Santa Clara, CA, Aug. 2019), USENIX Association, pp. 1205-1220.

ZHANG, Y., SUN, X., DENG, Y., CHENG, L., ZENG, S., FU,
Y., AND FENG, D. Improving accuracy of static integer overflow
detection in binary. In Research in Attacks, Intrusions, and Defenses
(Cham, 2015), H. Bos, F. Monrose, and G. Blanc, Eds., Springer
International Publishing, pp. 247-269.

15

	Introduction
	Background and motivation
	Undefined behaviors in kernel
	Prior efforts on finding UB
	Severity of kernel UBs

	KUBO System Design
	Key concepts and terms
	System overview
	Identifying UB instructions
	Backward userspace input tracking & UB condition analysis
	Bug triggerability indicator (BTI)
	Incremental call chain upwalk
	Post-bug analysis

	Implementation
	Call graph & taint analysis
	Backward tracking & symbolic solving

	Evaluation
	Controlled experiments on completeness & accuracy
	False negatives
	False alarms
	Previously unknown bugs

	Component-wise evaluation
	User-input centric detection
	Incremental call chain upwalk
	Post-bug analysis

	Comparing with syzkaller
	Setting up syzkaller
	Syzkaller reported bugs

	Triaging efforts
	Performance

	Discussion & Future Work
	Model hardware input
	Improve for less false alarms

	Related Work
	Undefined behavior detection/fixing
	Integer overflow (IO) detection
	Symbolic execution for bug finding
	Non-UB bug detection in kernel

	Conclusion
	References

