
TASE: Reducing Latency of Symbolic Execution
with Transactional Memory

Adam Humphries
University of North Carolina

humphries@cs.unc.edu

Kartik Cating-Subramanian
University of Colorado

kartik@simplescientist.net

Michael K. Reiter
Duke University

michael.reiter@duke.edu

Abstract—We present the design and implementation of a tool
called TASE that uses transactional memory to reduce the latency
of symbolic-execution applications with small amounts of sym-
bolic state. Execution paths are executed natively while operating
on concrete values, and only when execution encounters symbolic
values (or modeled functions) is native execution suspended and
interpretation begun. Execution then returns to its native mode
when symbolic values are no longer encountered. The key innova-
tions in the design of TASE are a technique for amortizing the cost
of checking whether values are symbolic over few instructions,
and the use of hardware-supported transactional memory (TSX)
to implement native execution that rolls back with no effect
when use of a symbolic value is detected (perhaps belatedly).
We show that TASE has the potential to dramatically improve
some latency-sensitive applications of symbolic execution, such
as methods to verify the behavior of a client in a client-server
application.

I. INTRODUCTION

Since its introduction [7], [29], symbolic execution has
found myriad applications for security analysis and defense
(e.g., [31], [9], [11], [52], [20], [51], [35], [46], [41], [57]),
software testing (e.g., [50], [25], [43], [49], [2], [40], [26],
[12]), and debugging (e.g., [56], [54]). Whereas regular, “con-
crete” execution of a program maintains a specific value for
each variable, symbolic execution allows some “symbolic”
variables to be undetermined but possibly constrained (e.g.,
to be in some range). Upon reaching a branch condition
involving a symbolic variable, each branch is executed under
the constraint on the symbolic variable implied by having taken
that branch. Any execution path thus explored yields a set of
constraints on the symbolic variables implied by having taken
that path. In an example use case, these constraints could
be provided to an SMT solver [36] to compute a concrete
assignment to the symbolic inputs that would cause that path
to be executed.

When applied to testing, the speed of symbolic execution
is typically a secondary concern. However, several security
applications place symbolic execution on the critical path of
defensive response in time-critical circumstances. For example,
some works (e.g., [9], [20]) leverage symbolic execution to
generate vulnerability signatures upon detecting an exploit

attempt, and so the speed of symbolic execution is a limiting
factor in the speed with which vulnerability signatures can
be created and deployed to other sites. Other examples are
intrusion-detection systems in which a server-side verifier
symbolically executes a client program to find an execution
path that is consistent with messages received from the client,
without knowing all inputs driving the client (e.g., [19], [16]).
If each message could be verified before delivering it to the
server, then the server would be protected from exploit traffic
that a legitimate client would not send (e.g., Heartbleed packets
to an OpenSSL server [16]). However, such tools are not yet
fast enough to perform this checking on the critical path of
delivering messages to the server, reducing them to detecting
exploits alongside server processing.

Conventional wisdom holds that SMT solving and state
explosion are the primary latency bottlenecks in symbolic
execution. However, the speed of straightline, concrete ex-
ecution has been found to be the primary culprit in some
contexts (e.g., [19], [55]). Most symbolic execution tools incur
a substantial performance penalty to straightline execution
because they interpret the program under analysis, even when it
is performing operations on concrete data. For example, Yun
et al. [55] report straightline-execution overheads of 3000×
and 321,000× native execution speed for KLEE [10] and
angr [46], due to interpretation. The need to interpret the
program in these tools arises from the need to track symbolic
variables, to accumulate constraints on those variables along
each execution path, and to explore multiple execution paths.
Even attempts to optimize symbolic execution when processing
only instructions with concrete arguments must typically incur
overheads due to lightweight interpretation; e.g., S2E [18]
encounters an overhead of roughly 6× vanilla QEMU [4]
execution speed on purely concrete data due its use of memory
sharing between QEMU and KLEE. In our microbenchmark
evaluations (see Sec. VI-A), these overheads in S2E resulted
in concrete execution costs of up to ≈ 72× native execution.

In this paper, we provide a solution that supports fast
native execution of instructions with concrete values—while
still using interpretation to do the “symbolic parts” of sym-
bolic execution—on modern x86 platforms. Our design and
associated tool, called TASE1, accomplish this through two key
innovations. Though TASE instruments the executable to test
whether variables are concrete or symbolic (like EXE [11]),
our first innovation amortizes the costs of these tests by batch-
ing many into a few instructions. To maximize the benefits
of this amortization, TASE defers these checks to ensure

1TASE stands for “Transactional Acceleration for Symbolic Execution”.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual 
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24327
www.ndss-symposium.org



that only variables actually used are checked; this deferment,
together with the amortization, means that instructions may be
concretely executed on symbolic variables. Therefore, a critical
second innovation in TASE is a way of rolling back such
erroneous computations so they have no effect. TASE uses
hardware transactions as supported by Intel TSX extensions
for this purpose, though as we will see, accomplishing with
low overhead is nontrivial.

This paper outlines the design of TASE, and evaluates
its potential to accelerate symbolic execution of applications
with small amounts of symbolic state. We first show where
TASE improves over modern alternatives such as KLEE,
S2E, and QSYM [55], through a microbenchmark comparison.
This comparison shows that while TASE can perform poorly
relative to some of these alternatives for applications with large
amounts of symbolic data, it can perform much better than
them when the amount of symbolic data is small.

Second, we show how TASE qualitatively improves the
deployment options for a specific defensive technique, namely
behavioral verification of a client program [19], [16] as in-
troduced above. Though Chi et al. were able to show the
verification of OpenSSL client messages in TLS 1.2 sessions
induced by a Gmail workload at a speed that coarsely keeps
pace with these sessions [16], their verification was not fast
enough to perform on the critical path of message delivery.
We show that replacing the symbolic execution component
of their tool with TASE substantially improves the prospects
for performing verification as a condition of message delivery.
More specifically, we show that TASE’s optimizations reduce
the average, median, and maximum lag suffered by any client-
to-server message by over 90%, 94%, and 79%, where lag is
defined as the delay between arrival of a message to the verifier
and its delivery to the server after verification completes. In
doing so, TASE brings these lags into ranges that are practical
for performing inline verification of TLS sessions driven by
applications, like Gmail, that are paced by human activity.

Third, we demonstrate the flexibility of the techniques in
TASE by using it to prototype memory protections (stack
canaries and buffer under- or over-run detection, while either
reading or writing) for program execution. This demonstration
is of interest primarily due to its minimality, requiring changes
to TASE and associated components of fewer than 140 source
lines of code. The resulting protections add less than 15% to
our microbenchmarks’ execution times with TASE, as well.

To summarize, our contributions are as follows:

• We introduce a method to limit tests for determining
whether variables are symbolic to only those variables
that are actually used, and to batch many such tests into
few instructions. Since this deferred testing can result in
our erroneously executing instructions on symbolic data,
we show how transactional memory can be leveraged to
undo the effects of these erroneous computations.

• We detail the numerous optimizations necessary to realize
the promise of this approach, in terms of achieving com-
pelling performance improvements for some applications
of symbolic execution. We show through microbench-
mark tests where TASE outperforms modern alternatives,
KLEE, S2E, and QSYM. We also compare to contempora-
neously developed symbolic execution tool SymCC [39].

• We show that TASE improves a specific defense using
symbolic execution, namely behavioral verification [19],
[16], to an extent that qualitatively improves how such a
defense can be deployed on TLS traffic. Specifically, we
show that TASE reduces the costs of this defense to permit
its application inline for all but very latency-sensitive
applications. In doing so, TASE enables preemptively
protecting the server from exploits using this approach,
versus its current ability to only detect malformed client
messages alongside their processing by the server. We
also demonstrate the flexibility of TASE by developing
memory protections as an application of its techniques.

The rest of this paper is structured as follows. We discuss
related work in Sec. II. We provide background and describe
challenges that we must overcome to realize TASE in Sec. III,
and present the design of TASE in Sec. IV. We discuss ad-
ditional aspects of TASE’s implementation in Sec. V. Sec. VI
contains an evaluation of TASE for a symbolic execution-based
application, and microbenchmarks. We discuss limitations of
TASE in Sec. VII and conclude in Sec. VIII.

II. RELATED WORK

We now outline prior work on symbolic execution systems
and work using Intel’s Transactional Synchronization Instruc-
tions.

A. Symbolic Execution Engines

Symbolic execution engines DART [25] and CUTE [43]
represent some of the earliest modern attempts to mix concrete
and symbolic execution [12]. Their approach, called concolic
testing, analyzes a program by choosing an initial set of
concrete input values V to a given program. The program
is then executed with instrumentation to determine when
control flow instructions are encountered, and constraints are
accumulated at these branch locations in terms of their relation
to the concrete inputs. After execution with input V terminates
or is suspended, the constraints gathered from execution on V
are analyzed to determine a new set of concrete inputs V ′ to
guide execution down a different path. The process can be
run repeatedly until all paths are explored, or until the tester
wishes to cease path exploration. Although we prioritize native
execution in TASE and mix concrete and symbolic execution,
our approach differs from concolic execution in that we do not
require entirely concrete inputs to drive symbolic execution.
We also do not require re-execution of a program from a new
set of concrete values to reach different execution paths, as
we employ native forking (see Sec. IV-E) to explore different
branches of program execution when control flow depends on
the value of a symbolic variable. QSYM is another example of
a concolic execution tool that requires re-execution to explore
new execution paths [55]. Like TASE, QSYM incorporates
optimizations to reduce the cost of interpretation. However,
unlike TASE, QSYM sacrifices soundness to optimize its
performance for fuzzing. Another recent tool, SymCC [39],
implements concolic execution using compile-time instrumen-
tation inserted into the LLVM IR of a program before machine
code is generated.

Rather than using a program’s native execution state as
its primary representation, the KLEE symbolic execution en-
gine [10] instead analyzes a program by interpreting its source

2



code translated to LLVM IR. KLEE is deeply optimized to
minimize the cost of constraint solving by caching previous
query results, applying normalization to constraints and queries
to facilitate comparisons between expressions, and analyzing
queries to determine subexpressions which may have already
been solved. KLEE is also structured to explore multiple
program paths within a single process. By doing so, KLEE is
able to closely guide state exploration with heuristics chosen
to prioritize code coverage or search for specific bugs or
problematic behavior. KLEE also implements software based
copy-on-write to more efficiently manage the symbolic states
associated with different program paths.

EXE [11], Mayhem [13], and S2E [18] are symbolic
execution engines that use a program’s native state as its
principal representation. EXE analyzes a program by executing
it natively and checking each use of a variable against a
map that indicates if the variable is symbolic. Similarly,
Mayhem uses dynamic taint analysis [38] to detect instruction
blocks that touch symbolic data, while otherwise executing
the program natively. EXE and Mayhem also use forking to
explore multiple execution paths, i.e., forking the symbolic-
execution process upon reaching a symbolic branch, to allow
the parent and child to explore the two possibilities separately.
S2E uses QEMU and KLEE together to mix concrete and
native execution, and is the system most similar to TASE.
S2E uses the virtualization and emulation tools within QEMU
to perform symbolic execution across user space and kernel
space boundaries [18]. S2E also uses an emulated MMU
that checks each byte during access in concrete execution
mode to determine if control must transfer to the KLEE-based
interpreter [17]. While we build on their techniques for sharing
symbolic and concrete state, TASE is built to prioritize and
optimize native execution using new transactional machine
instructions and symbolic-state detection mechanisms detailed
in Sec. IV. For detecting symbolic state, TASE does not
solely rely on the bitmap lookup techniques used in EXE and
S2E, and TASE incurs no virtualization or dynamic binary
translation overheads when executing code natively.

B. Intel TSX

Intel’s Transactional Synchronization Instructions (TSX)
were originally introduced to speed up concurrency in mul-
tithreaded applications [28, Ch. 16]. However, TSX instruc-
tions have been repurposed for security defenses (e.g., [45],
[14]) and attacks [53], [22], as well. Similarly, TASE uses
the transactions enabled by TSX in an unorthodox way.
Specifically, TASE uses transactions to speculatively execute
regions of code natively during symbolic execution, aborting
the transaction if symbolic data is encountered. Key challenges
for implementing this strategy are presented in Sec. III-B.

III. BACKGROUND AND CHALLENGES

Our work to optimize symbolic execution for latency-
sensitive applications required us to build on research from
seemingly unrelated topics. In this section we briefly cover
necessary background and key challenges that we address in
TASE, pertaining to executing concrete operations natively but
safely during symbolic execution (Sec. III-A) and leveraging
Intel TSX in this context (Sec. III-B).

A. Concrete Operations in Symbolic Execution

Past works (e.g., [25], [11], [18], [13]) have recognized the
significance of enabling native execution for entirely concrete
computations in symbolic execution engines. However, the
overwhelming amount of such concrete operations present in
some of our target applications necessitate more aggressive
optimizations in TASE. For example, in Chi et al.’s verification
of OpenSSL traffic [16], which we explore as an application of
TASE in Sec. VI-B, fewer than 2.7% of instructions executed
operate on symbolic data, even after extensive protocol-specific
optimizations to eliminate unnecessary concrete operations
(described as the optimized configuration in Sec. VI-B1). To
enable inline operation of this verifier, it is thus necessary that
concrete operation be optimized as much as possible.

To do so, TASE speculatively executes regions of code
natively within transactions, optimistically assuming that no
operation in the transaction reads or overwrites symbolic
values. Transactions are atomic, and if any operation in a trans-
action reads or overwrites a symbolic value, TASE must abort
the transaction and resume execution within an interpreter—
in our case, a modified version of the KLEE interpreter. After
the transaction completes within the interpreter, TASE resumes
native execution if possible.

Separating concrete and symbolic execution into different
execution modes provided challenges for safely handling the
symbolic expressions the interpreter produces. In particular,
TASE tracks symbolic values by tainting them, specifically by
augmenting KLEE’s concrete/symbolic bitmaps with poison
tainting and tracking. This required the design and verification
of invariants to guarantee that the transition between concrete
and symbolic execution does not unexpectedly overtaint or
undertaint the program’s execution with symbolic values, inva-
liding the resulting analysis. Moreover, because execution no
longer occurs entirely within an interpreter, there is a risk that
native execution might overwrite previously symbolic variables
with concrete data with no indication to the interpreter, forcing
us to adjust KLEE’s data structures to prevent such updates.

B. Implementing Transactions with TSX

A key contribution of our work is the use of Intel Transac-
tional Synchronization Instructions (TSX) to increase the speed
of symbolic execution. We focus specifically on the use of the
TSX Restricted Transactional Memory instructions xbegin
and xend.

Intel’s TSX instructions were originally released to pro-
vide a hardware-assisted tool for managing concurrency in a
process. A thread thd may speculatively attempt to acquire a
shared resource by using an xbegin prior to entering the
critical section. xbegin starts a transaction in which any
modifications to memory or registers made by thd are either
entirely committed at the end of the transaction (signified by
xend) or entirely discarded, at which time control for thd may
transfer to a fallback path with simpler locking primitives (e.g.,
a spin lock). In other words, the transaction is atomic.

Should another thread thd′ attempt to enter the critical sec-
tion and modify the shared resource while thd is also altering
the resource in the transaction, one or both of the transactions
will abort and roll back [28, Ch. 16]. Transactions are rolled

3



back when conflicts over shared resources are detected between
the read and write sets of thd and thd′, potentially allowing
both threads to operate in the critical section simultaneously
if thd and thd′ do not read or write the same shared data.
Conflicts in the read/write sets of thd and thd′ are detected by
the cache coherence protocol, and enabling concurrency with
TSX can potentially outperform other locking methods which
categorically prevent multiple threads from executing in the
critical section concurrently, even if no conflicting memory
accesses would have occurred [28, Ch. 16].

Intel’s transactional execution instructions provide the basis
for our speculative execution scheme. The application of the
transactions to create a fast path, while conceptually simple,
requires a large number of details to be addressed. First, as
noted by Shih et al. [45], forcing a program to execute entirely
within transactions introduces substantial challenges. Placing
each basic block from the program within a single transaction
introduces an overhead of roughly 8× native execution, and
transaction size is limited by cache size and associativity.
Further complicating matters, transactions may abort due to
asynchronous interrupts, are never guaranteed to commit, and
must be carefully started and committed to avoid nesting.

Second, our speculative native execution scheme requires
an efficient mechanism to abort transactions that encounter
symbolic data. Ideally, individual bytes containing symbolic
values could be marked as inaccessible by the OS (e.g., via
page permissions) or a low-level hardware mechanism (e.g.,
via debug registers) so as to force any transaction accessing
the byte to roll back. Unfortunately, the large granularity of
page-level permissions and the scarcity of debug registers limit
the effectiveness of these solutions. Another option is to inject
instrumentation into the program to query a lookup table on
each byte access (cf., [11]); however this approach incurs a
performance penalty for additional read operations and com-
pare operations, may clobber the FLAGS register depending on
its implementation, and also impacts the number of operations
that may be placed within a single transaction. Sec. IV contains
our approach for overcoming these challenges.

IV. DESIGN

In this section, we outline the design of TASE. We begin by
describing the overall architecture of TASE, and follow with
descriptions of the system’s transactional execution; its poison
checking scheme for detecting memory accesses of symbolic
values; its method of interpretation; and its mechanisms for
managing state exploration.

A. Structure of TASE

In TASE, we provide a symbolic execution system designed
to rapidly symbolically execute user-space programs with
small amounts of symbolic data. At its core, TASE provides a
“fast path” and “slow path” for handling concrete and symbolic
operations, respectively, as it executes an application (hence-
forth referred to as the project). Fig. 1 shows a simplified
overview of these two primary components.

TASE requires C source code to execute a project, in-
cluding source code for any C libraries the project will use.
The “fast path” for native execution described earlier is an
instrumented, binary x86 version of the project (and any

Library
Source

C Source 
Project 

jTASE 
Compiler

Instrumented 
object files

Project and Library IR

KLEE-Based Interpreter

Interpreter Stack

Instrumented Project and Library Code

Project Native Execution Stack

Concrete/Symbolic Bitmap for Native Components

Code Trampoline

Project Executable

Globals

Heap

jTASE IR 
Generation

0x000000

0xffffffff

N
ative

 
C

o
m

p
o

n
e

n
ts

In
te

rp
rete

r 
C

o
m

p
o

n
e

n
ts

Control flow

Control flow

Fig. 1: High-level structure of TASE. TASE comprises compo-
nents labeled “TASE Compiler” and “TASE IR Generation”.
TASE generates a project executable containing native and
interpretable representations of the project source, and that
switches between these representations through a code trampo-
line to which control flows after native execution of a project
basic block and after interpretation of a project basic block
that leaves no symbolic values in the emulated registers.

libraries it uses) produced by compiling the project’s source
code with our custom LLVM TASE compiler. Crucially, TASE
executes within this instrumented native execution path as the
rule rather than the exception. By instrumenting loads and
stores and inserting jumps to a code trampoline (cf., [32],
[45]) with transactional instructions around basic blocks, TASE
enables speculative native execution. TASE uses a poison (or
sentinel) value to mark bytes as containing symbolic values
while executing the project. While executing code natively
within a transaction, values read and overwritten are recorded
and checked en masse with SIMD instructions at the end of
a transaction. If the poison value was read or overwritten, the
transaction is aborted and all state changes performed during
the transaction are undone; details are provided in Sec. IV-B.

If TASE is unable to complete a transaction natively,
control transfers via a context switch from the trampoline to
the “slow path”, our KLEE-based interpreter. The interpreter
is responsible for executing the target binary until another
transactional entry point is reached, at which time the target’s
execution might begin again concretely. KLEE executes by in-
terpreting LLVM bitcode exclusively, whereas TASE switches
between instrumented native execution to efficiently execute
concrete operations and KLEE-style interpretation to handle
symbolic operations. Although KLEE normally runs on IR
generated directly from C code [10], TASE uses KLEE to
interpret through IR generated to represent x86 semantics;
more details on the mechanics of TASE’s interpretation are
provided in Sec. IV-D. Additionally, TASE differs from KLEE
in its use of processes (cf., [11]) to represent execution states
(see Sec. IV-E).

Context switching between the interpreter and native ex-
ecution in TASE closely resembles that in S2E [18]. The
interpreter and native execution share a common address space,
and a context switch from native execution to the interpreter

4



occurs by snapshotting the current state of the general purpose
registers (GPRs). The interpreter then uses this snapshot to
model each x86 instruction’s effects on main memory and a
simulated copy of the GPRs, which is restored for concrete ex-
ecution after a transactional boundary is reached and symbolic
values no longer reside within the GPRs.

Symbolic data—including values used for altering control
flow—are exclusively handled by the interpreter, which may
also fork state to explore new execution paths. Our forking
mechanism uses the native Unix fork system call to explore
execution paths, similar to the techniques used in EXE [11]; we
include more details in Sec. IV-E. We discuss the mechanisms
for detecting usage of symbolic data during native execution
in Sec. IV-C.

B. Transactional Execution

To mitigate the cost of interpreting instructions with con-
crete operands, TASE instead executes these instructions na-
tively within TSX transactions. Our strategy is to speculatively
execute the target program natively for as many transactions
as possible, and abort a transaction if an “unsafe” operation
occurs that requires special handling of symbolic data via
interpretation. TASE requires access to source code, and emits
instrumented machine code for the program along with the
symbolic execution components and interpreter in a single
executable.

In a previous work that executed software in transactions
for a different purpose, T-SGX [45] uses the Clang LLVM
back-end to conservatively estimate the read and write sets of
instructions and cache-way usage at compile time to efficiently
group together a large number of instructions in a single TSX
transaction. Their technique helps to maximize the number of
instructions in a transaction to amortize the overhead required
for setting up and committing or rolling back a transaction.
Unlike T-SGX, TASE does not statically determine the number
of instructions to place in a transaction. Our evaluation of
OpenSSL verification (see Sec. VI-B) revealed the need to
efficiently instrument code that frequently included variable-
sized loops and function pointers, both of which make effective
compile-time instrumentation challenging. Using a custom
Clang LLVM back-end, TASE injects trampoline jumps around
basic blocks and dynamically determines the boundaries for
closing and opening a transaction at runtime.

For any transaction, let its stride denote the number of
basic blocks attempted within the transaction. In our present
implementation, we currently use a transactional batching
policy in which the stride of each transaction, by default, is
set to a constant smax; in our evaluation in Sec. VI, smax is
set to 16. If a transaction tx aborts, then one possibility would
be to trap to the interpreter and simply interpret through the
whole aborted transaction. However, a more refined approach
that leverages the reason for the abort can optimize execution
considerably.

If tx aborts due to reading or overwriting a poisoned
memory location (see Sec. IV-C), then tx is aborted using
an xabort instruction. This instruction permits information
about the abort to be conveyed to the abort handler in a
register. We use this facility to convey the number c of
basic blocks that were successfully executed in the transaction

(without detecting poison) before the one where poison was
encountered, which is tracked in a counter updated by the
trampoline. In this case, TASE attempts another transaction
tx′ beginning at the same place as tx, but with a stride of c.
If tx′ completes successfully, then the interpreter is invoked
to interpret through the next basic block (where poison is
known to appear), and native execution is resumed afterward,
if possible.

If tx aborts for another reason, then it is generally necessary
to interpret through the basic block where the abort occurred
(see [28, Sec. 16.3.8.2]). For example, if tx aborted due to
triggering a page fault, then it will likely trigger the page
fault again if retried in full [30]. TASE thus attempts to
natively execute as many of the basic blocks in tx as possible
while incurring few transaction aborts, before leveraging the
interpreter to interpret through the basic block that caused tx
to abort. TASE does this using the following logic (inspired
by binary search), assuming the stride of tx is smax:

1) s← smax/2.
2) While s ≥ smin do:

a) Attempt a transaction tx′ of s basic blocks.
b) s← s/2 (regardless of whether tx′ aborted and, if so,

the reason for the abort).
3) Trap to the interpreter and have it interpret through smin

basic blocks.

After step 3, TASE resumes native execution with its
default stride of smax. Note that each tx′ of stride s in step 2a
will either advance the program counter past the s blocks
attempted if tx′ does not abort, or will leave the program
counter unchanged if tx′ aborts. The logic above attempts to
ensure that if the condition that caused tx to abort is persistent
(e.g., a page fault incurred during a particular basic block),
then the troublesome basic block is interpreted in step 3.

C. Poison Checking

To prevent native transactions from interacting with sym-
bolic information in an “unsafe” way, we implement a poison
checking scheme. One such “unsafe” interaction we prohibit is
the loading of a symbolic variable into a register; this allows us
to assume that arithmetic performed within the general purpose
registers cannot access symbolic values and therefore needs no
additional instrumentation.

Broadly speaking, on a byte-level basis each memory loca-
tion that contains a symbolic value or expression is “poisoned”
with a reserved numeric value. Reads and writes within a
native transaction are instrumented at compile time to store
the values read and overwritten in reserved SIMD and general
purpose registers. At the end of each basic block and prior to a
transaction’s commitment, the values in the registers are tested
in bulk to determine if a poison value was read or overwritten.
If a poison value is found in the SIMD registers reserved for
instrumentation, the transaction is aborted.

To make this scheme sound and efficient, several im-
plementation refinements were required. First, we implement
poisoning on an aligned two-byte basis. Byte-level poisoning
would potentially result in a large number of “false positives”
in which a native transaction reads a value concretely that, by
coincidence, matches the poison value. Consequently, if any

5



single byte b needs to be marked as symbolic by the interpreter,
we poison the 2-byte-aligned buffer B containing b. If B also
contains a concrete byte b′, then we mark b′ as symbolic as
well, but with a constraint that b′ equals its concrete value
prior to B’s poisoning. Of course, the risk of false positives
could be reduced further by poisoning 4-byte buffers, though
we have found 2-byte poisoning to suffice so far.

Second, to prevent natively executing instructions that read
from or write to memory locations containing symbolic data,
we copy reads and memory values prior to writes to our
reserved SIMD and general purpose registers during native
execution. These read and overwritten values are later checked
at the end of the basic block to determine if an instruction
could have operated on symbolic data. If so, the transaction
rolls back and the interpreter handles the transaction, refer-
encing its internal bitmap indicator to determine if memory
operands are concrete or symbolic. For example, suppose some
instruction instr in basic block blk performs a load or store
to a symbolic address (i.e., a symbolic pointer) during native
execution. As noted earlier, TASE remains in the interpreter
while symbolic data remains in its simulated registers, so the
registers must be entirely concrete at the beginning of blk.
Some instruction instr′ (possibly instr itself) must read from
memory (explicitly or as a side-effect) the poisoned symbolic
data used as an address by instr. When instr′ is executed,
TASE’s instrumentation copies the poison tag associated with
symbolic data to its reserved SIMD registers for batched
checking at the end of the basic block, at which time the
transaction will abort. In this example, even if instructions
after instr′ in the basic block perform memory operations
using malformed addresses impacted by the poison tag (e.g.,
calculating offsets from the poison), our checks at the end of
the basic block discard the changes (or the transaction will
roll back via segmentation fault if the malformed address
is for an unmapped page). In other words, when the first
poison value is read or overwritten within a basic block and
stashed away for batched poison checking later, regardless of
subsequent instructions, the transaction containing the entire
basic block is destined to abort. Compared to instruction-by-
instruction instrumentation, batching poison checks at the end
of the basic block in SIMD registers reduces the total number
of instructions required to perform the poison checks, and
simplifies the process of verifying that instrumentation checks
do not clobber the FLAGS register.

Third, to ensure that control flow within a transaction
containing one or more instructions operating on poisoned data
reaches the SIMD checks and aborts, we add additional instru-
mentation before indirect control flow instructions which allow
jumps to arbitrary destinations. Without such a safeguard, our
belated poison checking scheme could allow poison-dependent
indirect control flow arithmetic (e.g., jump table calculations
and function pointers) to erroneously transfer control to des-
tination addresses computed with the poison sentinel value,
thereby circumventing the poison checking logic. Specifically,
we add an additional trampoline jump to the poison checking
logic before instructions that jump to an operand address (e.g.,
call %rax, jmp %rax), effectively placing the instructions
in a separate basic block and preventing their execution if the
operand is symbolic; as stated earlier, control flow between
basic blocks traps to our interpreter if symbolic taint enters
a register. Similarly, if the indirect control flow instruction

performs a jump to an address stored in memory pointed to by
its operands (e.g., ret), we inject an additional poison check
for the destination address and a jump to the batched poison-
checking logic before the instruction is executed. Fortunately,
assuming access to the source code for target applications
in TASE and restricting our custom compiler’s instruction
selection simplifies the task of instrumenting indirect control
flow instructions.

The above design points help to ensure that native exe-
cution does not interact with symbolic values in any way,
including “clobbering” writes to symbolic variables that would,
in effect, concretize them without notifying the interpreter.
Our “in-place” poison-checking scheme along with KLEE’s
symbolic bitmap indicator provides a mechanism for accom-
plishing this.

The design choices for our poisoning scheme were made
to minimize the cost of instrumentation. Whenever possible,
our instrumentation to save values read from or overwritten
in memory is inserted into the target code to prevent any
additional reads from or writes to memory. With the help
of alignment guarantees from the compiler, many instructions
reading data larger than a byte can be instrumented by moving
the data read from a general purpose register to a reserved
register, where it is later checked en masse with other data
values. Taint trackers such as Minemu [6] use similar tech-
niques to reserve SIMD registers for instrumentation purposes.
Although TASE does not currently support native execution
or interpretation of SIMD instructions (i.e., SIMD instructions
are currently only executed as instrumentation), this limitation
is not fundamental; we plan to extend TASE in future work
to emit SIMD instructions as part of the program being
symbolically executed, as our poisoning scheme only requires
three SIMD registers to be reserved.

D. Interpretation

Should a native transaction encounter symbolic data, con-
trol flow in TASE transfers to a KLEE-based interpreter. Given
the representation of the project as a set of x86 registers
and an address space, the interpreter executes instructions
until a transactional entry point is reached (i.e., an instruction
corresponding to the code trampoline) and the registers contain
no symbolic data. The interpreter tracks symbolic data on a
per-byte basis.

Invoking the interpreter requires saving a snapshot of
the GPRs as they appeared at the end of the last success-
ful transaction; crucially, TASE does not require that main
memory is snapshotted or copied during the context switch.
In the interpreter, reads and writes to main memory are
performed directly on the addresses being read from or written
to. However, changes to the simulated x86 registers in the
interpreter must be faithfully tracked so that native execution
can be resumed by a context switch after interpretation has
completed. As KLEE interprets LLVM IR, we provide LLVM
IR representations of each x86 machine instruction within a
given transaction to preserve the semantics of the program
and produce a system state that may be restored for native
execution; see Fig. 2a and Fig. 2b for a simplified example of
how the x86 instruction pop %r9 is modeled, and Sec. V-A
for details on further optimizations. In order to avoid directly

6



1 void interp_pop_r9 (greg_t* gregs) {
2 gregs[REG_R9] = *(greg_t*)gregs[REG_RSP];
3 gregs[REG_RSP] = gregs[REG_RSP] + 8;
4 gregs[REG_RIP] = gregs[REG_RIP] + 2;
5 }

(a) C model

1 define void @interp_pop_r9(i64* nocapture %gregs) #1 {
2 %1 = getelementptr inbounds i64* %gregs, i64 15
3 %2 = load i64* %1
4 %3 = inttoptr i64 %2 to i64*
5 %4 = load i64* %3
6 %5 = getelementptr inbounds i64* %gregs, i64 1
7 store i64 %4, i64* %5
8 %6 = add nsw i64 %2, 8
9 store i64 %6, i64* %1

10 %7 = getelementptr inbounds i64* %gregs, i64 16
11 %8 = load i64* %7
12 %9 = add nsw i64 %8, 2
13 store i64 %9, i64* %7
14 ret void
15 }

(b) LLVM IR model

Fig. 2: Simplified models for interpreting pop %r9

writing LLVM IR, our method for producing an LLVM IR
model for each x86 instruction is to write the state changes
performed by the instruction in C (as in Fig. 2a), and use
Clang (https://clang.llvm.org) to emit LLVM IR (as in Fig. 2b).
Note that the interpretation of pop %r9 in Fig. 2a is modeled
as the execution of a function. The function takes a context
containing a set of simulated general registers (greg_t *
gregs), copies the value in main memory pointed to by the
simulated stack pointer to the interpreter’s simulated register
%r9 (line 2 in Fig. 2a), and increments the simulated stack
and instruction pointers (lines 3–4 in Fig. 2a).

Equivalent LLVM IR is provided in Fig. 2b. Note that
the offsets of the stack pointer, %r9, and the instruction
pointer in the greg_t * gregs struct are 15, 1, and 16,
respectively. The instructions on lines 2–5 retrieve the value
of our simulated stack pointer into temporary variable %2
and load the value at that address into %4, and lines 6–7
copy this value into the interpreter’s model of %r9. In line 5,
our interpreter directly reads from TASE’s virtual memory
located at the address specified by our model of %rsp in the
greg_t * gregs struct; because of this, context switches
between the interpreter and native execution do not require
expensive copy operations for memory other than the saving
and restoring of our simulated registers. The instructions on
lines 8–9 increment our simulated stack pointer and corre-
spond to line 3 in Fig. 2a. Similarly, lines 10–13 increment
the simulated instruction pointer to point to the next opcode,
as in line 4 of Fig. 2a.

While the example described above and pictured in Fig. 2
is for a single instruction, TASE instead generates interpretable
models for entire basic blocks of the original project. We
elaborate further in Sec. V-A.

E. State Management

In addition to managing the transition between native
execution and interpretation, TASE must also handle the
exploration of a potentially large number of execution paths.
Handling this “state explosion” problem is a crucial aspect of
symbolic execution, and has been a primary concern of many
papers [12], [10], [13], [17].

In TASE, multiple execution paths are explored in parallel
by using a native forking mechanism. Unlike other systems
that explore multiple execution states within a single address
space, TASE is unable to handle multiple execution states
concurrently within a single address space. Attempting to
explore states concurrently with multiple threads on one ad-
dress space could cause unintended transactional aborts when
threads access a common memory address.

Whenever the target program encounters a control flow
instruction (e.g., a jmp or branch) that depends on a symbolic
variable, execution must revert to the interpreter. After the
interpreter takes control, execution states are created corre-
sponding to the different possible destinations of the control
flow instruction, and the fork system call is invoked. The
resulting two processes extend the current execution in cases
that the branch condition is true or false, respectively. We
address indirect control-flow transfers dependent on a symbolic
variable by producing an execution state for each possible
destination. EXE [11] uses a similar mechanism to handle state
exploration, and in both TASE and EXE this approach provides
the benefit of hardware-based copy-on-write to mitigate the
cost of creating new processes. Both EXE and TASE also
have at least some cases in which state exploration and
path prioritization require child processes to halt and wait
for a central state management process to authorize further
execution. This potentially introduces bottlenecks when many
child processes are exploring a large state space; however the
centralization of state management in a single process helps to
prevent “fork bombing” issues in which the machine hosting
TASE is overwhelmed with too many processes.

Forcing each process following a fork to signal back to
the central management process allows a variety of search
heuristics to be implemented by the central coordinator. We
intend to explore the use of simple heuristics, such as breadth-
first and depth-first search, as well as ones tailored to particular
applications. For example, in prior research on client behavior
verification, Cochran et al. [19] leveraged the next message
inbound from the client to prioritize the order in which paths
were explored to identify a path consistent with that message
having been sent next by the client. This prioritization was
based on data collected from the client program during a
training phase. In this approach, when a path search reaches a
symbolic branch, the central coordinator determines which of
the currently paused processes—i.e., either the two resulting
from this fork, or another one—is on a path that is “closest”
to one that, in training, could typically be used to “explain” the
latest message received from the client. That process would
then be signaled to continue its search until reaching the
next symbolic branch. Of course, this prioritization is only
an example strategy, and we intend to explore others, as well.

7

https://clang.llvm.org


V. IMPLEMENTATION

In this section we briefly discuss implementation details of
TASE.

A. IR Generation

Like other symbolic execution engines, TASE requires
an intermediate representation of code to perform symbolic
execution. Specifically, TASE uses LLVM IR to model each
x86 instruction that potentially touches symbolic data, as
discussed in Sec. IV-D.

Crucially, unlike some other symbolic execution tools,
TASE requires access to source code, from which TASE
produces an instrumented executable using a custom compiler.
Controlling the compiler allows us to selectively limit the
pool of instructions available to the LLVM backend’s code-
generation algorithms. This drastically simplifies the laborious
task of producing IR models for x86 instructions, at the cost
of requiring source code.

Additionally, we use information provided by the LLVM
backend during compilation to record FLAGS-register liveness
information around basic blocks, which we use to periodically
kill the FLAGS register. This benefits our execution in TASE
because it reduces the overall amount of symbolic data the
interpreter must handle, and, in certain situations, allows the
interpreter to more quickly produce a fully concrete copy of
its simulated GPRs needed to return to native execution.

Because execution within a basic block in TASE must
occur either entirely in the interpreter or natively for the dura-
tion of the basic block, we employ an additional optimization
to speed up interpretation. We “batch” the IR for all x86
instructions in a basic block together and invoke the interpreter
to interpret the whole basic block at once, rather than doing so
per instruction within the basic block. In practice, we observe
that this optimization reduces the total size of the LLVM
interpretation bitcode by a factor of roughly three. Assuming
access to source and control over the compiler also helps here;
by disabling the selection of instructions that modify certain
flags bits (e.g., the direction flag used by string-manipulation
instructions), the overall size of the IR is reduced and more
opportunities to omit redundant flags computations appear.
Moreover, we found that reducing instruction selection based
on flags usage offered opportunities to completely kill flags in
certain cases after control flow instructions were used, reducing
the likelihood of expressions “snowballing” together due to
flags computations being continuously OR’d together.

Finally, we structured our C models of x86 instructions
to more effectively use the compiler’s aliasing optimizations.
For example, using the “restrict” keyword before accessing our
simulated register file or simply using local variables (rather
than pointer access, as used in Fig. 2) helped the compiler to
optimize as if the simulated registers and simulated memory
were separate address spaces, thus reducing the size the LLVM
IR models of the x86 instructions.

B. Forking and Path Exploration

As noted in Sec. IV-E, we employ a native Unix fork call
to explore multiple execution states in TASE when execution
encounters a symbolic branch. Execution in TASE begins with

a central “manager” process forking off a child process to
begin path exploration of the project’s code. The manager
uses signal-based job-control mechanisms, shared memory,
and system-level semaphores to steer and control execution
through different branches as a pre-defined maximum number
of worker processes execute in parallel. If a worker encounters
a symbolic branch, it halts execution until the manager process
determines what course of action to take.

Native forking in TASE benefits from hardware-based
copy-on-write, but still incurs overhead; among other things,
the Linux kernel copies the parent process’ page table entries
for the child [24]. To reduce this cost, our experiments in
TASE use the Linux transparent huge pages feature to reduce
the size of page table mappings without explicitly modifying
the applications. The daemon used by the kernel to coalesce
small (4KB) pages into huge (2MB) pages periodically runs
at a predefined interval; we experimentally determined that
10ms appeared roughly optimal for our behavioral verification
application in Sec. VI-B.

C. Transaction Sizing

As discussed in Sec. IV-B, the stride of a transaction in
TASE is set to a constant smax by default; after executing smax

basic blocks, the transaction will be closed. A value smax that is
too small will hurt performance by closing transactions more
frequently than necessary, whereas a value that is too large
can incur a substantial performance penalty when a transaction
aborts, since all the work it performed will be thrown away.
To maximize performance, smax would ideally be tuned per
project and per platform, since the size of the L1 data cache
limits the amount of data that a transaction can read or write
and since the frequency at which symbolic data is accessed
may vary depending on the application. In the future, we
plan to explore dynamically adjusting smax based on runtime
conditions, as well. For the purposes of our evaluation in
Sec. VI, we simply set smax = 16.

Because the basic block is the smallest granularity at which
transaction size can be controlled in TASE, it is also necessary
that basic blocks be limited to a maximum size. In our present
implementation, basic blocks are limited to 50 instructions.
Here again, the limit of 50 was chosen experimentally; we
plan to explore methods in future work to automatically tune
this constant.

VI. EVALUATION

In this section we measure TASE’s performance. We first
detail TASE’s performance in a series of microbenchmarks in
Sec. VI-A, and then we consider an application of symbolic
execution to validating the messaging behavior of a software
client in Sec. VI-B. Finally, we explore application of TASE’s
techniques to memory protection in Sec. VI-C. All perfor-
mance experiments described in this section were conducted
on a computer with a 3.5GHz Intel Xeon CPU E3-1240 v5
processor and 64GB of RAM. All tools in the evaluation
were either Dockerized,2 or, if not Dockerized, ran directly
on Ubuntu 16.04.7.

2All Dockerized tools were executed in a fully-privileged container (i.e.,
with the “–privileged” flag). Surprisingly, we observed that performance
degraded by up to a factor of 2 when containers were created with default
permissions.

8



Test TASE SymCC S2E QSYM KLEE

BigNum add 13.15× 11.40× 42.79× 903.63× 2403.53×
sha256 8.96× 13.95× 18.15× 2239.19× 1738.23×
md5sum 12.27× 17.45× 71.94× 1904.99× 7208.67×
cksum 2.83× 7.23× 10.25× 691.18× 1137.48×
tsort 15.11× 7.51× 35.56× 1073.89× >20,000×
factor 7.16× 4.41× 30.32× 1131.95× 1070.42×

TABLE I: Concrete computation costs relative to native ex-
ecution, averaged over five runs; relative standard deviations
were < 5.3%. BigNum addition was performed byte-by-byte
on two 10MB integers. Hashes were computed on a 44MB
file. tsort was run on a file with 500,000 edges. factor was run
on a 38-digit number with five prime factors.

A. Microbenchmarks

In this section we report the results of various microbench-
marks to compare TASE to alternatives when executing on
mostly concrete workloads—the contexts for which TASE
was designed. Our first microbenchmark evaluations compared
TASE to native execution and execution by S2E, QSYM,
SymCC, and KLEE,3 for six programs: the first added two
concrete 10MB integers byte-by-byte with a one-byte carry;
sha2564, md5sum5, and cksum6 were each applied to a con-
crete 44MB file; tsort7 was run on a file with 500,000 edges;
and factor8 was run on a 38-digit number with five prime
factors. These programs were compiled using Clang 7.1.0 with
O2 optimization for the native, S2E, and QSYM targets, and
with Clang 9.0.1 with O2 optimization for KLEE (as 9.0.1
was the Clang version included with KLEE). SymCC’s custom
compiler was run with O2 optimization. In contrast, TASE
supports only a limited version of O1 optimization at the time
of this writing. The results of these executions are shown
in Table I. TASE overheads ranged between ≈3–15× native
execution on these benchmark programs. SymCC overheads
ranged from ≈4–17× native execution. S2E was ≈10–72×
slower than native, and QSYM and KLEE incurred overheads
of ≈691–2239× and from ≈1070× to over 20,000× native
execution, respectively.

TASE is tailored to executing projects with small amounts
of symbolic data, and so increasing the amount of symbolic
data does impact its performance. Fig. 3 shows the perfor-
mance of byte-by-byte BigNum addition using the same code
represented in Table I (but only 50KB operands), but with a
byte at a varying index marked symbolic. Once this byte is
encountered, the carry byte becomes symbolic and remains so
for the rest of the computation; as such, the bytes of the sum
tainted by the symbolic carry byte are symbolic, as well.

The location of this symbolic data did not affect the

3We used Dockerized QSYM from February 10, 2020 (https://github.
com/sslab-gatech/qsym); Dockerized KLEE from December 23, 2020 (https:
//klee.github.io/docker/); Dockerized SymCC from September 6, 2020 (https:
//github.com/eurecom-s3/symcc); and S2E retrieved on July 11, 2019 (https:
//github.com/s2e/s2e-env.git).

4https://github.com/coreutils/gnulib/blob/master/lib/sha256.c
5https://github.com/kfl/mosml/blob/master/src/runtime/md5sum.c
6https://github.com/coreutils/coreutils/blob/master/src/cksum.c
7https://github.com/coreutils/coreutils/blob/master/src/tsort.c
8https://github.com/coreutils/coreutils/blob/master/src/factor.c

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Percentage of Symbolic Computation

T
im

e
(s

)

Fig. 3: Average time to add two 50KB integers vs. amount
of symbolic computation, for TASE (•), KLEE (N), S2E (�),
SymCC (×), and QSYM (+). Each point is an average over
five runs; relative standard deviation was < 13.7%. Initializa-
tion and setup costs were removed, though there were none for
TASE. Symbolic data was inserted into one of the two arrays
prior to the ripple addition at a variable index indicated by the
percentage on the x-axis.

performance of the BigNum addition in KLEE (Fig. 3), since
KLEE interprets all project instructions. The performance of
the BigNum addition in TASE, however, decayed as the first
symbolic byte was encountered earlier in the computation;
only once ≈ 75% of the BigNum addition was performed
concretely does TASE outperform KLEE. The primary reason
for the loss of performance for larger amounts of symbolic
data is that TASE interprets substantially more LLVM IR
instructions to model a restorable context for native execution
(see Sec. VII-C). In particular, TASE executed almost 8× as
many IR instructions as KLEE in the BigNum addition test
when the index of the first symbolic byte was set to zero.
S2E exhibited similar trends as TASE, eventually becoming
faster than KLEE; however, its performance was much worse
than TASE in this test and became faster than KLEE only
once > 95% of the BigNum addition was concrete. Even with
no symbolic computation whatsoever (i.e., with 0% symbolic
input in Fig. 3), QSYM was at least 7× slower than both S2E
and TASE, and only about 25% faster than KLEE, although
QSYM outperformed S2E considerably after more than 4%
of the total computation in the microbenchmark required
the manipulation of symbolic data. Both TASE and SymCC
performed similarly in Fig. 3.

Based on the concrete overheads in Fig. 3 and Table I, and
the Pin instrumentation code from the QSYM repository, we
believe the slowdown on concrete workloads within QSYM
is primarily due to its insertion of instrumentation func-
tions before each machine instruction of the target. Although
more lightweight than the Pin instrumentation in QSYM,
SymCC’s compile-time instrumentation resulted in the inser-
tion of checks within the IR for some of our target programs,
increasing the total size of the bitcode (e.g., increasing the total
number of instructions in the IR for the BigNum microbench-
mark by approximately 3×).

9

https://github.com/sslab-gatech/qsym
https://github.com/sslab-gatech/qsym
https://klee.github.io/docker/
https://klee.github.io/docker/
https://github.com/eurecom-s3/symcc
https://github.com/eurecom-s3/symcc
https://github.com/s2e/s2e-env.git
https://github.com/s2e/s2e-env.git
https://github.com/coreutils/gnulib/blob/master/lib/sha256.c
https://github.com/kfl/mosml/blob/master/src/runtime/md5sum.c
https://github.com/coreutils/coreutils/blob/master/src/cksum.c
https://github.com/coreutils/coreutils/blob/master/src/tsort.c
https://github.com/coreutils/coreutils/blob/master/src/factor.c


B. Client Verification with TASE

The second evaluation for TASE that we report is its use in
verifying client behavior in client-server protocols. Numerous
server exploits take the form of messages to a server that
no legitimate or sanctioned client would send. To detect such
messages in this approach, a server-side verifier symbolically
executes the claimed client software (with unknown client-side
inputs marked symbolic) to determine whether the message
sequence received from the client is possible given the client
software and messages sent to it (e.g., [5], [19]).

This defensive strategy benefits from its generality—it
needs no foreknowledge of a vulnerability or exploit to detect
an attack—and soundness, in the sense that if it accepts a
sequence of messages, then there are inputs that could have
caused the claimed client to produce that sequence. However,
it also has limitations that restrict the contexts in which it can
be applied. First, it requires a claim of the software executed
by the client. This claim could be explicit via a user-agent
string (as in HTTP, SIP, or NNTP) or an attested load-time
measurement from a hardware trusted-computing platform
(see Maene et al. [33] for a survey) or host-based monitor.
Alternatively, this claim could be inferred from the client’s
behavior (e.g., [1]) or simply because the client was previously
provisioned with software known to the verifier (e.g., as an IoT
device might be). Second, the verifier must be able to obtain
the claimed client software to symbolically execute—source
code if the symbolic execution engine requires it.

The primary focus of this evaluation is a third challenge
faced by this defensive approach: to be used as an inline
defense, it requires symbolic execution to keep pace with
the arrival of messages from the client. Thus, the latency
of symbolic execution is critical in determining whether this
defense can be used inline to prevent exploits, or whether
it can only be run alongside server processing and thereby
detect exploits shortly after they occur. We show not only that
TASE significantly improves performance over a state-of-the-
art codebase for conducting behavioral verification of a TLS
client, but that it does so to an extent that permits this defense
to reside on the critical path of message processing for all but
the most latency-sensitive TLS applications.

The specific codebase to which we compare here is that due
to Chi et al. [16], who instantiated this general approach for
TLS. To determine whether or not a client message could have
originated from an unmodified client TLS implementation, Chi
et al. detail a technique for symbolically executing OpenSSL’s
s_client and then solving to determine whether there
exist inputs that could have caused that implementation to
produce the message sequence received. A message sequence
for which no inputs can be found to produce it indicates that
the message sequence is inconsistent with s_client and so
might represent an exploit, and indeed, Chi et al. observed that
numerous notable TLS exploits (e.g., Heartbleed, CVE-2014-
0160) are of a form that would be caught by this technique.
The Chi et al. framework is an extension of similar tools
(e.g., [5], [19]) adapted specifically for cryptographic protocols
like TLS: it leverages knowledge of the TLS session key and
symbolically executes the client in multiple passes, skipping
specified prohibitive functions (the AES block cipher and hash
functions) until constraints generated from observed client-to-
server messages could fully concretize their inputs. Below, we

refer to the tool built by Chi et al. as CliVer (for simply “client
verification”).

The only changes we made to the CliVer tool for this
evaluation was to implement the following two optimizations
for it, to make the comparison to TASE fairer since TASE
incorporates analogous optimizations. First, we changed how
CliVer models the select system call, so that its return
value indicates that stdout is always available (versus being
symbolic). s_client writes the application payload received
from the server to stdout, and so blocks if stdout is
unavailable. As such, this change has no effect on the message
sequence that could be received from s_client; i.e., any
message sequence received in an execution where stdout
becomes unavailable is a prefix of a sequence that could be
received in an execution where it remains available throughout.
This change does, however, relieve CliVer from needing to
explore the execution path in s_client where stdout is
unavailable, saving it the expense of doing so.

Second, when CliVer is seeking to verify message i from
the client and reaches a send point when symbolically execut-
ing s_client, it must create and solve constraints reflecting
message i and the path executed to reach that send point.
This produces an unusually large number of relatively simple
equality constraints (i.e., one constraint per each byte of the
message), many of which contain a large number of XOR
operations due to the choice of cipher suite. To more efficiently
move the constraint information between the interpreter and its
solver, we alter the behavior of KLEE’s independent constraint
solver to send all constraints en masse rather than one-by-
one. Moreover, though the SAT solver we use supports XOR
expressions [48], we found it much more efficient to rewrite
these expressions to remove XORs before sending them to the
solver. This optimization improves the performance of CliVer
considerably, and we leverage it in TASE, as well.

1) Experiment setup: Our evaluation used the same TLS
1.2 dataset used by Chi et al. [16]. This dataset includes
benign traffic captured by tcpdump during a Gmail browsing
session, and maliciously crafted Heartbleed packets to simulate
CVE-2014-0160. The Gmail data set was generated by sending
and receiving emails with attachments in Firefox over a span
of approximately 3 minutes, and included 21 independent,
concurrent TLS sessions for a total of 3.8MB of data. For
reference, a plot of the time during which each of the 21 TLS
connections was active is shown in Fig. 4. As shown there, a
large majority of connections were active for nearly the entire
duration of the Gmail session, though a few were much shorter.

We compared TASE with CliVer in two configurations. The
first presumes minimal protocol-specific knowledge or thus
adaptation by the party deploying the verifier. In this basic
configuration, each tool was provided a specification of the
same prohibitive functions, but otherwise the tool operated
on the Gmail trace unmodified. Even in this configuration,
however, we provided CliVer with native implementations of
these prohibitive functions, so that even once their inputs had
been concretized, they would be executed natively (versus
being interpreted), thus rendering our comparison conservative.
The second, optimized configuration incorporated a range of
protocol-specific optimizations. In particular, after the TLS 1.2
handshake, client-to-server and server-to-client messages are
independent of one another, and so server-to-client messages

10



0

5

10

15

20

0 50 100 150 200

Time(s)

T
L
S

 C
o
n
n
e
c
ti
o
n
s

Fig. 4: The durations of the 21 TLS connections involved
in the Gmail trace described in Sec. VI-B, ordered bottom-
to-top according to the TLS connection initiation. Note that
some connections are so brief that their beginning and ending
markers overlap.

were ignored when verifying the client-to-server messages. In
addition, certificate verification was elided, since the verifier,
being deployed to protect the server, trusts the server to send
a valid certificate chain.

2) Results: When used as an inline defense against mali-
cious traffic, the speed to reach a true detection is arguably a
secondary concern; the delay imposed on attack traffic might
be viewed more as a benefit than a detriment. Nevertheless, we
used synthetic Heartbleed packets to confirm that TASE could
determine these packets were not consistent with the OpenSSL
TLS client in only 150ms from the initiation of the connection
(i.e., including the TLS handshake).

More critical is the delay that TASE would impose on le-
gitimate traffic. Here we report the cost and lag of verification
as defined by Chi et al. For the i-th message in a TLS session,
cost(i) is the processing time required to verify message i
beginning from the symbolic state produced from verifying
through message i− 1. lag(i) is the delay between the receipt
of message i and when its verification completes. Note that
lag(i) ≥ cost(i), and lag(i) > cost(i) if when message i is
received by the verifier, the verification of message i−1 is not
yet complete (and so verifying message i cannot yet begin).

Table II gives coarse statistics for the cost and lag of
verifying all 21 TLS sessions in the Gmail trace, in the basic
(left) and optimized (right) configurations. Interestingly, the
median costs for TASE and CliVer were very similar, but
the median lag for CliVer was 27× larger (in the optimized
configuration) than it was for TASE. The cause was the
messages that were most costly to verify, with costs in CliVer
more than 14× that in TASE in the optimized configuration
(and roughly 29× that in TASE in the basic configuration).
These greater costs caused the lag to accumulate at various
points in the trace, inducing an average CliVer lag on the
optimized configuration of > 1s and a maximum lag of > 4s.
In contrast, the TASE lag averaged only ≈ 0.1s and incurred
a maximum lag for any message of ≈ .9s. For a driving
application like Gmail that is paced by human activity, these
lags may well be small enough to support the use of TASE as
an inline defense.

Configuration basic optimized
System TASE CliVer TASE CliVer

Average cost 0.005s 0.033s 0.016s 0.071s
Median cost 0.003s 0.006s 0.013s 0.018s
Max cost 0.072s 2.116s 0.088s 1.274s

Average lag 0.614s 4.654s 0.106s 1.138s
Median lag 0.188s 4.721s 0.045s 1.195s
Max lag 2.648s 17.885s 0.876s 4.211s

TABLE II: Statistics for verification of benign Gmail traces

A temporal view of the lag is pictured in Fig. 5, which
shows the distribution of lag across all 21 TLS sessions with
messages binned according to their arrival times, where arr(i)
denotes the arrival time of message i; for example, the first bin
contains the messages that arrived within the first 30s of each
of the 21 TLS sessions. Arrival time is measured relative to
the start of the individual TLS session. Within each bin, a box-
and-whisker plot shows the first, second, and third quartiles,
with the whiskers extended to 1.5× the interquartile range.
The average is shown as a diamond, and outliers appear as
individual points.

●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●● ●●●●●● ●●●●●0

3

6

9

12

15

0 30 60 90 12
0

15
0

18
0

Arrival Time (s)

V
er

ifi
ca

tio
n 

La
g 

(s
)

TASE
CliVer

(a) basic configuration

●●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●
●●●●●
●●●●●
●●

●●●●●●●●●●●●●●●
●●●●●
●●●●●●

●●●●●●
●●

●●
●●
●●
●●●

● ●

●●●
●
●●●

0

1

2

3

4

5

0 30 60 90 12
0

15
0

18
0

Arrival Time (s)

V
er

ifi
ca

tio
n 

La
g 

(s
)

TASE
CliVer

(b) optimized configuration

Fig. 5: Verification lag for 21 TLS sessions in the Gmail trace,
each verified in isolation. The box plot at arrival time t includes
{lag(i) : t ≤ arr(i) < t + 30s} across all 21 TLS sessions.
Fig. 5a shows lag in verifying the Gmail traces using TASE
and CliVer in a basic deployment without protocol-specific
optimizations, and Fig. 5b shows lag in a configuration with
optimizations leveraging protocol knowledge; see Sec. VI-B1.

11



The lags for the basic deployment lacking protocol-specific
optimizations are shown in Fig. 5a, and the lags for the op-
timized deployment leveraging protocol-specific optimizations
are shown in Fig. 5b. Both TASE and CliVer suffered lag in the
first 30s of each connection, though TASE’ median lag in this
interval was < 15% of CliVer’s in both the basic and optimized
configurations. Indeed, the 25th percentile of CliVer’s lag in
this first 30s exceeded essentially all lags induced by TASE in
the same interval. By the end of the first 30s, both tools “caught
up” and maintained lags capable of sustaining interactive use
until about 90s into the traces; at this point, large server-to-
client transfers caused CliVer to lag considerably in the basic
configuration, while TASE was able to better keep up. These
lags were smaller in the optimized configuration, since server-
to-client data messages were ignored.

In Fig. 6 we report the cost for verifying each message
in these connections as a function of the message’s size.
The datapoints in Fig. 6 represent all 21 TLS sessions in
the Gmail dataset but, in the case of CliVer, omit points for
the ClientHello message and selected handshake messages of
each TLS connection. These messages were omitted because
CliVer’s excessive verification costs for them skewed the y-axis
range considerably, rendering the other trends more difficult
to distinguish visually. (All messages are included in the
TASE datapoints, however.) Fig. 6a represents the costs in
the basic configuration, and Fig. 6b shows the costs in the
optimized configuration. As can be seen in Fig. 6b, the costs
for most messages scaled linearly in message size for both
TASE and CliVer, but the slope of this growth was flatter
with TASE, resulting in lower costs (and so less lag) for
verification. In Fig. 6a, the datapoints for TASE fell along
two lines corresponding to the client-to-server and server-to-
client messages (the latter are mostly omitted from Fig. 6b),
and similarly for the datapoints for CliVer.

●

●●●

●

●

●

●●●●●●

●

●
●
●

●
●

●
●
●●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●
●
●
●
●

●
●

●
●

●

●
●
●
●
●
●
●

●

●
●
●
●
●

●

●
●
●
●
●

●

●
●

●
●

●

●

●
●
●
●

●

●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●
●

●
●

●
●

●
●
●
●

●

●●
●

●
●

●
●

●
●

●
●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●
●●
●

●
●

●

●

●
●

●●
●

●
●
●●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●

●

●

●

●
●
●

●
●

●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●
●
●

●

●●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●
●

●
●

●●
●
●
●

●

●
●

●

●

●
●
●

●

●

●

●
●
●●
●
●

●

●

●

●●

●

●
●
●

●

●●

●

●
●
●

●

●
●
●

●

●
●

●

●
●

●
●
●
●
●
●

●
●

●●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●●

●

●
●
●

●

●
●
●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

● ●

●
●
●

●
●●
●

●
●

●

●

●

●

●
●
●

●
●●

●

●
●

●

●

●

●
●
●

●
●

●

●
●
●
●
●
●
●

●

●

●
●
●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●
●
●

●●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

● ●

●

●

●
●
●
●

●●
●
●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●
●
●
●

●

●

●

●

●

●
●
●

●
●

●

●

●
●
●

●
●●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●●

●

●
●
●

●
●

●

●
●
●
●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●●

●

●

●
●
●

●
●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●

●
●
●

●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●
●

●

●

●

●
●
●

●

●

●
●●●

●●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●●

●

●

●

●
●
●

●
●●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●

●

●

●

●

●
●
●

●
●
●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●
●

●
●

●
●

●●●●●●

●

●
●

●

●

●
●

●●

●
●
●

●●
●
●●

●●

●

●
●

●
●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●
●●
●
●●●●

●

●

●

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●

●●

●

●

●
●●

●

●

●
●
●

●●

●

●●

●

●●

●
●
●

●

●

●
●
●

●●

●
●
●

●
●

●

●
●
●

●
●

●
●
●

●
●

●
●
●

●●

●

●

●
●
●

●
●

●
●
●

●
●

●●

●

●

●●●●●●●

●
●

●
●
●

●
●
●
●

●
●

●

●
●

●
●
●

●●

●
●
●

●●

●
●
●●

●●

●
●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●
●
●

●
●

●
●
●

●

●●

●
●
●●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●

●

●
●
●

●
●

●
●
●●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●
●

●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●

●

●

●
●
●●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●●

●
●
●

●
●

●
●
●

●●

●
●
●

●●

●
●
●

●

●
●

●
●
●

●
●

●
●

●

●●●●

●

●

●
●
●

●●●●●●

●

●

●
●
●

●●

●
●
●

●
●

●
●
●

●●

●
●
●

●
●

●
●
●

●●

●
●
●

●
●

●
●
●

●
●

●
●
●

●●

●
●
●

●
●

●
●
●

●●

●
●
●

●
●

●
●
●

●
●

●
●
●●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●
●

●●

●

●

●

●

●
●
●

●●●●●●●●●●●●●●●●

●
●

●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●
●

●
●
●●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●●●

●

●

●

●●●●●●

●

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●
●
●

●

●●●

●

●

●

●●●●●●

●

●
●
●

●

●

●
●
●●

●

●●●

●

●

●

●●●●●●

●

●
●
●
●
●
●

●
●
●

●

●●●
●
●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●
●

●
●

●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●
●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●

●●●

●
●
●

●
●

●
●

●
●

●
●

●
●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●
●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●
●
●●
●

●
●
●
●
●

●●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●

●
●
●

●
●
●

●

●

●
●
●

●
●
●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●
●
●

●
●
●

●

●●

●●

●
●

●
●

●
●
●●
●
●

●
●
●
●●
●
●

●
●
●
●

●

●●

●
●
●
●

●
●
●

●

●
●

●
●
●
●

●
●
●

●

●
●

●

●●

●
●
●
●

●
●
●●
●
●
●

●
●
●

●

●●

●
●
●
●

●
●
●

●

●
●

●
●
●
●

●
●
●

●

●●

●
●
●
●

●
●
●

●
●●
●●

●
●

●
●

●●
●
●●
●
●

●
●
●
●●
●
●

●
●
●
●

●
●
●
●●
●
●

●

●

●

●
●

●
●

●
●
●

●

●

●●●

●

●

●

●●●●●●

●

●
●
●●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●
●
●
●
●
●

●
●
●

●

●●
●
●
●
●

●

●

●

●●●

●

●

●

●●●●●●

●

●
●
●●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●

●

●●●

●

●

●

●●●●●●●
●

●●

●

●●●

●

●

●

●●●●●●●●● ●0.00

0.05

0.10

0.15

0.20

0 5 10 15

Message Size (KB)

V
er

ifi
ca

tio
n 

C
os

t (
s)

● TASE

CliVer

(a) basic configuration

● ●●●●

●
●●●●●●●

● ●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●

●
●

●

●

●

●

●●●●●●●

●

●●●

●
●

●

●

●

●●●

●

●

●

●●●●●

● ●

●

●

●●●●

●

●

●

●

●●●●

●
●

●

●

●●●

●

●●●●

●

●●

●

●●●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

● ●

●●●●

●

●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●●●●● ●

●

●●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●●

● ●●●●

●

●

●
●

●

●

●

● ●●●●

● ●

●●●●●●

●

●●

●

●

●●

●●●●●●●●

●●● ●●●

●●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●

●● ●
●● ●●●

●

●

●●●●●

●●

●●
●

●●

●

●●●●●●●

●

●●●

●

●●●● ●

●
●

●● ●●● ●●●

●
●

●

●● ●●●●●●

●●●●●●●●

●
●●

●●●
●

●●●●● ●●●●●●●
●

●●● ●●●

●

●
●●

●

●●
●

●●

●

●●

● ●●●●

●
●

●

●

●

●
●●●●●

● ●●●●

● ●

●●●●●●●●●●●●●●●

●●●

●●●●●

●

●●●●●●●●

●

●●●●●

● ●●●●

●
●●●● ●

●● ●
●

●
●● ●

●

●
●●

●●●

●●●●

●

●●

●●●●●●

●

●●
●●●
●

●●
●

●●
●

●●
●

●●
●

●●

●

●
● ●
●●

●●●
●

●●
●

●●
●

●

● ●●●●

● ●●●
●

●
●

●
●

●●●●●●●●●●●●●●●●

●
●

●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●●

●

●●

●
●

●●

●

●●

●●

●
●●

●

●

● ●●●●

●

●●●●●

● ●●●●

●

● ●

●

● ●●●●

●

●●●●●

● ●●●●

●
●

●●●●●

● ●●●●

●

●

●●

●●●

●

●

● ●

●●●

●

●●

●

●

●●●

●●●●●●●●

● ●●●●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●●

●

●●●

●

●●

●

●●●●

●

●●●

●

●●●

●

●●●

●●●●●

●●●●●

●

●

●

●●

● ●●●●

●

● ●●●●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●
●●

● ●●●●

●

●●

●

●●●

● ●●●●

●

● ●●●●

●

●●●●●●●●●

● ●●●●● ●●●●

●●

0.00

0.05

0.10

0.15

0.20

0 1 2 3

Message Size (KB)

V
er

ifi
ca

tio
n 

C
os

t (
s)

● TASE

CliVer

(b) optimized configuration

Fig. 6: Verification cost vs. message size

While TASE is designed to reduce the latency of symbolic
execution, a secondary concern is the number of processes
and amount of memory incurred by its use in behavioral
verification. In Appendix A we show these statistics. Briefly,
the number of processes remained roughly flat during verifica-
tion, and the amount of memory used during verification grew
slowly and never exceeded 3.6GB. We believe we can further
reduce this memory footprint with better engineering; memory
usage has not been a limiting factor for us so far.

C. Other Applications: Defending Against Memory Exploits

TASE’s method of speculatively executing application code
within hardware transactions and detecting when the appli-
cation reads or overwrites poison values has applications for
several tasks beyond full-blown symbolic execution, with min-
imal changes to the tool. As one example, we have prototyped
a simple adaptation of TASE that places the poison value as a
canary [21] adjacent to the return address in each stack frame;
any application instruction that tries to overwrite the canary
would then invoke the interpreter. We have further extended
this design with a slightly modified memory allocator that
places the poison value immediately before and after each
heap-allocated buffer, providing detection of reads or writes off
the beginning or end of the buffer. This modification of TASE
will thus detect many common types of memory exploits, and
requires only small changes to the TASE compiler to emit
modified function prologues and epilogues, minor changes to
the memory allocator, and small changes to the KLEE-based
interpreter to diagnose an encountered error. In total, these
changes comprised fewer than 140 source lines of code.

We summarize this application of TASE primarily to em-
phasize the flexibility of its techniques. As such, we do not
quantitatively evaluate it against the plethora of available tools
that provide similar properties. Qualitatively, however, this
adaptation of TASE to detect memory exploits adds essentially
the same latency overheads as purely concrete execution in
TASE—runtimes of the same benchmarks in Table I were
changed by only at most 15% when these protections were
applied to every stack frame and heap-allocated buffer—and
should impose memory overheads comparable to or less than
similar tools that leverage shadow memories (e.g., [15], [42],
[37], [8], [44]) or that use specialized memory allocators
to achieve similar protections using page-level permissions
(e.g., [3], [34], [23]). Moreover, by diverting execution to the
interpreter when a memory exploit is detected, the interpreter
can attempt to permit execution to continue safely (e.g., [47]),
though we have not implemented these extensions presently.

We could extend this basic implementation to similarly
detect use-after-free exploits, i.e., by poisoning buffers when
they are freed. So, if a stale pointer were dereferenced,
TASE would either trap safely with a segmentation fault if
the dereferenced memory was unmapped or trigger a poison
check if the memory was freed but not unmapped. Either
way, the interpreter could consult its bitmap after the trap
and unambiguously conclude that the pointer is no longer
valid. We anticipate that this extension would induce only the
runtime overhead of poisoning each buffer when it was freed
and require minimal additional code modifications.

VII. LIMITATIONS

In this section we discuss several limitations of TASE.

A. Hardware Dependence on Intel TSX

To our knowledge, Intel currently provides the only
widespread implementation of hardware transactional memory,
limiting TASE to executing only on Intel machines with
support for TSX instructions. Nevertheless, in the future,
transactional memory could be implemented by other vendors;

12



as early as 1993, Herlihy and Moss proposed an implementa-
tion for hardware transactional memory based on “straight-
forward extensions to any multiprocessor cache-coherence
protocol“ [27].

B. Equivalence of Interpretation and Native Execution

Inevitable differences between the behaviors of native exe-
cution and interpretation of the same project imply that TASE
results are not necessarily semantically equivalent to those
obtained using symbolic execution based on interpretation
only. For example, KLEE detects out-of-bounds accesses to
concrete buffers, while native execution (without additional
instrumentation) does not. It would seem that differences in
the results of applying KLEE and TASE to a project could
arise, however, only due to the project’s processing on concrete
values, since processing on symbolic values would trigger
interpretation in TASE, as well.

In the context of the client verification application dis-
cussed in Sec. VI-B, this means that those behaviors permitted
by CliVer, which uses KLEE to interpret the client program in
full, are not identical to those permitted by TASE. However, a
behavior permitted by TASE but not by CliVer, if caused by an
input validation error of the client program, would presumably
need to be an artifact of server-to-client messages, which are
concrete to the verifier. Since the verifier is deployed to defend
the server and is trusted to cooperate with it, malicious server-
to-client messages are outside the scope of those techniques.

C. Interpreting x86 Instructions

Although the use of native state as the primary representa-
tion for program execution in TASE introduces opportunities
for speculative native execution on concrete data, this design
choice also introduces some difficulties.

Because KLEE requires LLVM IR to perform symbolic
execution, we needed to produce LLVM IR models for the
effects of each x86 instruction to be interpreted by KLEE on
the program’s state. In addition to providing a burdensome
engineering challenge, we found (as did S2E’s authors [18])
that modeling a given x86 instruction’s impact on program
state using the RISC-like LLVM IR required several LLVM
IR instructions to fully capture all side effects, including the
changes to the FLAGS register.

As a result, a machine-independent interpretation of a
source program in vanilla KLEE could require fewer LLVM
IR instructions to model the program’s execution than in
TASE. We feel that our use cases contain a sufficiently large
usage of concrete data to justify the optimizations for native
execution in TASE, but a tradeoff nevertheless exists between
the additional instructions needed for interpretation in TASE
and the speed gained in native execution.

D. Instrumentation

In order to ensure that reads or writes to memory ad-
dresses containing symbolic values are accurately recorded,
TASE uses a custom LLVM backend to emit and instrument
code. Although LLVM provides many utilities for writing
compiler passes to analyze or modify machine code as it
is emitted, significant engineering challenges must still be

overcome to ensure that all code emitted for TASE is properly
instrumented. Specifically, the large number and variety of
x86 instructions available, combined with their side effects
and implicit operands, make it difficult to write a catch-
all compiler pass that determines how an instruction touches
memory. Furthermore, determining exactly where in the LLVM
backend to inject instrumentation can be nontrivial, given that
LLVM applies a large number of stages of optimization, some
of which may modify code emitted earlier during compilation.

To simplify the instrumentation process, TASE’s LLVM
backend restricts the pool of x86 instructions available to the
compiler during instruction selection. Our anecdotal evidence
suggests that the slowdown imposed by choosing from a
more limited set of instructions is negligible compared to
the overhead of setting up and committing transactions and
periodically interpreting when needed, but we may expand the
set of allowed instructions in the future.

E. Controlled Forking

TASE was designed to use native forking to explore dif-
ferent execution paths, each in a different process, in order
to avoid the overhead of software-based copy-on-write mech-
anisms as used in KLEE and S2E [10], [18]. Although forking
allows TASE to explore distinct paths in parallel, exploring dis-
tinct execution paths within distinct address spaces complicates
the process of applying search heuristics across these many
processes, sharing cached SMT query results across paths, etc.
Furthermore, even if it were desirable to move all or some
aspects of path exploration into a single address space, the
TSX transactions utilized for our speculative execution scheme
would likely abort more often due to their original intended
use—detecting conflicting concurrent accesses—thereby im-
pinging on performance.

As discussed in Sec. IV-E, our present implementation
leverages a central manager process to guide path exploration,
which it does simply by prioritizing which worker processes it
allows to proceed (and temporarily suspending others). Some
applications might require more sophisticated mechanisms for
state management in which this simple prioritization is insuf-
ficient. For example, hybrid symbolic execution as introduced
in Mayhem [13], in which symbolic states can be archived
to relieve memory pressure and restored later for further
exploration, might be needed for analyzing some types of
applications efficiently.

VIII. CONCLUSION

In this paper, we presented the design, implementation,
and evaluation of TASE. To our knowledge, TASE is the first
symbolic execution engine that leverages specialized hard-
ware capabilities to accelerate native execution to optimize
workloads in which operations on concrete data are a major
bottleneck. The two technical innovations in TASE to make
this possible are (i) batching tests to detect native accesses
to symbolic data into a few instructions, and (ii) undoing the
potentially erroneous effects of having accessed symbolic data
natively by leveraging hardware transactions.

We illustrated an application of TASE for verifying whether
the messaging behavior of a client as seen by the server is con-
sistent with the software the client is believed to be executing.

13



We showed that the use of TASE in this application dramati-
cally reduced the lag associated with verifying OpenSSL TLS
1.2 traffic, e.g., as driven by Gmail. This reduction bolsters
the prospects of deploying this verification on the critical
path of delivering client messages to the server, as an inline
defense against client exploits without foreknowledge of server
vulnerabilities.

ACKNOWLEDGMENTS

We are grateful to our shepherd, Hamed Okhravi, and to
the anonymous reviewers for their constructive feedback. This
research was supported in part by grant N00014-17-1-2369
from the U.S. Office of Naval Research.

REFERENCES

[1] J. M. Allen, “OS and application fingerprinting tech-
niques,” https://www.sans.org/reading-room/whitepapers/tools/
os-application-fingerprinting-techniques-1891, Sep. 2007.

[2] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven composi-
tional symbolic execution,” in 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, ser.
LNCS, Mar. 2008, vol. 4963, pp. 367–381.

[3] Apple Corporation, “Enabling the malloc debugging features,” https:
//developer.apple.com/library/archive/documentation/Performance/
Conceptual/ManagingMemory/Articles/MallocDebug.html, 23 Apr.
2013.

[4] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX
Annual Technical Conference, FREENIX Track, Apr. 2005, pp. 41–46.

[5] D. Bethea, R. A. Cochran, and M. K. Reiter, “Server-side verification
of client behavior in online games,” ACM Transactions on Information
and System Security, vol. 14, Dec. 4.

[6] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest
taint tracker,” in Recent Advances in Intrusion Detection, 14th Interna-
tional Symposium, ser. LNCS, vol. 6961, Sep. 2011, pp. 1–20.

[7] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT – a formal
system for testing and debugging programs by symbolic execution,”
in International Conference on Reliable Software, 1975, pp. 234–245.

[8] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” in 9th IEEE/ACM International Symposium on Code Generation
and Optimization, Apr. 2011, pp. 213–223.

[9] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards
automatic generation of vulnerability-based signatures,” in IEEE Sym-
posium on Security and Privacy, May 2006.

[10] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in 8th

USENIX Symposium on Operating Systems Design and Implementation,
Dec. 2008.

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” in ACM Conference
on Computer and Communications Security, Oct. 2006.

[12] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
Feb. 2013.

[13] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on binary code,” in IEEE Symposium on Security and Privacy,
May 2012, pp. 380–394.

[14] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with Déjà Vu,” in 12th ACM
Asia Conference on Computer and Communications Security, Apr.
2017, pp. 7–18.

[15] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “TaintTrace: Efficient
flow tracing with dynamic binary rewriting,” in 11th IEEE Symposium
on Computers and Communications, Jun. 2006.

[16] A. Chi, R. A. Cochran, M. Nesfield, M. K. Reiter, and C. Sturton, “A
system to verify network behavior of known cryptographic clients,” in
14th USENIX Symposium on Networked Systems Design and Implemen-
tation, Mar. 2017, p. 177–195.

[17] V. Chipounov, V. Kunetsov, and G. Candea, “The S2E platform: Design,
implementation, and applications,” ACM Transactions on Computer
Systems, vol. 30, no. 1, Feb. 2012.

[18] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in 16th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2011, pp. 265–278.

[19] R. A. Cochran and M. K. Reiter, “Toward online verification of
client behavior in distributed applications,” in 20th ISOC Network and
Distributed System Security Symposium, Feb. 2013.

[20] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado, “Bouncer:
securing software by blocking bad input,” in 21st ACM Symposium on
Operating Systems Principles, Oct. 2007.

[21] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks,” in 7th USENIX Security
Symposium, Jan. 1998.

[22] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“PRIME+ABORT: A timer-free high-precision L3 cache attack
using Intel TSX,” in 26th USENIX Security Symposium, 2007, pp.
51–67.

[23] “D.U.M.A. – detect unintended memory access,” http://duma.
sourceforge.net, accessed: 25 Jul. 2020.

[24] “fork(2),” in Linux Programmer’s Manual, 15 Sep. 2017, http://man7.
org/linux/man-pages/man2/fork.2.html.

[25] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in ACM Conference on Programming Language De-
sign and Implementation, Jun. 2005, pp. 213–223.

[26] P. Godefroid, M. Leving, and D. Molnar, “SAGE: Whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44.

[27] M. Herlihy and J. Moss, “Transactional memory: Architectural support
for lock-free data structures,” in 20th International Symposium on
Computer Architecture, 1993, pp. 289–300.

[28] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel,
Oct. 2019.

[29] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[30] A. Kleen, “TSX anti patterns in lock elision code,” https://software.
intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code, 26 Mar.
2014.

[31] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Au-
tomating mimicry attacks using static binary analysis,” in 14th USENIX
Security Symposium, Jul. 2005, pp. 161–176.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in 26th ACM
Conference on Programming Language Design and Implementation,
Jun. 2005.

[33] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and
I. Verbauwhede, “Hardware-based trusted computing architectures for
isolation and attestation,” IEEE Transactions on Computers, vol. 67,
no. 3, Mar. 2018.

[34] Microsoft Corporation, “GFlags and PageHeap,” https://docs.microsoft.
com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap,
23 May 2017.

[35] D. Milushev, W. Beck, and D. Clarke, “Noninterference via symbolic
execution,” in Formal Techniques for Distributed Systems, 2012.

[36] D. Monniaux, “A survey of satisfiability modulo theory,” in 18th

International Workshop on Computer Algebra in Scientific Computing,
ser. LNCS, vol. 9890, 2016, pp. 401–425.

[37] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” in 3rd International Conference on Virtual Execu-
tion Environments, Jun. 2007, pp. 65–74.

[38] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in ISOC Network and Distributed System Security Sympo-
sium, Feb. 2005.

14

https://www.sans.org/reading-room/whitepapers/tools/os-application-fingerprinting-techniques-1891
https://www.sans.org/reading-room/whitepapers/tools/os-application-fingerprinting-techniques-1891
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
http://duma.sourceforge.net
http://duma.sourceforge.net
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
https://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code
https://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap


[39] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t
interpret, compile!” in 29th USENIX Security Symposium, Aug. 2020,
pp. 181–198.

[40] C. S. Păsăreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry,
S. Person, and M. Pape, “Combining unit-level symbolic execution
and system-level concrete execution for testing NASA software,” in
International Symposium on Software Testing and Analysis, Jul. 2008,
pp. 15–26.

[41] C. S. Păsăreanu, Q. S. Phan, and P. Malacaria, “Multi-run side-
channel analysis using symbolic execution and max-SMT,” in 29th IEEE
Computer Security Foundations Symposium, 2016, pp. 387–400.

[42] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “LIFT: A
low-overhead practical information flow tracking system for detecting
security attacks,” in 39th IEEE/ACM International Symposium on Mi-
croarchitecture, Dec. 2006.

[43] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in 13th International Symposium on the Foundations of
Software Engineering, Sep. 2005.

[44] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in USENIX Annual Technical
Conference, Jun. 2012.

[45] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in ISOC Network
and Distributed System Security Symposium, Feb. 2017.

[46] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice – automatic detection of authentication bypass vulnerabilities
in binary firmware,” in ISOC Network and Distributed System Security
Symposium, Feb. 2015.

[47] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis, “A dynamic mech-
anism for recovering from buffer overflow attacks,” in 8th International
Conference on Information Security, ser. LNCS, vol. 3650, Sep. 2005,
pp. 1–15.

[48] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in 12th International Conference on Theory
and Applications of Satisfiability Testing, ser. LNCS, vol. 5584, 2009,
pp. 244–257.

[49] N. Tillmann and J. D. Halleux, “Pex: White box test generation for
.NET,” in 2nd International Conference on Tests and Proofs, 2008, pp.
134–153.

[50] W. Visser, C. S. Păsăreanu, and S. Khurshid, “Test input generation
with Java PathFinder,” SIGSOFT Software Engineering Notes, vol. 29,
pp. 97–107, Jul. 2004.

[51] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong, “Privacy-
preserving genomic computation through program specialization,” in
16th ACM Conference on Computer and Communications Security, Nov.
2009.

[52] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler, “Automatically
generating malicious disks using symbolic execution,” in IEEE Sympo-
sium on Security and Privacy, May 2006.

[53] J. Yeongjin, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with Intel TSX,” in ACM Conference on Computer and
Communications Security, 2016, pp. 380–392.

[54] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sher-
Log: Error diagnosis by connecting clues from run-time logs,” in 15th

International Conference on Architectural Support for Programming
Languages and Operating Systems, Mar. 2010, pp. 143–154.

[55] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium, Aug. 2018.

[56] C. Zamfir and G. Candea, “Execution synthesis: A technique for auto-
mated software debugging,” in 5th European Conference on Computer
Systems, Apr. 2010, pp. 321–334.

[57] Z. Zhou, Z. Qian, M. K. Reiter, and Y. Zhang, “Static evaluation
of noninterference using approximate model counting,” in 39th IEEE
Symposium on Security and Privacy, May 2018, pp. 514–528.

APPENDIX

In this appendix, we profile the process count and memory
usage of client behavioral verification using TASE. Fig. 7
shows the process counts and memory usage involved in
verifying the 21 TLS sessions using the optimized config-
uration. The data reported in this figure was gathered by
running the top command on the verification computer, with
3s snapshot intervals, while verification was being performed.
Fig. 7a shows the “running” and “sleeping” processes on the
platform during the verification, as a function of time. Most of
the processes on the computer were unrelated to verification;
i.e., over 200 processes were sleeping on the computer before
verification began. However, the growth in the process count
once verification began was due to processes involved in
verification. Most importantly, however, the number of these
processes stayed roughly flat after an initial spike; i.e., the rate
of forking of new verification processes was roughly matched
by the rate at which they exited, in this application.

230

240

250

260

0 50 100 150 200

Time(s)

P
ro

c
e
s
s
e
s

(a) Running and sleeping pro-
cesses

1

2

3

0 50 100 150 200

Time(s)

M
e
m

o
ry

(G
B

)

(b) Memory usage

Fig. 7: Resource usage on verifier computer during verification
of 21 TLS connections (optimized configuration) illustrated in
Fig. 4.

The memory usage on the computer grew very slowly
after an initial spike and never exceeded 3.6GB; see Fig. 7b.
This graph shows the benefit of leveraging copy-on-write page
sharing and, in particular, sharing the binary representation of
LLVM instructions to use in interpretation across all of these
processes. Memory usage has not been a limiting factor for
us to date, and so has not drawn our focus; we thus expect
we can reduce this memory footprint further with a concerted
effort to do so.

15


	Introduction
	Related Work
	Symbolic Execution Engines
	Intel TSX

	Background and Challenges
	Concrete Operations in Symbolic Execution
	Implementing Transactions with TSX

	Design
	Structure of TASE
	Transactional Execution
	Poison Checking
	Interpretation
	State Management

	Implementation
	IR Generation
	Forking and Path Exploration
	Transaction Sizing

	Evaluation
	Microbenchmarks
	Client Verification with TASE
	Experiment setup
	Results

	Other Applications: Defending Against Memory Exploits

	Limitations
	Hardware Dependence on Intel TSX
	Equivalence of Interpretation and Native Execution
	Interpreting x86 Instructions
	Instrumentation
	Controlled Forking

	Conclusion
	References
	Appendix

