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Abstract—Enforcing fine-grained Control-Flow Integrity
(CFI) is critical for increasing software security. However, for
commercial off-the-shelf (COTS) binaries, constructing high-
precision Control-Flow Graphs (CFGs) is challenging, because
there is no source-level information, such as symbols and types,
to assist in indirect-branch target inference. The lack of source-
level information brings extra challenges to inferring targets
for indirect calls compared to other kinds of indirect branches.
Points-to analysis could be a promising solution for this problem,
but there is no practical points-to analysis framework for infer-
ring indirect call targets at the binary level. Value set analysis
(VSA) is the state-of-the-art binary-level points-to analysis but
does not scale to large programs. It is also highly conservative by
design and thus leads to low-precision CFG construction. In this
paper, we present a binary-level points-to analysis framework
called BPA to construct sound and high-precision CFGs. It is
a new way of performing points-to analysis at the binary level
with the focus on resolving indirect call targets. BPA employs
several major techniques, including assuming a block memory
model and a memory access analysis for partitioning memory
into blocks, to achieve a better balance between scalability and
precision. In evaluation, we demonstrate that BPA achieves a
34.5% precision improvement rate over the current state-of-the-
art technique without introducing false negatives.

I. INTRODUCTION

Control-Flow Integrity (CFI) constrains attackers’ ability
of control-flow manipulation by enforcing a predetermined
control-flow graph (CFG). One key step in CFI is constructing
its policy, that is, the CFG it enforces. The major challenge of
CFG construction is to infer the targets of indirect control-
transfer instructions, especially indirect calls (calls through
register or memory operands).

A program can have multiple CFGs, some fine-grained
and some coarse-grained. For instance, a coarse-grained CFG
may allow an indirect call to target all possible functions in
a program, even though at runtime only a subset of functions
can be actually called. A coarse-grained CFG can allow an
attacker too much freedom in manipulating the control flow
within the CFG. Control Jujutsu [15], CFB [12], and TROP
[16] have shown the importance of constructing precise CFGs;
imprecisely refined indirect call targets are more likely to
remain in the attack surface. Therefore, precise yet correct
(sound) indirect call refinement has been recognized as a
major research track for enforcing CFI. This research is also

important to other security applications, such as bug finding.
In bug finding, coarse grained CFGs result in imprecise and
unscalable analysis, while ignoring indirect calls results in
an incomplete analysis and failing to detect hidden bugs.
In particular, some bug detection tools [23], [25], [49] stop
analysis at indirect calls, constraining their abilities to find
bugs through indirect calls.

Realizing the importance of constructing high-precision
CFGs for security applications, many systems have been
designed with the assumption of having access to source
code [1], [15], [16], [19], [27], [29], [33], [43], [45]. Source
code provides rich semantic information such as symbols
and types, which enable sophisticated static analysis. In the
meantime, the demand for CFI is also critical in commercial
off-the-shelf (COTS) binaries and legacy code, where source
code is not available. The state-of-the-art CFG construction
for stripped binaries is a combination of TypeArmor [46] and
PathArmor [44], which enforce a backward-context-sensitive
arity-based CFG [34]. An arity-based CFG allows an indirect
call to target any function whose number of parameters is
compatible with the number of arguments supplied at the
call. Compared with source-level approaches, the relatively
slow research progress for stripped-binary CFG construction
is due to the challenges in performing high-precision program
analysis at the binary level without the assistance of source-
level information.

In this paper, we focus on generating high-precision CFGs
for stripped binaries. To resolve targets for an indirect call,
we utilize a binary-level static points-to analysis to decide
what functions may be pointed to by the code pointer used in
the call. Binary-level points-to analysis brings extra challenges
compared to source-level analysis, due to the lack of source-
level information as well as the complexity of assembly
instructions. C-like variables at the binary level are represented
by memory accesses usually through registers (indirect mem-
ory accesses). To infer what variables are used in the indirect
memory accesses of instructions, alias analysis is required,
which further complicates points-to analysis. One possible
choice for such a points-to analysis is Value-Set Analysis
(VSA) [6], which partitions memory into memory regions
(e.g., a stack frame for a function) and tracks the set of
numeric values in abstract locations (alocs) via the strided-
interval abstract domain. For a pointer value, its value set
tracks both which memory regions the pointer points to and the
offsets that the pointer has from the beginnings of the regions.
Since those offsets are numbers, VSA has to track the numeric
values in storage locations such as registers; e.g., its numeric
analysis may decide that rax has values 1, 3, 5, etc. On the
other hand, the numeric analysis is time consuming and as a
result VSA does not scale to large programs, as discussed in
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prior work [52].

Therefore, the key challenge is to design a points-to
analysis that is both scalable and sufficiently precise for high-
precision CFG construction of large stripped binaries. To
address the challenge, we propose a novel block-based points-
to analysis called BPA. It assumes a block memory model [28],
in which a memory region is divided into disjoint memory
blocks and a pointer to a memory block cannot be made to
point to other blocks via pointer arithmetic. Taking advantage
of the block memory model, BPA only tracks what memory
blocks a pointer can point to, but not the offsets of the pointer
from the beginnings of blocks. In this way, expensive numeric
analysis (as in VSA) is avoided in BPA. This is the key
for BPA to scale to large programs. Further, our experiments
show that the decision of not-tracking offsets still allows BPA
to precisely track code addresses in memory blocks, which
enables high-precision CFG construction.

Overall, BPA makes the following contributions:

• We propose a novel binary-level block-based points-to
analysis (BPA) for stripped binaries. It takes as input
a stripped binary, and starts with a memory access
analysis to divide memory into memory blocks. BPA
then performs the block-based value tracking analysis
to perform alias analysis on memory accesses and
infer the targets of indirect branches. This analysis
is scalable and precise in terms of CFG generation.

• We have built BPA via Datalog, a modular logic
programming language that has been used for static
analysis at the source-code level in the past [10],
[17], [22], [39], [48]. Our system supports binaries
compiled by both GCC and Clang as well as different
compiler optimization levels, including -O0 to -O3.
On a set of real-world benchmarks, BPA achieves
34.5% higher precision on detecting indirect-call tar-
gets than the conservative arity matching technique.
Our experiments show that, unlike VSA, BPA can
scale to large stripped binaries, when given sufficient
resources; for example, for 403.gcc from SPEC2k6,
BPA can finish its analysis within 10 hours on a
machine with around 350GB of RAM.

II. RELATED WORK

We discuss related work in CFG generation, binary-level
points-to analysis, and Datalog-based static analysis.

CFG generation from source code. Most systems that gen-
erate CFGs require source code or source-level information,
such as relocation information and debugging information [1],
[15], [16], [19], [27], [29], [33], [43], [45], [50]. For example,
the original CFI [1] allows an indirect call to target all address-
taken functions, which are identified by relocation information.
Forward-CFI [43] matches indirect calls and functions by
the arity information with the help of the GCC compiler.
MCFI [33] and TypeDive [29] generate high-precision CFGs
by utilizing source-level type information for the matching.
Another track of high-precision CFG generation performs
static analysis to infer the targets of indirect branches with the
help of source-level information. For example, Kernel CFI [19]
applies source-level taint tracking to infer what code addresses

can flow to what indirect branches. Control Jujutsu [15]
employs a source-level alias analysis (DSA, Data Structure
Analysis) to construct the CFG. Another CFG construction
system [50] starts with compiler-generated meta information
including debugging information, performs a binary-level type
inference to infer types of function pointers used in indirect
calls, and uses the inferred types to build a CFG. Although this
work performs binary-level type inference, it relies on source
information such as debugging information.

CFG generation from binary code. CFG construction with-
out source code or source-level information is challenging and
its research progress is generally limited. CCFIR [51] analyzes
all code addresses in a stripped binary to determine what can be
targeted by indirect calls; it is a migration of the original CFI’s
scheme to binary code, which allows an indirect call to target
address-taken functions. TypeArmor [46] performs several
binary-level analyses to infer the arity information for both
indirect call sites and functions, which is an implementation
of Forward-CFI’s CFG policy at the binary level.

Binary level points-to analysis. VSA [6] is the most common
points-to analysis technique adapted by other binary-analysis
platforms such as BAP [11], ANGR [38] and CodeSurfer [5].
VSA tracks the value sets of abstract locations (alocs), which
can be registers, CPU flags, and memory locations [6]. How-
ever, VSA often does not scale to large programs; a detailed
discussion that compares the designs between VSA and BPA
will be offered in the overview section. BDA [52] proposes
a path sampling algorithm with probabilistic guarantees to
perform a scalable binary-level dependency analysis, which
only tracks dependent values and has customized tracking
rules. While BDA achieves higher precision on dependency
analysis than VSA and IDA [21], its path sampling does
not cover all paths and cannot guarantee the completeness of
the analysis result. Thus, to our best knowledge, there is no
practical points-to analysis framework at the binary level for
generating precise and sound CFGs.

Datalog static analysis. Points-to analysis frameworks at
source level have been implemented in Datalog for Java
and C/C++ programs [7], [10], [20], [26], [40], where they
have enjoyed benefits of modularity, high-performance, and
precise static analysis offered by Datalog. A recent work [18]
implemented a binary disassembly and reassembly framework
in Datalog, which can be used for providing inputs to our
tool. To the best of our knowledge, Datalog has not been
used to implement practical binary-level points-to analysis
frameworks.

III. OVERVIEW

We start with an overview of the block memory model
adopted in BPA and then present the workflow of our system.

A. The block memory model

Designing a sound and precise points-to analysis is known
to be difficult even with source-level information. Performing
points-to analysis on stripped binaries introduces extra chal-
lenges. The first challenge is how to model memory to have a
good balance between scalability and precision. Modeling the
memory as an array of one-byte slots is unscalable. The other
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extreme is to model memory as a whole, meaning that reads
and writes at different memory addresses are not distinguished.
This, however, is highly imprecise.

BPA adopts a block memory model, which is inspired by
the CompCert project [28]. It used the block memory model
to specify the semantics of C-like languages and verify cor-
rectness of program transformations in compilers. We observe
that the block memory model can be used for performing
scalable binary-level points-to analysis. In this model, memory
is divided into a set of disjoint memory blocks. Each block is
comprised of a logically cohesive set of memory slots. For
example, the stack frame for a function that has an integer
local variable and a local array can be divided into two blocks:
one for the integer and the other for the entire array.

Pointer arithmetic is allowed within one block, but the
block model assumes that it is not possible to make a pointer
to one block point to a different block via pointer arithmetic.
For instance, if p points to block b1, for any offset o, the result
of pointer arithmetic p + o must also point to block b1, not
any other block b2. Therefore, BPA by design eliminates the
consideration of pointer arithmetic during points-to analysis.
Conceptually, the block model makes two blocks separate by
an infinite amount of space; so adding a finite offset to a
pointer cannot make it point to a different block. This infinite-
separation view is sound for points-to analyses if blocks are
formed properly, for the following reason. Memory blocks
should delineate the boundaries of where legal pointer accesses
should be; out-of-block accesses imply memory errors (e.g.,
accessing an array out of bound). Since program behavior
after a memory error is undefined, a points-to analysis should
capture only those points-to relations in executions without
memory errors. Therefore, when performing a points-to anal-
ysis, we can safely assume pointer arithmetic does not make a
pointer go outside of a block. This assumption of memory-safe
executions is also in previous work of formalizing points-to
analysis [14], [42].

One key benefit of the block model is that it enables
BPA to not track offsets during its points-to analysis. Since
adding an offset to a pointer does not change the block the
resulting pointer points to, for a pointer BPA tracks only
what blocks it might point to, not the offsets the pointer has
from the beginnings of blocks. By not tracking offsets, BPA
treats a block as a whole, meaning that memory reads and
writes through pointers to the block at different offsets are not
distinguished. This enables BPA to be much more scalable
than previous binary-level points-to analysis such as VSA.
Furthermore, this design also accommodates CFG construction
with good precision, as in general it matches well with how
code addresses are stored and retrieved from memory. As
an example, suppose a program stores into a memory block
two function pointers: fp1 stored at p + o1 and fp2 stored
at p + o2, assuming p points to the block; the program then
performs an indirect call using a function pointer retrieved
from p + o3. BPA’s analysis then ignores all those offsets
and decides the block has two function pointers (fp1 and fp2)
inside and the indirect call can target either one of them. This
overapproximation yields good results on stripped binaries, as
our experiments show.

Comparison with VSA. VSA in theory can achieve high

precision for performing points-to analysis but it comes with
a large cost. Even the original VSA algorithm [6] has several
design choices to trade precision for scalability, such as using
a strided-interval abstraction to represent a set of offset values.
However, their proposed trade-off actions are not sufficient for
generating high-precision CFGs in large real-world applica-
tions. One bottleneck is their memory modeling.

VSA partitions memory into memory regions and each
region is further partitioned into a set of abstract memory
locations (alocs). Unlike the block memory model, in VSA a
pointer to one aloc can point to another aloc after pointer arith-
metic. This design requires numeric analysis to track offsets
so that the analysis can know what alocs a pointer might point
to after pointer arithmetic; this incurs a large computational
burden. Also, for soundness, the numeric analysis may yield
a large value set for a pointer in the worst case, effectively
making the pointer point to all possible alocs within a region.
Such an over-approximation may result in a large target set for
an indirect call and leads to low-precision CFG generation.
Prior work [38], [52] also criticized VSA in terms of its
scalability and precision.

Deciding block boundaries. The block memory model re-
quires an algorithm for dividing memory into blocks. At the
source-code level, it is relatively easy to perform this division.
For example, the original block memory model work [28] uses
source code information in a C-like language to put each local
variable into a separate memory block.

For stripped binaries, it is much more difficult to decide
the boundaries of blocks. Stripped binaries do not carry
symbol nor type information to aid this process. As a result,
BPA has to rely on a separate memory access analysis to
recover boundaries. At high level, this memory-access analysis
is similar to the process of recovering variable-like entities
in IDAPro [21] and alocs in VSA [6]. However, since the
block memory model makes the strong assumption about the
separation among blocks, BPA’s boundary recovery algorithm
has to be more conservative, relying on its own set of rules
and semantic-based heuristics for block boundary discovery.
Our experiments demonstrate that the blocks generated by this
algorithm obey the pointer-arithmetic assumption.

B. System overview

BPA is designed for resolving indirect-branch targets in
stripped binaries by a block-based points-to analysis. It takes
as input a stripped binary, and performs a disassembly to
produce a CFG that contains targets for direct branches, but
not indirect branches. The targets of indirect branches are then
determined by BPA’s points-to analysis. Fig. 1 describes the
workflow of BPA, which consists of three major components:
input processing, memory-block generation, and value-tracking
analysis.

Input processing. This component generates facts encoded
in Datalog to represent the input disassembly. It requires the
input disassembly being represented in a Direct Control-Flow
Graph (DCFG), which includes edges for direct branches but
not indirect branches. This component first translates the in-
put’s assembly instructions into an intermediate representation.
Then, it identifies function boundaries. Based on function
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Fig. 1: System flow.

boundaries, functions whose addresses are taken are identified,
which can be considered candidates of indirect call targets.

Memory-block generation. This component performs a
memory-access analysis to generate memory blocks from the
DCFG in all memory regions, including data sections, function
stack frames, and the heap. It computes block boundaries to
partition each memory region. For different memory regions,
we partition them at different granularity levels, for balancing
between precision and scalability.

Block-based value tracking analysis. This component takes
as input the DCFG, the address-taken functions, and the
generated memory blocks to add new control-flow edges
discovered for indirect branches into the CFG. In detail, this
component tracks values over abstract locations (registers and
memory blocks) according to the input CFG and determines
the targets of indirect branches. First, it transforms the program
into a memory-block access intermediate representation. Then,
it resolves the targets of indirect branches by a fixed point
computation that merges SSA transformation, value tracking
analysis, and CFG update that terminates when the CFG
does not change anymore. Since the total number of indirect-
branch targets is finite, there exists a fixed point to guarantee
termination. At the end, the final CFG is generated.

IV. INPUT PROCESSING: DATALOG FACT GENERATION

To perform our block-based points-to analysis, we disas-
semble the input binary and process the disassembly results
to generate Datalog facts that represent the program and
necessary information for the later components in BPA. We
require the disassembly being represented by a DCFG, a CFG
whose nodes are basic blocks of assembly instructions and
whose edges are for the targets of direct branches. During
input processing, BPA first converts the disassembled code
into an intermediate representation, which is then encoded into
Datalog facts. Afterwards, BPA identifies function boundaries
and performs DCFG refinements.

A. Background: Datalog

Datalog is a declarative logic programming language and
has lately found applications in static analysis. It is a subset
of Prolog that guarantees program termination. A Datalog
program consists of a set of logical rules in the form of ”c
:- a1, ..., an”, where c is the conclusion and a1 to an are
assumptions; that is, if assumptions a1 to an all hold, then

v ∈ Integers
sz ∈ Integers
reg := EAX | EBX | . . .
flag := CF | ZF | . . .
loc := PC | reg | flag | . . .

bvop := add | and | shl | . . .
cmp := lt | eq | gt | . . .
exp := bitvec(sz , v) | arith(bvop, exp, exp)

| test(cmp, exp, exp)
| ite(exp, exp, exp)
| load loc(loc) | load mem(exp)

instr := loc = exp | Mem[exp] = exp
| IF exp DO instr

Fig. 2: The major syntax of RTL [32].

conclusion c holds. Both the conclusion and assumptions are
expressed with predicates that describe relations. Consider the
following Datalog example about graph reachability.

path(x, y) :- edge(x, y).
path(x, z) :- edge(x, y), path(y, z).

By the first rule, if there is an edge from x to y, then from x we
can reach y. By the second recursive rule, if there exists a node
y so that there is a edge from x to y and y can reach z, then
x can reach z. A datalog rule without assumptions is called a
fact. A Datalog execution engine then uses the rules and the
facts to derive tuples that are true. For the above example, if the
facts are edge(1, 2) and edge(2, 3), then the engine generates
path(1, 2), path(2, 3), and path(1, 3).

B. Program representation with RTL

BPA converts assembly instructions into an intermediate
language called RTL [32]. The RTL language is a RISC-
like language, with a small set of instructions. An assembly
instruction is translated to a sequence of RTL instructions.

Fig. 2 presents the major syntax of the RTL language.
Locations loc represent storage in the CPU, including the
program counter, registers (reg), CPU flags (flag), and others.
Expressions are pure and produce values when evaluated. They
include bit-vectors of certain sizes (bitvec), common bit-vector
operations (arith), comparison between two expressions (test),
conditional expressions (ite, if-then-else), and loads from lo-
cations and memory. Instructions have side effects. Instruction
”loc = exp” updates location loc with the value of expression
exp; instruction ”Mem[exp1] = exp2” updates memory at
address exp1 with the value of exp2. There is also a conditional
instruction. However, BPA’s analysis is path insensitive and
ignores the conditions in conditional instructions. The input
DCFG, after its instructions are translated into RTL, is encoded
into Datalog facts. Most of the encoding is straightforward and
explained in Appendix B; we only note that the encoding is
compact in that an expression is always assigned the same ID
even if the expression appears multiple times (e.g., in different
instructions).
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C. Identifying function boundaries

BPA’s interprocedural points-to analysis requires function
boundary information, which is not present in stripped binaries.
To identify function boundaries, the main idea is to find the
start addresses of functions from the targets of direct calls
and code addresses used in the program. These code addresses
contain all targets of indirect calls/jumps. We perform heuristic
based static analysis, similar to [51] and [46], to classify code
addresses into function addresses and local addresses within
functions. The function addresses are candidate targets of indi-
rect calls and the local addresses within functions are candidate
targets of indirect jumps. Then, BPA partitions the code region
into a set of functions based on function addresses. Note that
this function boundary identification does not rely on any meta-
data, such as symbol tables and debugging information. In
general, it can be replaced by any function boundary recovery
tool, such as [3], [8], [35], [37].

With function boundaries identified, the binary is scanned
to identify a set of functions whose start addresses appear as
constants in the binary’s code/data sections. Those functions
are determined as Address-Taken (AT) functions and they are
potential targets of indirect calls.

D. DCFG refinement

After function boundaries are identified, BPA performs a
couple of refinements on the CFG, to make the following
steps easier to proceed. The first refinement is to reverse the
effect of tail-call optimization, which is often performed by
an optimizing compiler. A tail call in a function is a call that
is the last action of the function. In a tail-call optimization,
the compiler turns a tail call into a jump instruction. BPA
classifies the following jumps as tail-call jumps: (1) direct
jumps targeting function start addresses, and (2) indirect jumps
that are not classified as table-jumps. BPA then replaces
each detected tail-call jump to a call instruction followed
immediately by a return instruction. Reversing the effect of
tail-call optimization is important for interprocedural analysis,
which needs to know what edges are interprocedural edges,
and is also important for detecting functions that do not return,
discussed next.

The second refinement is to add an intraprocedural edge
from a call instruction to its follow-up basic block. In static
analysis, such intraprocedural edges are added for the con-
venience of analysis (e.g., summary information for the call
can be associated with these edges). However, we do not
add such edges for calls to non-returning functions. BPA
treats exit, abort, and assert_fail as non-returning
functions. Further, if a function does not have any reachable
return instruction in its intraprocedural CFG, it is also treated
as a non-returning function.

V. MEMORY BLOCK GENERATION

BPA adopts a memory-access analysis to generate memory
blocks for value tracking analysis. As previously discussed,
the granularity of memory blocks is the key for achieving a
good balance between scalability and precision. In addition,
for soundness all pointer arithmetic should stay within blocks.
Achieving this is in general challenging for stripped binaries.
As we will discuss when presenting experiments in Sec. VII,

1 ; {esp=top}
2 push ebp
3 ; {esp=top-4}
4 mov ebp, esp
5 ; {ebp=top-4, esp=top-4}
6 mov [ebp-4], $1000
7 mov eax, [ebp+8]
8 mov [ebp-8], eax
9 lea eax, [ebp-8]

10 push eax
11 call <store_by_pieces_2>
12 ...

Fig. 3: An example for partitioning the stack.

the memory blocks generated by BPA obey the pointer-
arithmetic assumption and allow good scalability. At a high
level, the data memory has three kinds of disjoint memory
regions: stack frames, the heap (for dynamically allocated
data), and the global data regions. For each memory region,
BPA analyzes the memory accesses in the input program and
partitions it into memory blocks. We next discuss this process
in detail.

A. Stack partitioning

For a function, BPA analyzes its code to partition its stack
frame into a set of memory blocks. This is similar to how other
systems (e.g., [2], [6], [21]) recover variable-like entities on the
stack, except that BPA’s partitioning must be coarse grained to
uphold the pointer-arithmetic assumption of the block memory
model. Therefore, it proceeds in two steps. The first step is
about gathering a set of boundary candidates through a stack
layout analysis. In the second step, it removes candidates that
may split a compound data structure, such as an array or a
struct. The remaining candidates are used to partition the stack
frame into memory blocks.

Collecting boundary candidates. For a function, BPA ana-
lyzes its code to determine what stack addresses instructions
might use and collects those stack addresses as boundary
candidates. The process is similar to how variable-like entities
are recovered in previous systems [2], [21]; so we will discuss
it only briefly with an example. At a high level, it is an
intraprocedural analysis that infers the relationship between
registers and the esp value at the function entry (stack top). At
every point in the function, it computes a set of equations in the
following form: {r1 = top + c1, ..., rn = top + cn}, meaning
that r1 equals the entry esp value (top) plus constant c1, . . . ,
and rn equals top plus constant cn. If a register does not point
to the stack, then no equation for the register is included in
the above set. Fig. 3 provides a simple example and the stack
layout inference result for the first two instructions. At the
entrance, esp points to the stack top; after “push ebp”, esp
gets to be top-4; after “mov ebp, esp”, ebp also gets to be
top-4. For the rest of the code, the equations for ebp and esp
do not change and are not shown in the figure.

With the result of stack layout analysis, BPA then goes
through all instructions, extracts stack addresses from in-
struction operands, and uses them as boundary candidates.
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For the example in Fig. 3, instructions from line 6 to 9 all
involve stack addresses. For example, instruction 6 accesses
the address top − 8, since ebp is top − 4. Collectively,
instructions 6 to 9 produce the following boundary candidates:
{top− 8, top + 4, top− 12}.

Removing boundary candidates. The boundary candidates
collected in the previous step may be in the middle of
compound data structures, such as an array or a struct, due
to compiler optimizations. Those candidates would be fine
for partitioning the stack frame into alocs in VSA, as it
does not rely on the assumption that pointer arithmetic stays
within alocs; it tracks offsets of pointers and can determine
whether pointer arithmetic makes the resulting pointers point
to different alocs. However, if BPA partitioned the stack frame
with a boundary candidate that is in the middle of a compound
structure, pointer arithmetic would cross the boundary of
generated blocks, breaking the assumption of the block model.
Therefore, such boundary candidates have to be removed.

BPA adopts the following set of heuristics for deciding
what boundary candidates from the first step should be kept:
(1) top+0 is always a boundary as the return address is stored
from top to top+3 in x86; (2) top+c, where c is positive, is a
boundary as in most calling conventions of x86 such stack slots
are used to pass parameters; (3) top + c, where c is negative,
is kept only if it is stored into a general-purpose register or
a memory location. Category (3) addresses are kept because
programs often store the base address of a compound structure
into a general-purpose register or a memory location, before
accessing the components in that structure; addresses extracted
in this way approximate the base addresses of compound
structures. We note that IDAPro [21] also uses this observation
to perform type recovery (although it considers only movement
into registers, not memory).

For the example in Fig. 3, only instruction at line 9 is
moving a stack address to a register; therefore, only top− 12
is in category (3). This example was adapted from 403.gcc
in SPEC2k6. By inspecting the source code, we find that
instructions 6 to 8 are accessing different fields of the same
struct and top− 12 is the base address of the struct.

At last, the remaining boundary candidates are used to
partition the stack frame. Note that our stack partitioning is
conservative in a few ways. First, the stack layout analysis in
the step that collects boundary candidates may not discover all
possible stack accesses in instructions; e.g., it is intraprocedu-
ral and tracks data flow of stack addresses through registers,
but not memory. Second, the heuristics in the step for removing
boundary candidates may fail to discover boundaries of some
compound data structures; as a result, two compound data
structures may be put into the same memory block. Being con-
servative harms the precision and scalability but not soundness,
as it leads to a more coarse-grained partitioning; coarse-grained
partitioning has less chance to violate the pointer-arithmetic
assumption of the block memory model.

B. Global memory region partitioning

BPA partitions global memory regions (i.e., the .DATA,
.RODATA, and .BSS data sections) by analyzing related mem-
ory accesses. Methodology-wise, it is also a two-step process;
it discovers block boundary candidates in step 1; in step 2,

1 struct discard_rule {
2 void (*condition)();
3 int flag;
4 } rules[] = {
5 {fptr1, 0}, {fptr2, 1}, {fptr3, -1}
6 };
7 void discard_moves(...){
8 int i, user_f;
9 for (i = 0; i < 3; i++){

10 rules[i].condition();
11 user_f = rules[i].flag;
12 }
13 rules[2].condition();
14 gtp(rules);
15 }
16 void gtp(struct discard_rule rules[]){
17 int j = rules[1].flag;
18 }

Fig. 4: Source code for global region partitioning example.

1 <discard_moves>:
2 mov ebp, esp
3 mov [ebp-4], 0 ; i=0
4 mov [ebp-8], 0
5 Loop:
6 mov edx, [ebp-4] ; get i
7 mov eax, [$1000+(edx*8)]
8 call eax ; call rules[i].condition
9 mov ecx, [$1004+(edx*8)]

10 mov [ebp-8], ecx
11 add [ebp-4], 1
12 cmp [ebp-4], 1
13 jl Loop
14 mov eax, [$1016]
15 call eax ; call rules[2].condition
16 push $1000 ; argument passing
17 call <gtp>
18
19 <gtp>:
20 mov ebp, esp
21 mov eax, [ebp+8] ; load from parameter
22 mov edx, [eax+12] ; load rules[1].flag
23 mov [ebp-4], edx ; store to variable j

Fig. 5: Assembly for global region partitioning example.

candidates that are in the middle of compound structures are
removed. However, since programs access global regions using
patterns different from those accessing the stack, different
global-memory partitioning techniques are needed.

Collecting boundary candidates. In step 1, block bound-
ary candidates are collected as follows: (i) extract all base
addresses (addr) from memory-accessing instructions with
indexed operands, in the form of ”addr +r” (constant address
plus a register), or ”addr + r ∗ scale” (constant address
plus a register multiplied by a scale factor such as four), or
”addr + r + r′ ∗ scale” (constant address plus a register and
another register multiplied by a scale factor such as four); (ii)
in addition, we extract constant addresses stored into registers
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and memory in the program; we call addresses extracted in (i)
and (ii) pointer-arithmetic-base (PAB) addresses. Then all PAB
addresses that fall into the address ranges of global memory
regions are regarded as boundary candidates; the intuition
is that such an address is likely to be the start address of
a compound data structure. This process is similar to how
IDAPro decides on the boundary of alocs in global regions.

We next present an example adapted from 445.gobmk
in SPEC2k6 to illustrate step 1. For easy understanding, we
present source code (Fig. 4) and assembly code (Fig. 5) of the
example (even though BPA works on binaries). The code has
an array of three structs; each has a function pointer and an
integer flag. The discard_moves function iterates through
the array, calls each function pointer, and accesses the flag.
Then it calls the function pointer at index 2 of the array; finally,
it calls gtp with argument rules, and the flag at index 1 from
rules is stored into j. In correspondence, the assembly code
uses pointer arithmetic to access function pointers and flags
in the array, starting from global addresses 1000 and 1004,
respectively. Also, the constant global address 1000 is stored
into an argument. As a result, the step 1 would collect these
two addresses as boundary candidates. Note that 1016 is not
collected as a candidate even if in instruction 14 (Fig. 5) there
is a memory access using that constant address, because it is
accessed without any pointer arithmetic and the address is not
stored into a register or memory.

However, the boundary candidates produced in step 1 might
still be in the middle of compound structures. This may happen
due to compiler optimizations. In the example, the compiler
decides to use different base addresses to access the two fields
in the struct. If we used those two base addresses (1000 and
1004) in step 1 as block boundaries, it would partition the array
into two blocks: b1 with the first function pointer (fptr1),
and b2 for the rest of the array. If such blocks were used
in determining the targets of the indirect call at instruction 8
(Fig. 5), BPA’s later steps would decide that the indirect-call
targets are read from block b1. The reason is that instruction 7
loads the target for the indirect call through an operand with the
base address 1000 and the address is associated with block b1.
Thus, with the assumption that pointer arithmetic stays within
blocks, BPA would determine that only fptr1 can be the
target of the indirect call, since fptr2 and fptr3 would be
in a different block. This would clearly be unsound.

Removing boundary candidates. In step 2, BPA filters out
addresses that may split a compound data structure. The idea
is to estimate for each boundary candidate an address range
that starts with the boundary candidate and that should fall
into the same data structure. Any boundary candidate that is
strictly within another candidate’s estimated range should be
eliminated, because such a candidate must be in the middle of
a compound data structure. Essentially, the range estimation is
a data-flow analysis to estimate a set of possible values that
can be computed by pointer arithmetic from each boundary
candidate.

If the boundary candidate is a category (i) PAB address
(see earlier discussion on collecting boundary candidates), the
analysis estimates the possible values of the index register
used in an instruction with the PAB address. For the example,
it decides that the index register edx in instructions 7 and 9

have at least values of 0 and 1 since they are in a loop. As a
result, instruction 7 accesses at least the range of [1000, 1007]
and instruction 9 accesses at least the range of [1004, 1011].
Because 1004 is in the middle of the first range, it is eliminated
as a block boundary. For the example, the end result is that
only 1000 is used as a block boundary, treating the whole
array as a single block. When the boundary candidate is a
category (ii) PAB address, BPA applies data-flow analysis to
track pointer arithmetic on the PAB address to related memory
accesses, and uses the result to estimate the range. For the
example in Fig. 5, starting with 1000 in instruction 16, BPA
performs data-flow analysis on registers and discovered stack
memory locations from Sec. V-A to compute where the global
addresses are stored to. After knowing that eax in instruction
22 points to 1000, BPA generates a filtering range for the
data structure to be [1000, 1015]; note that even though the
instruction accesses only [1012, 1015], BPA treats it as part of
a bigger data structure that starts from the base address 1000.
By this address range, 1004 is again selected to be removed
from the boundary candidates. Our experimental results in
Sec. VII-C show that such a design does not introduce false
negatives.

With block boundaries determined by remaining PAB ad-
dresses, BPA further splits blocks into memory chunks. The
motivation of introducing memory chunks is based on the fact
that there are many read-only constants in the global region
and programs often use constant addresses to directly access
these read-only constants. To increase analysis precision, BPA
uses these constant addresses to partition blocks into chunks.
Reading from a chunk would return values only from the
chunk, when the surrounding block is read-only. For example,
the precision improvement can be seen from instructions 14-
15 of Fig. 5; it reads from a memory chunk, and thereby the
indirect call at instruction 15 only calls fptr3, which increases
precision compared to reading from the entire block that
contains the chunk. Note that pointer arithmetic can access
different chunks within a block; so memory chunks do not
carry the pointer-arithmetic assumption. This makes value set
tracking more complicated; as we will discuss in Sec. VI-C,
when a memory block gets updated, the analysis needs to
update the values of all memory chunks inside the block.

C. Heap partitioning

We partition the heap using the allocation-site approach,
used in many static analysis (e.g., [39]) for analyzing the heap.
In particular, all memory allocated at a particular allocation site
(i.e., a call to memory allocation functions such as malloc,
calloc, and realloc) are put into one memory block. Each such
block is identified with a unique allocation site ID, determined
by the address of the call instruction to a memory allocation
function that allocates the block. This means we assume the
binary is dynamically linked and stripped. Further dividing
heap memory blocks could increase precision, but would come
at the cost of analysis overhead.

VI. BLOCK-BASED VALUE TRACKING ANALYSIS

This section discusses BPA’s core component, the block-
based value tracking analysis, which takes as input (1) a
DCFG with RTL instructions, (2) memory blocks generated
in the previous step, and (3) the address-taken functions. It
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outputs a final CFG with resolved targets for indirect branches.
The value tracking analysis consists of two stages. First,
it transforms memory accesses into memory-block accesses,
resulting in a memory-block access intermediate representation
(MBA-IR). The second stage contains three mutually recursive
processes: an SSA transformation, a flow-insensitive value
tracking analysis, and a process for discovering indirect branch
targets to add to the CFG. Since SSA transformation and value
tracking analysis both depend on the CFG, the second stage
is a mutually recursive process and computes a fixed point
until no indirect branch targets can be further added to the
CFG. The second stage is guaranteed to terminate because
edges can only be added and the set of possible indirect
branch targets is finite. Value tracking analysis utilizes MBA-
IR to both compute values for abstract locations and perform
memory alias analysis for indirect memory accesses.

A. Memory-block access transformation

BPA translates the RTL program into a memory-block
access intermediate representation (MBA-IR). This translation
improves the runtime efficiency of the next step, value tracking
analysis, in two ways. First, memory accesses in the RTL
program are converted into accesses to memory blocks/chunks,
avoiding repeating the process that determines the correspond-
ing memory blocks/chunks for memory accesses. Second,
since BPA’s value tracking analysis tracks only part of the
program state, the translation also abstracts away unnecessary
RTL instructions and expressions. For example, since BPA
avoids path sensitivity for scalability, it does not track path
conditions. As a result, instructions, expressions, and RTL
locations that are related to path conditions are translated away.
Moreover, constants that are not function start addresses or
memory block/chunk start addresses are abstracted away, for
the reason that an internal constant address of a block cannot
be used to compute the start address of a different block, by
the pointer-arithmetic assumption of the block memory model.

MBA-IR’s syntax is defined in Fig. 6. MBA-IR has five
types of instructions:

(1) register-update instructions, reg ← exp;
(2) memory-location-update instructions, mloc ← exp;
(3) indirect memory-update instructions, ∗reg ← exp;
(4) nondeterministic memory-update instructions, (mloc ∨
∗reg)← exp;

(5) and no-ops, SKIP.

A register-update instruction computes the value of exp and
stores it into reg . Note that we also treat the program counter
as a reg . A memory-location-update instruction has a similar
effect except that the destination is a memory block/chunk;
recall that BPA uses memory chunks to increase the analysis
precision on global data regions. An indirect memory-update
instruction (∗reg ← exp) stores the computed value of exp
to a memory location pointed to by reg . A nondeterministic
memory-update instruction directly updates a memory location
or indirectly updates a memory location through a register;
such nondeterminism is necessary to achieve soundness of the
MBA-IR translation. Note that a nondeterministic memory-
update instruction cannot directly update more than one mem-
ory block, which will be explained during the description of
translation rules. An expression, exp, can be (1) a register,

func ∈ Functions
gblk ∈ Global memory blocks
sblk ∈ Stack memory blocks
hblk ∈ Heap memory blocks
gchk ∈ Global memory chunks
reg ∈ Registers and program counter

mloc := mblk | sblk | hblk | gchk
exp := reg | mloc | ∗ reg | &mloc | &func

| exp ∨ exp
ins := reg ← exp | mloc ← exp | ∗ reg ← exp

| (mloc ∨ ∗reg)← exp | SKIP

Fig. 6: The syntax of the MBA-IR.

which produces the value stored in the register when evaluated,
(2) a memory location, which produces the value stored
in the memory location when evaluated, (3) a dereference
operation on a register (∗reg), which loads the value stored
in the memory location pointed to by reg , (3) the memory
address of a memory location (&mloc), (4) a function start
address (&func), or (5) a nondeterministic choose expression
(exp ∨ exp) to represent a nondeterministic expression
evaluation for achieving translation soundness.

We next briefly explain the high-level intuition of translat-
ing from RTL to MBA-IR and leave details and a formalization
to Appendix A. The core is to translate address expressions
used in RTL memory instructions into MBA-IR memory
locations (i.e., memory blocks and chunks). This translation
is written as TransAddr(a) and proceeds by pattern matching
address a. BPA’s implementation of this pattern matching is
specialized to RTL code translated from x86 instructions and
assumes there are four cases of x86 address-mode operands:
(1) c, (2) c+ reg , (3) c+ reg ∗ sc, and (4) c+ reg + reg ′ ∗ sc.
We next discuss only the case of c + reg and leave the
rest of the discussion to the appendix. When translating
c + reg , we consider two possibilities: (1) c is used as the
base address of a memory block and reg is used as the
offset to the block; (2) reg is used as the base address and
c as the offset. Therefore, the translation translates c + reg
to a nondeterministic choice “mloc ∨ ∗reg”, assuming c is
mapped to mloc (either a global memory block or a global
memory chunk) during global memory partitioning. The actual
memory locations associated with the second choice ∗reg will
be known during value tracking analysis. Note that ∗reg may
yield multiple memory locations. For example, a register may
point to either a stack block or a heap block, depending on
which path the program is taking. Also, as we motivated at
the beginning, since BPA’s value tracking analysis is path
insensitive, the translation ignores instructions, expressions,
and RTL locations that are related to path conditions. Thus, the
translation removes test(cmp, exp, exp), ite(exp, exp, exp),
and RTL locations other than registers and the program counter
from the CFG to reduce analysis cost. Then, the remaining
RTL instructions are transformed into aloc-update instructions.

B. SSA transformation

In this step, BPA performs SSA (Single Static Assignment)
transformation on the program so that every variable is defined
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only once. It is easier to analyze programs in the SSA form.
For example, performing a flow-insensitive analysis on the
program after SSA is equivalent to a flow-sensitive analysis on
the program before SSA. Since every variable is defined only
once, SSA transformation essentially renames all variables
in a program by adding indices to variable names based
on the CFG. As a result, the control flow information is
recorded by the indexing system. During SSA transformation,
φ-instructions are introduced into the program to represent the
merge points of multiple control flows. For example, in the
following simple C code,

if(x == 1) x = x + 1; else x = x + 2;

the variable x after the execution of the if-else statement may
hold either the value of x in the then branch or the value
of x in the else branch. In SSA transformation, an index is
introduced for every variable and a φ-instruction is introduced
after the statement. In detail, the same program in SSA form
is as follows:

if(x0 == 1) x1 = x0 + 1; else x2 = x0 + 2;
x3 = φ (x1, x2);

The φ-instruction selects either x1 or x2, depending on whether
the control flow reaches the instruction through the then branch
or the else branch.

BPA performs SSA on the MBA-IR, where it treats only
the registers as variables. We design our SSA transformation
in Datalog by adapting an efficient SSA algorithm [4]. Here,
for brevity, we do not elaborate on the theoretical details of the
original algorithm but only summarize our adaption. The key
step of our approach is to first perform the SSA transformation
for each function according to the intraprocedural edges in
the input CFG. Then, we utilize the interprocedural control-
flow information to connect intraprocedural SSA forms into a
complete SSA form for the whole program. When constructing
φ-instructions, BPA applies only the first phase (called the
really crude phase) to incrementally add them instead of
starting from scratch when new edges are detected. This kind
of incremental analysis is significantly more scalable [30],
[36]. As a result, our SSA transformation achieves better
scalability compared with the original algorithm [4] while
maintaining the correctness.

C. Value tracking analysis

After transforming MBA-IR code into its SSA form, BPA
performs an interprocedural value tracking analysis. The analy-
sis is implemented by Datalog logic rules on instructions in the
MBA-IR SSA form. A Datalog engine then scans through all
instructions to perform the value tracking analysis according
to the rules. To ease the explanation of our full value tracking
rules, we first show the formalization of a basic value tracking
analysis that does not consider global memory chunks as
memory locations. After that, we will show how to incorporate
global memory chunks and an instruction reachability detec-
tion module, which improves analysis precision.

Basic value tracking analysis.

To formalize the basic value tracking analysis, we design
rules for the five types of MBA-IR instructions. In the rules,
we use the notation ireg to represent an indexed register (i.e.,

TABLE I: Definition of VSet(−).

VSet(ireg) := {v | AlocVal(ireg, v)}
VSet(mloc) := {v | AlocVal(mloc, v)}
VSet(∗ireg) :=

{v | AlocVal(ireg,mloc) ∧ AlocVal(mloc, v)}
VSet(&mloc) := {&mloc}
VSet(&func) := {&func}
VSet(exp1 ∨ exp2) := VSet(exp1) ∪ VSet(exp2)

a register with an index) after the SSA transformation. For
readability we present Datalog rules in the inference rule
notation, which puts the conclusion below a horizontal bar
and the assumptions above the bar.

The rules for the register-update instructions and non-
deterministic memory-update instructions are presented in
Fig. 7. Further, for brevity, we do not list the formal rules
for memory-location-update instructions and indirect memory-
update instructions, because they can be adapted from rules for
register-update and nondeterministic memory-update instruc-
tions, which we will explain; and SKIP is omitted since it has
no influence on the value tracking.

We use the predicate AlocVal(aloc, val) to record the value
set information for abstract locations; an abstract location is
defined to be either an indexed register or a memory location.
Also, only start addresses of functions and memory block-
s/chunks are tracked. For example, AlocVal(EAX1, 1000)
means that register EAX with index 1 holds value 1000. To
shorten the rules, we introduce VSet(−) in Table I and use
the notation val ∈ VSet(exp) to mean that val belongs to
the value set of exp. We use InCFG(ins) for the predicate
that determines the existence of an instruction in the current
CFG. Thanks to SSA, BPA’s value tracking analysis is flow
insensitive. The input program is viewed as a collection
of instructions; knowing if an instruction is in the CFG is
sufficient for the analysis.

Rules ADDRMLOC and ADDRFUNC are the base cases and
initialize all abstract locations with the values that are tracked.
Rules IREG and MLOC capture the value flow to an indexed
register from another indexed register or a memory location by
making the destination indexed register have the same set of
values as the source abstract location. Rule DIREG is about the
dereference operation via an indexed register. The semantics
of the dereference is to first retrieve the memory blocks stored
in the indexed register and then transfer the values of the
retrieved memory blocks into the destination indexed register.
Therefore, in the rule, AlocVal(ireg ′,&mloc) tells that the
ireg ′ stores a memory location &mloc; AlocVal(mloc, val)
states that the memory location mloc holds value val . As
a result, the destination ireg should also hold val . Rules
ALTMLOC and ALTFUNC are for a register-update instruction
with a nondeterministic choose expression. Essentially, if
one of the operands holds a memory location mloc or a
function address func, as a result, the destination indexed
register also holds the same memory location or function
address. Rule TOALT is for a nondeterministic memory-update
instruction. The rule finds a possible destination and makes
it to hold the value val , which is evaluated from the source
expression. Rule PHI deals with φ-instructions introduced by
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ADDRMLOC
InCFG(ireg ← &mloc)

AlocVal(ireg ,&mloc)

ADDRFUNC
InCFG(ireg ← &func)

AlocVal(ireg ,&func)

IREG
InCFG(ireg ← ireg ′) AlocVal(ireg ′, val)

AlocVal(ireg , val)

MLOC
InCFG(ireg ← mloc) AlocVal(mloc, val)

AlocVal(ireg , val)

DIREG

InCFG(ireg ← ∗ireg ′)
AlocVal(ireg ′,&mloc) AlocVal(mloc, val)

AlocVal(ireg , val)

ALTMLOC

InCFG(ireg ← exp1 ∨ exp2)
&mloc ∈ VSet(exp1) ∨ &mloc ∈ VSet(exp2)

AlocVal(ireg ,&mloc)

ALTFUNC

InCFG(ireg ← exp1 ∨ exp2)
&func ∈ VSet(exp1) ∨ &func ∈ VSet(exp2)

AlocVal(ireg ,&func)

TOALT

InCFG(mloc′ ∨ ∗ireg ← exp) val ∈ VSet(exp)
mloc = mloc′ ∨ AlocVal(ireg ,&mloc)

AlocVal(mloc, val)

UPDMLOC

InCFG(∗ireg ← exp) val ∈ VSet(exp)
AlocVal(ireg ,&mloc)

AlocVal(mloc, val)

PHI

InCFG(ireg ← φ(ireg1, . . . , iregn))∨
i=1,...,n

AlocVal(ireg i, val)

AlocVal(ireg , val)

Fig. 7: Representative rules of the basic value tracking analysis.

SSA transformation. The idea is similar to rule ALTMLOC;
if one of the n operands of the φ-instruction holds value
val , the destination ireg should also hold val . The notation∨

i=1,...,n represents a sequence of logical or operations on n
predicates. Next, we show how to adapt the rules of register-
update instructions to construct rules for the memory-location-
update instructions and indirect-mloc-update instructions. In
detail, for memory-location-update instructions, we can simply
substitute all ireg with mloc in each rule’s conclusion and
also in the InCFG(ins) assumption. For indirect memory-
update instructions, we need to add AlocVal(ireg ′,&mloc) as
a new assumption to each rule in Fig. 7 and replace ireg in
the rule’s conclusion with mloc. Note that the interprocedural
φ-instructions capture the data flows between functions for
return values as well as function parameters; so our analysis
is interprocedural.

Supporting global memory chunks. To consider global mem-
ory chunks as memory locations, a new assumption needs to
be added to every rule in Fig. 7. For brevity, we use DIREG

InCFG(aloc′ ← ∗ireg) AlocVal(ireg ,&mloc)
aloc′ ≡ aloc AlocVal(mloc, val)

AlocVal(aloc, val)

Fig. 8: New rule for ∗ireg to support memory chunks.

as a representative to show how the rules can be adapted. The
new rule is shown in Fig. 8. First, how a memory-location
load is treated is unchanged. That is, it should still load the
values of the target memory location, no matter whether it is
a memory block or a global memory chunk. Second, rules for
memory location updates should now consider more locations
to update; since no pointer offsets are tracked, an update to
a memory block should also update all the memory chunks
inside, to overapproximate the update effect. Furthermore, an
update to a memory chunk should also change the memory
block that holds the chunk, since the analysis needs to track all
possible values in the block. Therefore, we introduce an aloc-
equivalence relation to determine if two alocs are equivalent.
The formal definition of aloc equivalence is shown as follows:

Definition (Aloc Equivalence). We write aloc1 = aloc2 if the
two alocs are the same. An abstract location aloc1 is covered
by another abstract location aloc2, written as aloc1 @ aloc2,
if aloc1 is a global memory chunk, aloc2 is a global memory
block, aloc1 is inside aloc2. Then, two allocs are equivalent,
written as aloc1 ≡ aloc2, iff aloc1 = aloc2 ∨ aloc1 @
aloc2 ∨ aloc2 @ aloc1

As we argued, every aloc update instruction should update
all equivalent alocs of its original target aloc. Therefore, we
simply add the aloc-equivalence relation into the rule as a
condition; in this way, memory chunk accesses are supported.

Instruction reachability detection. An optimization of BPA
is to perform analysis only over reachable instructions. Given a
CFG of a binary, BPA computes instructions that are reachable
in the CFG from the entry point of the program. BPA analyzes
only reachable instructions and resolves the targets of only
reachable indirect branches. As a result, the target set of an
unreachable indirect branch (in dead code) is empty, which
increases BPA’s analysis precision. To enable this feature,
InCFG(ins) in the rules is replaced with Reachable(ins),
which determines the reachability of an instruction in the CFG.

D. Discovering indirect branch targets

BPA relies on the value tracking result to add targets for
indirect branches. In this section, we explain how BPA resolves
targets for each kind of indirect branch instructions.

Indirect call. The operand of an indirect call in MBA-IR
is an aloc. Thus, BPA checks the inferred value set of the
aloc operand by its value tracking analysis. All address-taken
functions in the value set are treated as targets of the indirect
call; BPA uses address taken functions to filter the value set
for the targets of indirect calls. One could use other strategies
such as arity-matching or type-matching to further improve
precision. We will discuss that BPA and arity-matching can
be combined to achieve even higher precision of indirect-call
targets resolution in Sec. VII.
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Fig. 9: Workflow of fixed point recursion for updating a
CFG. The components are recursively performed until no more
indirect branch targets are found.

Indirect jumps and return instructions. In BPA’s input
processing component, it performs a heuristic-based indirect-
jump target detection to identify the function boundaries and
refine the DCFG. Although this detection mechanism resolves
jump targets that use jump tables, it does not resolve the targets
of indirect tail-call jumps. Since the tail-call optimization is
supported by BPA, we keep a record for all indirect calls that
are transformed from indirect tail-call jumps during DCFG
refinement (Sec. IV-D) and use this record to convert such calls
back to indirect jumps. These tail-call indirect jumps then take
the targets of the corresponding indirect calls in the refined
DCFG. For return instructions, BPA constructs a call graph
according to the CFG and uses that call graph to resolve the
targets of return instructions.

Fixed point recursion. Intuitively, the CFG construction,
which focuses on resolving indirect branch instructions’ tar-
gets, and value-tracking analysis should be mutually recursive:
the initial CFG contains only targets of direct branches. Value-
tracking analysis then incrementally discovers indirect branch
targets and adds those edges to the CFG; the addition of new
CFG edges triggers the addition of new Reachable(ins) facts,
which in turn triggers more computation of value-tracking
analysis. This process should continue until reaching a fixed
point, where a final CFG is generated. To realize the above
intuition, after the input DCFG RTL program is converted into
MBA-IR, BPA’s design makes the rest of the components mu-
tually recursive: (1) SSA transformation depends on the current
CFG; (2) value tracking analysis relies on SSA transformation
and uses predicates such as Reachable(ins), which depends
on the CFG; (3) after new indirect call targets are discovered,
they are added to the CFG, which triggers incremental SSA to
add new interprocedural φ-instructions or add more operands
to existing φ-instructions; (4) the new φ-instructions enable
the value tracking analysis to discover new values in alocs;
(5) those new values enable the discovery of new targets of
indirect calls. The workflow of this mutually recursive process
is shown in Fig. 9. The beauty of Datalog is that it allows
all these components to be separately specified as logic rules;
the Datalog engine then performs a fixed point calculation
to compute the final outcome in an iterative fashion, without
programmer involvement.

VII. EVALUATION

Our evaluation aims to answer a few major questions: (1)
how much does BPA improve over previous techniques in
terms of precision? (2) Are the CFGs generated by BPA sound?
An unsound CFG (with missing edges) would prevent the
execution of legitimate control-flow transfers. (3) how efficient
is BPA in CFG generation?

Intuitively, indirect call precision reflects the effective-
ness on refining indirect call targets, which is the key to
CFI’s security guarantee. In general, more precise CFGs (with
less spurious indirect-branch edges) provide less freedom for
attackers to discover gadgets for exploit generation. Most
previous CFI papers rely on graph-based metrics, such as
AIR (average indirect-target reduction) and AICT (average
indirect-call targets) for evaluations. We follow this tradition
to compute AICT for evaluating the precision of BPA’s CFGs.
In addition, another way of evaluating precision we adopt is to
use profiling to collect the actual targets of indirect calls under
a set of test cases and treat that as the pseudo ground truth.
Based on that, we can approximate precision rates for indirect
calls. Furthermore, the targets of indirect calls collected during
profiling are used to validate the soundness of CFGs, by
checking whether all targets during profiling are actually
included in BPA’s CFGs. We note that during our evaluation
we focus on indirect calls, since BPA uses similar heuristic-
based algorithms as others for resolving indirect jumps’ targets
and return targets are resolved by call graph construction.

Benchmarks. We applied BPA on SPEC2k6’s C benchmarks,
except for 429.mcf, 470.lbm, and 462.libquantum,
which do not have any indirect calls in the compiled bina-
ries. For further evaluation, we also collected five security-
critical applications: thttpd-2.29, memcached-1.5.4,
lighttpd-1.4.48, exim-4.89, and nginx-1.10. To
prepare the input disassembly, we used RockSalt [32] to
disassemble x86 ELF binaries, compiled by GCC-9.2 and
Clang-9.0 with optimization levels -O0, -O1, -O2, and -O3.
We then ran BPA on binaries by different compilers (GCC
and Clang) and different optimization levels and collected
statistics for all settings. Since similar results and trends are
observed from different settings, for brevity, the following
sections provide only data for binaries compiled by GCC-9.2.

A. Recovering arity information

As discussed earlier, Address-Taken (AT) functions are
considered as possible indirect-call targets in BPA. Indirect call
sites are expected to target at only these functions. Besides AT
functions, the arity information can be utilized to further refine
the set of indirect-call targets.

TypeArmor [46] recovers arity information from a stripped
binary to perform arity matching to resolve indirect-call tar-
gets. To our best knowledge, this is the state-of-the-art tech-
nique that statically detects indirect-call targets for stripped
binaries. To compare with BPA and also check whether com-
bining arity matching with BPA would improve precision, we
implemented the conservative matching mechanism proposed
by TypeArmor [46]. With the recovered arity information, we
construct an arity-based CFG for each binary. Further, we
refine BPA’s output CFG by removing caller-callee pairs that
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do not satisfy the conservative arity-matching criterion; we call
it the hybrid strategy.

Principles for Arity. We explain the conservative matching
mechanism of TypeArmor. First, targets of indirect calls can
only be AT functions. Second, an indirect call site that prepares
n arguments is allowed to target functions that expect n or
fewer parameters. Third, among all functions that satisfy the
first two criteria, an indirect call site that expects a return
value should only target the ones that do provide return values.
These principles are designed to be conservative to prevent
false negatives when identifying indirect call targets.

Implementing arity-based CFGs. TypeArmor is designed for
x64 binaries, which has a different calling convention from
x86. Thus, we designed our own arity information recovery
algorithm for x86 stripped binaries to facilitate the conservative
arity-matching based CFG construction.

Our design is similar to TypeArmor’s approach except
for the argument count analysis due to a different calling
convention for x86, where call-site arguments and function
parameters are passed through the stack. We utilize our stack
layout analysis discussed in Sec. V-A to infer the number
of expected parameters of each AT function. In detail, we
find the maximum positive stack memory offset that has been
used to read from a stack location in each AT function and
divide this offset by four to infer the maximum number of
parameters. We can also compute the number of arguments for
each indirect call site by leveraging our stack layout analysis.
The intuition is that all arguments are pushed onto the stack
only after entering the basic block where the indirect call
instruction resides; meanwhile, all arguments should stay in
a consecutive range of memory. Thus, to infer the number of
arguments, we first inspect all memory write instructions that
write to the stack within the call site’s basic block and record
the accessed stack offsets, based on which we find the largest
consecutive memory range that starts with the top offset of the
stack. Then, we divide the size of the memory range by four
to calculate the number of arguments. Our experiments show
that this algorithm is compatible with different compilers such
as GCC and Clang.

B. AICT comparison

We evaluate different techniques’ CFG precision by mea-
suring the average indirect call target (AICT). Table II shows
the AICT statistics of different techniques on the benchmarks,
for all optimization levels. It also lists the number of x86
instructions and the number of indirect call instructions in the
binaries. In the group of AICT columns, AT is a system that
allows an indirect call to target all address-taken functions [51];
Arity is the conservative arity-matching based CFG construc-
tion, which is our implementation of TypeArmor [46] for x86;
BPA is our system; Hybrid resolves indirect-call targets by a
combination of BPA and Arity.

As BPA does not consider unreachable indirect calls, some
indirect call sites do not have any targets in their results.
Thus, some AICT numbers by BPA or the Hybrid approach
are less than 1.0. Also, for 456.hmmer and memcached,
BPA produces significantly better results than Arity, and the
results are at the same level or even better than those produced

TABLE II: AICT evaluation results (for GCC 9.2).

Program Opt Instrs I-Calls AICT
Level AT Arity BPA Hybrid

401.bzip2

O0 21K 20 2.0 1.0 2.0 1.0
O1 11K 20 2.0 1.0 2.0 1.0
O2 11K 20 2.0 1.0 2.0 1.0
O3 15K 20 2.0 1.0 2.0 1.0

458.sjeng

O0 32K 1 7.0 7.0 7.0 7.0
O1 22K 1 7.0 7.0 7.0 7.0
O2 22K 1 7.0 7.0 7.0 7.0
O3 32K 1 7.0 7.0 7.0 7.0

433.milc

O0 31K 4 2.0 2.0 2.0 2.0
O1 22K 4 2.0 2.0 2.0 2.0
O2 23K 4 2.0 2.0 2.0 2.0
O3 33K 4 1.0 1.0 1.0 1.0

482.sphinx3

O0 45K 8 6.0 2.3 1.3 1.3
O1 33K 8 6.0 2.4 1.3 1.3
O2 35K 7 6.0 1.9 0.7 0.7
O3 39K 7 6.0 1.9 0.7 0.7

456.hmmer

O0 88K 9 22.0 22.0 2.9 2.9
O1 58K 11 22.0 22.0 4.3 4.3
O2 60K 10 22.0 22.0 2.8 2.8
O3 69K 9 14.0 14.0 1.0 1.0

464.h264ref

O0 161K 369 39.0 30.6 4.3 3.3
O1 100K 353 39.0 28.7 4.1 3.2
O2 100K 352 39.0 28.9 26.4 17.3
O3 164K 355 39.0 28.5 18.0 15.6

445.gobmk

O0 213K 44 1790.0 1395.7 884.6 846.3
O1 154K 44 1786.0 1392.0 1334.8 1191.5
O2 157K 44 1788.0 1413.3 1297.2 1198.7
O3 189K 44 1785.0 1460.3 1376.5 1270.1

400.perlbench

O0 306K 139 721.0 580.4 400.3 328.2
O1 221K 139 721.0 560.9 364.2 282.2
O2 226K 110 721.0 536.6 363.7 261.8
O3 273K 237 718.0 523.7 453.4 322.1

403.gcc

O0 969K 459 1211.0 650.0 534.8 323.5
O1 652K 473 1207.0 566.6 491.0 250.6
O2 647K 450 1208.0 581.3 427.8 209.8
O3 763K 727 1198.0 518.6 544.3 247.7

thttpd

O0 18K 1 17.0 17.0 8.0 8.0
O1 13K 1 17.0 17.0 8.0 8.0
O2 13K 1 17.0 17.0 14.0 14.0
O3 14K 1 17.0 17.0 14.0 14.0

memcached

O0 37K 75 24.0 20.8 1.0 1.0
O1 25K 75 24.0 21.1 1.3 1.3
O2 26K 72 25.0 21.6 1.4 1.3
O3 29K 78 24.0 20.5 0.7 0.7

lighttpd

O0 66K 126 52.0 27.8 35.5 17.1
O1 46K 126 52.0 26.4 35.5 16.5
O2 48K 109 52.0 24.7 33.9 14.6
O3 54K 120 52.0 24.3 34.2 14.6

exim

O0 168K 89 85.0 40.4 31.1 17.3
O1 135K 89 85.0 41.4 29.6 16.2
O2 139K 106 85.0 38.0 30.6 17.6
O3 155K 181 85.0 42.1 40.6 23.0

nginx

O0 232K 409 753.0 441.6 444.0 253.8
O1 151K 409 753.0 422.2 463.4 251.9
O2 153K 331 753.0 420.5 525.1 274.6
O3 164K 365 754.0 432.4 511.0 273.8

by a source-type-based approach [33], [50] based on our
manual inspection. Through these AICT numbers, we compare
precision improvement for four situations: (1) from AT to Arity
(2) from AT to BPA, (3) AT to Hybrid, and (4) Arity to
Hybrid. We choose to conduct these four comparisons to show
BPA’s abilities on improving precision over the state-of-the-art
techniques. For each comparison, we compute the geometric
mean of a precision improvement rate by each benchmark
listed in Table II.

From (1) to (4), the geometric mean of AICT reduction
rates are 20.1%, 37.0%, 62.7% and 34.5% respectively, con-
sidering all the benchmarks with all optimization levels in
Table II, excluding 458.sjeng and 433.milc where all
techniques precisely resolve the targets. These rates show that
BPA achieves higher AICT reduction rate (precision increase
rate) than Arity when comparing the 20.1% precision increase
rate of AT-to-Arity and the 37.0% precision increase rate of AT-
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to-BPA. Also, the combination of Arity with BPA can further
increase the precision rate substantially.

C. Profiling-based precision and recall

Next we present a method of evaluating CFG construction
precision and soundness based on runtime profile data. The
idea is to profile a benchmark under a set of test cases
and collect the targets of indirect calls. Then intuitively the
precision rate is the percentage of CFG-predicted targets that
actually appear as targets during profiling, and the recall rate is
the percentage of those targets appearing in profiling that are
predicted by the CFG. Note that since the set of targets with
respect to test cases underapproximates the set of targets with
respect to all possible inputs, the profiling-based precision rate
is a lower bound of the real precision rate, while the profiling-
based recall rate is an upper bound of the real recall rate.

For profiling, we collected a set of runtime traces by
using Intel’s Pin tool [31] on SPEC binaries. We used the
extensive reference input datasets of SPEC2k6 to collect the
runtime traces; we did not perform this for those security-
critical benchmarks because they did not come with reference
input datasets. We then used the following formula to calculate
the average precision rate over all indirect calls:

Pc =
1

n

n∑
i=1

Pci where Pci =
TPi

TPi + FPi

TPi and FPi are the numbers of true positives and false
positives at indirect call site i, respectively. A true positive
is a target that is predicted by CFG and also appears during
profiling; a false positive is a target that is predicted by CFG
but does not appear during profiling.

Table III shows profiling based precision rates for different
techniques. In summary, AT, Arity, BPA, and Hybrid have the
arithmetic mean of precision rates of 25.3%, 35.1%, 54.0%
and 57.6% respectively, over all benchmarks and optimization
levels. Thus, on average, BPA achieves a 18.9% higher preci-
sion rate than Arity.

As noted earlier, profiling based precision rates are un-
derapproximated, as reference datasets may not trigger all
program behavior, resulting in incomplete ground truth.

The formula for calculating the average recall rate is:

Rc =
1

n

n∑
i=1

Rci where Rci =
TPi

TPi + FNi

TPi and FNi are the numbers of true positives and false
negatives at indirect call site i, respectively. A false negative
is a target that appears during profiling but is not predicted
by CFG. By our experiments, BPA and AT achieve 100%
recall rates, and Arity achieves 99.8% on perlbench, 98.9% on
gcc, and 100% on all other benchmarks. BPA’s 100% recall
rate provides a validation that its generated CFGs are sound
and enforcing them via CFI does not prevent the legitimate
execution of an application.

D. Case studies

According to previous results, BPA can sometimes generate
significantly better results than the arity-based method. To

TABLE III: Profiling based precision rates (for GCC 9.2).

Program Opt Precision (%)
Level AT Arity BPA Hybrid

401.bzip2

O0 30.0 60.0 30.0 60.0
O1 30.0 60.0 30.0 60.0
O2 30.0 60.0 30.0 60.0
O3 30.0 60.0 30.0 60.0

458.sjeng

O0 85.7 85.7 85.7 85.7
O1 85.7 85.7 85.7 85.7
O2 85.7 85.7 85.7 85.7
O3 85.7 85.7 85.7 85.7

433.milc

O0 100.0 100.0 100.0 100.0
O1 100.0 100.0 100.0 100.0
O2 100.0 100.0 100.0 100.0
O3 100.0 100.0 100.0 100.0

482.sphinx3

O0 4.2 66.7 80.0 80.0
O1 4.2 54.2 80.0 80.0
O2 2.4 59.5 88.6 88.6
O3 2.4 59.5 88.6 88.6

456.hmmer

O0 4.5 4.5 90.5 90.5
O1 4.5 4.5 90.5 90.5
O2 4.5 4.5 90.5 90.5
O3 7.1 7.1 100.0 100.0

464.h264ref

O0 0.9 1.7 14.6 14.9
O1 0.8 1.1 11.9 12.1
O2 0.8 1.1 3.1 3.4
O3 0.8 1.1 3.1 3.4

445.gobmk

O0 1.8 2.3 37.3 37.7
O1 1.8 2.3 22.2 22.7
O2 1.8 4.3 24.5 24.5
O3 1.8 2.3 17.6 17.7

400.perlbench

O0 0.4 0.7 29.2 29.5
O1 0.4 0.8 30.3 30.7
O2 0.5 0.9 34.7 35.1
O3 0.3 0.5 24.4 24.6

403.gcc

O0 0.1 0.2 27.6 27.7
O1 0.1 0.2 30.6 32.2
O2 0.1 0.2 33.3 34.7
O3 0.1 0.2 27.5 31.7

1 static int (*qcmp)();
2 int hit_comparison(_, _) {...}
3 void FullSortTophits(_ {
4 specqsort(_, _, _, hit_comparison);
5 }
6 void specqsort(_, _, _, int (*compar)())
7 { qcmp = compar;
8 if ((*qcmp)(j, lo) > 0) ...
9 }

Fig. 10: Simplified code snippet from 456.hmmer.

understand in what kinds of scenarios this happens, we did
manual inspection on selected benchmarks.

We next discuss a typical case in 456.hmmer. Accord-
ing to Sec. VII-B and Sec. VII-C, BPA generates much
higher precision CFG on 456.hmmer than Arity. It turns
out that all the address-taken functions in 456.hmmer are
non-void functions and expect exactly two arguments; as
a result, the arity-based method cannot refine the set of
targets for an indirect call. In contrast, BPA’s block-based
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TABLE IV: Execution time by BPA and VSA. ∞ means timeout (exceeding 10 hours).

Opt Execution runtime (s)
bzip2 sjeng milc sphinx3 hmmer h264ref gobmk perlbench gcc thttpd memcached lighttpd exim nginx

BPA O0 17 158 35 24 62 350 1221 6919 33658 19 43 81 2554 2656
BPA O1 8 116 32 31 68 332 1946 3756 23573 13 91 95 2121 2027
BPA O2 8 131 33 36 79 379 1933 4006 27619 15 113 112 2728 2793
BPA O3 12 152 34 42 75 1118 2290 4903 25246 17 131 151 2892 2855

VSA [11] O0–O3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

points-to analysis achieves high precision. Consider the code
snippet adapted from 456.hmmer in Fig. 10. In function
FullSortTophits, there is a function call to specqsort
with hit_comparison’s address passing to an argument
in instruction 4. Then, instruction 7 assigns the argument’s
function address to a global variable qcmp, which is used
in instruction 8 to load the function pointer. BPA precisely
performs points-to analysis on this code pattern with well
partitioned stack and global memory blocks. This is where
BPA shows better results.

Our manual inspection also revealed where precision can
be further improved. Currently BPA partitions the heap only
at the granularity of heap allocation sites. This turns out to
be the major avenue for precision loss, as applications often
store control data and control-relevant data into a heap region
allocated at a site, and also often use heap wrappers. We
leave the work of balancing between better heap modeling
and scalability for future work.

E. CFI evaluation

We integrated BPA’s CFGs with a CFI implementation.
We ran CFI-enforced binaries of SPEC2k6 benchmarks with
their reference inputs, like we did for computing recall rates in
Sec. VII-C. From the experiments, we observed no soundness
violation, which shows BPA’s applicability on CFI enforce-
ment. Our prototype CFI is based on Intel’s Pin [31] (v3.16)
for dynamically instrumenting binaries. For CFI checks, we
followed MCFI [33] and converted BPA-produced CFGs into
a bitmap representation. The performance overhead of running
SPEC2k6 binaries inside Pin with CFI checks compared to the
case of running inside Pin without CFI checks is 11.7%, by
calculating the geometric mean of the performance overheads
of the binaries with the optimization level of O2. Note that Pin
itself adds a considerable overhead on top of vanilla binaries
(around 110% by our measurements). Further optimizations
of our CFI prototype can be performed by adopting a more
efficient binary instrumentation framework such as Dyninst [9]
or UROBOROS [47], but we view this as mostly engineering
work as there has been plenty of work of efficient CFI
instrumentation with less than 5% overhead.

F. Performance evaluation

We conducted our experiments on Ubuntu 18.04 with
500GB of RAM and 32-cores CPU (Intel Xeon Gold 6136
with 3.00GHz). The machine has a large amount of RAM
for the reason that Souffle [24] (v2.0.2), the Datalog engine
we use, requires a large memory consumption. We collected
memory usage data from the large benchmarks with more than
50K assembly instructions. Table V shows the results. Not
surprisingly, 403.gcc from SPEC2k6 consumes the largest

amount of memory. Except for 403.gcc, less than 64GB of
RAM is sufficient for evaluation of other benchmarks.

TABLE V: Memory consumption by BPA for O2.

Prog hmmer h264ref gobmk perlbench gcc exim nginx
Mem (GB) 0.6 3.6 28 57 352 48 24

Points-to analysis is known to be a hard problem, and
the scalability issue rises even at the source level [27], [41].
As previously discussed, binary-level points-to analysis is
even more challenging to scale due to the limited amount of
information and the complexity of assembly code. Table IV
presents the execution time of BPA for the benchmarks we
use. Given that there is currently no practical points-to analysis
framework at the binary level for resolving indirect-call targets,
we believe the runtime results are acceptable and demonstrate
BPA’s scalability. Similar to memory usage, 403.gcc takes
the longest time (around 9.3 hours) to finish, due to its large
size and its complexity in the usage of control-relevant data.

Execution time comparison with VSA. We chose BAP’s
[11] VSA implementation for the scalability comparison; this
decision was motivated by a previous system called BDA [52].
The BDA paper claims that BAP-VSA is the only publicly
available VSA framework for complicated benchmarks; other
frameworks with VSA such as CodeSurfer [5] and ANGR [38]
are either not publicly available or not suitable for complicated
benchmarks. For example, ANGR only supports intraprocedu-
ral analysis, and therefore not suitable for inferring indirect call
targets by points-to analysis, where interprocedural analysis is
necessary in most cases. We tested BAP-VSA on our bench-
marks; as Table IV shows, none of the benchmarks terminated
within 10 hours. The results were consistent with the results
reported by the previous paper [52]; when they ran their
experiments with BAP-VSA on SPECINT2k (not SPEC2k6),
only 181.mcf terminated in 10.9 hours and others did not
terminate within 12 hours. Note that runtime data from the
original VSA paper [6] cannot be directly compared with our
results, mainly due to the unsoundness in that implementation.
The paper lists multiple reasons for possible unsound issues
of their analysis, including the failure to resolve indirect call
and jump edges that prevent further analysis.

VIII. DISCUSSIONS AND FUTURE WORK

BPA’s static analysis has two major components: (1) mem-
ory block generation, (2) value-tracking analysis. The compo-
nent of value-tracking analysis is sound, given a set of mem-
ory blocks. The first component, memory block generation,
sometimes relies on heuristics (when partitioning the global
data region). These heuristics may not be sound under all
circumstances, meaning that the generated blocks may violate
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the pointer-arithmetic assumption of the block memory model.
On the other hand, the profiling based soundness validation
showed that BPA-generated CFGs achieved a 100% recall rate
for SPEC2k6 benchmarks. The result showed that all runtime
indirect call targets were included in BPA-generated CFGs,
including 403.gcc, which is notoriously complicated. Further,
if we are willing to sacrifice the ability to handle stripped
binaries, we can use compiler-generated meta information such
as symbol tables to get sound block boundaries.

BPA is a new way of performing points-to analysis at the
binary level with the purpose of finding indirect-call targets
on stripped binaries. Although we changed traditional points-
to analysis to not track offsets, we believe the block memory
model can be applicable to traditional points-to analysis.
For example, one can track offsets in a block-based points-
to analysis based on the pre-computed boundaries to avoid
over-approximation of alias analysis on memory accesses. As
discussed earlier, our manual inspection suggests that better
heap modeling would further enhance the analysis precision.
Supporting flow sensitivity on memory blocks and context sen-
sitivity on function calls are also possible. Although scalability
may be decreased, such improvements on the block memory
model would make points-to analysis more precise.

BPA’s block memory model enables scalable analysis of
the legal behavior of binaries and is geared toward applications
such as CFI and DFI [13]. In these applications, we first
analyze the legal behavior of a target program to extract an
integrity property (e.g., data-flow integrity), and then enforce
the property through runtime monitoring. In addition, CFGs
constructed by BPA are also useful for any binary-level static
analysis, as a CFG is a prerequisite for any such analysis
(e.g., data flow analysis, binary debloating, etc.). There are
applications such as malware analysis and exploit generation
that require analyzing the illegal behavior of binaries; e.g.,
analyze what happens after a buffer overflow. The block
memory model, as it currently stands, is not a good fit for
analyzing illegal behavior.

BPA’s current prototype utilizes RockSalt [32] to convert
binary code into an RTL IR. RockSalt supports only x86
binaries. Recently, we implemented a component for convert-
ing the BAP [11] IR to RTL IR for x64 binaries; as future
work, we plan to integrate that component with BPA to handle
x64 binaries. Another note is that source code is less likely
to be available for legacy x86 binaries, which highlights the
importance of analyzing x86 binaries.

BPA’s current design and implementation target binaries
compiled from C programs. To our best knowledge, there is
no practical points-to analysis for stripped binaries generated
from C++ code. We believe BPA’s block memory model still
applies to C++ generated binaries, but supporting them may
require a substantial amount of both conceptual and engineer-
ing efforts, particularly in tracking virtual tables (vtables) and
object references. For vtables, we believe our global region
partitioning method can be extended to generate memory
blocks for vtables; one observation to support our belief is
that for safety concerns vtables are encoded in the read-only
data section, and pointers to vtables are stored at the beginning
of the object’s memory region. Further, our value tracking
analysis needs to be extended to track the assignment of vtable
pointers into heap memory blocks generated at allocation sites

(i.e., call sites of the new function), and to track how object
references are created and propagated. We leave the C++
support as interesting future work.

IX. CONCLUSIONS

High-precision CFG generation is the key to improving
CFI’s security strength. However, performing that for stripped
binaries is still lacking. Hence, we propose a block-based
points-to analysis (BPA) to construct high-precision CFGs on
stripped binaries. It assumes a block memory model and de-
signs algorithms to partition memory regions so that BPA can
achieve a balance among soundness, precision, and scalability.
BPA performs a block-based value tracking analysis, the core
of BPA, which relies on the block memory model to perform a
fixed point computation to resolve targets of indirect branches.
We formalize the block-based value tracking as inference
rules and implement the analysis in Datalog, which allows
us to conveniently switch between different design choices of
memory-region partitioning. Our experiment shows that BPA
can substantially improve the CFG precision compared with
previous approaches, with acceptable runtime efficiency, and
without introducing false negatives.
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APPENDIX A
FORMALIZATION OF MBA-IR TRANSFORMATION

Before we explain the rules, we first discuss notation.
We represent the results of memory block generation as four
functions: gblk(c), gchk(c), sblk(f, c), and hblk(c). In particular,
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gblk(c) returns the global memory block for global memory
address c; gchk(c) returns the global memory chunk for global
memory address c; sblk(f, c) returns the stack memory block
for function f at its stack frame offset c; and hblk(c) returns
the heap memory block for a malloc-family function call site
c. In addition, we use func(c) for mapping the start address c
of function func to &func; recall that Sec. IV-C discusses how
function boundaries are identified.

Table VI formalizes the translation. We write
TransAddr(a) for translating address expressions; it is
designed according to address a’s pattern. In total, there are
four patterns, which correspond to the four cases of x86
address-mode operands: (1) c, (2) c + reg , (3) c + reg ∗ sc,
and (4) c + reg + reg ′ ∗ sc. The first pattern is a constant c,
which may represent a global memory address, a function
address, or a value that is not tracked. So the translation relies
on the result of memory block generation to either map it to
a global memory location or a unique function ID, or treat
it as an unnecessary value. When translating c + reg , we
consider two possibilities: (1) c is used as the base address of
a memory block and reg is used as the offset to the block; (2)
reg is used as the base address and c as the offset. Therefore,
the translation translates c+ reg to a nondeterministic choice
“mloc ∨ ∗reg”, assuming c is mapped to mloc (either a
global memory block or a global memory chunk) during
global memory partitioning. The translation for constant c
is deterministic because one constant address can be the
start address of only one memory block/chunk. The actual
memory locations associated with the second choice ∗reg
will be known during value tracking analysis. Note that ∗reg
may yield multiple memory locations. For example, a register
may point to either a stack block or a heap block, depending
on which path the program is taking. For the third pattern,
c + reg ∗ sc, it shares the same translation rule as pattern c,
since the part of reg ∗ sc in the pattern is assumed to stay
within the memory block associated with the constant c,
according to the block memory model. Thus, it recursively
applies TransAddr(c). The same reasoning applies to pattern
c+ reg + reg ′ ∗ sc; it applies TransAddr(c + reg).

With TransAddr(a) defined, the rest of translation is
straightforward. We next discuss TransIns(−). The location-
update instruction reg = e is translated to reg ←
TransExp(e). During expression translation, it generates a
“None” value for a constant that is not tracked. Thus, if
TransExp(e) = None, it converts the instruction into a SKIP
instruction. Finally, a memory-update instruction Mem[a] = e
is translated to TransAddr(a) ← TransExp(e). As an op-
timization, during expression translation, values that are not
tracked are removed; an RTL instruction that uses only non-
tracked values is considered unnecessary and removed from
the CFG. At last, for an if-do instruction, IF e DO ins,
the translation ignores the condition e and recursively applies
TransIns(−) on instruction ins.

TransExp(e) translates RTL expression e into an MBA-
IR expression. A location-load expression is directly converted
to the corresponding register in MBA-IR. For a memory-load
expression, load mem(a), it applies the address expression
translation (TransAddr(a)) to map it to a memory location
or a dereference operation; an RTL bit-vector is treated in the
same way as an address expression. For arithmetic expressions,

TABLE VI: MBA-IR transformation rules.

Transformation rules for RTL address expressions:
TransAddr(c) :=

if c is defined in gblk then gblk(c)
elif c is defined in func then func(c)
else None

TransAddr(c + reg) :=
if TransAddr(c) = None then ∗reg
else TransAddr(c) ∨ ∗reg

TransAddr(c + reg ∗ sc) := TransAddr(c)
TransAddr(c + reg + reg′ ∗ sc) := TransAddr(c + reg)

Transformation rules for RTL instructions:
TransIns(reg = e) :=

if TransExp(e) = None then SKIP
else reg ← TransExp(e)

TransIns(Mem[a] = e) :=
if TransExp(e) = None then SKIP
else TransAddr(a)← TransExp(e)

TransIns(IF e DO ins) := TransIns(ins)

Transformation rules for RTL expressions:
TransExp(load loc(reg)) := reg
TransExp(load mem(a)) := TransAddr(a)
TransExp(arith( , e1, e2)) :=

if TransExp(e1) = None then TransExp(e2)
elif TransExp(e2) = None then TransExp(e1)
else TransExp(e1) ∨ TransExp(e2)

TransExp(bitvec( , c)) :=
if TransAddr(c) = None then None
else &TransAddr(c)

arith(bvop, exp, exp), it ignores the operator and conser-
vatively and recursively translates each operands into values
we track and use the nondeterministic choose expression to
connect them. Such a translation is valid because we only
track base addresses for functions and memory blocks. Either
operand could be a base address; and the operator is ignored
to be conservative.

APPENDIX B
RTL TO DATALOG

We describe the major predicates for encoding RTL instruc-
tions and expressions in Datalog. In total, we have 6 predicates
to represent 2 instruction types and 4 expression types:

• set loc rtl(addr, order, loc eid, src eid) is de-
signed for the location-update instructions, which
modifies location loc eid with the value of expression
src eid; the instruction is at address addr and with
order order.

• set mem rtl(addr, order, mem eid, src eid) is de-
signed for the memory-update instructions, which
modifies memory at address mem eid with the value
of expression src eid; the instruction is at address
addr and with order order.

• arith rtl exp(eid, bvec, exp l, exp r) is designed for
arithmetic expressions; the expression ID is eid, of
which the value is computed by a bit-vector operation
bvec between expressions exp l and exp r.

• get mem rtl exp(eid, mem exp) is designed for
memory-load expressions; the ID is eid, and its value
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is computed by getting the memory content at address
mem exp.

• get loc rtl exp(eid, loc) is designed for location-load
expressions; the ID is eid, and the value is computed
by getting the value from location loc.

• imm rtl exp(eid, int) is designed for bit-vector ex-
pressions; the ID is eid, and the value is int.

Essentially, RTL instructions and expressions that are not
represented by predicates are unnecessary for BPA due to our
design choice of avoiding path sensitivity for better scalability,
which is detailed in Sec. VI-A.

The major complexity lies in the encoding of RTL ex-
pressions, which can be nested. For example, in ”e1 + e2”
(abbreviation for arith(+, e1, e2)), both e1 and e2 are
expressions and have their own structures. Such kinds of
recursive structures cannot be directly encoded in Datalog,
which lacks support for inductive datatypes as other languages
do. The main idea of our encoding is to give unique IDs for all
subexpressions and use those IDs to encode expressions one
level at a time. For e1 + e2, the encoding gives some eid to
the entire expression, some eid1 to e1, and some eid2 to e2;
then a fact ”arith rtl exp(eid ,+, eid1, eid2)” is generated to
encode equation ”eid = eid1 + eid2”; e1 and e2 are encoded
similarly, in a recursive way. Another way of interpreting this
process is that it treats an expression as a tree structure, gives
an ID to every node in the tree, and adds facts that relate
nodes to their child nodes. During the encoding, BPA also
detects duplicate subexpressions and reuses IDs for them. For
e1+e2, if e1 and e2 are structurally equivalent, the same ID is
used for both e1 and e2. This duplicate detection happens for
all expressions in a program and as a result turns the encoding
of trees into DAGs. RTL instructions are straightforward to
encode as there is no nesting. Since an assembly instruction is
translated into a sequence of RTL instructions, the encoding
for each RTL instruction also includes information about the
address of the assembly instruction and the order of the RTL
instruction in the sequence. Consider the translation example
below:

Assembly:
100: mov edx, [ebp-8]

RTL:
100: edx = *(ebp-8)

Datalog facts:
set_loc_rtl(100, 1, e1, e2)
get_loc_rtl_exp(e1, "edx")
get_mem_rtl_exp(e2, e3)
arith_rtl_exp(e3, "-", e4, e5)
get_loc_rtl_exp(e4, "ebp")
imm_rtl_exp(e5, 8)

It shows an example of how an assembly instruction
is translated into RTL instructions, and how corresponding
Datalog facts are generated. In this example, the assembly
instruction is translated to a single RTL instruction. This
instruction loads from memory through an indirect address of
[ebp-8] and stores the loaded value to edx. In the Datalog
facts, predicate set_loc_rtl represents an RTL instruction
that loads a value from expression with ID e2 and stores

it to the register with expression ID e1, which represents
edx. Note how ”*(ebp-8)” is represented through multiple
datalog facts: one dereference at the top level, one subtraction
operation at the next level, and more for ebp and 8.
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