
Practical Non-Interactive Searchable Encryption with
Forward and Backward Privacy

Shi-Feng Sun∗, Ron Steinfeld∗, Shangqi Lai∗,
Xingliang Yuan∗, Amin Sakzad∗, Joseph K. Liu∗, Surya Nepal† and Dawu Gu‡

∗ Monash University, Australia
† Data61, CSIRO, Australia

‡ Shanghai Jiao Tong University, China

Abstract—In Dynamic Symmetric Searchable Encryption
(DSSE), forward privacy ensures that previous search queries
cannot be associated with future updates, while backward privacy
guarantees that subsequent search queries cannot be associated
with deleted documents in the past. In this work, we propose a
generic forward and backward-private DSSE scheme, which is,
to the best of our knowledge, the first practical and non-interactive
Type-II backward-private DSSE scheme not relying on trusted
execution environments. To this end, we first introduce a new
cryptographic primitive, named Symmetric Revocable Encryption
(SRE), and propose a modular construction from some succinct
cryptographic primitives. Then we present our DSSE scheme
based on the proposed SRE, and instantiate it with lightweight
symmetric primitives. At last, we implement our scheme and
compare it with the most efficient Type-II backward-private
scheme to date (Demertzis et al., NDSS 2020). In a typical network
environment, our result shows that the search in our scheme
outperforms it by 2− 11× under the same security notion.

I. INTRODUCTION

Symmetric Searchable Encryption (SSE) enables a client
to encrypt a collection of data and outsource it to an untrusted
server. In general, the data is encrypted in such a way that it
can be efficiently searched while not sacrificing data and query
privacy. In contrast to the general-purpose solutions to search
over encrypted data (e.g., ORAM [30] or fully-homomorphic
encryption [28]), SSE achieves a better efficiency, at the cost
of allowing for some information leakage captured by a well-
specified leakage function [21], [13].

The early work on SSE [50], [21], [13], [26] focused on
private search over static data. In order to support updates on
encrypted data, some progress has been made on DSSE [43],
[42], [12], [51], [35], [48]. In this setting, a client should be
able to arbitrarily add documents into or delete them from the
database, and the private search should be still supported, even
after the updates. However, the update operations may reveal
additional information, which for example has been leveraged
by the file injection attack [57] to breach query privacy.

Most recent work on SSE [7], [9], [46], [15], [52], [4]
concentrated on how to improve the security of DSSE. Specif-
ically, there has been recently a lot of interest in the notions

of forward and backward privacy. They were introduced by
Stefanov et al. [51] and later formalized by Bost et al. [7], [9].
Informally, forward privacy ensures that future updates cannot
be associated to previous search queries, which is useful for
mitigating the powerful file injection attacks and has drawn
extensive attention [7], [9], [46], [25], [3], [38] in recent
years. In contrast, backward privacy guarantees that subsequent
searches cannot be associated to the deleted documents in the
past. Ideally, the leakage of backward-private schemes should
only depend on the documents currently matching the query
(i.e., the matched documents excluding the deleted ones) in the
database, but it is very difficult to achieve without using the
complicated techniques, e.g., ORAM, as it requires to hide both
the number and the pattern of updates. As a consequence, Bost
et al. [9] defined, in terms of how much information leaked
from the additions and deletions, three flavors of backward
privacy for single-keyword search:

Type-I backward privacy: allows schemes to leak the (iden-
tifers of) documents currently matching the queried keyword
w, the timestamps of inserting them into the database, as well
as the total number of updates on w.

Type-II backward privacy: additionally leaks the timestamps
and operation types of all updates on the queried keyword w,
apart from the information revealed in Type-I.

Type-III backward privacy: compared to Type-II, further leaks
which deletion operation cancelled precisely which addition.

The above three types of privacy are ordered from the most
to the least secure; the stronger privacy the schemes achieve,
the less information the updates leak. As with the leakage of
additions that has been successfully leveraged by file injection
attacks to break query privacy [57], the information revealed
from deletions might also be exploited to launch potential
attacks. Specifically, Type-III backward privacy leaks which
documents are deleted at what time. It has been demonstrated
that time is crucial information and can be exploited to break
the security of a wide range of systems, e.g., timing analysis on
network traffic [27] and side-channel attacks against hardware
enclaves [18]. In our application, the timestamps of updates
seem unrelated to the content of data, but knowing when a
keyword and/or a document is deleted could create oppor-
tunities for attackers to correlate other information of later
queries or launch statistical inference. Therefore, it is desired
to design SSE schemes with as strong as possible privacy, i.e.,
minimising information leakage of updates.

Recently, a few backward-private SSE schemes [9], [15],

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24162
www.ndss-symposium.org

[52], [4] have been proposed per flavor. However, most ex-
isting schemes achieve different tradeoffs between computa-
tion/communication cost and security guarantees. In brief, the
Type-I schemes [9], [15] are based on ORAMs, and Type-II
schemes [9], [15], [22] need high communication cost and mul-
tiple rounds of interactions to perform a search/update query.
This cost incurred by interactions is usually non-negligible
and will lead to a noticeable delay (20 − 30× slower than
the non-interactive scheme as in our evaluation) in the real-
world network environment. In contrast, the schemes [9], [52]
need only one roundtrip for each search and update, but at the
expense of providing only the weakest backward privacy. Very
recently, the hardware-based Type-I scheme, Type-II scheme
and Type-III scheme were proposed in [4], [55], which are all
non-interactive but rely heavily on the power of Intel SGX
[20]. Unfortunately, various security vulnerabilities in SGX
have been revealed, such as [10], [54], [18], and it may still
suffer from potential (side-channel) attacks in future.

Therefore, it is still challenging to design practical, non-
interactive and strong backward-private DSSE schemes with-
out hardware assumptions. In this paper, we make affirmative
progress towards this problem and put forward the first generic
DSSE scheme with all above desired features by leveraging a
newly introduced cryptographic primitive. The main contribu-
tions are summarized below.

Our Contributions. We explore the new way of constructing
(forward and) backward-private SSE schemes in this work.
Our basic idea, similar to [9], [52], is to encrypt the document
identifiers in such a way that the deleted ones cannot be
decrypted, even if they can be retrieved by the server. To
achieve a higher level of backward privacy, the crucial point
is to make the update operations leak as little information as
possible. Our starting point is to make the server oblivious of
the deletions. To do so, we introduce a new cryptographic
primitive, named Symmetric Revokable Encryption (SRE),
which allows us to accomplish the deletions locally with a low
storage request and captures the essential properties needed for
designing backward-private SSE schemes following the above
idea. In details, our main contributions include:
• We formalize the syntax and security of SRE, which

can be seen as a symmetric predicate encryption
and may be independent of interest. Then we pro-
pose a generic construction of SRE from a multiple
puncturable PRF, a traditional symmetric encryption
scheme and a Bloom filter. Due to the usage of
Bloom filter, our construction features a compressed
revocation procedure, which is crucial for our SSE
application. Furthermore, we show it satisfies the
proposed security in the standard model.

• Based on the proposed SRE scheme and a basic
forward-private SSE scheme, we present a new non-
interactive DSSE scheme, and argue that it is Type-
II backward-private under the security notion of [9].
Also, it inherits the forward privacy of the under-
lying SSE scheme. To the best of our knowledge,
the proposed scheme is the first forward and Type-II
backward-private SSE scheme that supports both non-
interactive search and update and depends not on the
random oracles and hardware assumptions.

• We introduce an efficient instantiation, named Aura,
of our DSSE scheme with the GGM tree-based PRF

[29], and obtain the first practical, scalable and non-
interactive DSSE scheme with both forward and Type-
II backward privacy as well as support for large dele-
tions. A comprehensive comparison of Aura with pre-
vious works is summarised in Table I, where we only
consider the schemes without hardware assumptions.
We implement Aura and perform a comprehensive
evaluation. The results show that Aura outperforms
both the state-of-the-art (non)-interactive forward and
backward-private DSSE schemes (Janus++ [52] and
SDd [22]) in terms of search time, insertion time,
deletion time, and communication cost.

Technical Overview. Following the basic idea of designing
backward-private SSE schemes mentioned before, the main
task is to develop an encryption scheme that can revoke the
decryption capability of the master secret key; given a revoked
secret key on a list of tags (associated with a set of document
identifier/keyword pairs), the server can recover an encrypted
identifier if the associated tag does not belong to the tag
list, otherwise fails. This is achieved by relying heavily on
incremental puncturable encryption in both Janus [9] and
Janus++ [52], where a fresh key component is produced and
outsourced to the server whenever a deletion happens. Thus
too much information about deletions is revealed to the server.

To achieve stronger backward privacy, our essential idea is
to make the deletions (i.e., revocation) oblivious to the server.
We observe that the schemes of [9], [52] could in fact be
run in this way, exactly by locally recording all tags to be
deleted and then revoking them in one shot rather than in an
incremental manner. However, this usually requires to allocate
some storage for recording these tags before generating the
revoked secret key for them. In general, the cost of storage
requested grows linearly with the size of all tags to be deleted.
This is undesirable in SSE scenarios.

What we need in essence is an encryption mechanism that
enables us to revoke the decryption capability of the initial
secret key over a set of tags in one shot and with only a low
request for memory. Informally, it is like a predicate encryption
[44], [45] for predicate P(R, t) = 1 iff t /∈ R, where R is a set
of tags associated with a revoked secret key, t is a tag attached
to a ciphertext, and the decryption succeeds only if P(R, t) =
1. In this sense, it can be seen as the dual of identity-based
revocation system [47]. As far as we know, unfortunately, there
have been no such schemes proposed so far.

In order to design such a practical encryption scheme
that can revoke a list of tags in one shot with only a low
memory request, our main idea is to first compress all tags
one-by-one to a short-size data structure, and then conduct
the revocation based on this data structure. Specifically, in
our construction we employ the Bloom filter [6], which is a
well-known data structure for compact set presentation, and
perform the revocation by leveraging the multi-puncturable
PRF [36]. For revocation, we generate a punctured secret key
on all indices of the entries (of the Bloom filter) with value ‘1’,
which are corresponding to the tags to be revoked. With this
key, we can compute the value of the pseudorandom function
on at least one index if the associated tag is not revoked, as
there exists at least one entry with value ‘0’ for an unrevoked
tag (due to the property of the Bloom filter). Otherwise, no
PRF value can be computed on any of the indices derived

2

TABLE I: Comparison with previous works. N , D, and W denote the total number of keyword/document pairs, total number
of documents, and total number of distinct keywords in the database, respectively. For a keyword w, aw is the total number of
inserted entries matching w, dw denotes the number of deleted entries matching w and d = maxw dw. nw is the size of search
result matching w and nw = aw − dw. Õ notation hides polylogarithmic factors.

Schemes Communication Computation Client Backward
#Rounds‡ Search Update Search Update Storage Privacy

Moneta [9] 3 Õ(aw logN + log3N) Õ(log3N) Õ(aw logN + log3N) Õ(log2N) O(1) Type-I
Orion [15] O(logN) O(nw log2N) O(log2N) O(nw log2N) O(log2N) O(1) Type-I

Fides [9] 2 O(aw + dw) O(1) O(aw + dw) O(1) O(W logD) Type-II
Mitra [15] 2 O(aw + dw) O(1) O(aw + dw) O(1) O(W logD) Type-II
SDa [22] 2 O(aw + logN) O(logN) O(aw + logN) O(logN) O(1) Type-II
SDd [22] 2 O(aw + logN) O(log3N) O(aw + logN) O(log3N) O(1) Type-II

Aura [Sec. IV] 1 O(nw) O(1) O(nw) O(1) O(Wd)† Type-II

Dianadel [9] 2 O(nw + dw log aw) O(1) O(aw) O(log aw) O(W logD) Type-III
Janus [9] 1 O(nw) O(1) O(nwdw) O(1) O(W logD) Type-III
Horus [15] O(log dw) O(nw log dw logN) O(log2N) O(nw log dw logN) O(log2N) O(W logD) Type-III

Janus++ [52] 1 O(nw) O(1) O(nwd) O(d) O(W logD) Type-III
†: Our storage cost is asymptotically larger than others, but it can be seen from Table II that the overhead is acceptable in practice.
‡: The #Rounds here indicates the rounds of communication required for servers to receive the document ind. This setting is consistent
with the existing SSE schemes [21], [43], [12], [9], [15].

from this tag. To encrypt a message along with a tag, we only
need to encrypt it with the PRF values evaluated on the entry
indices (of the Bloom filter) associated with the tag, which
is similar to the encryption method of Bloom filter encryption
[24], and the decryption can be realized by using the punctured
secret key. Thus we get a kind of revocable encryption with
compressed revocation and call it Compressed SRE.

A. Related Work

Song et al. [50] introduced the notion of SSE. After that,
extensive effort has been made to improve its security [16],
[21], [51], [7], [9], [41], functionality [17], [43], [13], [26],
[35], [39] or performance [13], [12], [14], [48], [23]. Almost all
SSE schemes allow for the leakage termed search pattern and
access pattern. To understand the realistic impacts of leakage,
the community has recently started to study how to exploit it
to break the security of SSE [11], [57], [34], [33], [5]. Most
recently, a line of work for defence [8], [41], [40] has been
presented. Concurrently, another line of important work is to
design schemes with forward and backward privacy, which
guarantees a higher level security for DSSE.

Forward and backward privacy was initialized by Ste-
fanov et al. [51] and later formalized by Bost et al. [7],
[9]. Since then, forward privacy has been studied extensively
and many efficient schemes [9], [15], [46], [38], [25], [3],
[4] have been proposed following the seminal work of Bost
[7]. Backward privacy, however, has been investigated far
less. Bost et al. [9] first proposed several constructions from
constrained cryptographic primitives, including Moneta that
can achieve the strongest (i.e., Type-I) backward privacy, Type-
II scheme Fides, and Type-III schemes Dianadel and Janus.
Subsequently, Chamani et al. [15] proposed three improved
constructions, including Type-I scheme Orion, Type-II scheme
Mitra and Type-III scheme Horus. At the same time, Sun et al.
[52] proposed a practical Type-III scheme Janus++ by making
use of their symmetric puncturable encryption. Very recently,
Demertzis et al. [22] proposed three new schemes focusing on
small client storage, namely Type-III scheme QOS, Type-II
schemes SDa and SDd. All these schemes achieve different

tradeoffs between security and efficiency. In particular, the
existing Type-I and II schemes rely on either ORAMs or
multi-round of interactions. The exceptions are Janus [9] and
Janus++ [52] that are practical and completely non-interactive
but achieving only Type-III backward privacy. In addition,
Amjad et al. [4] proposed several schemes with all types
of backward privacy by leveraging the power of Intel SGX
[20]. They are all non-interactive but depending heavily on
the security and reliability of trusted execution environments.

In this work, we will explore new approaches of designing
practical, non-interactive, and forward- and backward-private
DSSE schemes without hardware assumptions.

II. BACKGROUND

In this part, we recollect the syntax and security of the
cryptographic primitives used throughout this work.

A. Symmetric Encryption

A Symmetric Encryption (SE) scheme with message
space M, key space K and ciphertext space C consists of
three polynomial-time algorithms SE = (SE.Gen, SE.Enc,
SE.Dec) : On input a security parameter λ, SE.Gen(1λ)
outputs a secret key k ∈ K; SE.Enc(k,m) takes as input
a secret key k ∈ K and a message m ∈ M, and outputs a
ciphertext ct ∈ C; SE.Dec(k, ct) takes a secret key k ∈ K and
a ciphertext ct, and outputs m or ⊥ that indicates failure.

An SE scheme is perfectly correct if for all m ∈ M,
k ← SE.Gen(1λ) and ct ← SE.Enc(k,m), it holds that
Pr[SE.Dec(k, ct) = m] = 1.

SECURITY. The IND-CPA security of SE is defined by the
following experiment ExpIND-CPA

SE,A (λ) between a challenger
and an adversary A.

Setup: Challenger runs k ← SE.Gen(1λ) and chooses a
random bit γ ∈ {0, 1}.

Phase 1: A adaptively issues a polynomial number of
encryption queries. For each query on m ∈M, the challenger
returns ct← SE.Enc(k,m).

3

Challenge: A issues messages m0,m1 ∈ M with equal
length, and receives ciphertext ct∗ ← SE.Enc(k,mγ).

Phase 2: This is identical to Phase 1.

Guess: A outputs γ′. The experiment outputs 1 if γ′ = γ.

Definition 1 (IND-CPA Security). An SE scheme SE =
(SE.Gen, SE.Enc,SE.Dec) is IND-CPA secure if for all
λ ∈ N and probabilistic polynomial time (PPT) adversaries
A, the advantage of A winning in the experiment

AdvIND-CPA
SE,A (λ) = |Pr[ExpIND-CPA

SE,A (λ) = 1]− 1/2| ≤ ν(λ)

where the probability is taken over the randomness of the
experment and ν(λ) is negligible in λ.

B. Bloom Filter

A Bloom Filter (BF) [6] is a probabilistic data structure.
It can be used to rapidly and space-efficiently perform set
membership test, at the cost of allowing for false positives. For
many applications, the space saving outweighs this drawback
when the false-positive probability is small enough. In this
work, we focus on the standard BF given in [6] that is sufficient
for our applications. Next we recall its formal definition
following the syntax of [24]. Particularly, the Bloom filter
in [6] consists of three polynomial-time algorithms BF =
(BF.Gen,BF.Upd,BF.Check):

BF.Gen(b, h): It takes as input two integers b, h ∈ N,
and samples a collection of universal hash functions H =
{Hj}j∈[h], where Hj : X → [b] is from a universe X to a
finite set [b]. Finally, it outputs H and an initial b-bit array
B = 0b with each bit B[i] for i ∈ [b] set to 0.

BF.Upd(H,B, x): It takes H = {Hj}j∈[h], B ∈ {0, 1}b
and an element x ∈ X , updates the current array B by setting
B[Hj(x)]← 1 for all j ∈ [h], and finally outputs the updated
B. For simplicity, we use BR ← BF.Upd(H,B,R) to denote
the final array after inserting all elements in R one-by-one.

BF.Check(H,B, x): It takes H = {Hj}j∈[h], B ∈ {0, 1}b
and an element x ∈ X , and checks if B[Hj(x)] = 1 for all
j ∈ [h]. If ture, it outputs 1, otherwise returns 0.

A Bloom filter BF is perfectly complete if for all integers
b, h ∈ N, any set R of elements in X , and (H,B) ←
BF.Gen(b, h) as well as BR ← BF.Upd(H,B,R), it holds

Pr
[
BF.Check(H,BR, x) = 1

]
= 1

for all x ∈ R. This means a BF with perfect completeness can
always recognize the added elements.

Next, we briefly introduce the definition of false-positive
probability. Informally, it is the probability that an element not
yet added to BF is mistaken for being contained in it. Given
an upper-bound on the size of R, the probability can be made
sufficiently low by adjusting the parameters b, h adequately.
Formally, for a set R of n elements in X , we let (H,B) ←
BF.Gen(b, h) and BR ← BF.Upd(H,B,R). Then for any x ∈
X , we have that

Pr[BF.Check(H,BR, x) = 1 ∧ x /∈ R] ≈ (1− e−nh/b)h,

where the probability is taken over the randomness of
BF.Gen(b, h).

C. Puncturable Pseudorandom Function

First, we introduce the syntax and security of (a variant
of) t-puncturable pseudorandom function (t-Punc-PRF) [36].
Informally, a t-Punc-PRF allows a PRF key to be punctured
at any set of inputs S s.t. |S| ≤ t, where t(·) is a fixed
polynomial. Formally, a function Ft : K × X → Y is a t-
Punc-PRF with key space K if there is an additional key space
Kp and three polynomial-time algorithms (Ft.Setup, Ft.Punc,
Ft.Eval) with the following syntax:

Ft.Setup(1λ): It takes a security parameter λ and outputs
a description of a PRF key k ∈ K.

Ft.Punc(k, S): It takes a key k ∈ K and a set of elements
S ⊂ X s.t. |S| ≤ t(λ), and outputs a punctured key kS ∈ Kp.

Ft.Eval(kS , x): It takes as input a punctured key kS ∈ Kp
and x ∈ X , and outputs y ∈ Y or a symbol ⊥.

A t-Punc-PRF is correct if for all S ⊂ X s.t. |S| ≤ t(λ),
x ∈ X \ S, k ← Ft.Setup(1λ), and kS ← Ft.Punc(k, S), it
holds that Pr[Ft.Eval

(
kS , x

)
6= Ft(k, x)] ≤ ν(λ), where the

probability is taken over k ∈ K and ν(λ) is negligible.

SECURITY. In contrast to [36], a weaker security of t-Punc-
PRF Ft is sufficient for our applications, where an adversary
A is only permitted to ask for a single punctured secret key
query. Precisely, the security is defined by the experiment
Expt-Punc-PRF

Ft,A (λ) below.

Setup: Challenger chooses a random bit γ ∈ {0, 1} and
runs k ← Ft.Setup(1λ).

Challenge: On input S∗ = {x∗1, x∗2, . . . , x∗`} ⊂ X from
A, the challenger computes kS∗ ← Ft.Punc(k, S∗), y∗i =

F (k, x∗i) and selects ui
$←− Y for all i ∈ [`]. If γ = 0, it

returns (kS∗ , {y∗i }`i=1), otherwise returns (kS∗ , {ui}`i=1).
Guess: Adversary A outputs a guess γ′ and the experiment

outputs 1 if γ′ = γ.

Definition 2 (Weak Security). A function Ft : K × X ← Y
is a weakly secure t-Punc-PRF if for all λ and PPT adver-
saries A, its advantage defined below, Advt-Punc-PRF

Ft,A (λ) =

|Pr[Expt-Punc-PRF
Ft,A (λ) = 1] − 1/2| ≤ ν(λ) where the proba-

bility is taken over the randomness of the experiment and ν(λ)
is negligible.

For our applications, we further require that the PRF key
can be punctured at S one-by-one and the resulted punctured
secret key for S be independent of the order of punctures. To
be more precise, it is desired that the punctured secret key kS
for S = {x1, x2, . . . , x`} s.t. ` ≤ t(λ) can be computed in an
alternative way:

Ft.Punc(ki−1, x
′
i): On input a punctured key ki−1 for

S′i−1 = {x′1, x′2, . . . , x′i−1} ⊂ S, where k0 = k is a randomly
chosen PRF key, and a new element x′i ∈ S, it generates a
punctured key ki ∈ Kp for S′i = S′i−1 ∪ {x′i}. Finally, it
outputs k` that is equal to kS ← Ft.Punc(k, S). Henceforth,
all multi-puncturable PRFs we use in this work refer to the
t-Punc-PRF with above property, unless stated otherwise.

D. Symmetric Searchable Encryption

A DSSE scheme Σ consists of one algorithm Setup
and two protocols Search and Update: On input a security
parameter λ and an initial database DB, Setup outputs a secret

4

key K, the state σ of the client, and an encrypted database
EDB that will be sent to the server; Search takes a query q,
the secret key K and the state σ from the client, as well as the
database EDB from the server, and outputs the search result
R matching q; Update takes the secret key K, the state σ,
an input in and the associated operation op from the client, as
well as the database EDB from the server, where op is either
addition add or deletion del and in consists of a document
identifier ind and a set of keywords w. Then it inserts in to
or removes in from EDB, depending on op. Notice that in
this work, we only consider search queries containing a single
keyword w (i.e., q = w).

A DSSE scheme Σ = (Setup, Search, Update) is correct
if the Search protocol returns correct results for every query.
For a formal definition, we refer the readers to [12].

SECURITY. The security of DSSE is parameterized by a state-
ful leakage function L = (LStp,LSrch,LUpdt) that captures the
revealed information to an adversary A during the execution of
the real scheme. In particular, LStp,LSrch and LUpdt correspond
to the information leaked during Setup, Search and Update,
respectively. Informally, the security ensures that A cannot
learn more information beyond what can be referred from L.

A formal security as defined in [12], [9] is captured
by a real experiment REALΣ

A(λ) and an ideal experiment
IDEALΣ

A,S,L(λ):

REALΣ
A(λ): A chooses a database DB. The experiment runs

Setup(1λ, DB) and returns EDB. Then A adaptively queries
search (resp. update) on q (resp., (op, in)). In response,
the experiment runs Search(q) (resp., Update(op, in)) and
returns the transcript of each operation. At last, A outputs a
bit b.

IDEALΣ
A,S,L(λ): A chooses a DB. The experiment returns

EDB simulated by S(LStp(DB)). Then A adaptively queries
search (resp., update) on q (resp., (op, in)), and receives the
transcript simulated by S(LSrch(q)) (resp., S(LUpdt(op, in))).
Finally, A outputs a bit b.

Now we continue to recall forward and backward privacy
of DSSE, initially formalized in [7], [9]. Informally, forward
privacy ensures that each update leaks no information about
the keyword contained in the keyword/document pair to be
updated, while backward privacy means that when a key-
word/document pair (w, ind) is added to and then deleted
from the database, subsequent search on w does not reveal
ind. As noted in [9], ind must be revealed if a search on w
is performed after inserting (w, ind) but before removing it,
so we only consider the case that no search happens between
the addition and the deletion of the same keyword/document
pairs. Ideally, a backward-private SSE should leak nothing
about the deletions, and at least not reveal (the identifiers
of) the deleted documents [51]. In terms of different levels
of leakage, three types of backward privacy from Type-I to
Type-III were introduced in [9]. They are defined through the
above experiments by further imposing certain constraints on
L. Before proceeding, we first revisit the relevant functions
needed for the formal definition of backward privacy. We
follow the notation of [9] with minor modifications.

The leakage function L records a list of queries issued
so far, i.e., Q = {(u,w) or (u,op, in)}. Among the queries,

(u,w) is a search query performed on timestamp u, which
starts at 0 and increases with the coming query, and (u,op, in)
is an update query where op ∈ {add,del} and in is in the form
of (w, ind) for single-keyword search. With query list Q, the
relevant functions are defined as follows.

sp(w) is the search pattern over keyword w and consists
of timestamps of all search queries on w. It describes which
search queries are on the same keyword, formally defined as

sp(w) = {u : (u,w) ∈ Q}.

TimeDB(w) is the extended access pattern 1, which con-
sists of both the non-deleted documents matching w and the
timestamps of inserting them to the database. Formally, it is

TimeDB(w) =
{

(u, ind) :
(
u,add, (w, ind)

)
∈ Q

and ∀u′,
(
u′,del, (w, ind)

)
/∈ Q

}
.

UpHist(w) is the history of updates on keyword w and
consists of all update queries on w. Formally, it is defined as

UpHist(w) = {(u,op, ind) : (u,op, (w, ind) ∈ Q}.

Updates(w) is the list of timestamp and operation pairs
of updates on keyword w. Formally, it is defined as

Updates(w) = {(u,op) : (u,op, (w, ind) ∈ Q}.

We remark that the “Updates(w)” here is slightly different
from [9]. Here, it additionally contains the operation type op
rather than only the corresponding timestamps. Actually, the
“UpTime(w)” defined below is the “Updates(w)” in [9].

UpTime(w) is the update pattern over keyword w and
consists of the timestamps of updates on w. Formally, it is

UpTime(w) = {u : (u,add, (w, ind))
or (u,del, (w, ind)) ∈ Q} .

DelTime(w) is the list of timestamps of the inserted
documents (matching w) that were deleted later. Formally,

DelTime(w) =
{
u : ∃u′, ind s.t.

(
u′,del, (w, ind)

)
∈ Q

and
(
u,add, (w, ind)

)
∈ Q

}
.

Note that this is a new function we introduce, which is part
of the “Updates(w)” defined above and will be used for the
security analysis of our scheme.

DelHist(w) is the deletion history of w and consists of both
the timestamp of each deletion operation and the timestamp of
the inserted entry it removes. Formally, it is defined as

DelHist(w) =
{

(uadd, udel) : ∃ ind s.t.
(
udel,del,

(w, ind)
)
∈ Q and

(
uadd,add, (w, ind)

)
∈ Q

}
.

In contrast to DelTime(w), DelHist(w) additionally leaks
which deletion removes which addition.

With these functions, now we are ready to formally define
the notions of forward and backward privacy. We follow the
definitions of [9], [15], [52], except that the search pattern
sp(w) (a common leakage in most existing SSE schemes, e.g.,
[43], [13], [9], [52]) is also included in the leakage function

1The regular access/result pattern [13] DB(w) can be computed as
DB(w) = {ind : ∃u s.t. (u, ind) ∈ TimeDB(w)}.

5

LSrch in our definitions. Notice that, although sp(w) is not
considered in the security notions of [9], [15], [52], it is in
fact necessary for showing the security of their schemes.

Definition 3 (Forward Privacy [7], [9]). A DSSE scheme Σ =
(Setup,Search,Update) is L-adaptively forward-private if
for leakage function L = (LStp,LSrch,LUpdt) and all efficient
A making at most q(λ) queries, there exists a PPT algorithm
S such that∣∣Pr[REALΣ

A(λ) = 1]− Pr[IDEALΣ
A,S,L(λ) = 1]

∣∣ ≤ ν(λ),

and the update leakage function LUpdt can be written as

LUpdt(op, (w, ind)) = L′(op, ind),

where ν(λ) is negligible in λ and L′ is stateless.

Definition 4 (Backward Privacy [9]). A DSSE scheme
Σ = (Setup, Search,Update) is L-adaptively Type-I/II/III
-backward-private if for leakage function L = (LStp,LSrch,
LUpdt) and all PPT adversary A making at most q(λ) queries,
there exists a PPT algorithm S such that∣∣Pr[REALΣ

A(λ) = 1]− Pr[IDEALΣ
A,S,L(λ) = 1]

∣∣ ≤ ν(λ),

and the search and update leakage functions LSrch and LUpdt

can be written as the following types, respectively:
Type-I : LUpdt(op, (w, ind)) = L′(op) and

LSrch(w) = L′′(sp(w),TimeDB(w), uw),

Type-II : LUpdt(op, (w, ind)) = L′(op, w) and
LSrch(w) = L′′(sp(w),TimeDB(w),UpTime(w)),

Type-III : LUpdt(op, (w, ind)) = L′(op, w) and
LSrch(w) = L′′(sp(w),TimeDB(w),DelHist(w)),

where uw is the total number of updates on w, ν(λ) is
negligible and L′, L′′ are stateless.

It can be seen that the three types of backward privacy
from Type-I to Type-III are ordered from the most to the least
secure. In this work, we are concerned with Type-II-backward
privacy. According to the definition, a Type-II-backward-
private SSE scheme may leak sp(w),TimeDB(w), and
Updates(w) that can be derived from op and UpTime(w).
Actually, our Type-II-backward-private SSE scheme only
leaks sp(w),TimeDB(w), and DelTime(w) which is part of
Updates(w). In contrast, the Type-III-backward-private SSE
scheme additionally leaks DelHist(w) that captures which
deletion cancels which addition.

III. SYMMETRIC REVOCABLE ENCRYPTION

In this section, we introduce a new cryptographic primitive,
named Symmetric Revocable Encryption (SRE). Roughly, it
resembles (a variant of) Symmetric Puncturable Encryption
(SPE) [52], but in fact they are distinct in several aspects.
More details about their similarities and differences will be
discussed later. Next we will first formalize the syntax and
security of SRE, and then propose a generic construction with
a desirable feature for our application.

A. Syntax of SRE

An SRE scheme SRE = (SRE.KGen,SRE.Enc,
SRE.KRev, SRE.Dec) with key spaceMSK, message space
M and tag space T includes four polynomial-time algorithms:

SRE.KGen(1λ): It takes a security parameter λ as input
and outputs a system secret key msk ∈MSK.

SRE.Enc(msk,m, T): It takes as input a system secret
key msk and a message m ∈ M with a list of tags T ⊆ T ,
and outputs a ciphertext ct for m under tags T .

SRE.KRev(msk,R): It takes as input a system secret key
msk and a revocation list R ⊆ T , and outputs a revoked secret
key skR, which can be used to decrypt only the ciphertext that
has no tag belonging to R.

SRE.Dec(skR, ct, T): It takes as input a revoked secret key
skR and a ciphertext ct encrypted under tags T , and outputs
the message m or a failure symbol ⊥.

Definition 5 (Correctness). For all security parameter λ ∈ N,
message m ∈ M, tag list T ⊆ T and revocation list R ⊆ T
s.t. R ∩ T = ∅, the probability

Pr

SRE.Dec(skR, ct, T) = m :
msk ← SRE.KGen(1λ)
ct← SRE.Enc(msk,m, T)
skR ← SRE.KRev(msk,R)


is at least 1 − ν(λ). That is, the correctness error is upper-
bounded by a possibly non-negligible function ν(·).

Notice that, the regular definition of correctness requires
that a ciphertext under tag list T can be decrypted (with
an overwhelming probability) by a revoked secret key on
revocation list R only if R ∩ T = ∅. Here, we define it in
a relaxed manner, allowing for a non-negligible correctness
error, which is sufficient for our applications.

B. Security of SRE

The semantic security of SRE is defined via an IND-REV-
CPA experiment, denoted by ExpIND-REV-CPA

SRE,A (λ). In the
experiment, the adversary A is given access to an Encryption
oracle, by whichA can get the ciphertext of any message under
a list of tags, and a Key Revocation oracle, by which A can
obtain a revoked secret key for any revocation list chosen by
herself. In particular, the experiment is described as follows:

Setup: On input a parameter λ, the experiment runs
msk ← SRE.KGen(1λ) and initializes an empty set Q.

Phase 1: A can adaptively issue the following queries

• Encryption(m,T): On input a message m and a
list T of attached tags, the experiment runs ct ←
SRE.Enc(msk,m, T) and returns the ciphertext ct.

• Key Revocation(R): On input a revocation list R, the
experiment runs skR ← SRE.KRev(msk,R). It then
returns skR and adds R to Q.

Challenge: On input messages m0,m1 ∈ M along with
tag list T ∗ ⊆ T , the experiment rejects the query if there
exists R ∈ Q such that T ∗ ∩ R = ∅. Otherwise, it chooses
γ

$←− {0, 1} and returns ct∗ ← SRE.Enc(msk,mγ , T
∗).

Phase 2: This is identical to Phase 1 except A is disallowed
to ask for any key revocation query R s.t. R ∩ T ∗ = ∅.

Guess:A outputs γ′ and the experiment returns 1 if γ′ = γ.

6

Definition 6 (Adaptive Security). An SRE scheme is IND-
REV-CPA secure if for all λ ∈ N and PPT adversary A, the
advantage of A winning in the experiment

AdvIND-REV-CPA
SRE,A (λ) = |Pr[ExpIND-REV-CPA

SRE,A (λ) = 1]− 1/2|

is at most ν(λ), where the probability is taken over the coins
of the experiment and ν(λ) is negligible.

Similarly, we can define selective security of SRE by an
experiment ExpIND-sREV-CPA

SRE,A (λ), which is identical to above
experiment except T ∗ is submitted before the Setup phase.

Definition 7 (Selective Security). An SRE scheme is IND-
sREV-CPA secure if for all λ ∈ N and PPT adversary A, the
advantage of A winning in the experiment

AdvIND-sREV-CPA
SRE,A (λ) = |Pr[ExpIND-sREV-CPA

SRE,A (λ) = 1]−1/2|

is at most ν(λ), where the probability is taken over the coins
of the experiment and ν(λ) is negligible.

Now we complete the description of the syntax and security
of SRE. Before going ahead, we first clarify the similarities
and differences between SRE and SPE [52]. In general, SPE
focuses on achieving forward security by updating the secret
key gradually, while SRE emphasizes the functionality of
revoking the decryption capability of the master secret key.
Although both of them can be used to revoke a list of tags,
SRE is more relaxed than SPE and provides a different type
of security. In particular, a set of tags are revoked separately
in SPE, by repeatedly running the puncture algorithm of SPE
(i.e., SKi ← Pun(SKi−1, ti)

2 where SK0 = msk, following
the notation of [52]), while they may be revoked in an arbitrary
manner in SRE. Therefore, SPE can be thought of as a specific
case of SRE from the perspective of functionality.

At the first glance, it seems that an SRE scheme can be
constructed in a trivial and black-box way from any SPE
scheme by repeatedly invoking the puncture algorithm of SPE,
as indicated above. That is, the algorithm SRE.KRev(msk,R)
generates a revoked secret key skR as: Given a master secret
key msk and a list of tags, say R = {t1, t2, . . . , tτ}, it
recursively calls SKi ← Pun(SKi−1, ti) from i = 1 to τ , and
finally sets skR = SKτ . As demonstrated below, however, this
does not hold as the security of SPE cannot imply that of SRE.
In particular, we present a counter-example that is derived from
a secure SPE but cannot satisfy the security of SRE.

Let SPE = (SPE.Setup,SPE.Enc,SPE.Pun,SPE.Dec)
be a semantically secure SPE scheme supporting one tag
per message, as shown in [52]. Then we construct a new
SPE scheme SPE′ = (SPE′.Setup,SPE′.Enc,SPE′.Pun,
SPE′.Dec) that supports two tags per message, and show
that SPE′ is secure but the SRE scheme derived from SPE′

by following the above way is not. Specifically, the SPE′ is
constructed as follows:

SPE′.Setup(1λ): It is the same as the SPE.Setup algo-
rithm of SPE, which takes as input a security parameter λ
and outputs an initial master secret key msk.

2It takes as input SKi−1 and tag ti, and outputs a new secret key SKi,
which can decrypt the ciphertexts that SKi−1 can other than those encrypted
under ti. For more details of SPE, please refer to the Section 3 of [52].

SPE′.Enc(msk,m, T): On input a msk and a message m
attached with tags T = {t1, t2}, it chooses randomly k1, k2 ∈
M and outputs the ciphertext ct = (ct0, ct1, ct2), such that
ct0 = k1 ⊕ k2 ⊕ m, ct1 ← SPE.Enc(msk, k1, t1), ct2 ←
SPE.Enc(msk, k2, t2).

SPE′.Pun(SKi−1, t
′
i): It is identical to the SPE.Pun al-

gorithm of SPE that further punctures SKi−1 on tag t′i and
outputs a new secret key SKi.

SPE′.Dec(SKi, ct, T): On input a secret key SKi as-
sociated with tags R = {t′1, t′2, . . . , t′i} and a ciphertext
ct = (ct0, ct1, ct2) under tags T = {t1, t2}, it outputs ⊥ if
R ∩ T 6= ∅. Otherwise,

1) Compute k′j = SPE.Dec(SKi, ctj , tj) for j ∈ {1, 2}.
2) Return m′ = ct0 ⊕ k′1 ⊕ k′2.

It can be seen that SPE′ is correct, as k′j can be correctly
recovered (i.e., k′j = kj) if tj /∈ R, following the correctness
of SPE [52]. On the other hand, SPE′ is secure under the
security of the underlying SPE. Informally, it is required that
at least one challenge tag, say t∗1 ∈ T ∗, be punctured by a
valid adversary during the query phase, then k∗1 is completely
hidden in ct∗1 due to the semantical security of SPE, and so
the challenge message m∗γ is perfectly concealed. However,
the SRE scheme derived from SPE′ is not secure. Recall that,
in the IND-REV-CPA game of SRE the adversary is allowed
to ask for a number of key revocation queries on R with the
only restriction that R ∩ T ∗ 6= ∅. In this case, the security of
the SRE scheme can be broken by an efficient adversary A as
follows: A issues two key revocation queries on R1 and R2,
where for the challenge tags T ∗ = {t∗1, t∗2} the queries satisfy
the conditions that t∗1 ∈ R1, t

∗
2 /∈ R1 and t∗2 ∈ R2, t

∗
1 /∈ R2.

After receiving the revoked secret keys skR1
and skR2

, A
uses skR1

and skR2
to compute k∗2 ← SPE.Dec(skR1

, ct∗2, t
∗
2)

and k∗1 ← SPE.Dec(skR2
, ct∗1, t

∗
1), respectively. Finally, A

recovers m∗γ = ct∗0 ⊕ k∗1 ⊕ k∗2 .

In other words, the above attack indicates that distinct
revoked secret keys could be combined together to decrypt
some ciphertext that cannot be decrypted by each one sep-
arately. This kind of attack is always termed as collusion
attack, which is not captured by SPE schemes. In contrast,
the security of SRE implies collusion-resistance, meaning that
the combination of revoked secret keys skR and skR′ cannot
decrypt the ciphertext under tags T if R ∩ T 6= ∅ and
R′ ∩ T 6= ∅. This property plays an important role in multi-
client settings, e.g., multi-client SSE [37].

By this time, we have shown that the above intuition does
not work for building SRE schemes that support at least two
tags per message. However, we are not sure whether or not
it works for the case of SRE scheme supporting one tag
per message, since it is unclear how to reduce the collusion-
resistance of SRE to the security of SPE. Notice that, even if
it could work for the later case, we believe that SRE scheme
can be constructed in more efficient ways, as it is more relaxed
and general than SPE.

Alternatively, SRE can be seen as a symmetric predicate
encryption for the predicate that P(R, T) = 1 if R ∩ T = ∅
and 0 otherwise, which can provide more fine-grained access
control over encrypted data as exemplified in [44]. Since the

7

predicate P(R, t) = 1 iff t /∈ R for t ∈ T and R ⊆ T suf-
fices our application, we are mainly interested in constructing
efficient SRE schemes with a single tag per message in the
following, and leaving more general constructions in future.

C. Construction of SRE

In this section, we propose an SRE scheme based on
a multi-puncturable PRF, a standard symmetric encryption
scheme and a Bloom filter. At the first glance, the way of
encrypting a message is similar to that of Bloom Filter En-
cryption (BFE) [24] 3; A message is encrypted under h indices
(of the Bloom filter) derived from the tag of the message.
However, the way of revoking the decryption capability of the
secret key between BFE and our SRE is essentially different.
In BFE, the key idea is to associate the key pair of the scheme
to a Bloom filter, where the initial secret key consists of b
parts with each part corresponding to an entry index of the
Bloom filter (that contains b entries), and to realize puncturing
by simply deleting the corresponding parts of the secret key. In
contrast, the initial secret key of our scheme is independent of
the Bloom filter, and we revoke it on a set of tags in one shot by
leveraging the multi-puncturable PRF [36]. The Bloom filter
here is used merely for recording and compressing all tags to be
revoked. This results in a low storage request before launching
the revocation. We call this feature Compressed Revocation,
which is crucial for our application and will be formalized
and explained with more details after the construction.

Next we present the detailed construction. Let SE =
(SE.Gen,SE.Enc,SE.Dec) be a standard SE scheme with
key space Y , F : K × X → Y a multi-puncturable PRF
with algorithms (MF.Setup, MF.Punc, MF.Eval), and BF =
(BF.Gen, BF.Upd,BF.Check) a (b, h, n)-Bloom filter, where
n is the maximum number of elements to be inserted and b, h
are the numbers of Bloom filter entries and hash functions,
respectively. Then our SRE scheme SRE = (SRE.KGen,
SRE.Enc, SRE.KRev, SRE.Dec) is described as follows:

SRE.KGen(1λ, b, h): It takes a security parameter λ and
integers b, h ∈ N, and generates the system secret key msk by

1) Runs (H,B) ← BF.Gen(b, h), such that H =
{Hj}j∈[h] and B = 0b.

2) Generates sk ← MF.Setup(1λ), and outputs msk =
(sk, H,B). Note H can be set as public parameters.

SRE.Enc(msk,m, t): It takes msk = (sk,H,B) and a
message m ∈M with tag t ∈ T , and outputs ciphertext ct as

1) Computes ij = Hj(t) ∈ [b] and skij = F (sk, ij) for
all j ∈ [h].

2) Generates ctj = SE.Enc(skij ,m) for all j ∈ [h], and
returns the ciphertext ct = (ct1, ct2, . . . , cth) and t.

SRE.KRev(msk,R): It takes msk = (sk,H,B) and a
list R = {t1, t2, . . . , tτ} of tags to be revoked s.t. τ ≤ n, then
generates the revoked secret key skR for R:

1) Computes BR ← BF.Upd(H,B,R), by which the
entries of B indexed by {Hj(ti)}i∈[τ],j∈[h] are set to
1 (i.e., B[Hj(ti)]← 1) for all ti ∈ R.

2) Finds the index set I = {i′ ∈ [b] : BR[i′] = 1} from
BR, then computes skI ← MF.Punc(sk, I) and sets
skR = (skI , H,BR).

3It is a puncturable encryption focusing on highly efficient puncturing.

SRE.Dec(skR, ct, t): It takes a ciphertext ct =
(ct1, ct2, . . . , cth) encrypted under tag t and a revoked secret
key skR = (skI , H,BR), then recovers the message as:

1) Checks if BF.Check(H,BR, t) = 1. If true, the
decryption fails. Otherwise,

2) Finds an index i∗ ∈ [b] s.t. BR[i∗] = 0 (i.e.,
i∗ /∈ I derived from R), and then computes ski∗ =
MF.Eval(skI , i∗).

3) Finally computes m = SE.Dec(ski∗ , cti∗).
CORRECTNESS. According to Definition 5, the choices of R
and T = {t} are independent of the randomness (i.e., H)
used to construct the Bloom filter in our construction, so it is
sufficient to consider the correctness of Bloom filter in the tra-
ditional setting than the adversarial environment [19]. It can be
seen that the revoked secret key is generated in a compressed
manner (exactly based on the Bloom filter), so our scheme
introduces a non-negligible correctness error. Next we show it
is up-bounded by the false-positive probability of the standard
Bloom filter. In particular, we suppose that a revoked secret
key skR = (skI , H,BR) is associated with revocation list
R = {t1, t2, . . . , tτ} and a ciphertext ct = (ct1, ct2, . . . , cth)
is generated under tag t such that t /∈ R, then we can use skR
to decrypt ct if BF.Check(H,BR, t) = 0, because this ensures
that there exists i∗ ∈ [h] s.t. BR[i∗] = 0 (i.e., i∗ /∈ I derived
from R) and we can compute ski∗ = MF.Eval(skI , i∗) =
F (sk, i∗) and recover m = SE.Dec(ski∗ , cti∗). The correct-
ness follows from that of the multi-puncturable PRF F and
SE. Otherwise (i.e., BF.Check(H,BR, t) = 1), the decryption
fails, because this means BR[Hj(t)] = 1 for all j ∈ [h] (i.e.,
{Hj(t)} ⊆ I) and we cannot get any skHj(t) to decrypt
any part of ct. This indicates that the correctness error is
exactly the false-positive probability of the Bloom filter, thus
we have Pr[SRE.Dec(skR, ct, t) = ⊥] = Pr[t /∈ R ∧
BF.Check(H,BR, t) = 1] ≈ 2−h, where h is the parameter
of Bloom filter.

Note that, the revoked secret key of our SRE scheme is
always computed from the initial (or master) secret key, so
the scheme does not provide forward security as guaranteed by
puncturable encryption [32], [24]. Nevertheless, it is sufficient
for our SSE application, as what we are concerned is the
ability of revoking the master secret key with a low storage
request. In addition, the size of the revoked secret key in our
scheme mainly depends on that of the punctured secret key
of pseudorandom PRF F , which in our instantiation is about
O(log b) on average instead of O(b) as in BFE [24].

COMPRESSED REVOCATION. In above scheme, the secret key
is revoked on all tags R at a time. Intuitively, to revoke a
number of tags in one shot, certain storage should be allocated
for them before launching the revocation. Usually, the storage
cost is dominated by the total size of all the tags to be revoked,
which is undesirable in SSE application. To avoid this issue,
we first compress all tags one-by-one by leveraging a compact
data structure, thus getting a compressed revocation list at
last, and then generate the revoked secret key based on the
compact data structure. By this way, only a low storage cost
is introduced on the client side. Specifically, the key-revocation
procedure SRE.KRev(·, ·) of our construction can be split into
two abstract sub-algorithms, formalized as below:

SRE.KRev(sk,D,R): On input a secret key sk, the de-
scription D of a short-sized data structure initialized at the

8

setup of the system, and a list R = {t1, t2, . . . , tτ} of tags to
be revoked, it generates the revoked secret key skR as below:

1) D ← SRE.Comp(D, ti): Inserts each ti ∈ R
individually to the (initially-empty) data structure D
and finally gets a compressed revocation list of R.

2) skR ← SRE.cKRev(sk,D): Computes the revoked
secret key skR based on the compressed revocation
list D that is obtained after adding all tags in R to
the data structure.

Hereafter, we refer to an SRE scheme enjoying this feature as
a Compressed SRE (CSRE for short).

The data structure D employed in our concrete construction
is exactly a (b, h, n)− Bloom-filter, where b, h and n are the
numbers of Bloom filter entries, different hash functions, and
the elements to be inserted, respectively. Assuming the false-
positive probability tolerated is p and the optimal number of
hash functions used is h, then the required size of Bloom filter
in our construction is b = −n ln p/(ln 2)2 bits. For example,
when p = 10−5 and n = 220, the size b of Bloom filter we
need is about 3 MB. With such kind of compressed revocation,
the client needs only a short and constant-size storage for
launching the revocation, which exactly consists of |sk|+b bits
in our scheme, and the revoked secret key will be generated and
sent immediately to the server when performing each search.

SECURITY. Our compressed SRE scheme is IND-sREV-CPA
secure under the security of the underlying primitives, which
is formally stated in Theorem 1.

Theorem 1. The Compressed SRE scheme is IND-sREV-CPA
secure, if BF is a (b, h, n)-Bloom-filter, F : K × X → Y is a
secure b-Punc-PRF and SE is IND-CPA secure. Particularly,
for all PPT algorithms A in the IND-sREV-CPA game, there
exist PPT algorithms B and B′ such that

AdvIND-sREV-CPA
SRE,A (λ) ≤ 2Advb-Punc-PRF

F,B (λ)+2h·AdvIND-CPA
SE,B′ (λ).

Proof of Theorem 1: The proof proceeds with a sequence
of games. It starts with the real game and ends with a game
where the adversary’s advantage is 0. In each game, we call
Wini the event that the adversary A wins in game Gi.

Game G0: This is the real game for selective security of
SRE. Namely, after receiving tag t∗ that A wishes to be
challenged upon, the challenger produces msk = (sk,H,B)
by running msk ← SRE.KGen(1λ, b, h), and then answers
all A’s queries with msk. For an encryption query (m, t), it
computes ij = Hj(t) and skij = F (sk, ij) for all j ∈ [h], and
outputs ct = (ct1, ct2, . . . , cth) s.t. ctj ← SE.Enc(skij ,m)
for j ∈ [h]. For a key-revocation query R ⊆ T , the
challenger computes BR ← BF.Upd(H,B,R) and finds the
index set I = {i′ ∈ [b] : BR[i′] = 1}, then it computes
skI ← MF.Punc(sk, I) and returns skR = (skI , H,BR). In
the challenge phase, A comes up with two distinct messages
m0,m1 ∈ M, and receives a challenge ciphertext ct∗ ←
SRE.Enc(msk,mγ , t

∗) for γ $←− {0, 1}. Finally, A outputs
her guess γ′ ∈ {0, 1} when she halts. We note that for each
key-revocation query R, it must hold that t∗ ∈ R if A is
a legitimate adversary. From the Definition 7, we know that
AdvIND-sREV-CPA

SRE,A (λ) = |Pr[Win0]− 1/2|.

Game G1: In this game, we modify the way of generating
ciphertexts. Namely, we produce in advance all PRF values

ski = F (sk, i) for all i ∈ [b], and use them straightforwardly
to compute the challenge ciphertext ct∗ and those for encryp-
tion queries. The other queries are responded in the same way
as before. Obviously, it holds that Pr[Win1] = Pr[Win0].

Game G2: This game is identical to G1, apart from the
generation of the revoked secret key. Namely, the revoked
secret key skR for each key-revocation query R is generated
in the following way:

1) Computes BR ← BF.Upd(H,B,R) and finds out the
index set I = {i′ ∈ [b] : BR[i′] = 1}.

2) Sets It∗ = {Hj(t
∗)}j∈[h], which is a subset of I due

to t∗ ∈ R, and computes skt∗ ← MF.Punc(sk, It∗).
3) Computes skI ← MF.Punc(skt∗ , I \ It∗) and returns

skR = (skI , H,BR).
In other words, the punctured secret key skI in this scheme

is computed in the alternative way, as mentioned in Section
II-C, which ensures that the skI in both games are identically
distributed. Thus, we have that Pr[Win2] = Pr[Win1].

Game G3: We further modify the way of producing PRF
values {ski}i∈[b] in G1. Namely, we first compute the index

set It∗ = {Hj(t
∗)}j∈[h] corresponding to t∗, select ui

$←− Y
for all i ∈ It∗ , and then set the PRF values {ski}i∈[b] as:

ski =

{
F (sk, i), i ∈ [b] \ It∗
ui, i ∈ It∗ .

In other words, all PRF values associated with t∗ (i.e.,
{ski}i∈It∗) are replaced by random ones. In consequence, the
challenge chiphertext ct∗ and the ciphertexts corresponding to
the encryption queries on t∗ will be simulated directly with
these random values. As for key-revocation queries, they are
processed similarly as before.

Under the security of multi-puncturable PRF, we argue that
the above modification changes the distribution of A’s view
only negligibly, as stated in Lemma 1.

Lemma 1. Suppose that F : K × X → Y is a secure
b-Punc-PRF, then games G3 and G2 are computationally
indistinguishable for all PPT adversary, which means that

|Pr[Win3]− Pr[Win2]| ≤ 2Advb-Punc-PRF
F,B (λ).

Proof of Lemma 1: We assume by contradiction that there
exists an adversary A that can distinguish G3 and G2 with
non-negligible advantage. Then we can construct an efficient
reduction B that can break the security of the multi-puncturable
PRF F . The algorithm B proceeds as follows.

B(1λ) first obtains t∗ ∈ T that A wishes to be challenged
upon, and generates (H,B) ← BF.Gen(b, h), where H =
{Hj}j∈[h] and B = 0b. Then it computes It∗ = {i∗j : i∗j =
Hj(t

∗)}j∈[h] and replays It∗ to the challenger of the multi-
puncturable PRF F . The challenger responds to B by running
sk ← MF.Setup(1λ) and generating (skt∗ , {y∗j }j∈[h]):
• Computes skt∗ ← MF.Punc(sk, It∗) and yj,0 =

F (sk, i∗j) for all i∗j ∈ It∗ .
• Chooses yj,1

$←− Y , δ $←− {0, 1} for all j ∈ [h], and
sets y∗j = yj,0 if δ = 0 and y∗j = yj,1 otherwise.

B then sets all PRF values {ski}i∈[b] as:

ski =

{
MF.Eval(skt∗ , i), i ∈ [b] \ It∗
y∗j , i ∈ It∗

9

where for each i /∈ It∗ we have ski = MF.Eval(skt∗ , i) =
F (sk, i) and for i ∈ It∗ (i.e.,∃j s.t. i = i∗j) ski = ski∗j =
y∗j . After that, B uses them together with skt∗ to simulate all
following queries.

For an encryption query (m, t), B computes ij = Hj(t)
and ctj ← SE.Enc(skij ,M) for all j ∈ [h], where skij is set
as above. Then it returns ct = (ct1, ct2, . . . , cth) to A.

For a key-revocation query R, B generates the revoked
secret key skR in the following way:

1) Computes BR ← BF.Upd(H,B,R) and finds out the
index set I = {i′ ∈ [b] : BR[i′] = 1}, which includes
It∗ = {Hj(t

∗)}j∈[h] due to t∗ ∈ R.
2) Computes skI ← MF.Punc(skt∗ , I \ It∗) and returns

skR = (skI , H,BR).
In the challenge phase, B receives two distinct messages

m0,m1 from A and picks γ
$←− {0, 1}. Then it computes

ct∗j ← SE.Enc(ski∗j ,mγ) for all j ∈ [h], where ski∗j = y∗j ,
and returns ct∗ = (ct∗1, ct

∗
2, . . . , ct

∗
h). Eventually, A outputs

her guess γ′ ∈ {0, 1}, and B returns δ′ = 1 if γ′ = γ.

It can be seen that B perfectly simulates game G2 when
δ = 0 (i.e., y∗j = F (sk, i∗j)) and G3 when δ = 1 (i.e., y∗j

$←− Y),
so we have Pr[δ′ = 1|δ = 0] = Pr[Win2] and Pr[δ′ = 1|δ =
1] = Pr[Win3], and the advantage of B is

Advm-Punc-PRF
F,B (λ) = 1

2 |Pr[δ′ = 1|δ = 1]− Pr[δ′ = 1|δ = 0]|
= 1

2 |Pr[Win3]− Pr[Win2]| .

This completes the proof of Lemma 1.

Game G4: This differs from G3 only in the generation
of ct∗. Namely, ct∗ = (ct∗1, ct

∗
2, . . . , ct

∗
h) in this game is

computed as the encryption of constant string 0’s, instead of
mγ . More precisely, each ct∗j for j ∈ [h] is generated as

ct∗j ← SE.Enc(ski∗j , 0
|m|), where ski∗j

$←− Y and |m| denotes
the bit-length of the message m ∈ M. We observe that the
random bit γ ∈ {0, 1} is independent of this game, so we have
that Pr[Win4] = 1/2.

Next, we proceed to show that the views of A in both G4

and G3 are computationally indistinguishable under the IND-
CPA security of SE, as stated formally in Lemma 2.
Lemma 2. Suppose that SE = (SE.Gen,SE.Enc,SE.Dec)
is an IND-CPA secure symmetric encryption scheme, then G3

and G4 are computationally indistinguishable for all PPT
adversaries A. That is,

|Pr[Win4]− Pr[Win3]| ≤ 2h · AdvIND-CPA
SE,B′ (λ),

where B′ is a PPT adversary against the IND-CPA security.

This lemma can be proven by the standard hybrid argu-
ment. For more details, please refer to Appendix A-A.

Given all above lemmas, we get the advantage of any PPT
adversary A attacking our scheme:

AdvIND-sREV-CPA
SRE,A (λ) = |Pr[Win0]− Pr[Win4]|

≤ 2Advb-Punc-PRF
F,B (λ)

+ 2h · AdvIND-CPA
SE,B′ (λ).

This concludes the proof of Theorem 1.

IV. BACKWARD-PRIVATE SSE FROM CSRE

Next we propose a generic construction of forward and
backward private SSE from CSRE, and show it can achieve
Type-II backward privacy within a single roundtrip.

A. Generic Construction

Our construction follows the essential idea of Janus [9]
and Janus++ [52]. That is, the document identifiers are
encrypted in a way that the deleted documents cannot be
decrypted, even if their ciphertexts can be retrieved by the
server. To make clear the differences between them, we first
give a brief introduction to Janus++. In general, it is based
on two forward-private SSE instances Σadd and Σdel, one for
addition and the other for deletion. More specifically, each time
a new document identifier/keyword pair (ind, w) is inserted,
the identifier is encrypted with SPE and stored to the server
by employing Σadd. Similarly, whenever a pair (ind, w) is
deleted, an associated punctured key element is generated and
outsourced to the server by leveraging Σdel. To search on
keyword w, the client runs the search protocol of both Σadd and
Σdel. Consequently, the server retrieves all encrypted identifies
containing w and all remaining key elements w.r.t. w from the
instance Σadd and Σdel, respectively. Then the server uses the
secret key to decrypt all documents that are not deleted.

Compared to Janus++, our construction uses only one
forward-private SSE instance Σadd. Particularly, it is employed
to store the newly inserted document identifiers encrypted
with a CSRE scheme, which realizes the addition of our SSE
scheme and leaks no more information than Σadd allows. For
the deletion, it is conducted locally by the client, rather than by
resorting to the server. Thus it is oblivious and leaks nothing
to the server, and the client need not to interact frequently
with the server, at the cost of only a small storage due to the
compressed revocation property of our SRE scheme. Whenever
the client performs search on w, it generates and sends to
the server a revoked secret key for the deleted documents
containing w. Then the server is able to decrypt all non-
deleted documents with this key. Under this framework, our
SSE scheme not only achieves Type-II backward privacy but
also scales for large deletions.

We note that our scheme, same as previous works [9], [52],
also requires the client to refresh the encryption key after each
search, as the server can use the previous revoked secret key
to decrypt the non-deleted document indices inserted in future.
Nevertheless, we do not need to re-encrypt the search result
with the refreshed key, which can be stored in a cache as
processed in [9], [52]. As a result, we can obtain a large storage
saving on server side by physically removing the retrieved
ciphertexts from the server.

Next we briefly describe our scheme, the details of
which are shown in Algorithm 1. Let Σadd = (Σadd.Setup,
Σadd.Search,Σadd.Update) be a forward private SSE scheme,
and SRE = (SRE.KGen,SRE.Enc,SRE.KRev, SRE.Dec)
a CSRE scheme in which SRE.KRev consists of two
sub-algorithms SRE.Comp and SRE.cKRev (cf. Com-
pressed Revocation in Section III-C). Then our generic
SSE scheme Σ based on Σadd and SRE is comprised of
(Setup,Search,Update).

10

Algorithm 1 Type-II Backward-Private DSSE Σ from Compressed SRE
Setup(1λ)

1: (EDBadd, Kadd, σadd)← Σadd.Setup(1λ)
2: Ks,Kt

$←− {0, 1}λ, EDBcache ← ∅, MSK, C, D ←⊥
3: return

(
(Kadd,Ks,Kt), (σadd, MSK, C, D), (EDBadd,

EDBcache)
)

Search(K,w, σ; EDB)

Client:

1: i← C[w], (sk,D)← MSK[w], D ← D[w]
2: if i =⊥ then
3: return ∅
4: end if
5: Compute skR ← SRE.cKRev(sk,D) . D is from D[w]
6: Send (skR, D) and tkn = F (Ks, w) to server
7: msk = (sk,D)← SRE.KGen(1λ) . Update msk for w after

search
8: MSK[w]← msk, D[w]← D, C[w]← i+ 1

Client & Server:

9: Run Σadd.Search(Kadd, w||i, σadd; EDBadd), and server gets a
list ((ct1, t1), (ct2, t2), . . . , (ct`, t`)) of ciphertext and tag pairs

Server:

1: Server uses (skR, D) to decrypt all ciphertexts {(cti, ti)} as
follows

2: for i ∈ [1, `] do

3: indi = SRE.Dec((skR, D), cti, ti)
4: if indi 6= ⊥ then
5: NewInd← NewInd ∪ {(indi, ti)}
6: else
7: DelInd← DelInd ∪ {ti}
8: end if
9: end for

10: OldInd← EDBcache[tkn]
11: OldInd← OldInd\{(ind, t) : ∃ ti ∈ DelInd s.t. t = ti}
12: Res← NewInd ∪ OldInd, EDBcache[tkn]← Res
13: return Res

Update(K, op, (w, ind), σ; EDB)

Client:

1: msk ← MSK[w], D ← D[w], i← C[w]
2: if msk =⊥ then
3: msk ← SRE.KGen(1λ), where msk = (sk,D)
4: MSK[w]← msk, D[w]← D
5: i← 0, C[w]← i
6: end if
7: Compute t← FKt(w, ind)
8: if op = add then
9: ct← SRE.Enc(msk, ind, t)

10: Run Σadd.Update(Kadd, add, w||i, (ct, t), σadd; EDBadd)
11: else (i.e., op = del)
12: D ← SRE.Comp(D, t), D[w]← D
13: end if

Setup(1λ): The client generates (EDBadd, Kadd, σadd)←
Σadd.Setup(1λ), picks Ks,Kt

$←− {0, 1}λ, and initializes lists
MSK, C, D, and EDBcache for storing encryption keys asso-
ciated with each keyword, the search times of each keyword,
the compressed deletion list w.r.t. each keyword, and the search
results of previous queries, respectively. At the outset, MSK,
C and D are filled with symbol ⊥ and EDBcache is set
as empty. The algorithm then outputs K = (Kadd,Ks,Kt),
σ = (σadd,MSK,C,D) and EDB = (EDBadd,EDBcache).

Search(K,w, σ; EDB): When performing search on w,
the client obtains the search times i, the current secret key
sk and the compressed deletion list D associated with w,
by looking up C[w], MSK[w] and D[w], respectively. Then
it checks if i =⊥ (i.e., msk =⊥), if so the client gets
nothing. Otherwise, the client computes the revoked secret
key skR ← SRE.cKRev(sk,D) and token tkn = F (Ks, w)
and sends

(
(skR, D), tkn

)
to the server. After this, the client

refreshes msk4, and runs Σadd.Search together with the server
to retrieve the encrypted indices matching w. Then the server
decrypts the non-deleted indices with skR, and returns them
along with the non-deleted ones in cache as the search result.

Update(K,
(
op, (w, ind)

)
, σ; EDB): When adding a new

entry (w, ind) to the database, the client obtains the most
recent encryption key msk from MSK[w] and inserts the
encryption, ct ← SRE.Enc(msk, ind, t), of ind under tag
t = FKt(w, ind) to EDBadd. To delete the entry (w, ind), the
client inserts the corresponding tag t = FKt(w, ind) to the
compressed deletion list D (i.e., D ← SRE.Comp(D, t)).

We remark that, for simplicity, it is implicitly assumed

4The encryption key msk must be updated after each search and will be
used to encrypt future entries matching w, as noted by [9], [52].

that at least one deletion happens for the queried keyword w.
In fact, this assumption can be removed by slightly adapting
the Search algorithm. Particularly, if no deletion occurs on
w, we only need to perform a deletion on a dummy identity
ind∗ by running Update(K,del, (w, ind∗), σ; EDB) prior to
computing skR. Moreover, we note that our DSSE is con-
structed modularly from Σadd and CSRE, so it would benefit
immediately from any improvement on the building blocks.

B. Security Proof

Our scheme Σ can achieve Type-II backward privacy (cf.
Definition 4), which in contrast to Type-III backward privacy
does not leak which deletion operations remove which addition
operations. As previous works [9], [15], [52], it also achieves
forward privacy, which follows easily from that of Σadd. In
the following, we concentrate on Type-II backward privacy,
formalized as Theorem 2.
Theorem 2. The proposed scheme Σ is LBS-adaptively Type-
II-backward-private, if Σadd is an LFS-adaptively forward-
private SSE scheme, CSRE is IND-sREV-CPA secure and
F is a secure PRF, where LFS is the leakage of Σadd as
defined in [7] and LBS = (LSrchBS ,LUpdtBS) is defined as
LUpdtBS (op, w, ind) = op and LSrchBS = (sp(w),TimeDB(w),
DelTime(w)).

Proof sketch. The proof is conducted in a similar way as Janus
[9] and Janus++ [52], except that the security of Σ relies on
that of the proposed SRE and the transcript is simulated with
less leakage. A simplified proof is given in Appendix A-B.
More details are shown in the full version.

V. INSTANTIATION

In this section, we propose an instantiation of our generic

11

sk

sk0

sk000 sk001

sk00 sk01

sk010 sk011

sk1

sk100 sk101

sk10 sk11

sk110 sk111

0 1 2 3 4 5 6 7

t

G0(sk)

G1(G0(sk))

Deleted ind
Revoked sk

ind1
t ind2

Fig. 1: Example of Compressed SRE

SSE scheme, termed as Aura. Notice that we can instantiate
it by integrating a concrete CSRE scheme with any forward-
private SSE scheme e.g., in [7], [9]. Next we focus on how
to instantiate the CSRE scheme by leveraging the GGM tree-
based PRF and the standard Bloom filter.

In particular, we employ the GGM tree-based PRF to
realize the multi-puncturable PRF and a standard Bloom filter
to generate a compact revocation list. In our SSE scheme,
each keyword w is associated with a GGM PRF key skw
and an (initially empty) Bloom filter Bw = 0b for deletion
on this keyword w between two consecutive search queries.
As introduced in Section III-C, a Bloom filter is used to
compress the deleted document tags and the GGM PRF key
will be revoked based on the compact revocation list, so the
number of leaf nodes in the GGM tree is set as the bit length
of Bloom filter. In our GGM PRF, G : {0, 1}λ ← {0, 1}2λ
is a length-doubling pseudorandom generator, and the output
of G(sk) is divided into two halves G0(sk) and G1(sk).
The value of GGM PRF F on `-bit strings (i.e., ski) is
computed as Fsk(i) = Gi`−1

(· · ·Gi1(Gi0(sk))), where the
binary representation of the BF entry index i is i`−1 · · · i1i0.
Here, ` = dlog(b)e and b is the number of BF entries.

When inserting a (w, ind) pair, we follow the encryption
function of SRE. Specifically, the tag t of ind is firstly mapped
to h entry indices, {ij = Hj(t)}j∈[h], of the BF Bw. For each
index ij ∈ [0, b − 1], its corresponding leaf node Fskw(ij) is
calculated from the master secret key skw of the GGM tree.
Then the ind is encrypted with each leaf node as an encryption
key, and the h encrypted copies will be uploaded to the server.
After that, if the client starts to delete a (w, ind) pair, the tag
t of ind is inserted to the BF Bw for later batch revocation.
Namely, the h entries of Bw corresponding to t will be set to
‘1’. If more ind’s on this w are deleted, the associated tags t’s
are continuously inserted to Bw. For a search query over w,
the client generates the revoked secret key for the server, by
puncturing the associated GGM PRF key skw on the indices
of Bw entries with value ‘1’, i.e., Iw = {i′ ∈ [b] : Bw[i′] =
1}. Specifically, for each revoked index in Iw, we find a path
from the corresponding revoked leaf node to the root, and the
revoked secret key skR consists of the siblings of the nodes
on all the paths, but excluding those siblings that sit also on
some other paths. As a result, skR is generated on the fly
before search and the complexity of the communication cost
is Θ(log(b)). Then skR and Bw are sent to the server with the
search token together. To conduct the search, the server first
uses the search token to fetch the matched encrypted entries.
Meanwhile, it expands skR to get all leaf nodes of the GGM
tree except the revoked ones. After that, the server checks the
tag t of each fetched ciphertext with Bw to see if all h entries
of Bw with indices {Hj(t)} are marked as ‘1’. If so, it skips
this entry, as it is deleted and cannot be decrypted. Otherwise,

it follows the index of one entry with value ‘0’ to find the
corresponding GGM leaf node for decryption.

As an example in Figure 1, two tags for ind1 and ind2 are
revoked, then skR consists of sk00, sk011 and sk101, which
will be sent to the server for search. When receiving skR, the
server can derive sk000 and sk001 from sk00 via G0(sk00) and
G1(sk00), respectively. Then it can use sk000, sk001, sk011 and
sk101 to decrypt the ind that is not revoked.

VI. EXPERIMENTAL EVALUATION

Our evaluation reports the time cost of insertion, search,
and deletion, as well as the communication cost, and compares
the above metrics with the state-of-the-art interactive and non-
interactive backward-private SSE schemes.

A. Implementation and Settings

We implement Aura in C++ and use OpenSSL to im-
plement cryptographic primitives, i.e., AES and SHA256.
Pseudorandom generator in GGM PRF is implemented via
AES. In order to evaluate the performance of Aura under the
network environments, we leverage Thrift [49] to enable the
network communication between Aura client and server. Our
source code is publicly available in [1].

We conduct our evaluations under LAN and WAN envi-
ronments. We run Aura client and server on a Ubuntu Server
18.04 LTS workstation (Intel Core i7-8850H 2.6GHz CPU with
6 cores and 32GB RAM) for LAN evaluations. The delay
between the client and server is less than 0.1 ms, and the
bandwidth in between is 1, 000Mbps. For evaluations on the
WAN, we hire three e2-standard-8 instances (8 vCore, 32 GB
RAM) with Ubuntu Server 18.04 LTS from Google Cloud.
These instances are placed in Singapore, Sydney and South
Carolina, respectively. We use the server in Sydney as the
SSE server, and the one in Singapore (average round-trip delay
to Sydney: 103 ms, bandwidth to Sydney: 9, 700Mbps) and
South Carolina (average round-trip delay to Sydney: 197 ms,
bandwidth to Sydney: 9, 300Mbps) as the SSE client. All the
latency/bandwidth information is reported by Google [31].

We compare Aura with the interactive and non-interactive
SSE schemes. Regarding the interactive ones, there exist
several schemes [9], [15], [22] achieving Type-II backward
privacy. In our evaluation, we compare with the most efficient
scheme SDd [22], that features small client storage at the
expense of interactive update and search. Since SDd is not
implemented under the network environment, we adapt its
original implementation to make it compatible with Thrift.
Our implementation is available in [2]. For the non-interactive
schemes, we choose Janus++ [52]. Note that it can only
achieve Type-III backward privacy, while Aura achieves Type-
II backward privacy. In the following evaluation, we evaluate
the search cost required for the server to obtain the document
ind’s used for retrieving the real documents. We note that
the server in Aura and Janus++ can get the ind’s without
extra communication costs after getting search tokens from
the client, while the SDd server requires an extra round to
send the encrypted document ind’s back to the client and then
receive the decrypted ones from it.

For Janus++, we set the size of its tag space as 216.
Namely, each tag is 16-bit long and the height of each

12

TABLE II: Bloom Filter Storage Cost

d 10 100 1,000 10,000
h = 5 h = 13 h = 5 h = 13 h = 5 h = 13 h = 5 h = 13

Storage (KiB) 0.036 0.024 0.35 0.23 3.54 2.34 35.37 23.4

GGM tree is 16. Since SDd requires to specify the total
number of updates during the setup phase, we set the number
as ‘1,000,010’, ‘1,000,100’, ‘1,001,000’ and ‘1,010,000’ to
instantiate SDd in the evaluation.

To evaluate the scalability, we set d as ‘10’, ‘100’, ‘1,000’,
and ‘10,000’, where d is the number of maximum deletions
between two searches of a certain keyword, and set the number
of deletions dw = d. Then we derive two sets of BF parameters
based on the tradeoff between client storage saving and time
efficiency. For both parameter settings, we set the false positive
rate p = 10−4. We argue that this rate is acceptable in
practice. If the number of matched documents in a query is
not large, e.g., < 10, 000, all results can be returned in high
confidence. For very large datasets, a small amount of false
negatives are tolerable. For example, given a database with
web pages or domain-specific documents , it may contain near-
duplicate pages or documents. They may include almost the
same contents but with different identifiers [53], [56]. Missing
few results will not affect quality of service.

In the first parameter setting, the size of BF is derived from
b = −d ln p/(ln 2)2, and the optimal number of hash functions
is equal to h = db/d ln 2e, which is 13. Accordingly, the BF
can bring 42.5% storage saving at the client compared to the
naive approach where the client uses a 32-bit string to denote
a deleted ind. This setting is suitable for clients with limited
storage, e.g., mobile devices. In the second setting, we envision
that a relatively powerful client can allocate more storage for
time efficiency, since the encryption time and search time scale
with h. To still gain storage saving for the client, we obtain
the minimum h, which is set as 5 and the saving is 12.5%.
Detailed space consumption of BF is given in Table II.

B. Evaluation and Comparison with SDd

We firstly review the SDd protocol. The SDd server
requires to know the number of updates (U) during the setup
phase, and it will initialise dlogUe EDBs, where the i-th EDB
keeps at most 2i, i = 0, 1, ..., dlogUe − 1 encrypted entries.
The insertion and deletion of SDd follows the same algorithm,
which adds an encrypted entry with an operator indicating
insert (INS) or delete (DEL) into the above EDBs. A new
encrypted entry will be inserted in the first EDB (EDB0) and
gradually moved to the following EDBs (EDB1,2,...,dlogUe−1).
During the search phase, the client queries all EDBs and
retrieves all encrypted entries matching the query. Then, the
client gets the final search result by decrypting the entries
and removing all deleted ind’s according to the associated
operators. To retrieve the real documents, the client should
send the non-deleted ind’s back to the server.

Insertion time. To evaluate and compare the insertion time of
Aura and SDd, we update the EDB with ‘1,000,000’ insertions
and ‘10’, ‘100’, ‘1,000’ and ‘10,000’ deletions, respectively.
Table III presents the unit time for insertion under both LAN
and WAN environments. It shows that SDd has a constant
cost, i.e., 26ms under LAN. The cost consists of the time to

TABLE III: Insertion Time (ms/ind) Comparison of Aura and
SDd when d = ‘10’, ‘100’, ‘1, 000’ and ‘10, 000’

Scheme d = 10 d = 100 d = 1,000 d = 10,000
Aurah=5 (LAN) 0.05 0.06 0.07 0.09
Aurah=13 (LAN) 0.09 0.13 0.18 0.21

SDd (LAN) 26.27 26.21 26.22 26.49
Aurah=5 (103ms) 50.97 50.12 50.39 50.78
Aurah=13 (103ms) 50.82 50.34 50.21 50.47

SDd (103ms) 3317.22 3321.18 3336.67 3366.25
Aurah=5 (197ms) 99.53 99.42 99.47 99.89
Aurah=13 (197ms) 98.97 99.36 99.23 99.55

SDd (197ms) 5721.82 5715.77 5731.74 5733.36

TABLE IV: Deletion Time Cost

Scheme Aura Janus++ SDd
(LAN)

SDd
(103ms)

SDd
(197ms)h=5 h=13

Per deletion (µs) 0.0009 0.002 570 26,000 3,324,120 5,715,097

generate an encrypted entry, insert a new entry and move the
existing EDB entries to the next level EDBs if there exist full
EDBs. The moving cost dominates the above insertion cost
because it requires the client to retrieve the full EDB back
and re-encrypt the EDB. To ensure forward privacy, the re-
encrypted EDB is put into an oblivious map for the server
to store it in the next level EDB. On the other hand, Aura
only sends the new encrypted entries to the server during the
insertion phase. It does not incur any costs of re-encryption
and oblivious operations. Overall, Aura outperforms SDd by
288× (h = 5) and 123× (h = 13) on the LAN environment.

On the WAN environment, the network delay affects the
insertion time significantly. In particular, SDd can take more
than 3, 300ms (103ms delay) or 5700ms to insert one ind. The
reason is that SDd has to move more entries among different
EDBs to vacate the space for the new entry if the smaller EDBs
have been filled. Thus, the moving operation performs more
operations that need to communicate with the server, e.g., EDB
status checking, ORAM access, re-encryption. When inserting
1, 000, 000 ind’s, the above process should be repeated 18
times at most before adding the new ind into the EDB. Due
to the network delay, the cost per ind insertion of Aura also
increases to 50ms (103ms delay) or 99ms (197ms delay), as it
requires a one-way communication to send a fixed number of
encrypted entries (the number of entries is fixed after setting
h). Nonetheless, it is still 66× to 219× faster than SDd.

Deletion time. We run deletion operations 100 times for each
scheme, and the average deletion time of each scheme is
reported in Table IV. Note that the deletion in SDd runs the
same process as for insertion. Thus, the deletion time is similar
to the insertion time, and it involves a non-negligible cost
(26ms for LAN / 3, 324ms for 103ms-delay WAN / 5, 715ms
for 197ms-delay WAN) to delete one entry. This is 7 to 9
orders of magnitude slower than Aura (0.002 − 0.0009µs),
since Aura only needs to insert an associated tag of ind into
a local Bloom filter when deleting an entry.

Search time. To demonstrate the benefit of using non-
interactive schemes, we compare the search time of SDd
and Aura on LAN (search time with a negligible network
delay) and WAN (with 103ms and 197ms-network delays)
settings. Figure 2 illustrates that SDd is 3× to 4× faster
than Aura in terms of the computational cost under the
LAN environment. However, Figures 3 and 4 show that SDd

13

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (LAN)

Aura
h=13

 (LAN)

SD
d
 (LAN)

(a) Search time for d = 10

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (LAN)

Aura
h=13

 (LAN)

SD
d
 (LAN)

(b) Search time for d = 100

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (LAN)

Aura
h=13

 (LAN)

SD
d
 (LAN)

(c) Search time for d = 1, 000

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (LAN)

Aura
h=13

 (LAN)

SD
d
 (LAN)

(d) Search time for d = 10, 000

Fig. 2: Search Time Comparison of Aura and SDd in LAN when d =‘10’, ‘100’, ‘1, 000’ and ‘10, 000’

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (103ms)

Aura
h=13

 (103ms)

SD
d
 (103ms)

(a) Search time for d = 10

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (103ms)

Aura
h=13

 (103ms)

SD
d
 (103ms)

(b) Search time for d = 100

2 4 6 8 10

Number of File ind's 10
5

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (103ms)

Aura
h=13

 (103ms)

SD
d
 (103ms)

(c) Search time for d = 1, 000

2 4 6 8 10

Number of File ind's 10
5

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (103ms)

Aura
h=13

 (103ms)

SD
d
 (103ms)

(d) Search time for d = 10, 000

Fig. 3: Search Time Comparison of Aura and SDd in WAN (103ms delay) when d =‘10’, ‘100’, ‘1, 000’ and ‘10, 000’

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (197ms)

Aura
h=13

 (197ms)

SD
d
 (197ms)

(a) Search time for d = 10

2 4 6 8 10

Number of File ind's 10
5

10
0

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (197ms)

Aura
h=13

 (197ms)

SD
d
 (197ms)

(b) Search time for d = 100

2 4 6 8 10

Number of File ind's 10
5

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (197ms)

Aura
h=13

 (197ms)

SD
d
 (197ms)

(c) Search time for d = 1, 000

2 4 6 8 10

Number of File ind's 10
5

10
1

S
e

a
rc

h
 T

im
e

 (
s
)

Aura
h=5

 (197ms)

Aura
h=13

 (197ms)

SD
d
 (197ms)

(d) Search time for d = 10, 000

Fig. 4: Search Time Comparison of Aura and SDd in WAN (197ms delay) when d =‘10’, ‘100’, ‘1, 000’ and ‘10, 000’

0.9 0.7 9.8 6.7

111.8 99.4

1404.0

1202.1

10 100 1000 10000

Number of deletions

0

500

1000

1500

S
e
a
rc

h
:
c
lie

n
t
c
o
s
t
(m

s
)

h=5

h=13

(a) Aura client search time cost

397.8

601.9

460.0

669.2

470.6

715.1

793.1
837.1

10 100 1000 10000

Number of deletions

0

500

1000

1500

S
e
a
rc

h
:
s
e
rv

e
r

c
o
s
t
(m

s
)

h=5

h=13

(b) Aura server search time cost

Fig. 5: Search Time Comparison of Aura on Server and Client
with different h (h = 5 and h = 13) when d =‘10’, ‘100’,
‘1, 000’ and ‘10, 000’
experiences a significant slowdown for the search on WAN:
It becomes 1.03× to 5× slower than Aura when there is
a 103ms-delay. Furthermore, Aura is 2× to 11× faster if
the network delay increases to 197ms. This is because SDd
requires the client to query all EDBs (OLDESTi, OLDERi,
OLDi, i = 0, 1, ..., dlogUe-1) sequentially, thus resulting in
multiple rounds of communication for each search, which
makes it susceptible to the network performance. In our setting,
we have i = dlog 200, 010e − 1 (17) to dlog 1, 010, 000e − 1
(19), which indicates that there are 54 to 60 roundtrips for

TABLE V: Communication Cost for Search

Scheme Aura Janus++ SDdh=5 h=13
d = 10 3KB 2KB 32B 8.58MB

d = 100 37KB 24KB 32B 8.58MB
d = 1,000 205KB 163KB 32B 8.58MB

d = 10,000 362KB 135KB 32B 8.58MB

the query. On the other hand, Aura only incurs a one-way
communication for the search, and the network delay only
introduces 50-600ms extra time cost to transmit the revoked
keys, Bloom filter and query token.

Search communication cost. Table V shows that Aura only
introduces a KB-level communication cost (2-362KB) even
when d = 10, 000. SDd incurs an MB-level communication
cost (8.58MB) during the search phase, which is 65× (h = 5)
and 24× (h = 13) larger than Aura when d = 10, 000.
The reason is that SDd must retrieve all encrypted entries
matching the query keyword and remove deleted ones at the
client. Further, the remaining ind’s need to be sent back to the
server for retrieving the real documents. The above process
implies a roundtrip communication with a large amount of
document ind’s, e.g., in our setting, client receives ‘1,000,010’,

14

TABLE VI: Communication Cost for Deletion
Scheme Aura Janus++ SDd
d = 10 0 2KB 570B
d = 100 0 24KB 4KB

d = 1,000 0 240KB 42KB
d = 10,000 0 2400KB 429KB

TABLE VII: Insertion Time (ms/ind) of Janus++ when d =
‘10’, ‘100’, ‘1, 000’ and ‘10, 000’

Scheme d = 10 d = 100 d = 1,000 d = 10,000
Janus++ (ms) 0.47 4.94 49.8 489.7

‘1,000,100’, ‘1,001,000’ and ‘1,010,000’ encrypted entries and
sends ‘999,990’, ‘999,900’, ‘999,000’ and ‘990,000’ ind’s
back5. In contrast, Aura only sends the revoked secret key,
Bloom filter and query token to the server (several KB), and
the server can get the corresponding document ind’s without
additional communications.

Deletion communication cost. SDd also incurs a communica-
tion cost during deletion as the client needs to retrieve and re-
encrypt some entries. It also sends these re-encrypted and new
entries to the server. As shown in Table VI, the cost is linear in
the number of deletions. In particular, when deleting 10,000
entries, SDd client sends 429KB to the server. In contrast,
Aura does not incur any communication cost during deletion
as it is a local process run by the client.

C. Evaluation and Comparison with Janus++

As mentioned in Section IV-A, Janus++ is constructed
from SPE, where the encryption key of each ind is generated
from d puncturable PRFs. Particularly, each puncturable PRF
is realised by a GGM tree, so each encryption or decryption
requires an evaluation of d GGM trees. Thus, it is not scalable
for large number of deletions, as demonstrated later.

Insertion time. Table VII depicts the insertion time of
Janus++, which scales linearly in the number d of deletions.
When d is large, the performance of Janus++ degrades
dramatically. In Aura, it takes constant time for insertion, i.e.,
0.06− 0.09ms per ind for h = 5 and 0.13− 0.21ms per ind
for h = 13, as shown in Table III. The reason is that each
encryption key derivation needs one single traversal from the
root to a certain leaf node in the GGM tree, and our scheme
involves only one tree. Note that the cost of h = 13 is larger
than h = 5, because the number of ciphertext copies per ind
is equal to h which contributes to h underlying key derivation
and encryption operations.

Deletion time. We report the deletion time of each ind in
Table IV. For each deletion, Aura only needs to insert the tag
of the deleted ind to BF, and the cost is negligible to that of
Janus++. In Janus++, each deletion revokes a certain leaf
node in a GGM tree, which incurs a path traversal to generate
the revoked secret key elements.

Search time. In Table VIII, we report the search time of
Janus++. The results illustrate that Aura significantly outper-
forms Janus++ during the search phase. As mentioned, the
main reason is that Aura only involves one GGM tree evalua-
tion for decryption, while Janus++ needs to evaluate d GGM

5The communication of search in Table V is a constant because the protocol
transmits 2,000,000 ind’s in total.

TABLE VIII: Search Time (s) of Janus++
of ind’s 200, 000 400, 000 600, 000 800, 000 1, 000, 000

d = 10 75.43 158.9 219.39 295.21 368.5
d = 100 736.85 1,538.57 2,269.03 2,987.85 3,731.71

d = 1,000 8,073.17 16,542.07 24,406.5 33,691.52 41,766.21
d = 1,0000 84,594.42 172,439.55 256,762.04 339,898.41 435,146.61

trees. Besides, Aura is implemented via C++ and OpenSSL,
while Janus++ is implemented via Python and PyCrypto,
which further contributes to the performance downgrade.

The search time of Aura consists of the client cost and
server cost. Figure 5a and 5b shows the client and server cost of
a search query with 1, 000, 000 matched ind’s under different
d’s. We observe that the client cost is affected by d; a larger d
results in a larger GGM tree, and thus it requires more time to
generate the revoked key. Besides, the client cost is affected
by h; a larger h will reduce the size of BF and GGM tree (see
Table II), which in turn decreases the cost of generating the
revoked key. At the server side, the search time is dominated
by recovering the ind’s that are not deleted. This is correlated
with h, as it requires to evaluate h hash functions of BF to
decide whether or not each retrieved entry has been deleted.

In particular, Aura takes 0.004ms and 0.006ms to recover
an ind for h = 5 and h = 13, respectively.

Search communication cost. The communication cost of
Janus++ and Aura is presented in Table V. Note that the
search cost of Aura relates to the size of the revoked key, which
is linear in the number of GGM nodes that form the minimum
cover of the unrevoked leaf nodes (w.r.t. the BF entries with
value ‘0’). The results are derived from ‘10’, ‘100’, ‘1,000’,
‘10,000’ random deletions, respectively. In the worst case, half
b/2 of BF entries will be revoked and b/2 GGM nodes will
be sent to the server. As shown, Janus++ outperforms Aura
as it only sends a token to the server during the search phase.

Deletion communication cost. Compared to Janus++, Aura
saves the communication cost introduced by deletions sig-
nificantly as shown in Table VI. We present the cost of the
revocation key consisting of a set of GGM tree nodes in both
schemes, because it dominates the communication cost during
deletion. In Janus++, once a deletion happens, a part of the
revoked key (a set of GGM tree nodes) will be sent to the
server. And the communication cost increases linearly in the
number of deletions. In Aura, the client does not communicate
with the server during the deletion, and it just inserts the
deleted ind into a Bloom filter at local.

Storage cost. The storage cost per ind in Aura is linear
in h. Fortunately, this will not be the bottleneck under the
framework of backward-private SSE [9], [52]. Like existing
non-interactive backward-private SSE schemes Janus and
Janus++, only the newly inserted ind’s are encrypted via the
dedicated schemes. After search, the results on this keyword
can be cached at the server, and all the ciphertext copies can
be physically deleted. Such treatment does not compromise the
security of SSE, because the cached results are already known
from the access pattern of previous searches.

VII. CONCLUSIONS

We first introduce a new cryptographic primitive, named
Symmetric Revocable Encryption, and propose a generic con-

15

struction from the Bloom filter and multi-puncturable pseu-
dorandom function. Then we present the first non-interactive
Type-II backward-private SSE scheme (without hardware as-
sumptions) from the newly introduced primitive. We also
implement it in real networks and the evaluation demon-
strates its practicality and scalability. Still, it is challenging
to design efficient Type-I backward-private SSE within a
single roundtrip, and very interesting to employ our revocation
encryption technique to construct backward-private SSE in the
multi-client setting. In addition, most of existing backward and
forward-private SSE schemes support only restricted types of
queries, so constructing practical SSE schemes with support
for strong security as well as rich queries is still left open.

Acknowledgment. We would like to thank the anonymous
reviewers for their constructive comments. This work is sup-
ported in part by the Natural Science Foundation of China (No.
61802255), the Australian Research Council (ARC) Discovery
Projects (No. DP180102199, DP200103308), and the Key
(Keygrant) Project of Chinese Ministry of Education (No.
2020KJ010201).

REFERENCES

[1] https://github.com/MonashCybersecurityLab/Aura.

[2] https://github.com/MonashCybersecurityLab/SDd.

[3] G. Amjad, S. Kamara, and T. Moataz, “Breach-resistant structured
encryption,” Proceedings on Privacy Enhancing Technologies, vol.
2019, no. 1, pp. 245–265, 2019.

[4] ——, “Forward and backward private searchable encryption with SGX,”
in Proceedings of the 12th European Workshop on Systems Security,
EuroSec@EuroSys 2019, Dresden, Germany, March 25, 2019, 2019,
pp. 4:1–4:6.

[5] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” in NDSS. The Internet Society, 2020.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] R. Bost, “
∑

oϕoς: Forward secure searchable encryption,” in ACM CCS
2016, Vienna, Austria, October 24-28, 2016, pp. 1143–1154.

[8] R. Bost and P. Fouque, “Thwarting leakage abuse attacks against
searchable encryption - A formal approach and applications to database
padding,” IACR Cryptology ePrint Archive, p. 1060.

[9] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private
searchable encryption from constrained cryptographic primitives,” in
ACM CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pp. 1465–1482.

[10] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks are
practical,” in 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in ACM CCS 2015, Denver, CO,
USA, October 12-16, 2015, 2015, pp. 668–679. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813700

[12] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2014, 2014.

[13] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in CRYPTO 2013, Santa Barbara, CA, USA, August
18-22, 2013, 2013, pp. 353–373.

[14] D. Cash and S. Tessaro, “The locality of searchable symmetric encryp-
tion,” in EUROCRYPT 2014, Copenhagen, Denmark, May 11-15, 2014,
2014, pp. 351–368.

[15] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New
constructions for forward and backward private symmetric searchable
encryption,” in ACM CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pp. 1038–1055.

[16] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in ACNS 2005, New York, NY, USA, June
7-10, 2005, 2005, pp. 442–455.

[17] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in ASIACRYPT 2010, Singapore, December 5-9, 2010, 2010, pp.
577–594.

[18] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgx-
pectre attacks: Stealing intel secrets from sgx enclaves via speculative
execution,” arXiv preprint arXiv:1802.09085, 2018.

[19] D. Clayton, C. Patton, and T. Shrimpton, “Probabilistic data structures in
adversarial environments,” in ACM CCS 2019, London, UK, November
11-15, 2019, 2019, pp. 1317–1334.

[20] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[21] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in ACM CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3,
2006, pp. 79–88.

[22] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou,
“Dynamic searchable encryption with small client storage,” in NDSS,
2020.

[23] I. Demertzis, D. Papadopoulos, and C. Papamanthou, “Searchable
encryption with optimal locality: Achieving sublogarithmic read effi-
ciency,” in CRYPTO 2018, Santa Barbara, CA, USA, August 19-23,
2018, 2018, pp. 371–406.

[24] D. Derler, T. Jager, D. Slamanig, and C. Striecks, “Bloom filter encryp-
tion and applications to efficient forward-secret 0-rtt key exchange,” in
EUROCRYPT 2018, Tel Aviv, Israel, April 29 - May 3, 2018, 2018, pp.
425–455.

[25] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Efficient
dynamic searchable encryption with forward privacy,” Proceedings on
Privacy Enhancing Technologies, vol. 2018, no. 1, pp. 5–20, 2018.

[26] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in ESORICS
2015, Vienna, Austria, September 21-25, 2015, 2015, pp. 123–145.

[27] S. Feghhi and D. J. Leith, “A web traffic analysis attack using only
timing information,” IEEE Trans. Information Forensics and Security,
no. 8, pp. 1747–1759.

[28] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
ACM STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, 2009,
pp. 169–178.

[29] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct
random functions (extended abstract),” in 25th Annual Symposium
on Foundations of Computer Science, West Palm Beach, Florida,
USA, 24-26 October 1984, 1984, pp. 464–479. [Online]. Available:
https://doi.org/10.1109/SFCS.1984.715949

[30] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[31] Google, “Google Cloud Inter-Region Latency and Throughput,”
https://datastudio.google.com/u/0/reporting/fc733b10-9744-4a72-a502-
92290f608571/page/70YCB [online], 2020.

[32] M. D. Green and I. Miers, “Forward secure asynchronous messaging
from puncturable encryption,” in 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, 2015,
pp. 305–320. [Online]. Available: https://doi.org/10.1109/SP.2015.26

[33] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Pump up
the volume: Practical database reconstruction from volume leakage on
range queries,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and
X. Wang, Eds. ACM, 2018, pp. 315–331.

[34] ——, “Learning to reconstruct: Statistical learning theory and encrypted
database attacks,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019,
pp. 1067–1083.

16

[35] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in ACM CCS 2014, Scottsdale, AZ, USA, November
3-7, 2014, pp. 310–320.

[36] S. Hohenberger, V. Koppula, and B. Waters, “Adaptively secure punc-
turable pseudorandom functions in the standard model,” in ASIACRYPT
2015, Auckland, New Zealand, November 29 - December 3, 2015, 2015,
pp. 79–102.

[37] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in ACM CCS
2013, Berlin, Germany, November 4-8, 2013, 2013, pp. 875–888.

[38] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in EUROCRYPT 2017, Paris,
France, April 30 - May 4, 2017, 2017, pp. 94–124.

[39] ——, “SQL on structurally-encrypted databases,” in ASIACRYPT 2018,
Brisbane, QLD, Australia, December 2-6, 2018, 2018, pp. 149–180.

[40] ——, “Computationally volume-hiding structured encryption,” in EU-
ROCRYPT 2019, Darmstadt, Germany, May 19-23, 2019, 2019, pp.
183–213.

[41] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured encryption and
leakage suppression,” in CRYPTO 2018, Santa Barbara, CA, USA,
August 19-23, 2018, 2018, pp. 339–370.

[42] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Financial Cryptography and Data Security
FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers,
2013, pp. 258–274.

[43] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in ACM CCS 2012, Raleigh, NC, USA, October
16-18, 2012, pp. 965–976.

[44] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting dis-
junctions, polynomial equations, and inner products,” in EUROCRYPT
2008, Istanbul, Turkey, April 13-17, 2008, 2008, pp. 146–162.

[45] ——, “Predicate encryption supporting disjunctions, polynomial equa-
tions, and inner products,” J. Cryptology, vol. 26, no. 2, pp. 191–224,
2013.

[46] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W. Kim, “Forward secure
dynamic searchable symmetric encryption with efficient updates,” in
ACM CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pp. 1449–1463.

[47] A. B. Lewko, A. Sahai, and B. Waters, “Revocation systems with
very small private keys,” in IEEE S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, 2010, pp. 273–285.

[48] I. Miers and P. Mohassel, “IO-DSSE: scaling dynamic searchable
encryption to millions of indexes by improving locality,” in NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017, 2017.

[49] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable Cross-
Language Services Implementation,” Facebook White Paper, vol. 5,
no. 8, 2007.

[50] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 2000 IEEE Symposium on Security and
Privacy, Berkeley, California, USA, May 14-17, 2000, pp. 44–55.

[51] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in NDSS 2014, San Diego, California,
USA, February 23-26, 2014, 2014.

[52] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and
S. Nepal, “Practical backward-secure searchable encryption from sym-
metric puncturable encryption,” in ACM CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pp. 763–780.

[53] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: robust and effi-
cient near duplicate detection in large web collections,” in ACM SIGIR
2008, Singapore, July 20-24, 2008, 2008, pp. 563–570.

[54] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in USENIX Security 2018, 2018, pp. 991–1008.

[55] V. Vo, S. Lai, X. Yuan, S. Sun, S. Nepal, and J. K. Liu, “Accelerating
forward and backward private searchable encryption using trusted
execution,” in ACNS (2), ser. Lecture Notes in Computer Science, vol.
12147. Springer, 2020, pp. 83–103.

[56] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient similarity
joins for near-duplicate detection,” ACM Trans. Database Syst., vol. 36,
no. 3, pp. 15:1–15:41, 2011.

[57] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security 2016, Austin, TX, USA, August 10-12, 2016., 2016,
pp. 707–720.

APPENDIX A
PROOFS

A. Proof of Lemma 2
Lemma 3. Suppose SE = (SE.Gen,SE.Enc,SE.Dec) is an
IND-CPA secure symmetric encryption scheme, then G3 and
G4 are computationally indistinguishable for all PPT adver-
sary A. That is, |Pr[Win4]−Pr[Win3]| ≤ 2h·AdvIND-CPA

SE,B′ (λ),
where B′ is a PPT adversary against the IND-CPA security.

Proof of Lemma 2: We prove this lemma by the standard
hybrid argument. To the end, we first define a sequence of
games G3.0,G3.1, . . . ,G3.h. Particularly, G3.` for ` ∈ [0, h] is
identical to G3 except that the first ` components of ct∗ (i.e.,
(ct∗1, ct

∗
2, . . . , ct

∗
`)) are the encryption of 0’s and the others are

the encryption of mγ . Clearly, it holds that G3,0 = G3 and
G3,h = G4. Next we argue that each two successive games
G3.`−1 and G3.` are computational indistinguishable for ` ∈
[h]. Note that the only difference between them lies in the `-th
component ct∗` of ct∗, which is the encryption of mγ in G3.`−1

while the encryption of 0’s in G3.`.

We assume for the sake of contradiction that there exists
an adversary A that can distinguish G3.`−1 and G3.` with non-
negligible advantage. Then we construct an efficient algorithm
B′ to break the IND-CPA security of SE, as follows.

B′(1λ) runs A to obtain t∗, and generates
msk = (sk,H,B) ← SRE.KGen(1λ, b, h), where
sk ← MF.Setup(1λ), H = {Hj}j∈[h] and B = 0b. Then it
computes the set of indices It∗ = {i∗j : i∗j = Hj(t

∗)}j∈[h]

corresponding to t∗, indicating that for i ∈ It∗ there
exists j ∈ [h] s.t. i = i∗j . B′ then randomly chooses
u1, . . . , u`−1, u`+1, . . . , uk from Y and sets the PRF values
{ski}i∈[b]\{i∗`} as follows:

ski =

{
F (sk, i), i ∈ [b] \ It∗
uj , i ∈ It∗ \ {i∗`}

where ski∗j = uj for j ∈ [h] \ {`}. Next, B′ uses them
along with sk to simulate all the following queries.

For an encryption query (m, t), B′ computes ij = Hj(t)
for each j ∈ [h], then checks if ij = i∗` and simulates the j-th
component of ct according to the following cases:
• ij 6= i∗` : Computes ctj ← SE.Enc(skij ,m) with the

value skij , which is set as above and known to B′.
• ij = i∗` : Asks the SE challenger to create a corre-

sponding ciphertext ctj ← SE.Enc(ski∗` ,m), where
ski∗` is chosen randomly by the challenger and un-
known to B′.

Finally, B′ returns ct = (ct1, ct2, . . . , cth) to A.

For a key-revocation query R, B′ simulates the response
skR in the same way as G3.

In the challenge phase, B′ receives two distinct messages
m0,m1 from A and picks γ $←− {0, 1}. Then it sets m′0 = mγ

and m′1 = 0|m|, and generates the challenge ciphertext as:

17

• j ≤ ` − 1: Computes ct∗j ← SE.Enc(ski∗j , 0
|m|).

Recall that ski∗j = uj for j 6= `.
• j = `: Submits m′0,m

′
1 to the SE challenger and asks

for a challenge ciphertext ct∗j ← SE.Enc(ski∗` ,m
′
δ),

where ski∗` and δ ∈ {0, 1} are randomly chosen by
the challenger.

• j ≥ `+ 1: Computes ct∗j ← SE.Enc(ski∗j ,mγ).
Finally B′ outputs ct∗ = (ct∗1, ct

∗
2, . . . , ct

∗
h).

At last, A outputs her guess γ′ ∈ {0, 1} when she halts,
and B′ outputs δ′ = 1 if γ′ = γ.

We can see from the above that B′ perfectly simulates
G3.`−1 when δ = 0 (i.e., m′0 = mγ) and G3.` when δ = 1 (i.e.,
m′1 = 0|m|). Then we have Pr[δ′ = 1|δ = 0] = Pr[Win3.`−1]
and Pr[δ′ = 1|δ = 1] = Pr[Win3.`], so the advantage of B′ is

AdvIND-CPA
SE,B′ (λ) = 1

2 |Pr[δ′ = 1|δ = 1]− Pr[δ′ = 1|δ = 0]|
= 1

2 |Pr[Win3.`]− Pr[Win3.`−1]| .
Further, we get that

|Pr[Win4]− Pr[Win3]| ≤
h∑̀
=1

|Pr[Win3.`]− Pr[Win3.`−1]|

≤ 2h · AdvIND-CPA
SE,B′ (λ).

This completes the proof of Lemma 2.

B. Proof of Theorem 2

Theorem 3. The proposed SSE scheme Σ is LBS-adaptively
Type-II-backward-private, if Σadd is an LFS-adaptively
forward-private SSE scheme, SRE is an IND-sREV-CPA
secure compressed SRE scheme and F is a secure PRF,
where LFS is the leakage of Σadd as defined in [7] and
LBS = (LSrchBS ,LUpdtBS) is defined as LUpdtBS (op, w, ind) =
op and LSrchBS = (sp(w),TimeDB(w), DelTime(w)).

Proof of Theorem 2: The proof proceeds with a sequence
of games. It starts with the real game and ends with a game
that can be efficiently simulated with the leakage LBS .

Game G0: This is the real SSE security game REALΣ
A(λ),

so we have that Pr[REALΣ
A(λ) = 1] = Pr[G0 = 1].

Game G1: In this game, we modify the way of evaluating
PRF F . Namely, each time a previously unseen keyword w
(resp., document/keyword pair (w, ind)) is used, we selects
a random output from the range space of F , instead of
computing F (Ks, w) (resp., FKt

(w, ind)), and records it in
table Tokens (resp., Tags). Whenever F is recalled on the
same input w (resp., (w, ind)), the associated PRF value is
retrieved straightforwardly from Tokens (resp., Tags). We
claim that this changes the distribution of the adversary’s view
only negligibly. This is because the replacement of F (Ks, ·)
(resp., F (Kt, ·)) induces a distinguishing advantage equal to
that of PRF against an adversary making at most N calls to
F . Therefore, there exists an efficient reduction algorithm B1

such that |Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2AdvPRF
F,B1

(λ).

Game G2: We modify this game by replacing real calls
to the SSE scheme Σadd by calls to the associated simulator
Sadd. To do so, we use some bookkeeping to keep track of
all the Update queries as they come, rather than rely on the
server to store them, and postpone all addition and deletion
operations to the subsequent Search query. This can be done
only because the updates leak nothing about their contents,

which is guaranteed by the forward privacy of Σadd and the
obliviousness of deletions to server.

Moreover, a list Ladd is initialized and used in this game. In
particular, the list Ladd contains the encryption of the inserted
indices for the subsequent search on w, their associated tags
and the insertion timestamps, which in fact corresponds to the
update history on w for the scheme Σadd and will be taken
as the input of the simulator Sadd. It can be seen that the
distinguishing advantage between G2 and G1 can be reduced
to the LFS-adaptive forward privacy of Σadd. Thus, there exists
a PPT adversary B2 such that |Pr[G2 = 1] − Pr[G1 = 1]| ≤
AdvLFS

Σadd,Sadd,B2
(λ).

Game G3: This game is identical to G2 except for gen-
erating the ciphertexts of indices of the deleted documents.
Namely, when encrypting the document indices that were
inserted previously and deleted later with the SRE scheme,
we replace the indices by constant 0.

Since the modification above works only on the cipher-
texts with revoked tags, we can reduce the distinguishing
advantage between G3 and G2 to the IND-sREV-CPA security
of the SRE scheme. Notice that, the selective security is
sufficient for the application here, as the reduction algorithm
can obtain from UpHist(w) the revoked tags before simulating
the encryption of non-deleted indices and the revoked secret
key. Thus, there exists a reduction algorithm B3 such that
|Pr[G3 = 1]− Pr[G2 = 1]| ≤ AdvIND-sREV-CPA

SRE,B3
(λ).

Game G4: In this game, we modify the way of construct-
ing list Ladd and the way of updating the compressed data
structure D. Namely, we first compute the leakage information
TimeDB and DelTime from the table UpHist, and then
base this information to construct Ladd and update D. This
has no influence to the distribution of G3, so we have that
Pr[G4 = 1] = Pr[G3 = 1].

Game G5: The tags in this game is generated in a different
way. Namely, we generate the tags on the fly, instead of
computing them from document/keyword pairs and storing
them in the table Tags. We can do it like this because it is
supposed that each document index was added/deleted at most
once during the updates. In this way, tags will not repeat and
we need not to store them for keeping consistence. Therefore,
it holds that Pr[G5 = 1] = Pr[G4 = 1].

Simulator. To build a simulator from G5, what remains
to do is to avoid explicitly using the keyword w to gener-
ate Tokens[w]. This can be done easily through replacing
w by min sp(w). Moreover, the construction of Ladd and
update of D can be properly simulated by taking the leakage
TimeDB(w) and DelTime(w) as the input of Search, and
there is no need for the simulator to keep track of the updates
any more. At this point, we can see that G5 can be efficiently
simulated by the simulator with the leakage function LBS , so
we get that Pr[G5 = 1] = Pr[IDEALΣ

A,S,LBS
(λ) = 1].

Finally, by combining all above we conclude that the
advantage of any PPT adversary attacking our scheme Σ is

|Pr[REALΣ
A(λ) = 1]− Pr[IDEALΣ

A,S,LBS
(λ) = 1]|

≤ 2AdvPRF
B1,F (λ) + AdvLFS

Σadd,Sadd,B2
(λ) + AdvIND-sREV-CPA

SRE,B3
(λ).

18

