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Abstract—Due to recent world events, video calls have be-
come the new norm for both personal and professional remote
communication. However, if a participant in a video call is not
careful, he/she can reveal his/her private information to others
in the call. In this paper, we design and evaluate an attack
framework to infer one type of such private information from
the video stream of a call – keystrokes, i.e., text typed during the
call. We evaluate our video-based keystroke inference framework
using different experimental settings and parameters, including
different webcams, video resolutions, keyboards, clothing, and
backgrounds. Our relatively high keystroke inference accuracies
under commonly occurring and realistic settings highlight the
need for awareness and countermeasures against such attacks.
Consequently, we also propose and evaluate effective mitigation
techniques that can automatically protect users when they type
during a video call.

I. INTRODUCTION

Catalyzed by the ubiquity of the Internet, audio-video call-
ing has become a mainstream method of remote communica-
tion [13]. The trend has recently seen a further boost due to the
COVID-19 pandemic [4], whereby audio-video calls became
the default medium for professionals to confer remotely and
for students to attend lectures from home. Nonetheless, audio-
video calls (often referred to as just video calls) should be
considered privacy sensitive as participants may have spoken
or displayed private information during the call. To protect
video calls from eavesdropping threats, secure video calling
protocols are usually end-to-end encrypted. However, even if
we disregard widespread system weaknesses [2], [19], end-to-
end encryption may be ineffective when an adversary is present
at one end of the video call.

Can an adversary, who is at one end of a video call, infer
some potentially sensitive information about the participant
at the other end which is not trivially visible/audible from
the call? Modern video calling softwares such as Skype [10],
Hangouts [5] and Zoom [17] already provide features such
as background-blurring to enable users to potentially blur/hide
everything in the users’ background, except their body. In this
work, we want to investigate what sensitive information can

be inferred by just observing a target users’ body and physi-
ological features in an audio/video call. More specifically, we
would like to investigate the feasibility of inferring keystrokes
of a target user on a traditional QWERTY keyboard by just
observing their video feed on a video calling application such
as Skype, Hangouts and Zoom.

Prior efforts in the literature have shown that the sound
(audio) of keystrokes typed during a video call can be exploited
to infer the text typed [29], [21]. But, audio-based keystroke
inference is not very practical primarily because of naturally
occurring (audio) noises in an audio-video call signal, such
as background sound and participants talking [21]. Moreover,
such audio-based attacks may not work for the relatively
quieter membrane and dome-switch keyboards, because (i) the
low amplitude keystroke audio emanations are not effectively
captured by many entry-level microphones [48], and (ii) non-
vocal low amplitude audio frequencies are often filtered out
by many video calling applications [6], [18].

We believe that the video signal in such calls is less prone
to naturally occurring noises and can be exploited for effective
keystroke inference attacks. It is also a relatively unexplored
modality for keystroke inference. Our contributions in this
paper includes modeling commonly observed typing behaviors
during a video call, and utilizing them to construct a novel
video-based keystroke and typing detection framework. We
then create a text inference framework that uses the keystrokes
detected from the video to predict words that were most likely
typed by the target user (Section V). We then comprehensively
evaluate both the keystroke/typing detection and text inference
frameworks using data collected from a large number of human
subject participants in two different settings: (i) an In-Lab
setting (Section VI) where the video call setup, including
the device(s) used for the calls, participants’ sitting position
during the call, and the text typed by the participants is
fixed, and (ii) an At-Home setting (Section IX) where the
video call data is collected in a realistic environment without
any constraints or requirements. Evaluation results for the
In-Lab setting are outlined in Sections VII and VIII, while
results for the At-Home setting appear in Section X. We also
propose and evaluate multiple techniques which can help in
the mitigation of such keystroke inference attacks from video
calls (Section XI).

II. RELATED WORK

The research literature is rich with various modalities
of side-channel inference threats targeting different types of
private information. We limit our literature review discussion
in two closely related directions as follows.
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Keystroke Inference Threats. This direction deals with the
class of inference threats that aim to reconstruct text typed by
a target user, using one or more modalities of side-channels.
Keystroke inference attacks can have potentially dangerous
consequences as the text typed can often be private in nature,
and can sometime even contain sensitive information, such as
credit card numbers, authentication codes, and addresses. Side-
channel keystroke inference threats have utilized electromag-
netic emanations from keyboards [49], optical or visual cues
[44], [47], [28], Wi-Fi channel state information [20], [33],
audio or acoustic signals from keyboards [22], [24], [57], [31],
[56], [29], [21], typing-related table vibrations captured by a
nearby sensor [39], smartphone motion sensors (to infer text
typed on the smartphone) [25], [40], [42], [54], and wearable
motion sensors [51], [35], [50], [36], [38]. Among these prior
works, [29] and [21] are the most closely related research
efforts to ours. Both works demonstrated the feasibility of
accurate keystroke inference threats from keystroke sounds
propagated over a video call. However, as mentioned earlier,
such sound or audio based threats may not be practical be-
cause of naturally occurring interferences (such as participants
talking) and background noise-cancellation techniques being
used by many video calling applications [6], [18] that also
eliminates/reduces the propagation of keystroke sounds.

Inference Attacks Using Visual Side-Channels. With the
recent ubiquity of video capturing hardware embedded in
many consumer electronics, such as smartphones, tablets,
and laptops, the threat of information leakage through visual
channel has amplified. Moreover, high-end digital cameras and
lenses have also trickled down to the consumer market at
competitive prices, making them easily accessible to an ad-
versary. Earlier works leveraged upon optical emanations from
monitors [32] or from eyes [23] to infer information such as
content being displayed or watched. More recent works studied
information leakage due to outdoor light effusions, such as
inference of multimedia consumption [37], [53] and private
data exfiltration using smart lights [37], [43]. A few research
works also leveraged on visual side-channel for keystroke
inference threats. Simon and Anderson [44] were able to infer
keystrokes made on a smartphone based on visual movements,
captured from the on-device camera, that occurred as a result
of individual keystrokes. Similarly, Sun et al. [47] were able to
infer keystrokes typed on a tablet just from visual observation
of the rear side of the tablet. Chen et al. [28] leveraged on
users’ eye movements for touchscreen keystroke inference. To
the best of our knowledge, our paper is the first work that
proposes and evaluates a keystroke inference framework that
solely leverages body movements observable in video calls.

III. BACKGROUND

In this section, we describe the different factors affecting
typing-related body movements observable in a video call.

Muscles, Joints and Motor Control. Human bodily move-
ments, clinically known as motor functions, are achieved
primarily through movement of joints. Joints are formed where
two or more bones are connected via ligaments, a flexible
fibrous connective tissue which binds together bones and/or
cartilages. These joints allow several degrees of freedom in
the human body. With the help of muscles that wrap around
the bones and connect to the bones via tendons, along with
motor control signals from the brain that appropriately engages

the required set of muscles, the human body can carry out
tasks through coordinated joint movements. Tasks may range
from basic balance and stability of the body to more complex
actions, such as running or typing on a keyboard. Also,
most tasks are actuated through movement of multiple joints
simultaneously, rather than just one at a time. Figure 16a
(Appendix A) shows an overview of the shoulder and arm
bones, and their joints, which when engaged in a series of
harmonious movements can enable a human to type hundreds
of words per minute [41].

When a user starts typing a sentence, the initial set of
joint movements are significantly dependent on the keyboard
positioning and user’s typing habits (i.e., the set of motor
control signals learned by the brain). A user can exercise
an elbow joint, shoulder joint or joints from the Carpus
and Metacarpus regions or a combination of all of them,
that ultimately positions the user’s finger on the initial key.
The joint movements associated with keystrokes following the
initial keystroke depends primarily on the user’s typing style,
e.g., hunt-and-peck, touch-typing, or hybrid (more details on
typing styles in Appendix B). Certain typing styles, such as
hunt-and-peck, result in significant upper hand movements
(not just fingers or wrist) between keystrokes, than others.
For instance, in hunt-and-peck typing the elbow, shoulder, and
Carpus joints are heavily utilized, whereas in touch-typing the
Carpus, Metacarpus, and Phalanges joints are heavily utilized.

Reaction Force of a Keystroke. A common phenomenon
observed across all typing styles is that whenever the user
presses a key, a reaction force is produced in the opposite
direction (Newton’s third law of motion). This reaction force
propagates throughout the arm and shoulder muscles and joints
until the force is absorbed by the body. As a result, even if the
user uses only the joints in the Phalanges bones to press a key,
one can visually observe subtle arm and shoulder movements
due to the reaction force exerted by the key on the user’s hand.
However, the five fingers of each hand are connected through
different bones in the wrist, that have different joints in the
Carpus area as shown in Figure 16a (Appendix A). As a result,
the reaction force of a keystroke propagates slightly differently
through the arm and shoulder muscles and joints, depending on
which finger was used to press the key. Visually, this translates
to distinguishable types of upper hand movements (which is
observable through a webcam during a video call) for key
presses with different fingers.

Characteristics of the Available Call Data. During a typical
video call, an adversary can leverage two different types of
information for inferring keystrokes made during the call.

(1) Video Data or Feed: Most modern video calling appli-
cations employ a webcam to capture the visual and/or audio
signals during the call. The webcam’s camera sensor captures
the visual image of the target subject and his/her surroundings
as a series of two-dimensional images, also known as frames.
In other words, a video is a chronological ordering of two
dimensional images or frames, displayed in that order at a very
high rate or speed (often measured in frames/second or fps in
short). A typical modern webcam can capture 30 or 60 fps,
and at 1280×720 (921,600 pixels) or 1920×1080 (2,073,600
pixels) resolution per frame. Based on the traditional position
of a webcam during a video call, lateral movements of hand
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and shoulder can easily be observed in the captured video
(Figures 16b and 16c in Appendix A).

(2) Audio Data or Feed: The sound during a video call
is typically captured either using a microphone sensor inte-
grated within the webcam or using an external microphone.
The captured sound often contains both the user’s voice
(or speech) and background/ambient noise, including sound
related to the keystrokes made by the user or any other
activities performed by the user during the call. Video calling
softwares also often implement audio optimizations, such as
dampening/filtering of non-vocal frequencies [6], [18] and
echo suppression/cancellation. Most modern microphones can
record audio signals at 44, 100Hz or more, and such high-
fidelity audio can capture fine-grained audio characteristics.
However, a microphone may not always be enabled by the user
during a video call, as observed in the recent popularity of the
push-to-talk feature provided by most video calling software
that lets a user mute sound at the push of a button. Also,
during multi-participant video conference calls, it is a common
courtesy or etiquette for participants to mute their microphone
when they are not actively speaking. Nonetheless, while our
attack framework employs only the available video data for
keystroke inference, we assume the availability of audio data
for comparative evaluation with a prior work [29].

IV. ADVERSARY MODEL

The goal of an adversary in our setting is to infer keystrokes
typed by a target user at the opposite end of a video confer-
ence/call by just employing the video feed from the call. To
undertake a purely video-based keystroke inference attack, we
assume that the adversary first records the video feed of the call
where the target user was a participant, and that the target user
typed private text on her/his keyboard during the call. More
specifically, we assume a field-of-view of a typical desktop or
laptop webcam where the video stream would consist of only
visible upper body movements of the user (and not the actual
keys being typed as then the attack would be trivial), as shown
in Figure 17 (Appendix C). Additionally, we assume that both
shoulders and upper arms are within the field-of-view of the
webcam, which is a practical assumption because desktop and
laptop webcams are often positioned centrally with respect to
the user. In addition to targeting participants in live video calls,
an adversary could also potentially target videos obtained from
public video sharing/streaming platforms such as YouTube [16]
and Twitch [12]. Many live streamers interact with their laptop
or desktop during a live video exposition, which could include
sensitive typed information, and thus, potentially targeted by
an adversary. As outlined earlier, the recorded video is nothing
but a series of picture frames sampled at a constant frequency,
and the adversary’s goal is to utilize the observable upper
body movements across all the recorded frames to infer the
private text typed by the target. The adversary does not have
any other medium of inferring the private text typed, and must
rely entirely on the video stream. This makes our attack more
practical as it can target not only real-time video calls (both
in a public and private setting), as well as, archived videos of
live exposition/events.

V. ATTACK FRAMEWORK
A. Overview

To draw a relationship between typing related body move-
ments observable in the video (Figure 16 in Appendix A) and
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Fig. 1: Overview of the keystroke inference framework.

the text being typed, the adversary has to formulate two key
procedures. First, within the video stream the adversary must
be able to accurately identify the occurrences of keystrokes
based on the upper body movements. Second, by modeling
the body movement characteristics immediately before, after,
and in-between detected keystrokes, the adversary must be
able to accurately predict words and sentences typed by the
target user. Let’s first intuitively describe how the adversary
can accomplish these objectives by giving an overview of the
different components of our video-based keystroke inference
framework (Figure 1). We will later provide details of each of
these components.

The recorded video first undergoes multiple pre-processing
steps in the following order: (i) background removal, (ii) con-
version to grayscale, (iii) face detection, and (iv) segmentation
of left and right arm regions based on their relative position
with respect to the face. After pre-processing, the framework
employs a keystroke detection algorithm based on Structural
SIMilarity (SSIM) index [52] across all the frames in each of
the left and right side video segments. Finally, the framework
computes several motion features from the video segments
immediately before and after each detected keystroke, and
employs them in a dictionary-based prediction algorithm for
word inference. Let’s now provide details of each component.

B. Pre-processing

Given a video v composed of lv frames recorded
at 30Hz, let us denote the set of frames in the
video as v = {f1, f2, f3, . . . , flv}. Assuming that the
video resolution is constant, each frame in v is com-
posed of m rows and n columns of pixel values such
that each pixel pi,j (where i ∈ {1, 2, 3, . . . ,m} and
j ∈ {1, 2, 3, . . . , n}) in a frame represents a RGB value. The
RGB value of a pixel represents the hue (color), saturation,
and brightness of that particular pixel in the frame. With this
representation of a recorded video, we now describe the four
pre-processing steps, in sequential order.

Background Removal. The background removal process is
applied to all frames (fi ∈ v), in order to identify the location
of the body in the frame. We utilize the DeepLabv3 model
[27] for this task, which employs Atrous Convolution with
upsampled filters to extract dense feature maps and to capture
long range context. Training of the model is done using he
Microsoft COCO dataset [34], which contains a rich set of
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human body related training samples. With the background re-
moved, we can focus purely on the body’s relative movements
vis-à-vis typing. Example outputs of this background removal
process is shown in Figure 17 (Appendix C). This background
removal step makes our proposed framework agnostic to any
moving elements in the background. Let’s denote background-
removed frames as rfi.

Grayscale. We next convert all background-removed frames
({rf1,r f2,r f3, . . . ,r flv}) to colorimetric grayscale [46], us-
ing the RGB values of individual pixels in a frame. This
conversion to grayscale simplifies all following steps by mak-
ing them color-independent. Let’s denote such background-
removed grayscale frames as rgfi.

Face Detection. Our next objective is to focus specifically on
the two arms, where typing related motion is most perceptible.
However, as webcam setups may not be predetermined or
homologous, we require a webcam and webcam setup agnos-
tic methodology for automatically and accurately identifying
arm regions across all background-removed grayscale frames
({rgf1,rg f2,rg f3, . . . ,rg flv}). To do so, we leverage on the
consistency in relative position of the target user’s arms with
respect to their face (Figure 18 in Appendix C). The intuition
is that the left arm will be located around the bottom-right
of the face in the frame, and similarly the right arm will
be located around the bottom-left of the face in the frame.
Face detection is a matured research topic, with several state-
of-the-art frameworks and training datasets readily available.
We utilize the CPU-friendly Faceboxes model [55], that
employs Rapidly Digested Convolutional Layers (RDCL) and
the Multiple Scale Convolutional Layers (MSCL), to detect
target user’s face in each frame. For training the Faceboxes
face detection model, we used the WIDER FACE dataset [15],
that consists of 12,880 diverse facial images.

Segmentation. The facebox generated by Faceboxes iden-
tifies the user’s face and draws a rectangular boundary around
it (solid green rectangle in Figure 18). The objective of this
last part of the pre-processing is to utilize this facebox in
order to automatically segment the left and right arms in
the background-removed grayscale frame. Assume that in a
given frame rgfi, the four vertices of the generated facebox
are located at pixels pj,k, pj,(k+a), p(j+b),k, and p(j+b),(k+a),
where a and b are the width and height of the facebox (in
pixels), respectively. Using these facebox vertices, the left arm
segment is calculated as the rectangular area of the frame
enclosed within the pixels p(j+b),(k+a), p(j+b),n, pm,(k+a), and
pm,n. Similarly, the right arm segment is calculated as the
area of the frame enclosed within the pixels p(j+b),1, p(j+b),k,
pm,1, and pm,k. Let’s denote the left and right arm segments
extracted from a frame rgfi as Lsi and Rsi , respectively.

C. (Potential) Keystroke & Typing Activity Detection

Using the preprocessed left and right arm segments from
all frames of the video (Lsi and Rsi , respectively, where
i ∈ {1, 2, 3, . . . , lv}), our next objective is to precisely de-
termine the time-stamps, i.e., the frames, when a keystroke
was typed using either hand. This is non-trivial because the
adversary does not have a view of the lower arm. In this
section, we propose a novel keystroke detection algorithm
which accurately detects keystroke events using only upper
hand arm movements as observed in Lsi and Rsi . The proposed

keystroke detection algorithm is applied independently for
each arm, i.e., the left and right arm segments Lsi and Rsi
(i ∈ {1, 2, 3, . . . , lv}) are processed independently for the
keystroke detection task.

Intuition. Every time the target user presses a key on her/his
keyboard, she/he undertakes some degree of hand movement,
the extent of which may vary depending on the typing style
(Appendix B) and position of the key on the keyboard. This
movement may be from a resting position, or from an earlier
keystroke using the same hand. Moreover, every keystroke
lasts for a few milliseconds, until the user depresses the key,
and during this time there is little to no movement. Finally,
after the keystroke is completed, the user’s hand moves on
to another key or back to a resting position. Intuitively, we
should be able to observe this pattern of body movements in
the video (v). Accordingly, our keystroke detection algorithm
(Algorithm 1 in Appendix D) is designed based on empirically
observed characteristics of the (left or right) arm segments
immediately before, during, and immediately after a keystroke.
The empirically observed characteristics that we leverage upon,
as described below, are fairly independent of the typing style.
For simplicity, going forward we will describe the keystroke
detection process only for the left-hand. The process for the
right hand is identical.

Quantifying Body Motion. SSIM [52] is a well-known
metric for measuring the similarity between two images, and a
high SSIM index between consecutive frames would denote
insignificant body movements, and vice versa. To quantify
left-hand body movements across consecutive frame segments,
we compute SSIM index between every Lsi and Lsi+1 (i ∈
{1, 2, 3, . . . , lv−1}). This results in a series of SSIM indices
SSIMLs

= {Ls1 ./ Ls2, L
s
2 ./ Ls3, . . . , L

s
lv−1 ./ Lslv},

where ./ is the SSIM operator. To understand the rate of
change in body movements across consecutive frame seg-
ments, we also compute the discrete derivative of SSIMLs

as dSSIMLs

= {(Ls1 ./ Ls2) − (Ls2 ./ Ls3), (L
s
2 ./ Ls3) −

(Ls3 ./ Ls4), . . . , (L
s
lv−2 ./ Lslv−1) − (Lslv−1 ./ Lslv )}. In

terms of body motion detected between the frame segments,
SSIMLs

may be viewed as the ‘speed’ and dSSIMLs

as
the ‘acceleration’. Similarly, we also independently compute
SSIMRs

and dSSIMRs

for the right hand.

Observed Characteristics. We observed a consistent pattern
in the dSSIMLs

measurements, which is in line with our
intuition outlined earlier. We observed that:

(1) If the video is recorded at 30 fps, and a keystroke occurred
in frame t, there exists a local maxima in dSSIMLs

at
(Lst−2 ./ L

s
t−1) − (Lst−1 ./ L

s
t ). This is a result of the

increase in body motion immediately before a keystroke
followed by the lack of body motion for the duration of
the key press.

(2) The above local maxima is followed by a local minima
within the next 0.05 sec. For a video captured at 30 fps,
this means that the local minima occurs among the next
two elements of dSSIMLs

, i.e, (Lst−1 ./ L
s
t ) − (Lst ./

Lst+1) or (Lst ./ L
s
t+1)− (Lst+1 ./ L

s
t+2). This is a result

of the lack of body motion for the duration of key press
followed by the body motion immediately after a keystroke
when the user’s hand moves on to another key or back to a
resting position. If no local minima is detected within this
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time frame, it would imply that the user’s body movements
are likely not related to keystrokes.

An example of this pattern can be observed in Figure 2.

Keystroke Detection Algorithm. We utilized the above ob-
served characteristics to design a keystroke detection algo-
rithm (Algorithm 1) that automatically labels frames where
keystrokes potentially happened. In addition to the above
observed characteristics, Algorithm 1 also employs a filtering
technique to eliminate body movements that are not related
to typing activity, but may still trigger a false positive. Algo-
rithm 1 filters based on statistical analysis of magnitudes in
dSSIMLs

. According to this filtering technique, a frame t is
considered to be a keystroke frame if:

(1) dSSIMLs

at (Lst−2 ./ L
s
t−1)−(Lst−1 ./ L

s
t ) lies between

φaσdSSIMLs and φbσdSSIMLs , in addition to being the
local maxima. σdSSIMLs is the standard deviation in
the distribution of magnitudes in dSSIMLs

, and optimal
values of φa and φb can be determined empirically.

(2) The local minima following t in dSSIMLs

((Lst−1 ./
Lst )− (Lst ./ L

s
t+1), or (Lst ./ L

s
t+1)− (Lst+1 ./ L

s
t+2)) is

less than φcσdSSIMLs . Again, σdSSIMLs is the standard
deviation in the distribution of magnitudes in dSSIMLs

,
and optimal value of φc can be determined empirically.

The effect of different φa, φb, and φc values on keystroke
detection is presented in Section VII-A. Appropriately chosen
values of φa, φb, and φc would ideally eliminate false positives
related to frequently occurring minor body movements that are
closer to the mean value (µdSSIMLs ), and can be otherwise
regarded as noise. Similarly, appropriately chosen values of
φa, φb, and φc will also eliminate false positives related
to infrequently occurring major body movement that are far
away from the mean value (µdSSIMLs ), and can be otherwise
regarded as outliers.

Typing Activity Detection. As the target user may type at
specific instance(s) in time during the video call, it is necessary
for the adversary to detect the time periods (or windows) where
typing activity occurred. Typing activity detection is especially
needed to effectively eliminate false positives during keystroke
detection, which could otherwise result in incorrect word
prediction results. We next outline a heuristic-based typing
activity detection technique which employs our individual
keystroke detection algorithm (Algorithm 1).

As outlined earlier, Algorithm 1 returns a set of frames

where potential keystrokes could have occurred, but these de-
tected potential keystrokes could also include non-typing activ-
ities (false positives). We leverage on a few intuitive heuristics
in order to distinguish between the (detected) keystrokes that
correspond to a typing activity from those that may correspond
to non-typing activities similar to typing. The first heuristic,
referred as maximum speed filter, filters out false positives
from the detected keystrokes by observing the maximum rate at
which these (potential) keystrokes are detected by Algorithm 1.
Studies have shown that most users typically type at a rate of
about 4 keystrokes per second, and that it is highly unlikely
to come across a typing rate of 10 or more keystrokes per
second [7]. Thus, the maximum speed filter will filter out (as
false positives) from the detected keystroke frames those that
correspond to a rate of 10 or more keystrokes per second, per
hand.

The second heuristic, referred as location filter, filters out
false positives by determining if both hands are on or near
the keyboard. Here, the basic idea is to first create a set of
reference frames (K) where the target user is most likely
typing (i.e., hands on/near the keyboard), and then use these
reference frames to determine (using optical flow [45]) if
their hand(s) are at a significantly different position in the
other remaining frames corresponding to potential keystrokes.
Specifically, we create the reference set K by including all
potential keystroke frames in each 2-second window, if and
only if the window contains at least four detected potential
keystrokes (both hands combined) with each hand contributing
two or more potential keystrokes. This condition represents a
very likely case of typing activity, and thus the user’s hands
being on or near the keyboard. We then use this reference set
to filter out as false positive any potential keystroke frame that
is not within an empirically evaluated optical flow distance
threshold to any frame (of the corresponding hand) in the
reference set K.

Similar to the maximum speed filter, the next heuristic we
employ is the minimum speed filter which filters out detected
potential keystrokes as false positives if they occur at a rate of
one (or lower) keystroke per second, combined for both hands
(i.e., representing highly unlikely typing rate). The fourth and
final heuristic, referred as exclusive hand filter, attempts to
detect one-handed non-typing activities (e.g., mouse clicks)
that often get classified by Algorithm 1 as potential keystrokes.
Specifically, in each 10-second window, the exclusive hand
filter filters out 10 or more consecutive potential keystrokes
with the same hand as false positives. Figure 3 outlines the
order in which these heuristics are applied for filtering out
false positives.

All potential keystrokes that are not filtered based on the
above four heuristics represent typing activity and are used for
word predictions. Figures 19 and 20 in Appendix E further
elucidates the working of our heuristic-based approach by
means of two real scenarios that we encountered during our
experimentation. We present a comprehensive evaluation of its
performance later in Section X.

D. Word Prediction

We now describe how the adversary can infer words that
were typed from the detected keystrokes, using two different
groups of information. The first group of information is simply
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Fig. 3: Overview of the typing activity detection technique.

the number of keystrokes detected for a word, and the hand
(left/right) which was used to conduct individual keystrokes
of the word. Let us call this information as keystroke infor-
mation. The second group of information is the magnitude
and direction of body displacement, more specifically the arm
displacement, between consecutive keystrokes of the word.
Assuming that the target user typed on a standard QWERTY
keyboard, mapping the arm displacement between consecutive
keystrokes to relative position of the keys can significantly
improve the inference accuracy. Let us call this information as
displacement information. After executing the typing activity
detection (utilizing Algorithm 1) the adversary already has
knowledge of the keystroke information – all the frame seg-
ments in which a keystroke was detected, separately for each
hand. However, the displacement information is not readily
available, and will require us to employ advanced computer
vision techniques to effectively measure arm displacement
between consecutive keystrokes.

Let keystrokesFSL denote the list of all detected left-
hand keystroke frame segments and keystrokesFSR de-
note the list of the right-hand keystroke frame segments.
keystrokesFSL and keystrokesFSR essentially constitute
the keystroke information. We now describe how to utilize
these two lists (keystrokesFSL and keystrokesFSR) to
derive the displacement information. In brief, we (i) identify
the outer contour of individual arms in each keystroke frame
segment, (ii) calculate the displacement of individual arms by
tracking change in position of the outer edge of the arms
across consecutive keystroke frame segments, and (iii) interpret
calculated arm displacements with respect to the QWERTY
keyboard layout. After obtaining the displacement information,
we describe how the adversary can utilize both the keystroke
and displacement information to carry out word predictions
using a dictionary or reference database.

Outer Edge Detection of Arms. In order to efficiently
measure arm displacement between consecutive keystrokes, we
focus on specific regions of the keystroke frame segments.
Instead of trying to analyze movement of all pixels between
two keystroke frame segments, we focus on pixels covering the
outer-edge movements of the arms (Figure 4a). The intuitive
reasoning behind this design decision is that the characteristics
of outer-edge movements are reflective of the movement of the
entire upper arm and shoulder. Let us label the subset of pixels
in a keystroke frame segment covering the outer contour/edge
of the body as the outer contour, or OC. To compute the
outer contour in each of the keystroke frame segments, we
first detect all edges in a keystroke frame segment using Canny
edge detection technique [30]. As the background in the frame

(a) (b)

pα

pγ

pβ
45°

(c)

pβ

pα

(d)

pγ

pβ

(e)

Fig. 4: (a) A keystroke frame segment, (b) Outer contour
(OC), (c) 45° projection from pα that intersects OC at pβ ,
(d) Shoulder contour (SC), and (e) Arm contour (AC).

segment is already removed during the keystroke detection step
(Section V-C), outer edges of the arm and shoulder are easily
captured by the edge detection process. However, there is a
possibility that edges within the arm and shoulder areas, such
as creases or patterns on a shirt, could also get detected as
an edge. To overcome this issue, we device a straightforward
approach to remove all additional edges (i.e., all edges except
the outer edge of the arm and shoulder), as described below.
In case of the left hand, for each row of pixels we keep the
rightmost pixel in the edge-detected frame segment that is part
of an edge. The intuition is that in the absence of a background,
the rightmost pixel in each row has to be part of the outer
contour. Similarly, in case of the right hand, for each row of
pixels we keep the leftmost pixel in the edge-detected frame
segment that is part of an edge. An example of outer contour
can be seen in (Figure 4b).

After the outer contour is computed for every keystroke
frame segment in keystrokesFSL and keystrokesFSR, we
next segment the outer contour into shoulder contour (SC) and
arm contour (AC) based on human physiology (Figure 16a).
This physiology-based division is approximated by drawing a
projection from the pixel nearest to the neck (pα) such that
the angle between this projection and the vertical boundary of
the frame segment is 45° (Figure 4c). Let pβ be the pixel
where this projection intersects the outer contour, and pγ
be the pixel farthest from the neck in the outer contour.
Pixels in the outer contour between pα and pβ becomes the
shoulder contour, and pixels in the outer contour between
pβ and pγ becomes the arm contour. Obviously, this is just
an approximate computation of shoulder and arm contours
as the underlying physiological differences between person to
person cannot be accurately modeled using available webcam
video data. Figure 4d and Figure 4e shows shoulder and arm
contours, respectively, computed for the outer contour example
mentioned earlier. While the arm contours are directly useful
in displacement calculations, explained next, shoulder contours
are also utilized for calibrating the displacement calculations.

Displacement Calculations. We employ sparse optical flow
technique [45] to quantify hand displacements between con-
secutive keystrokes. Sparse optical flow is a computer vision
technique that takes a set of pixels (for example, constituting
an object) within an image as input, and outputs a vector
set representing the displacement of those pixels (and thus
the object) in another image. Sparse optical flow is especially
useful to track object movements across chronological frames
of a video. In our framework, we apply sparse optical flow
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to track the displacement of shoulder and arm contours across
all consecutive keystroke frame segments, individually for each
hand. For simplicity, we use the left hand to explain the use of
sparse optical flow on two consecutive keystroke frame seg-
ments (∈ keystrokesFSL), say Lsi and Lsi+1, with respective
arm contours ACi and ACi+1. By applying sparse optical flow
between ACi and ACi+1, we obtain a set of displacement
vectors representing the direction and magnitude of how each
pixel in ACi has shifted in ACi+1. We then use this set of
displacement vectors to calculate a mean displacement vector
for the arm contour, and let us call it −→oai. Calculated in a
similar fashion, let us call the mean displacement vector for
the shoulder contour as −→osi. In summary, a −→os represents
the average movement of the shoulder between consecutive
keystrokes, whereas a −→oa represents the average movement of
the hand between consecutive keystrokes.

Our objective behind computing −→os and −→oa is to use these
displacement vectors to determine the relative position of the
keys corresponding to keystrokes. We carry out two additional
operations using the displacement vectors −→oa and −→os in order
to make our inference framework more generalizable. First,
we observed that in certain scenarios the camera itself may
move slightly, in addition to the arm. This can be prominently
observed in the case of a laptop webcam, where a press on
the laptop keyboard can result in a noticeable motion of the
webcam which is generally located on top of the display. We
solve this by applying sparse optical flow on the background
during the pre-processing (Section V-B), and negating the
mean displacement vector of the background (

−→
ob) from −→oa and−→os. Second, we observed that in certain instances the typer

changes her/his posture in between consecutive keystrokes,
for example due to fatigue. To address this, we utilize the
shoulder displacement (−→os) as an approximation of posture
changes, and subtract it from −→oa. Combining both of these
operations, we obtain −→om = −→oa−−→os−

−→
ob, where −→om represents

the approximate average arm displacement, free of influence
from posture or camera movements, that happened between
consecutive keystrokes.

Interpreting Calculated Arm Displacements. From our
keystroke detection (Section V-C), we are already aware of
which hand was used to type individual letters. While this
information alone can be very useful in conducting dictionary-
based predictions, we deploy the arm displacement vector (−→om)
computed now to further reduce the search space. Reduction
in the search space will in turn make our predictions more
accurate. Between any two consecutive keystrokes using the
same hand, we classify the corresponding −−→omi into one of
the four intercardinal directions: northeast (NE), northwest
(NW ), southeast (SE), southwest (SW ). The classification
of a left hand −−→omi is conducted as per conditions listed in
Table I (Appendix F). In Table I,

−−−−→
omi(x) and

−−−−→
omi(y) are

the x-axis and y-axis displacements (i.e., vector components),
respectively, measured in pixels. The classification is isomor-
phic in case of right arm displacements between keystrokes,
as listed in Table II (Appendix F).

Template Inter-keystroke Directions. Now, we define tem-
plate inter-keystroke directions on the standard QWERTY
keyboard, which are the ideal directions a typer’s hand should
follow. To define the template inter-keystroke directions, we
first divide the QWERTY keyboard into two halves (left

and right). The left side of the keyboard contains the letters
{q, w, e, r, t, a, s, d, f, g, z, x, c, v, b} while the right side of the
keyboard contains the letters {y, u, i, o, p, h, j, k, l, n,m} as
shown in Figure 21 (Appendix F). Similar to prior works
that used an analogous modeling [39], [36], we assume that
a typer will predominantly type keys on the left side of the
keyboard using her/his left hand, and vice versa. However,
every key on the keyboard occupies a rectangular area, and
a typer can have some variance in the position within each
key where it is pressed. Some keys may be pressed in the
center, while others could be pressed around the edges. This
naturally occurring variance lead us to model the template
inter-keystroke directions more flexibly using nine possible
scenarios between any two keys keyi and keyj , as detailed
in Table III (Appendix F) and exemplified in Figure 21
(Appendix F).

Word Inference. Our word prediction is a dictionary-based
search for words based on (i) matching the order and number
of left and right handed keystrokes, and (ii) matching the
calculated direction of arm displacements with the template
inter-keystroke directions. To satisfy the first criterion, a wordi
in the dictionary is deemed as a candidate for the typed word
if keystrokesFSL and keystrokesFSR contain a combined
number of keystroke frame segments equal to the length of
wordi. The keystroke frame segments in keystrokesFSL and
keystrokesFSR should also be chronologically interleaved
according to the alphabets in the left and right sides of the
keyboard (Figure 21). To satisfy the second criterion, a wordi
in the dictionary is deemed as a candidate if the calculated
arm displacements −−→omj between every letter of the wordi
satisfies the template mappings outlined in Table III. We also
sort the dictionary based on how frequently its words are used
in the English literature (in descending order), so as to improve
inference accuracy when there exists multiple candidate words
that satisfy the above two criteria. In addition to the top
prediction (i.e., the candidate word with the most usage in
English literature), we also evaluate if the typed word is con-
tained in top-k of such candidate words, as an adversary can
run additional semantical and contextual analyses to improve
inference of complete sentences. We, however, limit the scope
of this work to only word inferences. We next outline details
of the different experimental setups and evaluation experiments
that we conduct to evaluate our keystroke detection and word
prediction framework. Our first set of evaluation experiments
are conducted in a slightly constrained (or “In-Lab”) setting
to analyze the best-case performance of our framework. Our
second set of experiments are conducted in a fully unrestricted
(or “At-Home”) setting to analyze the worst-case performance
of our framework. All our participant recruitment and data
collection experiments were approved by our university’s In-
stitutional Review Board (IRB).

VI. IN-LAB EXPERIMENTAL SETUP

Our first set of evaluation experiments were conducted by
fixing the video call setup, including, the device(s) used for the
calls and participants’ sitting position during the call, and text
typed by the participants. For this set of experiments, which we
refer as In-Lab setup, we recruited a diverse set of 20 human
subject participants and collected video call data while they
were performing typing tasks, details of which are outlined
below.
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Participant Demographics. Out of the 20 participants re-
cruited for this setting, 9 are females and 11 are males.
Based on a screening-survey, 4 participants conducted hunt-
and-peck typing, 5 conducted touch typing, and the remaining
11 participants conducted hybrid typing. One of the partici-
pants identified as being left-handed while the remaining 19
participants identified themselves as right-handed.

Participant Tasks. Each participant completed six different
sessions across different experimental parameters, which are
listed below. Each session was conducted on a different day.
Before every session, the experimental parameters were chosen
randomly to cover different combinations, and the participant
was informed about those parameters beforehand. The data
collection sessions were conducted in a controlled setting
inside a private office, primarily to limit noise in the audio
data collected for equitable comparison (with an audio-only
framework by Compagno et al. [29]). The participants were
positioned in front of a computer with a display, keyboard, and
a webcam directly facing them. Each participant was shown
a random word on-screen in large font and the participant
was instructed to naturally type the displayed word followed
by a blank space. Upon entry of blank space, a new random
word replaced the previous word on-screen, and the participant
repeated this process for 300 words in each session. The
random words were picked from a dictionary of 4000 most
frequently used words (of 4 or more letters) in the English
literature [14]. In order to minimize the impact of fatigue while
typing, each session was divided in to three sub-sessions, each
consisting of 100 words. Participants were encouraged to take
a break between each of the sub-sessions. It should be noted
that, despite the fixed nature of the In-Lab setup, participants
were free to change their body posture and position based on
their need and comfort-level, both during and in-between the
typing sub-sessions.

Data Collected. On the data collection computer, our cus-
tom application recorded the webcam video (at 1920 × 1080
pixels), microphone audio (at 44.1 kHz) and time-stamped
ground-truth of the keys (characters) typed by the participant.
The ground-truth information is used to measure the accuracy
of our framework. To obtain realistic results, we later transmit-
ted the recorded video over the Internet through different video
calling software and captured it remotely on another computer.
Skype [10] was used for majority of the evaluation, but we also
compare it with Hangouts [5] and Zoom [17] in Section VII-B.
The video transmission was achieved using ManyCam [8], a
virtual webcam driver that can play pre-recorded videos during
a video call. The remote capture of the transmitted video was
done using OBS Studio [9].

Experimental Parameters. We evaluate our attack framework
across a diverse set of experimental parameters to showcase
its generalizability and practical impact. Below is a list of the
different parameters that were studied:

(1) Clothing: Long-sleeves, Short-sleeves, Sleeveless.
(2) Keyboard: Logitech K120 (Wired), Anker A7721 (Bluetooth).
(3) Webcam: Anivia W8 (1080p), Logitech C920 (1080p).
(4) Devices: Lenovo 330-15IGM Laptop, Dell OptiPlex Desktop.

The laptop was evaluated with its built-in keyboard and
webcam, whereas on the desktop we collected data using
combinations of two different (external) webcams and key-

boards. We instructed each participant to wear clothings such
that they covered all three types (long-sleeve, short-sleeve,
and sleeveless) over the six sessions. Overall, the combination
of these parameters resulted in fifteen different experimental
settings (within the In-Lab setup), three on the laptop and
twelve on the desktop. For evaluating keystroke predictions,
we used two different English dictionaries. One is a dictionary
of 4K words which was the same dictionary used for data
collection, and the other is a more comprehensive dictionary
of 65K English words. It should be noted that we do not
evaluate the typing activity detection technique in the In-Lab
experiments, as the participants were not performing any other
tasks besides typing.

Different Backgrounds and Removal. As we employ
DeepLabv3 for background removal, which has been ex-
tensively evaluated in the literature, we do not evaluate it
as an experimental parameter. Nonetheless, in Figure 17 we
show that DeepLabv3 was able to remove backgrounds in
different indoor and outdoor settings. Moreover, in the case that
DeepLabv3 fails to properly identify and remove a particular
background in the recorded video, the adversary can easily
substitute it for another background removal technique.

VII. VIDEO-ONLY IN-LAB EVALUATION

In this section, we evaluate our prediction framework
solely using the video data stream collected during In-Lab
experiments. We briefly present results on the performance
of our keystroke detection algorithm (Algorithm 1), before
detailing the various prediction results.

A. Keystroke Detection Performance

We evaluate keystroke event detection using the precision
and recall metrics, while also studying the effect of different
coefficient values φa, φb, and φc used in our keystroke
detection algorithm (Algorithm 1). As seen in Figure 5, recall
increased as φa and φc were decreased, and when φb was
increased. This is because when φa and φc are small and φb
is large, our keystroke detection algorithm will even recognize
minute noises as a keystroke event. Corresponding precision
values are presented in Figure 5. Balancing between precision
and recall is always a trade-off, and based on these empirical
results we achieved a good precision-recall balance for the
coefficient values φa = 1.5, φb = 3, and φc = 1.5. Using these
coefficient values, we obtained an average of 93% precision
with 92% recall rate. Accordingly, we use keystrokes detected
using these coefficient values for the rest of the evaluation,
including the false positives and ignoring the false negatives.

B. Keystroke Prediction Performance

We now present results on word prediction performance
for different experimental settings.

Different Webcams. Quality of the video can intuitively make
a significant difference in the prediction accuracy, as low qual-
ity video frames are more likely to be erroneously processed
by our algorithms. Accordingly, we look at the prediction
accuracies obtained for the three experimental webcams (two
external webcams, one built-in to the laptop). Both the Anivia
and Logitech are able to capture videos at 1080p @ 30 fps, but
the Anivia webcam features a wide-angle lens when compared
to the Logitech webcam. The Lenovo laptop comes with a low-
end webcam that can record video only at 720p @ 30 fps. As
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Fig. 5: Precision and recall of keystroke detection under
different φa, φb, and φc.
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Fig. 6: Successful word inference within top-k predicted
words, for different webcams.

seen in Figure 6, the Lenovo laptop webcam consistently had
the worst performance compared to the Anivia and Logitech
webcams. For the 65K dictionary, video from the Lenovo
laptop webcam resulted in only 44.3% average word recovery
when top-200 words were considered. The Logitech webcam
performed slightly, but consistently, better than the Anivia
webcam. Using the 4K dictionary, video from the Logitech
webcam resulted in 75% average word recovery when top-
200 words were considered, whereas video from the Anivia
webcam resulted in 70% average word recovery. One of the
reasons we speculate why the Anivia webcam did not perform
as well as the Logitech webcam is because of its wide-angle
lens. A wide-angle view means that the number of pixels
capturing the user’s body is reduced as more of the background
is captured in the fixed video resolution. For many of the
following evaluations, we used only the Logitech webcam for
better understanding of other parameters.

Different Typing Styles. Based on a screening survey, we
were able to categorize the typing style of our participants
as hunt-and-peck, hybrid, or touch-typing (further explained
in Appendix B). Here we analyze if typing styles have any
significant impact on the word recovery. Figure 7 shows the
word recovery percentage for each of the typing styles. Hunt-
and-peck typers were more susceptible with highest mean word
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Fig. 7: Successful word inference within top-k predicted
words, for different typing styles (using Logitech webcam).
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Fig. 8: Successful word inference within top-k predicted
words, for different clothings (using Logitech webcam).
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Fig. 9: Successful word inference within top-k predicted
words, for different keyboards (using Logitech webcam).

recovery of 83% (top-200, 4K dictionary), followed by hybrid
typers at 74% and touch-typers at 71%. This is somewhat
intuitive as the arm displacements are very subtle for proficient
touch-typers, which can lead to a higher number of inaccurate
interpretation of the displacement vectors. Nonetheless, we
observe that the overall threat is still significant for users with
any of the three typing styles.

Different Clothings. We next evaluate if different types of
clothing, especially with respect to their sleeve design, can af-
fect our word prediction. In Figure 8 we observe that sleeveless
typers were more susceptible to our attack, with 81.7% mean
word recovery (top-200, 4K dictionary), compared to typers
who wore either full or short sleeved dresses (74.4% and 73%,
respectively). We speculate that both short and full sleeves
can mask the extent to which the arms are actually displaced,
underneath the clothing. As a result, our displacement vector
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Fig. 10: Comparison between audio and video inferences.
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Fig. 11: Comparison between audio inferences with various
acoustic noises (top-50, 4K dictionary).
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calculations can get affected, resulting in slightly less accurate
word predictions.

Different Keyboards. Size of the keyboard, and thus spacing
between the keys, can have a significant influence on the
arm displacements observed during typing. However, after
evaluating the results from the two external keyboards, we did
not find any significant difference between them (Figure 9).
Even though the Logitech keyboard is significantly larger
than the Anker keyboard, the percentage of successful word
predictions were almost identical.

Different Video Calling Softwares. We tested our attack
using three popular video calling softwares: Skype, Hangouts,
and Zoom. Analyzing results using the 65K dictionary and
top-50 predictions, we found that our evaluation using Skype
was marginally better than using Zoom and Hangouts (+3.4%
and +8% mean word recovery, respectively). The same set of
videos were used with all the three video calling softwares,
therefore the differences are purely due to factors beyond
our control, such as the video compression technique used,
network bandwidth utilized, and inconsistent latency in the
video call.

VIII. VIDEO VS. AUDIO IN-LAB EVALUATION

In this section, we compare our prediction framework
(which is based on the video data) with Compagno et al.’s work
[29], where they utilized the audio stream of a Skype call for
keystroke inference. We utilized Compagno et al.’s implemen-
tation of an acoustic-based keystrokes inference framework
designed to work over audio/video calling applications, and
applied our audio data to train and test the inference model.

Audio vs. Visual Performance. With the 65K dictionary,
our video-based inference was approximately +15% more
successful than Compagno et al.’s audio-based inference (when
using top-200 predictions) as shown in Figure 10. However,
with the 4K dictionary, the audio-based inference was +10%
more successful than the video-based inference (using top-200
predictions). The reason why Compagno et al.’s audio-based
inference performs poorly for the larger dictionary is because
the collision rate significantly increases with the size of the
dictionary. Nonetheless, our audio data collection was very
controlled, with no one talking and minimum ambient noise
levels. A realistic audio/video call will at least have participants
talking, which can significantly affect Compagno et al.’s audio-
based inference framework. Accordingly, we next evaluate the
impact of various types of noise on Compagno et al.’s audio-
based inference.

Noisy Audio vs. Visual Performance. We mixed six dif-
ferent types of acoustic noises with our audio data: music,
typing, lawnmower, bird chirps, jackhammer, and talking. The
characteristics of these six acoustic noises are discussed in
Appendix G. Also, to mimic real-life background noises, we
mixed the acoustic noise at only 5% and 15% levels after
amplitude normalization. As speculated earlier, after adding
only 5% noise the average word recovery dropped from 65%
to about 56% (top-50, 4K dictionary) as shown in Figure 11.
The variance in word recovery across the six different noise
types was not very significant. Interestingly, after adding 15%
noise the word recovery sharply dropped to about 7%. These
results highlight how even minimal noise levels can signifi-
cantly affect the audio-based keystroke inference framework.

In contrast, our video-based inference framework is not at all
affected by acoustic noises which is a common occurrence in
audio-video calls.

IX. AT-HOME EXPERIMENTAL SETUP

To understand our inference framework’s effectiveness in
the wild, we next evaluate it outside of the lab environment. In
this setting, participants were asked to use their own device (a
laptop or desktop with a webcam) and setup (sitting position,
clothing, background, and positioning of devices) for the video
call, including location from where the call is done (e.g., their
home). This allowed us to collect typing related video data for
a diverse combination of devices and setups, already familiar
to the participants and not constrained in any way. Using
such “At-Home” experiments, we also expand our evaluation
beyond just predicting dictated English words. Specifically,
we analyze how our framework performs for the inference
of user-chosen passwords, websites, and English words. As
in a real setting, users are expected to involve themselves in
other activities besides typing (e.g., web surfing, playing online
games, etc.). This unconstrained At-Home setup allows us to
thoroughly evaluate our typing activity detection technique
outlined in Section V-C.

Participant Demographics. We collected data from 10 partici-
pants for this in-home evaluation, whose ages ranged between
21 and 29 years. Out of the 10 participants, 3 are females,
and 7 are males. Based on a screening-survey, 3 participants
conducted hunt-and-peck typing, 5 conducted touch typing,
and the remaining 2 participants conducted hybrid typing. 9
participants identified themselves as right-handed and 1 as
ambidextrous. The average height of the participants is ap-
proximately 170 cm, with an average observed typing speed of
approximately 3.7 keystrokes per second and typing accuracy
(in relation to typographical errors) of approximately 86.7%.

Participant’s Task. Participants were invited to join a (max-
imum) 30 minute Skype video call, using their own device
and setup and from their own location of choice, where they
had to sporadically (and at their own pace) type 10 email
addresses, 10 usernames, 10 passwords, 10 websites, and 10
English words, in no particular order and frequency. The typing
was performed in a pre-shared online spreadsheet, which was
later used as the ground-truth of the typed text/information.
The spreadsheet also automatically recorded edit timestamp
for each cell in the spreadsheet, which is useful for evaluating
the typing activity detection technique. To ensure participants
covered a reasonable amount of time on non-typing activities,
we asked participants to take at least three 1-minute breaks
doing one of the following three activities: watch a YouTube
video, read a Wikipedia article, or play a digital game on their
computer that only requires a mouse to play. Participants had
the liberty to take additional or longer breaks and/or do any
other activity on their computer that does not require keyboard
usage. Unlike in the in-lab experiments, participants were al-
lowed to use backspace in case they wanted to rectify a typing
error and were allowed to use a larger set of keys/characters
on the keyboard for their typing tasks (alphabet keys, number
keys directly above the alphabet keys, keys corresponding to
“.”, “-”, and “@” characters, and the enter and backspace keys).

Data Collected. In addition to the ground-truth text and times-
tamp information contained in the online spreadsheet where
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participants typed, participant’s Skype video was recorded re-
motely using OBS Studio [9]. After each typing experiment
was completed, we also collected supplementary information
from our participants related to their employed device and
setup, as summarized in Appendix H.

Webcam Hardware and Positioning. We observed that three
of our 10 participants used an external webcam in a similar
fashion as in the in-lab setting, placed approximately at eye-
level and focused directly on the participant. However, the
remaining 7 participants who participated using their laptops,
the webcam angle and distance varied noticeably, as shown in
Appendix H. The native webcam resolution across participants
also varied between 720p or 1080p.

X. AT-HOME EVALUATION

In this section, we evaluate the performance of our pro-
posed typing activity detection and keystroke (or text/word)
prediction techniques using video call data collected from
the At-Home experiments. During these experiments, we ob-
served that one of the participant’s hair completely obscured
his/her shoulder area for the entire experiment’s duration, thus
making the corresponding video frames unusable within our
framework. Due to these At-Home experiments’ uncontrolled
nature, this participant was not asked to re-position his/her
hair or change his/her posture. This points to a limitation
of our inference framework. However, this has already been
highlighted in our assumed adversary model, where we clearly
state that both shoulders and upper arms should be visible
(to the adversary) in the recorded video. Thus, our presented
evaluation results below are based only on data collected from
the remaining 9 participants.

A. Typing Activity Detection Performance

For evaluation of our typing activity detection technique
(Figure 3), we employ the same optimal values for parameters
φa, φb, and φc as determined earlier in Section VII-A. Across
all the 9 participants, our typing activity detection technique
resulted (Figure 12) in an average of 40.22 true positives,
12.4 false positives and 9.78 false negatives, for an average
precision of 77.6% and recall of 80.4%. This shows that
our proposed activity detection technique is fairly accurate
enabling the adversary to not only detect a majority of the
typing activity during a video call, but also successfully
differentiate between typing versus non-typing activities.

In addition to the overall results, let’s further highlight
some interesting special cases. For participants using a laptop,
we observed that the location filter (of the typing activ-
ity detection technique) was not very effective due to the
proximity of the laptop’s touchpad to its keyboard. Also, a
few participants (at least, two) claimed to have used both
their hands for interacting with the laptop touchpad, making
the exclusive filter of the typing activity detection technique
ineffective at times and resulted in a higher number of false
positives. Significant movement and posture changes (between
typing and non-typing activities) also resulted in degradation
of detection accuracy, as was observed (Appendix H) in the
case of at least one participant whose left shoulder was not
visible for a significant portion of the video call because
of movement/posture changes. This limitation can also be
attributed to the fact that while using a laptop, a user’s position

is a bit constrained (given the webcam’s restricted field-of-
view) and small movements/posture changes can result in the
user’s shoulders/upper arms becoming invisible/unavailable to
the adversary.

B. Typing Accuracy

Before presenting our word prediction results, we briefly
analyze the rate of typographical errors made by our partici-
pants. As our inference framework does not have provisions for
handling rectifications made after typographical errors, partici-
pants’ typing accuracies have a direct correlation to our frame-
work’s prediction error. Appendix H lists the typing accuracies
of all our participants. As a case in point, participants I and C
had the worst typing accuracy (73.1% and 49%, respectively),
and our word prediction performance for participants I and
C was also the lowest. The following prediction performance
results are inclusive of all the typographical errors made by
our participants in the At-Home setting.

C. Keystroke or Text Prediction Performance

Next, we present results for word prediction in the At-
Home setting, separated based on the category of typed words.
It should be noted that, in contrast to the In-Lab setting, partic-
ipants in the At-Home setting typed their own words (for each
of the five categories), and that four out of the five categories
(of typed words) would most likely include words that would
not be present in a typical English language dictionary. Thus,
rather than using a standard English dictionary for prediction,
we first create a ranked reference database of likely words in
each category (which could be contextually created based on
the target participant) and then employ it for the prediction
task. As our framework predicts the possible combinations of
typed characters based on the movements, and not individual
characters themselves, such a reference database is required to
complete the prediction task.

Websites. For the prediction of websites typed by target users,
we created a reference database of 1 million most-visited
websites [11]. In our dataset, all participants typed at least two
websites ranked in the top-20 of the reference database, with an
overall median rank of 140 and a mean rank of 36, 745.3 (mean
is significantly higher than the median due to a few websites
that are not popular and thus have very high ranks in the
reference database). Our inference framework was successfully
able to infer 66.7% of the websites typed by participants,
within the top-25 predictions. An adversary may further reduce
the search space based on contextual information about the
target user.

Passwords. For prediction of passwords typed by target users,
we created a reference database of 1 million most commonly
used passwords [1]. Only 18.9% of the passwords were
successfully recovered within top-50 predictions, which can be
attributed to the fact that 74.4% of the passwords typed by our
participants were not found in the reference database used for
prediction. Considering only the passwords that were present
in the reference database, 74% of them were successfully
recovered within top-50 predictions.

English Words. For prediction of English words, we use the
65K-words dictionary used earlier for the In-Lab evaluation.
Similar to passwords, not all (25.6%) of the words typed by
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Fig. 13: Successful inference of different text predictions.

our participants existed in the dictionary used for prediction,
and 21.1% of the English words were successfully recovered
within top-50 predictions. One of the reasons our accuracy
is worse than the In-Lab setting is because the reference
dictionary’s rank sorting is based on word-usage frequency
in English language sentences, not based on random words
produced by people. In other words, the ranking of words
within the reference dictionary is not appropriate for prediction
of randomly typed words. If an adversary could produce a more
accurate contextual reference dictionary based on the target
user, we expect better performance from our framework.

Usernames and Email Addresses. Usernames and email ad-
dresses are commonly used as an identifier for authentication,
but they are also often publicly known and not sensitive
information by themselves. However, knowing when a target
user typed their username or email address can be valuable to
an adversary, as a password is likely to be typed immediately
afterwards during an authentication. Therefore, instead of
predicting the usernames and email addresses typed by our
participants, we try to predict when their known username and
email address was typed by them. On average, we were able to
correctly predicted when 91.1% of the usernames and 95.6%
of the email addresses were typed.

XI. THREAT MITIGATION

In this section, we outline and evaluate potential mitigation
techniques to the video-based keystroke inference threat. We
evaluate these mitigation measures by applying them to the
In-Lab video dataset prior to using them in our keystroke
inference framework, and then measuring the performance of
our framework on these modified video data. We evaluate the
mitigation techniques using the In-Lab dataset instead of the
At-Home dataset, because with its higher inference success,
the In-Lab dataset can better illustrate the effectiveness of the
proposed mitigation techniques. We measure the performance
of our framework under the influence of these mitigation
techniques using the metrics of (i) effectiveness, (ii) efficiency,
and (iii) video quality, which we describe next followed by a
description and evaluation of the mitigation techniques.

(1) Effectiveness measures the average reduction in word
recovery due to the mitigation technique.

(a) (b) (c) (d) (e) (f) (g)

Fig. 14: A left hand frame segment from a frame (a) unaltered,
(b) after blurring with zb = 5%, (c) after blurring with zb =
10%, (d) after blurring with zb = 20%, (e) after pixelation
with zp = 3%, (f) after pixelation with zp = 5%, and (g) after
pixelation with zp = 7%.

(2) Efficiency measures the average time to process each
frame.

(3) Video Quality measures the image quality in the modified
(edited) frames using SSIM index [52] as a measure of the
structural quality of the frames within the video.

A. Mitigation Techniques

We now outline three frame manipulation strategies as mit-
igation techniques against the video-based keystroke inference
threat presented earlier, and present performance results for
them using the metrics defined above. It must be mentioned
that, although these techniques can be applied to all the frames
in the entire video call, it makes much more sense to apply
them to frames in the vicinity of the target user’s actual
keystrokes. As keystroke detection for mitigation can be easily
accomplished using OS-interrupts on the user side, it should be
relatively straightforward to identify frames just before, during
and after the keystroke on which the proposed manipulation
strategies should be applied. However, to effectively manip-
ulate the frames immediately before a keystroke, we must
maintain a buffer of those frames before they are transmitted
out. Obviously, a large buffer can introduce significant latency
in the video call, which is detrimental to the overall quality.
We employ a buffer size of 2 frames (in a 30 fps video) for the
first two mitigation techniques, and we use a variable buffer
size in the third mitigation technique.

Blurring. The first approach is to manipulate (sensitive)
frames using a Box blur approach [45]. This approach pro-
duces a blurring effect on the original frame by employing an
adjustable kernel. The size of the Box blur kernel is chosen as
some proportion (zb) of the original frame size and populated
with ‘1’s. Once the kernel is fixed, blurring is done as follows:
For each pixel, pi,j , of the original image frame, the kernel is
centered on that pixel and a new pixel value is computed.
This new pixel value is the average of the neighboring pixel
values weighted using the kernel. This new pixel value then
replaces the original pixel pi,j . This process is repeated for all
the pixels of the frame. Some visual examples of the impact
of blurring on a sample image frame for different values of
the kernel parameter zb are depicted in Figures 14b to 14d. At
the press of a keystroke we blur all the buffered frames and
four following frames (total 6 frames) for a total duration of
about 200 ms, which is the mean duration of keystrokes [26].

Our experimentation with using blurring within our infer-
ence framework shows that we are able to reduce the average
word recovery from 65% to as low as 13% for zb = 20%
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(Figure 15). In other words, we see a mitigation effectiveness
of about -52% in top-50 prediction. We also observed that
using higher zb resulted in less words being recovered, as the
frames were more blurry. For 1920 × 1080 sized frames, we
observed that blurring takes around 17 ms per frame with a
kernel factor (zb) of 5%, on a laptop with an Intel i7-7700HQ
(2.8 GHz) processor and 32 GB RAM. In terms of image
quality, we saw an average SSIM index of 78.2% for zb =
20%. A high SSIM index implies that the manipulated frame
is similar to the original frame, and vice versa. These results
show that blurring is an effective mitigation technique, which
imposes little efficiency and quality overheads.

Pixelation. The second approach we analyze is pixelation,
where the frame is first pixelated (partitioned) into areas
defined by a proportion parameter zp. In other words, the frame
(of size m×n) is partitioned into 1/zp

2 areas of size m
zp
× n
zp

.
Then, for each such area, the average of all pixel values within
that area is computed, and each pixel pi,j within that area
is reassigned this new average value. Some visual examples
of the impact of pixelation on an image frame for different
values of the pixelation proportion parameter zp is shown in
Figures 14e to 14g. Similar to blurring, at the hit of a keystroke
we pixelate all the buffered frames and four following frames
(total 6 frames) for a total duration of about 200 ms.

Our experimentation with using pixelation within our infer-
ence framework shows that we are able to reduce the average
word recovery from 65% to as low as 4.3% for zp = 7%
(Figure 15). In other words, we see a mitigation effectiveness
of about -60% in top-50 prediction. We also observed that
using higher zp resulted in less words being recovered, as the
frames were more pixelated. For 1920 × 1080 sized frames,
we observed that pixelation takes around 1.41 ms per frame
with a zp of 3%, which is significantly faster than blurring.
In terms of image quality, we saw an average SSIM index of
74% for zp = 7%. These results show that pixelation is even
more effective than blurring, and it imposes significantly lesser
efficiency overhead, with a slight trade-off in quality.

Frame Skipping. The final mitigation approach we analyze
is frame skipping, where as the name suggests, not all frames
(captured during the video call on the target user side) are
sent to the receiver (adversary). More specifically, the approach
continuously buffers f frames during the call on the target user
side. If typing is detected, all the buffered frames, as well as,
an additional f frames after the detected key press, are dropped
(i.e., not sent). Our experimentation shows that frame skipping
is the most effective method in reducing word recovery rate,
with only around 3% of the words recovered on an average (for
f = 5). In other words, we see a mitigation effectiveness of
about -62% in top-50 prediction. Frame skipping successfully
eliminates all movement relationship between consecutive key
strokes, resulting in such a high mitigation effectiveness.
Frame skipping does not impact image quality of individual
frames as the original frames are never modified. However, the
downside of frame skipping is that user’s video will appear to
be stuck at a frame just prior to the keystroke, to the other
participants in the video call. This can be confusing to the
uninformed, but can be remedied with a notice such as “John
Smith is typing” to other participants in the video call.
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Fig. 15: Different mitigations techniques and resultant word
recovery (top-50, 4K dictionary).

XII. DISCUSSION & LIMITATIONS

Generalizability. Let us comment on the generalizability and
limitations of our study. First, we believe that our results are
very generalizable to real-life scenarios based on the number
of participants from which we collected data (more than
prior related studies [29], [21]) and the different choices of
webcams, keyboards, devices, participant clothings, and video
calling software used in our experiments, which we believe are
well representative samples. While all our participants were
students recruited from a university campus, we observed a
huge variety of different typing styles and quirks, which makes
us reasonably confident about it being representative of the
general population. Moreover, our data collection experiments
were designed to reduce all types participant biases, including
response bias, and were approved by the university’s IRB.

Limitations. In our framework we only employed video feed
to detect keystrokes, but video data can be combined with
audio data from the call to further improve keystroke detection.
The accuracy of our framework also relies significantly on the
field of view containing the target user. Obstacles blocking
(either completely or partially) the shoulder and arm areas
of the target user, such as, microphones, headphone wires, or
hair, could adversely affect both keystroke event detection and
prediction. Similarly, if a camera’s field of view does not fully
or partially capture the shoulder and arm areas of the target
user, as often observed in laptop webcams as they are generally
set at an angle, it could also adversely impact the prediction
performance of our framework. Lastly, we have also observed
that significant ambient lighting changes (during typing) also
disrupts the efficacy of our prediction. Many target user-
specific factors can also disrupt the prediction performance
of our framework, for instance if there are significant user
movements while typing. This is possible especially if the
target user is seated on a movable object, such as a rolling
chair. As seen in our mitigation techniques, video quality is
very impactful. If video frames are dropped, or the frames
had some quality issues such as blurring or pixelation, then
our framework will have poor inference accuracy.

XIII. CONCLUSION

We proposed and evaluated a keystroke inference frame-
work which can predict text typed by a user during a video
call. Specifically, we modeled and analyzed hand movements
observable in the webcam’s field of view, in order to detect
keystroke events and then carry out a dictionary-based predic-
tions. We evaluated our framework in a variety of controlled
and uncontrolled scenarios, and were able to recover up to
75% words in some scenarios. We also proposed and evaluated
three mitigation techniques which can effectively deter such
keystroke inference attack in video calls.
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APPENDIX A
ANATOMY AND MOVEMENT OF ARMS DURING TYPING

Figure 16a shows an overview of the shoulder and arm
bones, and their joints. Based on the traditional position of
a webcam during a video call, lateral movements of hand
and shoulder can easily be observed in the captured video,
as shown in Figures 16b and 16c.

(a)

(b)

(c)

Fig. 16: (a) Anatomy of the human arm and shoulder bones.
(b), (c) Pixel-level heatmaps of upper body movements during
one minute of typing for left and right sides of the body,
respectively.

APPENDIX B
TYPING STYLES

Hunt-and-peck typing is largely regarded as one of the most
inefficient typing technique. In hunt-and-peck typing, the typer
has sight on the keyboard during typing, as in most cases the
typer does not have the keyboard layout memorized. Also,
most hunt-and-peck typers heavily use their two index fingers
for typing. As a result, hunt-and-peck typers’ arms undergo
significant movement between keystrokes.

Touch typing is largely regarded as one of the most efficient
typing technique. In touch typing, the typer looks at the screen
and types continuously without looking at the keyboard. Touch
typers also utilize all ten fingers.

Hybrid typing, as the name suggests, is a hybrid of hunt-and-
peck and touch typing. Like touch typers, hybrid typers may
have memorized the keyboard layout and are able to type while
looking at the screen. However, unlike touch typers, hybrid
typers utilize fewer fingers, usually between 2 to 6 fingers.

APPENDIX C
PREPROCESSING FIGURES

Example outputs of this background removal process are
shown in Figure 17. This background removal step makes our
proposed framework agnostic to any moving elements in the
background.

Fig. 17: Example output of the background removal process,
using DeepLabv3 and Microsoft COCO, successfully ap-
plied in different indoor and outdoor settings. Top four images
are the original frames, and bottom four images are corre-
sponding frames after background removal.

We leverage on the consistency in relative position of the
target user’s arms with respect to their face (Figure 18) in order
to segment the left and right arms in the background-removed
grayscale frame.

Fig. 18: Face detection using Faceboxes and segmentation
of left and right arms, in a frame from the captured video.
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APPENDIX D
KEYSTROKE DETECTION ALGORITHM

Algorithm 1 Keystroke detection algorithm.

1: Input: segmented arm frames stored in armS[]
2: Output: keystroke frames stored in keystrokesFS[]
3: procedure KEYSTROKEDETECT
4: armS[] . Rs or Ls

5: ssimList[] . Series of SSIM scores
6: ssimDiff [] . ssimL[i]− ssimL[i+ 1]
7: keystrokesFS[] . Store keystroke containing Rs or Ls

8: for i in range(armS.size()− 1) do
9: ssimScore = SSIM(armS[i]− armS[i+ 1])

10: ssimList.append(ssimScore)
11: end for
12: for i in range(ssimList.size()− 1) do
13: ssimDiff.append(ssimList[i]− ssimList[i+ 1])
14: end for
15: mean← mean(ssimDiff)
16: std← standardDeviation(ssimDiff)
17: for i in range(ssimDiff.size()− 1) do
18: zScore = (ssimDiff [i]−mean)/std
19: if zScore > φa and zScore < φb then
20: if ssimDiff [i] is a local max then
21: if local min exists between i→ i+ 2 then
22: if zScore(localmin) < φc then
23: keystrokesFS.append(armS[i])
24: end if
25: end if
26: end if
27: end if
28: end for
29: end procedure

APPENDIX E
TYPING ACTIVITY DETECTION EXAMPLE

Figures 19 and 20 elucidates the working of our heuristic-
based typing activity detection technique, by means of two real
scenarios that we encountered during our experimentation.

DSSIM

Potential Keystrokes

Max Filter

Location Filter

Min Filter

Exclusive Filter

   Typing

Groundtruth Typing

Typing Recognition

Fig. 19: An example of our typing activity detection heuristics
being applied on potential keystrokes, which resulted in a true
positive. Red ticks and lines are for right hand, while blue
lines and ticks are for left hand.

DSSIM

Potential Keystrokes

Max Filter

Location Filter

Min Filter

Exclusive Filter

Typing

Groundtruth

Typing Recognition

Fig. 20: An example of our typing activity detection heuristics
being applied on potential keystrokes, which resulted in a false
positive. Red ticks and lines are for right hand, while blue lines
and ticks are for left hand.

APPENDIX F
KEYSTROKE PREDICTION TABLES AND FIGURES

Between any two consecutive keystrokes using the same
hand, we classify the corresponding arm displacement vector−−→omi into one of the four intercardinal directions: northeast
(NE), northwest (NW ), southeast (SE), southwest (SW ).
The classification of a left hand −−→omi is conducted as per
conditions listed in Table I. In Table I,

−−−−→
omi(x) and

−−−−→
omi(y) are

the x-axis and y-axis displacements (i.e., vector components),
respectively, measured in pixels. The classification is isomor-
phic in case of right arm displacements between keystrokes,
as listed in Table II.

TABLE I: Classification of left arm displacements.

Conditions Direction
−−−−→
omi(x) ≥ 0 and

−−−−→
omi(y) ≥ 0 NW

−−−−→
omi(x) ≥ 0 and

−−−−→
omi(y) ≤ 0 SW

−−−−→
omi(x) ≤ 0 and

−−−−→
omi(y) ≥ 0 NE

−−−−→
omi(x) ≤ 0 and

−−−−→
omi(y) ≤ 0 SE

TABLE II: Classification of right arm displacements.

Conditions Direction
−−−−→
omi(x) ≥ 0 and

−−−−→
omi(y) ≥ 0 NE

−−−−→
omi(x) ≥ 0 and

−−−−→
omi(y) ≤ 0 SE

−−−−→
omi(x) ≤ 0 and

−−−−→
omi(y) ≥ 0 NW

−−−−→
omi(x) ≤ 0 and

−−−−→
omi(y) ≤ 0 SW

Every key on the keyboard occupies a rectangular area,
and a typer can have some variance in the position within
each key where it is pressed. Some keys may be pressed in
the center, while others could be pressed around the edges.
This naturally occurring variance lead us to model the template
inter-keystroke directions more flexibly using nine possible
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scenarios between any two keys keyi and keyj , as detailed
in Table III and exemplified in Figure 21.

NW

SW

NW, SW
NE, NW SW, SE

NE

NE, SE

SE

Left Side of the Keyboard Right Side of the Keyboard

NE, NW, SE, SW

Fig. 21: Splitting the keyboard into two halves, and the
template inter-keystroke directions following the alphabet ‘D’.

TABLE III: Mapping of template inter-keystroke directions.

Relationship Between keyi and keyj Template Direction(s)

keyi is the same key as keyj NE, SE, NW , SW

keyi is in the same row of keyj and keyj is to the
east of keyi

NE, SE

keyi is in the same row of keyj and keyj is to the
west of keyi

NW , SW

keyi is in the row above of keyj and keyj vertically
overlaps the key keyi

NE, NW

keyi is in the row below of keyj and keyj vertically
overlaps the key keyi

SE, SW

keyi is in the row above of keyj , keyj does not
vertically overlap the key keyi, and keyj is to the
east of keyi

NE

keyi is in the row above of keyj , keyj does not
vertically overlap the key keyi, and keyj is to the
west of keyi

NW

keyi is in the row below of keyj , keyj does not
vertically overlap the key keyi, and keyj is to the
east of keyi

SE

keyi is in the row below of keyj , keyj does not
vertically overlap the key keyi, and keyj is to the
west of keyi

SW

APPENDIX G
NOISE CHARACTERISTICS

Figure 22 shows the frequency spectrum plots of sample
sounds that were evaluated as background noise. In Figure 22
we can see that the high amplitude frequencies are within a
very narrow band for bird chirps, with periodic patterns. Both
the jackhammer and lawn mower sounds have high amplitude
frequencies more uniformly spread out across their frequency
range and time. Music has a wide range of high and low
amplitude frequencies, but some patterns can be observed over
time. Talking sound has high amplitudes for lower frequencies,
and time-based patterns are not easily identified. Typing sound
has high amplitudes for a wide band of frequencies, and
sporadic keystrokes can be easily identified.

(a) Bird Chirps

(b) Jackhammer

(c) Lawn Mower

(d) Music (Pop/Rock)

(e) Talking (Male)

(f) Typing

Fig. 22: Exemplary frequency spectrum plots of different
sounds that were evaluated as background noise. These audio
files were sourced from the AudioSet dataset [3].
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APPENDIX H
AT-HOME PARTICIPANT DEMOGRAPHICS AND

EXPERIMENTAL SETTINGS

Participant A B C D E F G H I J
Gender M M M F F F M M M M

Age 21 24 24 28 29 23 28 21 22 25

Dominant Hand Right Right Right Right Ambidextrous Right Right Right Right Right

Typing Style Touch Touch Hunt-and-Peck Hunt-and-Peck Hybrid Touch Touch Hybrid Hunt-and-Peck Touch

Webcam
Dell XPS 15

7590

Mimoday

S2

Mac Book Pro

A1990

Lenovo Ideapad 5

15IIL05

Mac Book Pro

A1398
Microsoft LifeCam Cinema

Logitech C922x pro

stream webcam

Acer

N19C3

Lenovo Ideapad

320-15abr

Lenovo Ideapad

320-15abr

Keyboard
Dell XPS 15

7590

Blackwidow Chroma

RZ03-0122

Mac Book Pro

A1990

Lenovo Ideapad 5

15IIL05

Mac Book Pro

A1398

HP

W2M75UA

Dell Wireless

WK636p

Acer

N19C3

Lenovo Ideapad

320-15abr

Lenovo Ideapad

320-15abr

Sleeves Short Short Short Short Short Short Long Short Short Short

Laptop/Desktop Laptop Desktop Laptop Laptop Laptop Laptop Desktop Laptop Laptop Laptop

Height (cm) 180 168 170 168 152 168 168 173 178 168

Typing Speed
(Keystrokes/Second)

8.83 3.67 2.75 3 3 3.67 5.25 2.83 1.41 2.58

Typing Accuracy
(%)

96.9 93.3 73.1 90.5 98.5 96.1 93.8 91.2 49 82

Sample Typing
Posture

TABLE IV: Participant demographics and experimental settings for At-Home setup.
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