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Abstract—Over-sharing poorly-worded thoughts and personal
information is prevalent on online social platforms. In many of
these cases, users regret posting such content. To retrospectively
rectify these errors in users’ sharing decisions, most platforms
offer (deletion) mechanisms to withdraw the content, and social
media users often utilize them. Ironically and perhaps unfor-
tunately, these deletions make users more susceptible to privacy
violations by malicious actors who specifically hunt post deletions
at large scale. The reason for such hunting is simple: deleting a
post acts as a powerful signal that the post might be damaging to
its owner. Today, multiple archival services are already scanning
social media for these deleted posts. Moreover, as we demonstrate
in this work, powerful machine learning models can detect
damaging deletions at scale.

Towards restraining such a global adversary against users’
right to be forgotten, we introduce Deceptive Deletion, a de-
coy mechanism that minimizes the adversarial advantage. Our
mechanism injects decoy deletions, hence creating a two-player
minmax game between an adversary that seeks to classify dam-
aging content among the deleted posts and a challenger that
employs decoy deletions to masquerade real damaging deletions.
We formalize the Deceptive Game between the two players,
determine conditions under which either the adversary or the
challenger provably wins the game, and discuss the scenarios
in-between these two extremes. We apply the Deceptive Deletion
mechanism to a real-world task on Twitter: hiding damaging
tweet deletions. We show that a powerful global adversary can
be beaten by a powerful challenger, raising the bar significantly
and giving a glimmer of hope in the ability to be really forgotten
on social platforms.

I. INTRODUCTION

Every day, millions of users share billions of (often per-
sonal) posts on online social media platforms like Facebook
and Twitter. This information is routinely archived and an-
alyzed by multiple third parties ranging from individuals to
state-level actors [22], [29], [48], [49], [71], [74], [75], [84].
Although the majority of these social media posts are benign,
users also routinely post regrettable content on social media
[24], [80], [94] that they later wish to retract. Subsequently,
most social platforms provide user-initiated deletion mecha-
nisms that allow users to rectify their sharing decisions and
delete past posts. Not surprisingly, users take advantage of
these deletion mechanisms enthusiastically—Mondal et al. [65]
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showed that nearly one-third of six-year-old Twitter-posts were
deleted. In another work, Tinati et al. [83] showed that this
number is much higher in Instagram, where almost half of the
pictures posted within a six month period had been removed.

Ironically, current user-initiated deletion mechanisms may
have an unintended effect: third-party archival services can
identify deleted posts and infer that deleted posts might contain
damaging content from the post creator’s point of view (i.e.,
having an adverse effect on the personal/professional life of the
content creator). In other words, deletion might inadvertently
make it easier to identify damaging content. Indeed, today
it is possible to detect deletions at scale: Twitter, for one,
advertises user deletions in their streaming API1 via deletion
notifications [7], [8] so that third-party developers can remove
these posts from their database. Similarly, Pushshift [16],
[25] is an archival system for all the contents on Reddit
and Removeddit [18] uses this archive to publicize all the
deleted posts and comments on Reddit. A malicious data-
collector can simply leverage these notifications to flag deleted
posts as possibly damaging and further use them against the
users [5], [6], [91]. Importantly, the hand-picked politicians
and celebrities are not the only parties at the receiving end
of these attacks. We find that the malicious data-collector can
develop learning models to automate the process and perform
an non-targeted (or global) attack at a large-scale; e.g., Fallait
Pas Supprimer [13] (i.e., “Should Not Delete” in English) is a
Twitter account that collects and publishes the deleted tweets
of not only the French politicians and celebrities but also
noncelebrity French users with less than a thousand followers.

Asking the users not to post regrettable content on social
platforms in the first place may seem like a good first step.
However, users cannot accurately predict what content would
be damaging to them in the future (e.g., after a breakup or
before applying to a job). Zhou et al. [94] and Wang et al. [87]
propose multiple types of classifiers (Naive Bayes, SVM, De-
cision Trees, and Neural Networks) to detect regrettable posts
using users’ history and to proactively advise users even before
the publication of posts. However, this proactive approach
cannot prevent users from publishing future-regrettable posts.
It is inevitable to focus on reactive mechanisms to assist users
with protecting their post deletions.

Recently Minaei et al. [62] proposed an intermittent with-
drawal mechanism to tackle this challenge of hiding user-
initiated deletions. They offer a deniability guarantee for user-
initiated deletions in the form of an availability-privacy trade-
off and ensure that when a post is deleted, the adversary

1Twitter provides a random sample of the publicly posted Twitter data in
real time to the third parties via streaming API.
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cannot be immediately certain if it was actually deleted or
temporarily made unavailable by the platform. Their trade-
off could be useful for future social and archival platforms;
however, in current commercial social media platforms like
Twitter, sacrificing even a small fraction of availability for all
the posts is undesirable.

To this end, our research question is straightforward, yet
highly relevant—can we enhance the privacy of the deleted and
possibly damaging posts at scale without excessively affecting
the functionality of the platform?

Contributions. We make the following contributions.

First, we demonstrate the impact of deletion detection
attacks by performing a proof-of-concept attack on real-world
social media posts to identify damaging content. Specifically,
we use a crowdsourced labeled corpus of deleted posts from
Twitter to train an adversary (a classifier). We demonstrate that
our adversary is capable of detecting damaging posts with high
probability (an increase of 27 percentage points in its F-score).
Thus, it is feasible for the adversary to use automated methods
for detecting damaging posts on a large scale. In fact, we
expect systems such as Fallait Pas Supprimer [13] to employ
analogous learning techniques soon to improve their detection.

Second, to overcome the problem of detecting damaging
deletions, we introduce a novel deletion mechanism, Deceptive
Deletions, that raises the bar for the adversary in identifying
damaging content. Given a set of damaging posts (i.e., posts
that adversary can leverage to blackmail the user) that users
want to delete, the Deceptive Deletion system (also known
as a challenger) carefully selects k additional posts for each
damaging post and deletes them along with the damaging
posts. The system-selected posts, henceforth called the decoy
posts, are taken from a pool of posts (i.e., non-damaging non-
deleted) provided by volunteers. The deletions of the decoy
posts will confuse the adversary in distinguishing damaging
posts from the (non-damaging) decoy posts. Intuitively, Decep-
tive Deletion is more effective if the selected decoy posts are
similar to the damaging posts. These two opposite goals create
a minmax game between the adversary and the challenger that
we further analyze.

Third, we introduce the Deceptive Learning Game, which
formally describes the minmax game between the adversary
and the challenger. We start by considering a static adversary
that tunes the parameters of its system (e.g., classifier for
determining the damaging posts) up until a certain point in
time. However, powerful adversaries are adaptive and continu-
ally tune their models as they obtain more deletions including
the decoy deletions made by the challenger. Therefore, in
the second phase, we consider an adaptive adversary and
describe the optimization problem of the adaptive adversary
and challenger as a minmax game.2

We identify conditions under which either only the adaptive
adversary or only the challenger provably wins the minmax
game and discuss the scenarios in-between these two extremes.
To the best of our knowledge, this is the first attempt to
develop a computational model for quantitative assessment
of the damaging deletions in the presence of both static and
adaptive adversaries.

2See [51] for another example of a minmax game in adversarial learning.

Finally, we empirically demonstrate that with access to
a set of non-damaging volunteered posts, we can leverage
Deceptive Deletions to hide damaging deletions against both
static and adaptive adversary effectively. We use real-world
Twitter data to demonstrate the effectiveness of the challenger.
Specifically, we show that even when we consider only two
decoy posts per damaging deletion, the adversarial perfor-
mance (F-score) drops to 42% from 75% in the absence of
any privacy-preserving deletion mechanism.

II. BACKGROUND AND RELATED WORK

A. Exisiting Content Deletion Mechanisms to Provide Privacy

Today, most archival and social media websites (e.g., Twitter,
Facebook) enable users to delete their content. Recent studies
[20], [60], [65] show that a significant number of users deleted
content—35% of Twitter posts are deleted within six years of
posting them. This user-initiated deletion is also related to the
“Right to be Forgotten” [88], [91]. However, this user-initiated
content deletion suffered from the Streisand effect – attempting
to hide some information has the unintended consequence of
gaining more attention [91]. Consequently, there is a need to
provide deletion privacy to users.

In addition to user-initiated deletions, there exist some
premeditated withdrawal mechanisms where all historical con-
tent is eventually deleted automatically to provide deletion
privacy. These mechanisms can be broadly classified into
two categories. First, in age-based withdrawal, platforms like
Snapchat [1] and Dust [4] and systems like Vanish [42], [43]
and EphPub [28] automatically withdraw a piece of content
after a preset time. Second, to make premeditated withdrawal
more usable, Mondal et al. [65] proposed inactivity-based with-
drawal, where posts will be withdrawn only if they become
inactive, i.e., there is no interaction with the post for a specified
time period (e.g., no more views by other users).

However, even the premeditated withdrawals are not free
from problems of their own. First, all the posts will eventually
get deleted, removing all archival history from the platform.
Second, if posts are deleted before the preset time or in-spite of
high interaction, the adversary can be certain that the deletion
was user-intended, violating deletion privacy.

Minaei et al. [61], [62] presented a new intermittent withdrawal
mechanism for all non-deleted posts, which provides a trade-
off between availability and deletion privacy. In a nutshell,
their system ensures that if an adversary found that a post is
not available, then the adversary cannot be certain if the post is
user-deleted or simply taken down by the platform temporarily.
Although this mechanism is useful for large internet archives,
in platforms such as Facebook and Twitter, where content
availability is crucial to the users and platform, a privacy-
availability trade-off might not be feasible. Furthermore, the
intermittent withdrawal mechanism does not consider the ad-
versary’s background knowledge about other deleted posts.
Our work aims to bridge this gap and provide a novel learning-
based mechanism which considers an adaptive adversary who
aims to uncover tweet deletion.

Tianti et al. [83] offer intuitions for predicting posts dele-
tions on Instagram with the goal of managing the storage
of posts on the servers: Once a post is archived, it becomes
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computationally expensive to erase it; thus, predicting deletions
can help in reducing the overheads of being compliant with
the “right to be forgotten” regulations. These predictions in
the non-adversarial setting, however, does not apply to our
minmax game between the adversary and the challenger.

Garg et al. [41] formalize the right to be forgotten using
platforms as a cryptographic game. While interesting, their
definitions and suggested tools such as history-independent
data structures are not applicable to our setting where the
adversary has continuous access to the collected data.

B. Obfuscation using Noise Injection

Our mechanism is not without precedent, and it is inspired
by earlier work of obfuscation by noise injection. There has
been a line of work in the area of (non-cryptographic) private
information retrieval [38], [47], [66], [69] that obfuscates the
users’ interest using dummy queries as noise to avoid user
profiling. Howe et al. proposed TrackMeNot [9], [47], which
issues randomized search queries to prevent the search engines
in building any practical profile of the users based on their
actual queries. Similar works [38], [66], generate k − 1 other
queries (dummy ones) for each user query and submit all k
queries at the same time. We note that all of the systems men-
tioned so far consider hiding each query separately. However,
a determined adversary may be able to find a user’s interests
by observing a sequence of such obfuscated queries. Multiple
works have investigated such weaknesses [23], [69], [70].

Some relatively new techniques further try to overcome
these shortcomings by smartly generating the k − 1 queries.
For example, Petit et al. proposed PEAS [72], where they
provide a combination of unlinkability and indistinguishability.
However, apart from introducing an overhead for encrypting
the user queries, their method also requires two proxy servers
that are non-colluding, hence weakening the adversarial model.
K-subscription [67] is yet another work that proposes an
obfuscation based approach that enables the user to follow
privacy-sensitive channels in Twitter by requiring the users
to follow k − 1 other channels to hide the user interests
from the microblogging service. However, the K-subscription
has a negative social impact for the user as the user’s social
connections will see the user following these dummy channels.
These shortcomings, both social and technical, motivated our
particular design decision for Deceptive Deletions.

C. Adversarial Machine Learning

Traditional adversarial learning settings [32] involve two
players: a classifier and an attacker. The classifier seeks to
label the inputs whereas the attacker tries to modify the inputs
such that the classifier will misclassify them. Adversarial
machine learning has also been used as a defense with the roles
reversed where the defender attacks the adversary’s classifier.
For example, in [50], the adversary tries to extract users private
attributes from their public data while the defender modifies
the public data of the users in order to fool the adversarys
classifier. Our setting is different in that we are not allowed to
modify the examples. Instead, the challenger wishes to attack
the adversary’s classifier by injecting hard-to-classify examples
into the adversary’s train/test datasets (i.e., the deletion set). A
key constraint for the challenger is that it has to select the

examples from a preexisting set of volunteered posts. This
is because the challenger can only delete existing posts, and
cannot generate fake posts.

As we detail in the subsequent sections, the adaptive
adversary trains on these injected examples as well. With
a faint relation to our work, data poisoning attacks [58],
[81] focus primarily on injecting poisoned samples into a
classifier’s training data with the sole purpose of deteriorating
the classifier. In contrast, our primary goal is to inject examples
only into the adversary’s test dataset, especially because data
poisoning attacks typically require the freedom to arbitrarily
construct data samples, which is not possible in our setting.

III. SYSTEM MODEL AND OVERVIEW

A. System

We consider a data-sharing platform (e.g., Twitter or Face-
book) as the public bulletin board where individuals can upload
and view content. Users are the post owners that are able to
publish/delete their posts, and view posts from other users. In
this work, we consider discrete time intervals in which the
users upload and delete posts (Figure 1 1 ). A time interval
could be as small as a minute or even a week, depending on
the platform. We define two types of posts.

• User-deleted posts A user could delete a post for two
primary reasons [20], [62], [65]:
◦ Damaging posts: the post contained damaging content to

the user’s personal or professional life, or
◦ Non-damaging posts: the post was out-dated, contained

spelling mistakes, etc.
An adversary’s goal is to find the damaging posts among
all the deleted ones that could be used to blackmail the
corresponding owners of the post.
• Volunteered posts We consider a subset of non-deleted

posts that users willingly offer to be deleted to protect the
privacy of other users whenever needed. These volunteered
posts are non-damaging and cannot be used by the adversary
to blackmail the user of the post. We discuss the challenges
of obtaining volunteered posts in Section VI.
A challenger’s goal is to select a subset of volunteered
posts (i.e., non-damaging) and delete them such that the
aforementioned adversary is unable to distinguish between
the damaging and the non-damaging post deletions. We
denote the posts selected by the challenger as decoy posts.

Notation. We use a subscript t to denote the time interval and
superscripts δ,+, v, ∗ to denote the post type. In particular,
Dt is all the uploaded and deleted posts in time interval t.
Then we denote all the deleted posts (user- and challenger-
deleted) in that interval as Dδt , the damaging posts as D+

t , and
volunteered posts by Dv

t . The decoy posts that a challenger
selects for deletion to fool the adversary is denoted by G∗t .
Note that G∗t ⊆ Dv

t ⊆ Dt\Dδt .

B. Adversary’s Actions and Assumptions

Task. At a given time interval, the task of the adversary is
to correctly label all the deleted posts as being damaging to
the post-owner or not. We do not focus on local attackers (or
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Fig. 1: Overview of Deceptive Deletions. In each interval, the deletions are shown by gray squares with ‘δ’. The deleted posts could be
of three types: users’ damaging deletions shown by red squares with ‘+’, users’ non-damaging deletions shown by green squares with
‘−’ and challengers’ decoys posts shown by green squares with ‘∗’. Further, we denote the volunteer posts offered to the challenger
during each interval by green squares with ‘−’ to indicate that they are non-damaging.

stalkers) targeting individuals or small groups of users.3 Our
global adversary instead seeks damaging deletions on a large
scale, rummaging through all the deleted posts to find as many
damaging ones as possible. Fallait Pas Supprimer [13] (from
Section I) is a real-world example of the global adversary.

Data access. At any given time interval, we assume that the
adversary is able to obtain all the deleted posts by comparing
different archived snapshots of the platform. Although this
strong data assumption benefits the adversary tremendously,
we show in Section V-D that Deceptive Deletions can protect
the users’ damaging deletions. Further, we discuss a few
techniques that the platforms can use to restrict and limit the
adversary’s access to the users’ profile in Section VI-C.

Labels. Our global, non-stalker adversary is not able to
obtain the true label (damaging or non-damaging) of the post
from the user. Instead, the adversary uses a crowdsourcing
service like Mechanical Turk (MTurk) [21] to obtain a proxy
for these true labels. Although the labels obtained from the
Mechanical Turkers (MTurkers) reflect societal values and not
the user’s intention, following previous work [87], we assume
they closely match the true labels in our experiments. This is
reasonable as the adversary can expend a significant amount
of effort and money to obtain these true labels, at least for
a small set of posts, that will ultimately be used to train a
machine learning model.

Budget. Since there is a cost associated with acquiring label
for each deleted post from the MTurkers, the aim of the
adversary is to learn to detect the damaging deletions under a
budget constraint. We consider two types of budget constraints:

3Such stalkers can easily label their posts manually, and protecting against
such an attack is extremely hard if not impossible. For example, consider that
a stalker continuously takes snapshots of its targeted user profile with the goal
of identifying the user’s deletions. With its background/auxiliary information
about the user (i.e., knowing what contents are considered sensitive to the
target), it can effectively identify the damaging deletions. We claim that, in this
full-information model, protection against such a local adversary is impossible.

• limited budget where the adversary can only obtain the
labels for a fixed number of posts Bstatic, and
• fixed recurring budget where the adversary obtains the

labels for a fixed number of posts Badapt in each interval.

The adversary with a limited budget is called the static
adversary since it does not train after exhausting its budget.
On the other hand, the adversary with a fixed recurring budget
keeps adapting to the new deletions in each time interval, and
hence is dubbed the adaptive adversary.

Player actions. At every time interval t, the adversary
obtains a set of posts Aδt for training by sampling part of
the deleted posts, say p, from Dδt , an operation denoted by
Aδt

p∼ Dδt . The adversary uses MTurk to label the sampled
dataset Aδt . After training, the task of the adversary is to
classify the rest of the deleted posts of that time interval.
Additionally, as the adversary gets better over time, it also
relabels all the posts deleted from the past intervals. The test
set for the adversary is all the deleted posts from current and
previous time intervals that were not used for training; i.e.,⋃
t′≤t(Dδt′ \ Aδt′). Figure 1 2 shows the adversary’s actions.

Note that although an adaptive adversary can sample p =
Badapt deleted posts at every time interval and use MTurkers
to label them, a static adversary can only obtain the labels
until it runs out of the limited budget (after τ = Bstatic/p time
intervals). After this period, a static adversary does not train
itself with new deleted posts.

Performance metrics. The adversary wishes to increase
precision and recall for the classification of deleted posts into
damaging and non-damaging sets. At every time interval t, we
report adversary’s F-score4 over the test set described above:
deleted posts of all the past intervals, i.e.,

⋃
t′≤t(Dδt′ \ Aδt′).

4F-score = 2 · precision · recall/(precision+ recall)
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C. Challenger’s Actions and Assumptions

Task. In the presence of an adversary as described above,
the task of a challenger is to obtain volunteered posts (i.e.
non-damaging and non-deleted posts) from users, select a
subset of these posts and delete them in order to fool the
adversary into misclassifying these challenger-deleted posts as
damaging. The challenger is honest, does not collude with the
adversary, and works with the users (data owners) to protect
their damaging deletions. Other than the platforms themselves,
third party services such as “tweetDelete” [10] can take the
role of the challenger as well. In Section VI-D, we discuss the
flaws in a possible alternate approach where the challenger
is allowed to generate tweets rather than select from pool of
volunteered posts.

Data access. The challenger can be implemented by the
platform or a third-party deletion service [3], [10], [11], that
has access to the posts of the users. Additionally, we assume
that there are users over the platform who volunteer a subset
of their non-damaging posts to be deleted anytime (or within
a time frame) by the challenger, possibly, in return for privacy
benefits for their (and other users’) damaging deletions.

Labels. The challenger is implemented as part of the platform
(or a third-party service permitted by the user). Thus, unlike
the adversary that obtains proxy labels from crowdsourcing
platforms, it has access to the true labels— damaging or
non-damaging, from the owner of the post. This is easily
implemented: before deleting a post, the user can specify
whether the post is damaging (and needs protection). This
access to the true labels is an advantage that challenger has
over the adversary and hence can train more accurate models.

Access to the adversary. The challenger not only knows the
presence of a global adversary trying to classify the deleted
posts into damaging and non-damaging posts but also can
observe its behaviour.5. As a result, we consider three types
of accesses to the adversary:
• no access where the challenger has no information about

the adversary.
• monitored black-box access with a recurring query bud-

get of Bg where the challenger can obtain the adversary’s
classification probability for a limited number of posts Bg
every time interval, but the access is monitored, i.e., the
adversary can take note of every post queried and treat them
separately.

• black-box access where the challenger can obtain the
adversary’s classification probabilities for any post.

Here, no access is the weakest assumption that defines the
lower-bounds for our challenger’s success. Nevertheless, we
expect the challenger to have some access to the adversary’s
classification. An unrestricted black-box access serves as an
upper bound for the challenger assuming that it can train a
precise surrogate model of the adversary’s classifier using its
own training data. While employing such a surrogate model is
common practice in the literature [54], [68], it can be hard to
obtain in real world without knowing the adversary’s exact ar-
chitecture and training data. Our monitored black-box assump-
tion with a recurring query budget (henceforth, interchangeably
called the restricted black-box access) balances practicality

5Fallait Pas Supprimer [13] posts all its output on Twitter itself.

of the access versus the feasibility of defending against an
adversary with that access. In Section IV, we introduce three
challengers (oracle, D2 and random) corresponding to the three
types of accesses.

Player actions. At every time interval t, the challenger
receives new volunteer posts from the users and adds them
to a set that stores the volunteered posts collected up until
this point. Next, based on the type of access, it obtains the
adversary’s classification probabilities for some number of
volunteer posts (the number is dependent on the access which
we detail in Section IV). Finally, it selects decoy posts, a subset
of the volunteered posts collected up until this point and deletes
these posts in interval t+1 (hence the adversary sees these
challenger-deleted posts in interval t+1 as part of the deleted
set Dδt+1). Figure 1 3 shows the challenger’s actions.

Performance metrics. The challenger, in direct contrast
to the adversary, wishes to decrease adversary’s precision
and recall for the classification of deleted posts. Adversary’s
precision will decrease if it classifies the injected decoy posts
as damaging (increased false-positives). On the other hand,
adversary’s recall will decrease if it learns to be conservative
in order to ignore the decoy posts (increased false-negatives).

IV. THE DECEPTIVE LEARNING GAME

The deceptive learning game is a two-player zero-sum
non-cooperative game over time intervals t = 1, 2, ... (units)
between an adversary who wishes to find users’ damaging dele-
tions, and a challenger who wishes to hide the said damaging
deletions. The challenger achieves this by deleting volunteers’
non-damaging posts as decoys. While the adversary’s goal is to
maximize its precision/recall scores on the classification task,
the challenger’s goal is to minimize them.

We denote each post by (x, y), where x ∈ X represents the
features of the post (i.e., text, comments, etc.) and y ∈ {0, 1}
denotes its true label such that y = 1 if the post is damaging
and y = 0 if it is non-damaging. In the following subsections,
we describe the actions of each player in the time interval t.

A. Adversary

We denote the adversary’s classifier at the beginning of
interval t by a( · ; θt−1) : X→ [0, 1] parameterized by θt−1
such that a(x; θt−1) := P (ŷ = 1 | x; θt−1) is the predicted
probability of the post x being damaging. The adversary
collects all the deletions that happen in this interval (i.e., Dδt )
and samples p posts, denoted by Aδt . The adversary then uses
MTurk to obtain a proxy for the true labels of these p posts.

The adversary uses this labeled training data in the follow-
ing optimization problem to update its parameters,

θt = arg min
θ
LNLL(θ;Aδt ) , (1)

where LNLL is the standard negative log-likelihood loss for the
classification task, given by,

LNLL(θ;Aδt ) =
∑

(x,y)∈Aδt

−y log (a(x; θ))− (1− y) log (1− a(x; θ)) .

After training, the adversary uses the trained model a( · ; θt)
to predict the labels of the rest of the deleted posts of time
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Algorithm 1: Adversary
input : Dδ; /* Deleted posts in this interval */

1 Sample p posts Aδ p∼ Dδ;
2 Query MTurk and obtain labels for Aδ ;
3 Obtain optimal parameters θ∗ by solving Equation (1) ;
4 return a( · ; θ∗)

interval t, i.e., Dδt \Aδt along with all the deleted posts that it
had already predicted in the past. This way the adversary hopes
to capture damaging posts that were missed earlier. Hence, we
report the adversary’s performance on all the past deletions
(not including the training data):

⋃
t′≤t(Dδt′ \ Aδt′).

Static vs Adaptive Adversary. Since the static adversary has
a limited budget, first it chooses the number of time intervals
for training, say τ , and accordingly samples p = Bstatic/τ posts
for querying MTurk to obtain labels. The adaptive adversary
has a fixed recurring budget of Badapt and hence, can sample
p = Badapt posts every interval. This allows the adaptive
adversary to train itself with new training data (of size Badapt)
every interval indefinitely. Algorithm 1 depicts adversary’s
actions within a time interval (subscript t removed for clarity).

B. Challenger

In the presence of such an adversary, the challenger’s goal
is to collect volunteered posts (non-damaging) from users and
selectively delete these posts in order to confuse the adversary.

As described before, Dv
t is the set of posts volunteered by

users in the time interval t. Let G∗≤t be the set of decoy posts
deleted by the challenger in the current and past intervals. At
the end of interval t, the challenger collects all the volunteered
posts from the current and past intervals (except the posts that
it has already used as decoys). The available set of volunteered
posts is denoted by Dv

≤t ≡ (
⋃
t′≤t Dv

t′)\(
⋃
t′≤tG∗t′ ). Note that

(x, y) ∈ Dv
≤t =⇒ y = 0, i.e., the volunteered posts are non-

damaging by definition. For ease of notation, let N v := |Dv
≤t|

be the number of volunteered posts collected till interval t.

Then, the goal of the challenger is to construct the decoy
set G∗t+1 ⊆ Dv

≤t and delete these posts during the next time
interval t+1 in order to fool the adversary into misclassifying
these challenger-deleted non-damaging posts as user-deleted
damaging posts. Formally, we want to choose K decoy posts
(denoted by a K-hot vector w) that maximizes the negative-
log likelihood loss for the adversary’s classifier, given by the
following optimization problem,

w∗ = arg max
w

V (w;Dv
≤t)

s.t. ||w||1 = K, w ∈ {0, 1}N
v
, (2)

where

V (w;Dv
≤t) =

N v∑
i=1

−wi · log(1− a(xi; θt)) , (3)

and xi is the i-th volunteered post in Dv
≤t. The cost func-

tion V (w;Dv
≤t) in Equation (3) is simply the negative log-

likelihood of the adversary over the set Dv
≤t weighted by a

K-hot vector w. Equation (3) uses the fact that the set only
contains non-damaging posts (i.e., yi = 0).

Algorithm 2: Challenger
input : Dv, K, accessType

1 G∗ ← ∅ ;
2 if accessType = none then

/* Random challenger */

3 G∗ K∼ Dv ;

4 else if accessType = black-box then
/* Oracle challenger */

5 G∗ ← {xi : xi ∈ Dv ∧ a(xi; θ) is in the top K} ;

6 else if accessType = monitored black-box (budget Bg)
then

/* D2 challenger */

7 Sample Bg posts for training Dv,train Bg∼ Dv;
8 Dv,test ← Dv \ Dv,train ;
9 Query a(xi; θ) for all (xi, yi = 0) ∈ Dv,train ;

10 Obtain optimal parameters φ∗ by
solving Equation (4) ;

11 G∗ ← {xi : xi ∈ Dv,test ∧ g(xi;φ
∗) is in the top K}

;

12 return G∗ ;

Consequently, w∗ optimized in such a fashion selects K
posts from the set Dv

≤t that maximizes the adversary’s negative
log-likelihood loss. The set of K selected posts can be trivially
constructed as G∗t+1 = {xi : i ∈ {1, . . . , N v} ∧ wi = 1}.
The challenger deletes G∗t+1 over the next time interval t+1
(hence the adversary sees these posts as part of the deleted set
Dδt+1). Note that the challenger uses the adversary’s classifier
a( · ; θt) to create decoy posts for t+1. However, as per
Section IV-A, in interval t+1 the adversary first trains over a
sample of the deleted posts (including the decoy posts) and
updates its classifier to a( · ; θt+1) before classifying the rest
of the deleted posts of t+1. Hence, the challenger is always
at a disadvantage (one step behind).

Next, we describe three challengers corresponding to the
access types discussed in Section III-C: no access, black-box
access and monitored black-box access with a query budget.

Random challenger (no access). We begin with the case
where the challenger has no access to the adversary’s classifier
and there is no side-information available to the challenger.
With no access to the adversary’s classification probabilities
a( · ; θt), the optimization problem in Equation (2) cannot be
solved. We introduce the naive random challenger that simply
samples K posts randomly from the available volunteered
posts Dv

≤t and deletes them, i.e., G∗t+1
K∼ Dv

≤t. This is the
only viable approach if the challenger has no information about
the adversary’s classifier.

Oracle challenger (black-box access). Next we consider
the challenger that has a black-box access to the adversary’s
classifier with no query budget, i.e., at any time interval t,
the challenger can query the adversary with a post x and ex-
pect the adversary’s predicted probability a(x; θt) in response
without the adversary’s knowledge. Armed with the black-box
access, oracle challenger can simply maximize Equation (2)
by choosing the top K posts with highest values for a(xi; θt).
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D2 Challenger (monitored black-box access with query
budget Bg). The oracle challenger assumes an unmonitored
black-box access to the adversary with an infinite query budget
which can be hard to obtain in practice. In what follows, we
relax the access and assume a monitored black-box access with
a recurring query budget of Bg . In other words, queries to the
adversary, while being limited per interval, are also monitored
and possibly flagged by the adversary. The adversary can
simply take note of these queries as performed by a potential
challenger, hence negating any privacy benefits from injecting
decoy posts. Whenever the adversary sees a deleted post
identical to one that it was previously queried about, it can
ignore the post as it is likely non-damaging.

Here we design a challenger, henceforth dubbed D2, that
trains to select decoy posts from any given volunteered set.
In other words, the D2 challenger makes use of the monitored
black-box access to the adversary only during training. Hence
it can be used to find the decoy posts without querying the
adversary; for example in a held-out volunteered set (separate
from the training set). Additionally, the D2 challenger queries
the adversary for only Bg posts every time interval.

We denote the challenger’s model at the beginning of
interval t by g( · ;φt−1) : X→ R parameterized by φt−1. For
a given volunteer post x, g(x;φt−1) gives an unnormalized
score for how likely the post will be mislabeled as damaging;
higher the score, higher the misclassification probability.

First, the D2 challenger samples Bg posts for training from
the available volunteered set Dv

≤t collected till interval t. We
denote the train and test sets of the D2 challenger as Dv,train

≤t
and Dv,test

≤t of sizes Bg and N v − Bg respectively. Then, the
goal of the D2 is to find optimal parameters φt by solving a
continuous relaxation of Equation (2) presented below,

φt = arg max
φ

Ṽ (φ;Dv,train
≤t ) (4)

where

Ṽ (φ;Dv,train
≤t ) =

Bg∑
i=1

−α(xi;φ,Dv,train
≤t ) log(1− a(xi; θt)) ,

and

α(xi;φ,Dv,train
≤t ) =

exp (g(xi;φ))∑Bg
j=1 exp (g(xj ;φ))

,

is a softmax over the challenger outputs for all the exam-
ples in Dv,train

≤t . The softmax function makes sure that 0 ≤
α( · ;φ,Dv,train

≤t ) ≤ 1 and
∑Bg
j=1 α(xj ;φ,Dv,train

≤t ) = 1. The
continuous relaxation in Equation (4) allows the D2 challenger
to train a neural network model parameterized by φ via
backpropagation.

We now show that optimizing the relaxed objective in
Equation (4) results in the best objective value for Equation (2).

Proposition 1. For any given volunteered set Dv with N non-
deleted posts,

max
φ

Ṽ (φ;Dv) = max
w1,...,wN

V (w1, . . . , wN ;Dv)

We present proof of the proposition in Appendix B.

Algorithm 3: Deceptive Game
input : accessType, K

1 G∗1 ← ∅ ;
2 Dv
≤0 ← ∅ ;

3 for t← 1 to n do
4 Dδt , Dv

t ← Users(t) ; /* deleted and volunteered

posts of the users at interval t */

5 Dδt ← Dδt ∪G∗t ; /* user- and

challenger-deleted posts at interval t */

6 if Adversary’s budget has not exhausted then
7 a( · , θt)← Adversary(Dδt ) ;
8 Dv

≤t ← (Dv
≤t−1 \G∗t ) ∪ Dv

t ; /* available

volunteered set */

9 G∗t+1 ← Challenger(Dv
≤t,K, accessType)

10 end

Finally, the D2 challenger with optimal parameters φt com-
putes g(x;φt) for all (x, y = 0) ∈ Dv,test

≤t , and constructs G∗t+1

by choosing the examples with top K values for g( · ;φt).
Algorithm 2 shows the actions of the challenger within a time
interval (subscript t removed for clarity).

C. Deceptive Learning Game

Algorithm 3 presents the game between the adversary and
the challenger. In each time interval, users independently delete
and volunteer posts (line 4). The platform/deletion-service
additionally deletes the challenger-selected decoy posts (line
5). The adversary obtains all the deleted posts and queries
the MTurk with a small subset of the posts for labels (if the
adversary has not exhausted the budget). With this labeled set
of deleted posts, the adversary trains its classifier (lines 6-
7). The challenger collects new volunteered posts (line 8) and
builds decoy posts to be injected in the next interval (line 9).
This results in a real-life game between the adversary and the
challenger, where each adapts to the other.

D. Analysis: Who Wins the Game?

In what follows, we analyze the scenarios where either the
adversary or the challenger wins the deceptive learning game.
We show that the volunteered set, Dv, plays a significant role in
deciding the winner of the game. First, we need the definition
of support of a distribution.

Definition 1 (Support). Let Ω = {x : ∀x, p(x) > 0} be the
support of distribution p(x), i.e., the set of all possible features
x with non-zero probability.

Let p+(x) be the distribution of the features of damaging
posts, with the corresponding support denoted by Ω+. Then,
a post x is in Ω+ if there is a non-zero probability that it is a
damaging post. Similarly, Ωv is the support of the distribution
of volunteered posts pv. Next, we analyze the two extreme
scenarios of non-overlapping supports (i.e., Ωv ∩ Ω+ = ∅)
and fully-overlapping supports (i.e., Ωv = Ω+). These extreme
scenarios correspond to the following simple questions respec-
tively: (a) “what if all the posts volunteered by users have
completely different features than the damaging posts?” and
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(b) “what if the volunteered posts have very similar or same
features as those of damaging posts?”.

1) Non-overlapping Support: Adversary Wins:

Proposition 2 (Non-overlapping support). Assume Ωv∩Ω+ =
∅, i.e., the supports of volunteered and damaging posts do not
overlap. Then, there is always a powerful-enough adversary
to defeat the challenger.

An Illustrative Example: Consider the example provided
in Figure 2a. The two classes (denoted by red circles and green
crosses respectively) have non-overlapping support. We show
the decision boundary of the adaptive adversary in this setting
dataset after 50 intervals of the deceptive learning game. We
see that the adversary can perfectly label the points even in
the presence of the oracle challenger.

Real-world scenario: The non-overlapping case could
happen in an online social platform if its users are very
conservative in volunteering posts to the challenger. Consider
for example, none of the volunteered posts contained any
sensitive keyword, whereas all the damaging posts had at
least one sensitive keyword, a clear case of non-overlapping
supports. In such a scenario, the adversary will win the game
as detailed above.

2) Fully-overlapping Support: Challenger Wins:

Proposition 3 (Fully overlapping support). Assume Ωv = Ω+,
i.e., the supports of volunteered and damaging posts fully
overlap. Then, given enough volunteered posts in Dv, the
challenger always defeats the adversary (in both static and
adaptive scenarios). More precisely, if the challenger selects
k decoys per damaging post in Dδ , then the adversary’s
probability of identifying a damaging post in Dδ is in average
at most 1/(k + 1).

An Illustrative Example: Consider the example provided
in Figure 2b where the two classes (red circles and green
crosses respectively) have fully overlapping supports (as they
are drawn from a Gaussian distribution with different means).
We show the decision boundary of the adaptive adversary in
this setting after 50 intervals of the deceptive learning game.
We see that for any decision boundary, there exist points in Ωv

that a challenger can choose such that the adversary mislabels
them as damaging.

Real-world scenario: The fully-overlapping case could
happen in an online social platform if the definition of what
constitutes as damaging varies across the platform’s users. For
example, user A could consider a post with a single sensitive
word (e.g., a swear word) as damaging, whereas another user
B from a different background might consider the same post
as completely innocuous and volunteer the post. In such a
scenario, the challenger will use volunteered posts from user B
to protect the damaging posts of user A. Hence, the challenger
will win the game against even the most powerful adversary
with infinite data.

Propositions 2 and 3 are important to understand the two
extreme cases —where either the challenger clearly wins
or the adversary clearly wins— as important insights, even
though these clear-cut cases are unlikely to happen in practice.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.75

0.25

0.25

0.75

1.25 100% fscore

(a) Non-overlapping supports

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0 50%  fscore

(b) Fully overlapping supports

Fig. 2: Two examples illustrating the two possible scenarios
relating to the supports of volunteered posts and damaging posts:
non-overlapping (left) and fully overlapping (right). The black
line denotes the decision boundary of the adaptive adversary
after 50 intervals of the deceptive learning game.

Most real-world applications will likely fall between these
two extremes, where the supports only partially overlap. In
such scenarios, the adversary wins outside the overlap (i.e.,
can classify everything correctly outside the overlap), and the
challenger wins inside the overlap. In other words, extremely
sensitive and damaging posts cannot be protected as they will
have no overlap with any of the volunteered posts. However,
as we show in the next section, with a reasonable volunteered
set, the challenger can make it hard for the adversary to detect
damaging deletions.

V. SYSTEM EVALUATION ON TWITTER DELETIONS

In this section we evaluate the efficiency of an adversary
when Deceptive Deletions is applied to the real-world problem
of concealing damaging deletions in Twitter. In this evaluation
we first create and prepare sets of (non)damaging tweets.
Then we use these sets to train the challenger and adversary
classifiers and analyze their performance.

A. Data Collection

In this work, we select Twitter as our experimental social
media platform. We note that it was certainly plausible to per-
form the exact experiment on other social platforms. However
we chose Twitter due to its popularity and feasibility of data
collection. Specifically, in order to evaluate the challenger we
needed a real-world dataset which includes (i) both deleted and
non-deleted tweets (i.e., Twitter posts) and (ii) deleted tweets
that contain both damaging and non-damaging tweets. To that
end, we use two data sources to create such a dataset.

1) Deceptive Deletion dataset: We collected 1% of daily
random tweet samples from the Twitter API from Oct 2015 -
May 2018. Eliminating non-English tweets, we accumulated
over one billion tweets. In the next step, we construct the
damaging and volunteered sets.

To construct the damaging set, we first needed to identify
the deleted tweets6. We sampled 300,000 tweets from the
aforementioned collected data, and leveraging the Twitter API,
we identified the tweets that were deleted at the time of our
experiment (Jan 30th, 2020). In total, we identified 92,326

6we only considered user-initiated deletion (not platform-initiated ones).
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deleted tweets. The next step was to obtain ground truth labels
for the deleted tweets—i.e., detect and assign “true” labels
to damaging tweets and “false” labels to rest. We used the
crowdsourcing service Amazon Mechanical Turk (MTurk) [21]
to obtain a proxy for these true labels. However, there were
two challenges– First, it was impractical to ask our annotators
to label 92,326 tweets. Second, since the dataset was highly
imbalanced, a simple random sample of tweets for labeling
would have resulted in a majority of non-damaging tweets.

Thus we followed prior work [87], [94] and filtered the
deleted tweets using a simple sensitive keyword-based ap-
proach [94] (i.e., identify posts with sensitive keywords) to
have a higher chance of collecting possibly damaging tweets.
The complete list of keywords (over 1500 words) can be found
in http://bit.ly/1LQD22F. This approach resulted in 33,000
potentially damaging tweets, and we randomly sampled 3,500
tweets to be labeled by annotators on MTurk. The mean
number of sensitive keywords in each tweet within our data
set was 2.55. We have also considered the experiment of
skipping the filtering step explained above. We refer interested
readers to Appendix A for detailed information after reading
this section (as only the differences with the filtering approach
are highlighted there).

Note that, in addition to the cursing and sexual keywords,
our sensitive keyword-based approach considered keywords
related to the topics of religion, race, job, relationship, health,
violence, etc. Intuitively, if a post does not contain any such
sensitive keywords then the likelihood of the post being
damaging is very low. We confirmed this intuition by asking
MTurk annotators to label 150 tweets which did not contain
any sensitive keyword as (non)damaging. More than 97% of
these 150 tweets were labeled as non-damaging by annotators.
We surmised that in practice, the adversary will also leverage
a similar filtering approach to reduce its overhead and increase
its chances of finding damaging posts. Note that, in this
experiment we have only considered the text of the tweets.
However, the adversary can use additional user information,
but labeling the posts (for training) based on the entire sets of
posts of the users is infeasible for a large-scale attack.

In total, out of our sampled 3,500 deleted tweets, we
obtained labels for 3,177 tweets (excluding annotations from
Turkers who failed our quality control checks as described
later). Among the labeled tweets, 1,272 were identified as
damaging, and 1, 905 were identified as non-damaging.

Data labeling using MTurk. We acknowledge that ideally,
the tweet labels should have been assigned by the posters
themselves. However, since we collected random tweets at
large-scale using the Twitter API, we could not track down and
pursue original posters to label their deleted tweets. Further-
more, following up with specific users for labeling their deleted
posts is likely to cross the ethical boundary of this academic
work (see Section V-B). To that end, we note that there is
a crowdsourcing based alternative which is already leveraged
by earlier work to assign sensitivity labels [27], [31], [87].
Specifically, these studies determined the sensitivity of social
media posts by simply aggregating crowdsourced sensitivity
labels provided by multiple MTurk workers (Turkers). Thus,
we took a similar approach as mentioned next.

On MTurk, tasks (e.g., completing surveys) are called

Human Intelligence Tasks or HITs. Turkers can participate in
a survey by accepting the corresponding HIT only if they meet
all the criteria associated with that HIT (set by the person(s)
who created the HIT). We leverage this feature to ensure the
reliability of our results. Specifically we asked that the Turkers
taking our survey should: (i) have at least 50 approved HITs.
(ii) have an assignment approval rate higher than 90%, and
(iii) have their location set to United States. This last criterion
ensured consistency of our Turkers’ linguistic background. In
our experiment each HIT consisted of annotating 20 tweets
with true (damaging) or false (non-damaging) labels. We
allowed the Turkers to skip some tweets in case they feel
uncomfortable for any reason. We compensated 0.5 USD for
each HIT and on average it took the Turkers 193 seconds to
complete each HIT.

To control the quality of annotation by Turkers, we in-
cluded two hand-crafted control tweets with known labels in
each HIT. These control tweets were randomly selected from
two very small sets of clearly non-damaging or damaging
tweets and were inserted at random locations within the
selection of 20 tweets. For example a damaging control tweet
was: “I think I have enough knowledge to make a suicide bomb
now! Might need it New Year’s Eve” and non-damaging control
tweet was: “Prayers with all the people in the hurricane
irma”. If for a HIT, the responses to these control tweets did
not match the expected label, we conservatively discarded all
twenty annotations in that HIT.

We countered possible bias resulting from the order of
presentation of tweets via randomizing the order of tweets in
every HIT. Even if two Turkers annotated the same set of
tweets, the order of those tweets was different. Furthermore,
to ease the subjectivity of the labels from each participant, for
each tweet we collected the annotations of multiple Turkers
and took the majority vote. In our experiment, we created the
HITs such that each tweet was annotated by 3 distinct Turkers.
After receiving the responses, for each tweet we assigned the
final label (indicating damaging or non-damaging) based on
the majority vote.

We emphasize that in the real world, the burden of labeling
the posts via crowdsourcing is on the adversary(see Sec-
tion III-B, Labels subsection). The challenger, on the other
hand, can be implemented as a service within the platform
and can obtain the true labels directly from the post-owners.
Therefore, existence of any mislabeled data will negatively im-
pact only the adversary (see Section III-C, Labels subsection).

2) #Donttweet dataset: Recently Wang et al. [87] proposed
“#Donttweetthis”. “#Donttweetthis” is a quantitative model
that identifies potentially sensitive content and notifies users
so that they can rethink before posting those content on social
platforms. Wang et al. created the training data for their model
by (i) identifying possibly sensitive tweets by checking for
the existence of sensitive keywords within the text and then
(ii) using crowd-sourcing (i.e., using MTurk) to annotate the
sensitivity of each tweet by three annotators.

The data collection approach used by “#Donttweetthis”
(section 3 of [87]) is very similar to ours. Therefore, to enrich
our dataset and be able to evaluate the challenger over more
intervals, we acquired their labeled tweets. Using the Twitter
API, we queried the tweets using their corresponding IDs and
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identified the deleted ones (at the time of writing, Jan 30th,
2020). In total, we obtained 851 deleted tweets, where 418
were labeled as sensitive (damaging), and the remaining 433
were labeled as non-sensitive (non-damaging). The mean of
sensitive keywords in each tweet within this set was 1.7.

Summary of collected data. In summary, combining the
two datasets explained above, we obtained labels for 4, 028
deleted tweets establishing the user deleted set. Among the
deleted tweets 1, 690 were labeled as damaging constructing
our damaging set (D+). As we will demonstrate in the results
section, in our evaluation the four thousand labeled tweets
(larger than that of prior works [87], [94]) allows for 10
intervals for the game between the adversary and challenger.

Furthermore, for our experiment, we consider k = 1, 2, 5
(i.e., number of decoy posts for each damaging post). To
accommodate these values of k and construct a volunteer pool
that the challenger can make meaningful selections from, we
sampled 100,000 non-deleted tweets uniformly at random from
the 1% daily tweet samples posted between Jan 1st, 2018 May
31st, 2018 to build the volunteered set. The non-deleted tweets
are assumed to be non-damaging. We consider this assumption
to be reasonable as if a tweet contains some damaging content
then its owner would not keep that post on its profile. In
practice, we can forgo this assumption as the volunteer users
themselves offer the volunteer posts. The average number of
sensitive keywords in each tweet in this set was 0.41.

B. Ethical Considerations

Recall that in order to create our evaluation dataset we
needed to show some deleted tweets to Turkers for the an-
notation task. Thus, we were significantly concerned about
the ethics of our annotation task. Consequently, we discussed
at length with the Institutional Review Board (IRB) of the
lead author’s institute and deployed the annotation task only
after we obtained the necessary IRB approval. Next we will
detail, how, in our final annotation task protocol we took quite
involved precautionary steps for protecting the privacy of the
users who deleted their tweets.

We recognize that, in the context of our evaluation, the
primary risk to the deleted-tweet-owners was the possibility of
linking deleted tweets with deleted-tweet-owner profiles during
annotation. This intuition is supported by prior research [56],
[65] who suggested applying selective anonymization for re-
search on deleted content. Thus, we anonymized all deleted
tweets by replacing personally identifiable information or PII
(e.g., usernames, mentions, user ids, and links) with place-
holder text. For example, we replaced user accounts (i.e.,
words starting with @) and url-links with “UserAccount” and
“Link” respectively. Moreover, one of the authors manually
went over each of these redacted posts to ensure anonymization
of PII before showing them to Turkers.

C. Experiment Setup

Partitioning the data for different time intervals. Recall
from Section III that we discretize time into intervals. In our
experiments, we choose T = 10 intervals in total (a choice
made based on the number of collected tweets). Consequently,
we partition our dataset into 10 intervals. Ideally, the partitions
should be based on the creation and deletion timestamps of

the tweets. Unfortunately however, the Twitter API does not
provide deletion timestamps. Hence, we randomly shuffle the
tweets and divide them into 10 equally sized partitions.

BERT model. In line with our approach to model the most-
powerful adversary as best as we possibly can, we use a
state-of-the-art natural language processing model: the BERT
(Bidirectional Encoder Representations from Transformers)
language model [36], both for the adversary and for the chal-
lenger. Specifically, we use BERTBASE model that consists of
12 transformer blocks, a hidden layer size of 768 and 12 self-
attention heads (110M parameters in total). BERT has been
shown to perform exceedingly well in a number of downstream
NLP tasks [36]. We use HuggingFace’s [89] implementation
of the BERT model that was already pre-trained on masked
language modeling and next sentence prediction tasks.

BERT uses WordPiece embeddings [90] to convert each
word in the input tweet to an embedding vector. The concate-
nated embedding vector is passed to the BERT neural network
model. In our experiments, we only give the text of the tweet
as input to both the adversary and the challenger to make it
amenable to the pre-trained BERT models. Other tweet features
such as deletion timestamps, number of likes, etc. could be
used by both the adversary and the challenger to improve
their performance. Note however that Propositions 2 and 3
still apply as long as the adversary and the challenger have
the same information.

We fine-tune the BERT model on our datasets as prescribed
by Devlin et al [36]. In each interval, the adversary’s classifier
is fine-tuned for the classification of tweets into damaging
and non-damaging using the negative log-likelihood loss in
Equation (1). We use a batch size of 32 and sample equal
number of damaging and non-damaging tweets in each batch.
This procedure results in better trained models as it avoids the
scenario where a randomly sampled batch is too imbalanced
(for example, no damaging tweet sampled in the batch). A
separate BERT model is fine-tuned for the challenger using
the loss function in Equation (4). Note that no balancing is
required here since all the input tweets to the challenger model
are non-damaging. We note that explaining the exact strategy
employed by BERT models to classify text is an active research
topic and complementary to our efforts. However, we highlight
that our challenger does not use any information about either
the adversary’s exact model or its parameters.

Budget constraints: We allow a limited budget of Bstatic =
200 deleted tweets for the static adversary and set τ = 1,
i.e., the static adversary only trains during the first out of
the ten intervals. Similarly for the adaptive adversary, we
allow a fixed recurring budget of Badapt = 200 deleted tweets
every interval. There are no budget restraints for random and
oracle challengers (having no access and black-box access
respectively). However, we restrict the D2 challenger to have
the same (recurring) query budget as the adaptive adversary’s
recurring budget to keep the game fair, i.e., Bg = Badapt = 200.

We simulate the game described in Algorithm 3 with
an adversary and a challenger, both implemented as BERT
language models, with 10 different random seeds. We repeat
the experiments for k = 1, 2, 5 where k denotes the number
of decoy posts added per damaging deletion.
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Fig. 3: F-score of different adversaries (random, static, adaptive)
when no privacy preserving deletion mechanism is in place.
Shaded areas represent 95% confidence intervals.

D. Results

Figures 3 and 4 show the F-scores (with 95% confidence
intervals), precision and recall for different adversaries over 10
time intervals. We make the following key observations.

Detection of damaging deletions in social media platforms
is a serious concern. We start by considering the case where
no privacy-preserving deletion mechanism is in place (i.e., no
challenger to inject decoy deletions). In such a scenario, we
compare the efficiency of different types of adversaries ten
intervals shown in Figure 3.

The random adversary labels the posts based on the prior
distribution of the deleted tweets (around 42% damaging and
58% non-damaging every interval). As expected, the adversary
achieves a 42% precision and 58% recall resulting in an F-
score of about 48% in each interval.

As shown in Figure 3, in the first interval, the static
adversary achieves a 17 percentage points (i.e., a 35%) increase
in its F-score compared to the random adversary, and remains
almost constant over the rest of the intervals. On the other
hand, the adaptive adversary receives new training data every
interval and trains its classifier continually, and hence is able
to increase its F-score even further by about 10 percentage
points (56% increase compared to the random adversary) at
the end of the 10th interval.

This shows that even normal users of social media plat-
forms, not only celebrities and politicians, are vulnerable to
the detection of their damaging deletions. Furthermore, the
adversaries can automate this attack on a large-scale with an
insignificant amount of overhead (access to a small dataset of
posts with the corresponding labels), highlighting the neces-
sity for a much-needed privacy-preserving mechanism for the
users’ damaging deletions in today’s social platforms.

Injecting decoy deletions decreases the adversarial perfor-
mance. As explained in Sections III and IV, we consider
three challengers corresponding to the three types of accesses
to the adversary’s model – no access, black-box access, and
restricted black-box access. In the following, we compare the
performance of the adversaries in the presence of the respective
challengers against the absence of any challenger case above.

No access: The top row of Figure 4 shows the performance
of the three adversaries (random, static, and adaptive) in the
presence of the random challenger. We observe that although
the F-score of both the static and the adaptive adversary
decreases for all values of k, the reduction is not significant
(only 7 percentage points for k=1 compared to the no-
challenger case) In fact, both the adversaries still perform much
better than the random adversary. This shows that protection
of damaging deletions in the no-access scenario is possible but
severely limited.

Black-box access: The middle row of Figure 4 shows the
performance of the adversaries in the presence of an oracle
challenger. Not surprisingly, this approach is very effective
at lowering the (static and adaptive) adversaries’ F-scores
(close to random for k=1, 2; i.e., 20 and 35 percentage point
reduction in the case of k=1 for the static and adaptive
adversary respectively compared to the no-challenger case).

We also observe a major difference between the static and
the adaptive adversaries in the presence of a competitive chal-
lenger. The static adversary retains the same recall performance
(as in the no-challenger case) but loses drastically in precision,
i.e., it classifies a large number of decoy posts as damaging.
On the other hand, the adaptive adversary tries to adapt to the
presence of decoy posts and becomes highly conservative –
retains the same precision performance (as in the no-challenger
case) but suffers heavily in the recall performance, i.e., it
classifies a large number of damaging posts as non-damaging.

Restricted black-box access: The bottom row of Figure 4
shows the performance of the adversaries in the presence of
the D2 challenger. The performance of the D2 challenger is
comparable to the oracle challenger. The adversaries’ F-scores
in the presence of the D2 challenger is close to 45% for the
case of k=1 (20 and 30 percentage point reduction for the
static and adaptive adversaries respectively compared to the no-
challenger case). We also observe a precision-recall trade-off
separating the static and the adaptive adversary (i.e., the static
adversary loses in precision, whereas the adaptive adversary
loses in recall) similar to the one described in the presence of
an oracle challenger .

Overall, we conclude that the D2 challenger is able to
successfully raise the bar for the adversaries in identifying
damaging deletions without requiring an unmonitored black-
box access with infinite query budget.

The increase of decoy posts (k) results in lower adversarial
performance with diminishing returns. While examining
each row of Figure 4 individually, we see that the performance
of the adversaries always decreases as k, the number of decoy
deletions per damaging deletion, increases. However, we also
observe that k = 1 is enough to reduce the F-scores of the
adversaries to 45% (close to the random adversary). Since the
goal of most social platforms is to retain as many posts as
possible, it would not be in the platform’s best interests to use
much larger values of k or to delete the entire volunteered set.

Observation of damaging and decoy posts. In Table I in the
Appendix, we show damaging tweets (as labeled by the AMT
workers) and decoy tweets (chosen by the D2 challenger from
a set of non-deleted tweets). We observe that even though the
decoy tweets typically seem to have sensitive words, they do
not possess content damaging to the owner.
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(a) Random challenger (k = 1)
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(b) Random challenger (k = 2)
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(c) Random challenger (k = 5)

(No access.) Adversaries (random, static and adaptive) in the presence of random challenger with k = 1, 2, 5.
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(d) Oracle challenger (k = 1)
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(e) Oracle challenger (k = 2)
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(f) Oracle challenger (k = 5)

(Black-box access.) Adversaries (random, static and adaptive) in the presence of oracle challenger with k = 1, 2, 5.
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(g) D2 challenger (k = 1)
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(h) D2 challenger (k = 2)
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(i) D2 challenger (k = 5)

(Restricted black-box access.) Adversaries (random, static and adaptive) in the presence of D2 challenger with k = 1, 2, 5.

Fig. 4: F-score (with 95% confidence intervals), precision and recall for the three adversaries (random, static and adaptive)
in the presence of different challengers corresponding to different accesses with k = 1, 2, 5. Key observation: D2 challenger
fools the adversaries almost as well as the oracle challenger but with a restricted black-box access.

VI. DISCUSSION

A. Adversarial Deception Tactics

The adversary can use different techniques to sabotage the
challenger. Here, we mention some prominent systems attacks
and their effects on the challenger.

Denial of Service attack. One of such attacks could be a
simple Denial of Service (DoS), where the attacker submits
requests for many damaging deletions to consume all the
volunteer posts. First, we remind that the volunteered posts are
a renewable resource, not a finite resource, as the users create,
volunteer and delete posts in each time interval. Regardless, a
DOS attack is possible wherein the adversary can use up all

volunteered posts collected up until this point.

A standard way to avoid such attacks is to limit the number
of damaging deletions that can be protected for each user in
one time interval (we assume that the adversary can have
many adversarial users to help with the DoS attack but is
not allowed to use bots [26], [30], [37], [40], [82], [86]). As is
clear from Section IV-D, the challenger’s defense is dependent
on the distribution and number of volunteered posts. If there
are more adversarial users than volunteers, then the adversary
can win the game.

We implemented the DoS attack as follows: in every inter-
val, the adversary deletes as much as the standard deletions.
We observed that the F-score did not change in this situation.
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Volunteer Identification attack. In a volunteer identification
attack, the adversary deletes a bunch of posts and uses the
process of doing so to identify individuals who volunteer posts
to the challenger for deletion. First, we note that in each
time interval there is a large number of posts being deleted
(> 100 million tweets daily [62]). Thus the posts deleted by
the adversary (to try to identify volunteers) and the corre-
sponding decoy deletions are mixed with other (damaging/non-
damaging/decoy) deletions. In such a case, identifying the
volunteers is equivalent to separating the decoy deletions
from the damaging deletions; reducing to the original task.
Additionally, the challenger does not delete the decoy posts at
the same time as the original damaging deletion but does so
in batches spread out within the time interval.

Further, the volunteers can also have damaging deletions of
their own. Even if an adversary is able to identify volunteers,
the adversary still needs to figure out which of the volunteer’s
deletions are decoys. If the adversary ignores all posts from
volunteers, then a simple protection for the users is to become
a volunteer, which helps our cause.

Adversary disguising as volunteer. In this attack, the
adversary can take the role of a volunteer (or hire many
volunteers) to offer posts to the challenger. Subsequently, the
challenger may select the adversary’s posts as decoys in the
later intervals; however, these posts do not provide deletion
privacy as the adversary will be able to discard these decoy
posts easily. This effect can be mitigated with the help of more
genuine volunteers and increasing the number of decoys per
damaging deletion. This points to a more fundamental problem
with any crowdsourcing approach: if the number of adversarial
volunteers is more than the number of genuine volunteers, the
approach fails.

Differentiating between different damaging categories. In
this work, all the damaging posts are treated the same.
However, in practice, the damaging posts fall into different
categories, and some may be more harmful to the users than
others. As a result, the adversary can focus on those categories
more carefully. In such a case, the challengers outputs and loss
function need to be modified—the challenger needs to output a
weight per damaging category for each decoy post (indicating
the likelihood of fooling the adversary as a damaging post
of that category). The challenger would also have to balance
the different categories of decoy posts to keep the same
distribution of categories as in the real damaging posts.

B. Obtaining volunteered posts from users

Volunteer posts are a significant component of our system.
We identify that there are already deletion services which en-
able users to delete their content in bulk (e.g., “twitWipe” [12]
and “tweetDelete” [10] for Twitter, “Social Book Post Man-
ager” [2] for Facebook, “Cleaner for IG” [14] for Instagram,
“Nuke Reddit History” [15], and multiple bots on RequestABot
subreddit for Reddit). Our system can benefit from these bulk
deletions to construct the volunteered posts pool. In such
a scenario, whenever a user bulk-deletes it will mark its
damaging posts and the remaining posts will be considered
as “volunteered” with a guarantee that they will be deleted
within a fixed time period.

We contacted the deletion services mentioned above and
shared our proposal, Deceptive Deletions, for the privacy of
users’ damaging deletions. The responses that we received
have been positive. They attest that, with Deceptive Deletions,
an attacker that observes the deletion of users in large numbers
will have a harder time figuring out which of the deleted posts
contain sensitive material.

Nevertheless, other strategies could be more effective,
for instance, one based on costs and rewards. Under such
a strategy, each user seeking privacy for his/her damaging
deletions is required to pay a cost for the service, whereas the
users that volunteer their non-damaging posts to be deleted
by the challenger (at any future point in time) are rewarded7.
The costs and rewards can be monetary or can be in terms
of the number of posts themselves (i.e., a user has to volun-
teer a certain number of her non-damaging posts to protect
her damaging deletion). Nevertheless, in an ideal world, the
volunteered set could also be obtained from altruistic users
who offer their non-damaging posts for the protection of other
users’ deletions.

Finally, we emphasize that (as observed in Section V-D)
even when there is one decoy post for each damaging post
(k = 1), the task of the adversary becomes significantly
harder. Further, as we state in Appendix A, the percentage
of damaging deletions versus the non-damaging ones is sig-
nificantly lower (i.e., 18% to 82%). Therefore, we can reckon
that obtaining the pool of volunteer posts is realizable.

C. Rate Limiting The Adversary’s Data Access

In this work, we consider a very powerful adversary in
terms of data access—it is capable of taking snapshots of
the entire platform at different times to identify deleted posts
(see Section III-B). However, in practice, platforms can use
rate-limiting techniques to restrict access of the adversary to
the users’ profile. Client-side strategies [63], [64], deferred
responding [17], and the common limitations on source IP
address, user, and API key [17], [19] are some of the well-
known practices. A more sophisticated approach is to use
computational puzzles, where the adversary can only access the
data after successfully computing a puzzle given by the data
platform. Sample domains include data breach mitigation [57],
[85], DDOS [34], [52], spam-prevention [39], and practical
cryptocurrencies [59]. These types of data limiting restrictions
are interesting future work and will only improve our results.
In such a case, the adversary will not be able to observe all
the users’ profiles constantly, or it will have blackout periods
of the users’ profiles (not observing the deletions).

D. Deceptive Learning Game vs GANs

Recall that in our setting, the task of the challenger is
to select posts from a pre-defined volunteered set Dv. An
alternative approach is to use generative models [35], [44],
[55], [73], [92] to generate fake texts —see Zhang et al. [93]
for a recent survey and Radford et al. [73] for the state-of-the-
art— enabling the challenger to generate decoy posts instead
of selecting them from a pre-defined set. However, we note
that such generative models might not be favorable or even
effective in practical systems.

7Other distributed systems use similar concept such as BitTorrent [53], [79].
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Let us consider the case of generating decoy posts on
Twitter. Twitter posts are attached with a persistent non-
anonymous user identities [31]. Since, uploading fake posts
from real user accounts raises serious ethical concerns, one
should create multiple bot accounts that will upload machine-
generated fake posts to be used as decoy posts (by deleting
them later). However, unfortunately, detection of bot accounts
is a well studied problem [26], [30], [37], [40], [82], [86].
Moreover, when an adversary detects a bot, any decoy post
from that bot account will be similarly unmasked. Therefore,
in non-anonymous platforms like Twitter, selecting the decoy
posts from the posts of actual users is arguably a more practical
approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we show the necessity for deletion privacy by
presenting an attack where an adversary is able to increase
its performance (F-score) in identifying damaging posts by
56% compared to random guessing. Such an attack enables
the system like Fallait Pas Supprimer to perform large-scale
automated damaging deletion detection, and leaves users with
“damned if I do, damned if I don’t” dilemma.

To overcome the attack, we introduce Deceptive Deletions
(which we also denote as challenger), a new deletion mech-
anism that selects a set of non-damaging posts (decoy posts)
to be deleted along with the damaging ones to confuse the
adversary in identifying the damaging posts. These conflicting
goals create a minmax game between the adversary and the
challenger where we formally describe the Deceptive Learning
Game between the two parties. We further describe conditions
for two extreme scenarios: one where the adversary always
wins, and another where the challenger always wins. We also
show practical effectiveness of challenger over a real task
on Twitter, where the bar is significantly raised against a
strong adaptive adversary in automatically detecting damaging
posts. Specifically, we show that even when we consider only
two decoy posts for each damaging deletion the adversarial
performance (F-score) drops to 65%, 42% and 38% where
the challenger has no-access, restricted black-box access and
black-box access respectively. This performance indicates a
significant improvement over the performance of the same
adversary (75% F-score) when no privacy preserving deletion
mechanism is in effect. As a result, we significantly raise the
bar for the adversary going after damaging deletions over the
social platform.

Our work paves a new research path for the privacy-
preserving deletions which aim to protect against a practical,
resourceful adversary. In addition, our deceptive learning game
can be adapted for current/future works in the domain of
Private Information Retrieval [38], [47], [66], [69] that have
a similar setting for injecting decoy queries to protect the
users’ privacy. Further, the challenger introduced in this work
is considered to be honest and to not misuse the damaging
deletions against the users. Considering distributed or federated
protocols with multiple challengers as well as private multi-
party computation [33], [76]–[78] can be a promising future
work to mitigate the complete trust of the challenger.
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APPENDIX

A. System Evaluation Without Keyword Filtering

In Section V-A, we saw that the deleted tweets were
filtered using a simple sensitive keyword-based approach [94]
(i.e., identify posts with sensitive keywords) to have a higher
chance of collecting possibly damaging tweets. Although this

approach seems to be a rational choice for the adversary (i.e., it
narrows its search for the damaging posts), here we investigate
the case of not filtering the posts based on their keywords.

In the first step, we study the ratio of the tweets that
contain sensitive keywords to those that do not. We sampled
300,000 random deleted tweets (from the 1% sample tweets of
the Twitter API) and observe that 38% of the deleted tweets
contained at least one of the sensitive keywords (from [94]),
and the remaining 62% did not contain any.

Previously, in Section V-A, we observed the steps of
obtaining labels for 3,878 (= 4,028 total labeled tweets - 150
with no sensitive keywords) tweets that contained a sensitive
keyword. To follow the 38%-62% ratio explained above, we
leveraged the Twitter API and obtained 6,327 deleted tweets
that did not contain any sensitive keywords. Next, we labeled
all the newly sampled deleted tweets to be non-damaging
(instead of labeling the deleted tweets with MTurk). Our
rationale is as follow: labeling these tweets in the imbalanced
dataset is not reasonable (as well as costly) for our attacker—
we ran a small-scale experiment with 150 deleted tweets that
did not contain any sensitive keywords and found that less
than 5% of them were labeled damaging by the MTurkers
(compared to the 43% after filtering these posts). Therefore,
for this experiment, we consider all the tweets that do not
contain any sensitive keywords to have a non-damaging label.

In summary for this experiment, we had 10,205 deleted
tweets which 3,878 of them contained some sensitive keywords
and the remaining 6,327 did not. Further, among the 10,205
deleted tweets 1,690 (17%) of them were labeled as damaging
and the remaining as non-damaging.

Following the same experimental setup as in Section V-C,
we present the results in Figure 5 and Figure 6. We observe that
the results follow the same trend as the ones in Section V-D
(i.e., the case of filtering tweets based on sensitive keywords).
The only difference here is that the performance of the adver-
sary (F-score) has slightly dropped in almost all cases (with
and without the challenger). These results show that filtering
the posts based on their keywords is an advantages strategy
that the adversary will follow to increase its performance.
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Fig. 5: F-score of different adversaries (random, static, adaptive)
when no privacy preserving deletion mechanism is in place. No
filtering based on the keywords of tweet were made. Shaded areas
represent 95% confidence intervals.
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(c) Random challenger (k = 5)

(No access.) Adversaries (random, static and adaptive) in the presence of random challenger with k = 1, 2, 5.

1 2 3 4 5 6 7 8 9 10
Intervals

0.2

0.4

0.6

0.8

F-
sc

or
e

2 4 6 8 10

0.25

0.5

0.75

Pr
ec

is
io

n

2 4 6 8 10
Intervals

0.25

0.5

0.75

R
ec

al
l

Random adversary Static adversary Adaptive adversary

Oracle challenger, k = 1

(d) Oracle challenger (k = 1)
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(e) Oracle challenger (k = 2)
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(f) Oracle challenger (k = 5)

(Black-box access.) Adversaries (random, static and adaptive) in the presence of oracle challenger with k = 1, 2, 5.
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(g) D2 challenger (k = 1)
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(h) D2 challenger (k = 2)
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(Restricted black-box access.) Adversaries (random, static and adaptive) in the presence of D2 challenger with k = 1, 2, 5.

Fig. 6: F-score (with 95% confidence intervals), precision and recall for the three adversaries (random, static and adaptive) in the
presence of different challengers corresponding to different accesses with k = 1, 2, 5. No keyword filtering was applied on this dataset.

B. Proofs

Proposition (Proposition 1.). For any given volunteered set
Dv with N non-deleted posts,

max
φ

Ṽ (φ;Dv) = max
w1,...,wN

V (w1, . . . , wN ;Dv)

Proof of Proposition 1: Let S∗1 = maxφ Ṽ (φ;Dv) and
S∗2 = maxw1,...,wN V (w1, . . . , wN ;Dv) be the optimum values
for the respective objective functions. First, note that S∗1 ≥ S∗2
because the optimal assignment for the discrete objective lies
within the solution space of the continuous relaxation. Next, let
Li = log(1−a(xi; θt)), where xi is the i-th post in Dv and let π
denote a sorting over them such that Lπ1

≥ . . . ≥ LπN . Then,

two cases arise – (1) when the top K elements are strictly
greater than the rest, Lπ1 ≥ . . . ≥ LπK > LπK+1

≥ . . . Lπ(N),
and (2) when there is atleast one element in the bottom N−K
elements that has the same value as one of the top K elements,
Lπ1
≥ . . . ≥ LπK = LπK+1

≥ . . . Lπ(N). In the former case,
the optimal solution is clearly to assign a weight of one to the
top K elements and zero to the rest. Any other assignment
(even in the continuous solution space) is clearly suboptimal.
In the latter case, although there are infinitely many optimal
solutions in the continuous domain that distribute the weights
differently among the equal elements, the value of the objective
function is the same.
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Proposition (Proposition 2). Assume Ωv ∩ Ω+ = ∅, i.e., the
supports of volunteered and damaging posts do not overlap.
Then, there is always a powerful-enough adversary to defeat
the challenger.

Proof sketch of Proposition 2: Assume the most powerful
challenger who can select any post features x from an infinite
supply of volunteered posts. However, since Ωv ∩ Ω+ = ∅,
there is no sampling from pv to generate decoy examples that
look like they are sampled from p+. Hence, given enough data,
an adversary can find a perfect decision boundary between the
damaging posts and the decoy posts. Because neural networks
are universal function approximators [46], this powerful ad-
versary always exists and, thus, the challenger can always be
defeated in the deceptive learning game.

Proposition (Proposition 3). Assume Ωv = Ω+, i.e., the
supports of volunteered and damaging posts fully overlap.
Then, given enough volunteered posts in Dv, the challenger
always defeats the adversary (in both static and adaptive
scenarios). More precisely, if the challenger selects k decoys
per damaging post in Dδ , then the adversary’s probability of
identifying a damaging post in Dδ is in average at most 1

k+1 .

Proof of Proposition 3: The proof relies on a property
of rejection sampling, which states that if the support of two
distributions p1 and p2 fully overlap, then one can selectively
filter samples from p1 to make the filtered samples have distri-
bution p2 (a proof of this principle is given in the Appendix).
Asymptotically, for each damaging example x in adversary’s
test data, there are k indistinguishable decoy examples (from
the adversary’s perspective). This is because, by Bayes theorem

pδ(y = 1|x) =

pδ(x|y = 1)pδ(y = 1)

pδ(x|y = 1)pδ(y = 1) + pδ(x|y = 0)pδ(y = 0)
≤ 1

1 + k
,

where the superscript pδ indicates the distribution of deleted
posts Dδ . The inequality holds by construction, as for all x ∈
Dδ with label one, there are at least k ≥ 1 samples from pv(x)
with label zero.

Next we show the kind of test distribution shift introduced
by the challenger. The challenger-injected distribution is given
by the following hypothetical acceptance-rejection sampling
algorithm:

1) sample x ∼ pv(x)
2) sample u ∼ Uniform(0, 1) independently of x
3) while u > p+(x)/(Mpv(x)), reject x and GOTO 1, for

some constant M .
4) Accept (output) x as a sample from p+(x) but with label

y = 0, as the sample came from pv(x).
5) While number of samples less than k|D+|, GOTO 1

Next we prove that the above rejection sampling algorithm
produces samples with distribution p+(x) from examples from
decoy examples that have distribution pv(x). Let X ′ be a
sample from the algorithm described above and X ∼ p+(x),
then

p(X ′ = x) = p(X = x|Accept) =
p(X = x,Accept)

p(Accept)
= p+(x)

because
P (X = x,Accept)

P (Accept)
=
P (Accept|X = x)p(X = x)

P (Accept)

=

p+(x)
Mpv(x)p

v(x)

P (Accept)

=
p+(x)
M

P (Accept)
= p+(x)

as

P (Accept) =

∫
P (Accept|X = x)p(X = x)dx

=

∫
p(x)

Mq(x)
q(x)dx

=
1

M

∫
p(x)dx =

1

M

The above ideal accept-reject sampling procedure can be
reproduced via noise contrastive estimation [45], which is
method that can generate data from a known distribution with-
out the need to know p+(x)/(Mpv(x)) in advance. A variant
of the same statistical principle is used today in generative
models using Generative Adversarial Networks [44], which
uses a minimax game similar to our procedure. Because we
train the challenger to mimic the classifier of the adversary,
it is easy to construct such rejection sampling method, such
that there are in average k decoy examples for every damaging
example in the original data.

TABLE I: Sample tweet text extracts from the damaging, decoy, and non-damaging datasets.

Tweets’ text extract Tweet Type

“#GrowingUpInTexas Seeing a black person pass by ya front yard and telling your son to pass you the shotgun so you can play shoot em ups” damaging
“@UserAccount its gods way of punishing you for your sins. fag**t.” damaging
“I don t wanna believe all the women in the auto department at walmart are lesbians Someone prove me wrong Cuz im seeing it” damaging
“Show up to work on meth once and your nickname is Tweaker for the rest of your life ” damaging
“Listening to this deuchbag behind me at Chipotle diss every girl who comes in hot body but she has no face news check you re fugly” decoy
“I grab a beer from the fridge put on my Bob Marley record crank that f**ker up and light up a fat one my professor is the sh*t” decoy
“Kids having kids That sh*t is f**kin crazy to me I d rather be that cool ass uncle that buys the booze aaayyye” decoy
“I don’t understand why people say that watermelon and fried chicken is for black people I love that shit to Dafuq” decoy
“y’all I just watched “love, simon” for the first time and let me just say that the ugly tears are so f**kin real omfg” non-damaging
“I want to eat to rid my emotions but I don’t want the calories ya feel me” non-damaging
“Im pretty sure one of my professors has me mistaken for another black woman in my class.” non-damaging
“Anyways, it’s 2 am and the Full House theme song is playing in my head on repeat so if you wanna beat me to death do it now please” non-damaging
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