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Abstract—The last decade has seen a proliferation of code-
reuse attacks in the context of web applications. These at-
tacks stem from Object Injection Vulnerabilities (OIV) enabling
attacker-controlled data to abuse legitimate code fragments
within a web application’s codebase to execute a code chain
(gadget) that performs malicious computations, like remote code
execution, on attacker’s behalf. OIVs occur when untrusted data
is used to instantiate an object of attacker-controlled type with
attacker-chosen properties, thus triggering the execution of code
available but not necessarily used by the application. In the
web application domain, OIVs may arise during the process
of deserialization of client-side data, e.g., HTTP requests, when
reconstructing the object graph that is subsequently processed
by the backend applications on the server side.

This paper presents the first systematic approach for de-
tecting and exploiting OIVs in .NET applications including the
framework and libraries. Our key insight is: The root cause of
OIVs is the untrusted information flow from an application’s
public entry points (e.g., HTTP request handlers) to sensitive
methods that create objects of arbitrary types (e.g., reflection
APIs) to invoke methods (e.g., native/virtual methods) that trigger
the execution of a gadget. Drawing on this insight, we develop
and implement SerialDetector, a taint-based dataflow analysis
that discovers OIV patterns in .NET assemblies automatically.
We then use these patterns to match publicly available gadgets
and to automatically validate the feasibility of OIV attacks.
We demonstrate the effectiveness of our approach by an in-
depth evaluation of a complex production software such as the
Azure DevOps Server. We describe the key threat models and
report on several remote code execution vulnerabilities found by
SerialDetector, including three CVEs on Azure DevOps Server.
We also perform an in-breadth security analysis of recent publicly
available CVEs. Our results show that SerialDetector can detect
OIVs effectively and efficiently. We release our tool publicly to
support open science and encourage researchers and practitioners
explore the topic further.

I. INTRODUCTION

The last decade has seen a proliferation of code-reuse
attacks in the context of web applications [9], [13], [17], [18],
[24], [28], [33]. The impact of these attacks can be devastating.
The recent attack that hit the credit reporting agency Equifax
exposed the personal information (credit card numbers, Social
Security numbers) of 143 million US consumers. As a result,

the law firms filed 23 class-action lawsuits, which would
make it the largest suit in US history. The breach rooted in
insecure deserialization in the Apache Struts framework within
a Java web application, which led to remote code execution
(RCE) on Equifax web servers. The attack exploited the XML
serialization of complex data objects into textual strings to
introduce malicious XML payloads into Struts servers during
the deserialization process [46]. These attacks motivate the
need for studying code-reuse vulnerabilities systematically.

Object Injection Vulnerabilities. In web applications,
Object Injection Vulnerabilities (OIV) occur when an attacker
can arbitrarily modify the properties of an object to abuse the
data and control flow of the application. For example, OIVs
may arise during the deserialization of data from the client
side, e.g., HTTP requests, when reconstructing the object graph
that is subsequently processed by the backend applications on
the server side. Similarly to classical exploits such as return-
oriented programming (ROP) and jump-oriented programming
(JOP), which target memory corruption vulnerabilities [8],
[36], [45], OIVs enable attacker-controlled data to trigger the
execution of legitimate code fragments (gadgets) to perform
malicious computations on attacker’s behalf. The following
requirements are needed to exploit an OIV [32]: (i) the attacker
controls the type of the object to be instantiated, e.g., upon
deserialization; (ii) the reconstructed object calls methods in
the application’s scope; (iii) there exists a big enough gadget
space to find types that the attacker can chain to get an RCE.
Existing works show that OIVs are present in mainstream
programming languages and platforms like Java [24], [33],
JavaScript [28], PHP [17], .NET [18], [32], and Android [34].

Challenges. Despite the high impact of OIV, efforts on
tackling their root cause have been unsatisfactory. A witness is
the fact that a decade after the discovery of these vulnerabilities
a comprehensive understanding of languages features at the
heart of OIVs has yet to emerge. One result is the ongoing
arms race between researchers discovering new attacks and
gadgets and vendors providing patches in an ad-hoc manner.
To date, the best efforts in discovering and exploiting OIVs
have been put forward by the practitioners’ community [17],
[18], [22], [32]. Except for a few recent works [13], [23],
[25], [28], [31], the problem remains largely unexplored in
the academic community. Most existing works address OIVs
within the general context of injection vulnerabilities, thus
lacking targeted techniques for detection and exploitation in
web applications [6], [9], [43], [47].

A principled investigation of OIVs in real-world applica-
tions requires analyzing not only the applications, but also
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the underlying framework and libraries that these applications
build on. In fact, most of the known attacks stem from weak-
nesses in frameworks and libraries. This is challenging task
since production scale frameworks, e.g., the .NET Framework,
are complex entities with large codebases, intricate language
features, and lack of source code. Existing approaches rely
on static source code analysis of applications and ignore
frameworks and libraries. Moreover, they focus on a whitelist
of magic methods [13], [17], i.e., vulnerable APIs at the
application level, thus missing attacks that may be present in
unknown methods using the same features at the framework
level. Another key challenge is the lack of automation and
open source tools to investigate the feasibility of potential
attacks. While state-of-the-art countermeasures against OIVs
rely on blacklisting/whitelisting techniques [5], [10], [23], [25],
[27], [31], [39], [40], it is essential to develop tools that check
feasibility of attacks in a principled and practical manner.

Contributions. This work presents the first systematic ap-
proach for detecting and exploiting OIVs in .NET applications,
including the .NET Framework and third-party libraries. Our
key observation is that the root cause of OIVs is the untrusted
information flow from an applications’ entry points to sensitive
sinks that create objects of arbitrary types to invoke attack
triggers that initiate the execution of a gadget. Drawing on
this insight, we develop and implement SerialDetector [41], a
tool for detecting OIV patterns automatically and exploiting
these patterns based on publicly-available gadgets in a semi-
automated fashion. Following the line of work on static analy-
sis at bytecode level [4], [7], [15], [21], [47], [48], SerialDetec-
tor implements an efficient and scalable inter-procedural taint-
based static analysis targeting .NET’s Common Intermediate
Language. At the heart of our approach lies a field-sensitive
and type-sensitive data flow analysis [42], [47] that we leverage
to analyze the relevant object-oriented features and detect
vulnerable patterns. We evaluate the feasibility of our approach
on 15 deserializers reporting on the efficiency and effectiveness
of SerialDetector in generating OIV patterns. We conduct
an in-depth security analysis of production software such as
the Azure DevOps Server and find three RCE vulnerabilities.
To further evaluate SerialDetector, we perform an in-breadth
security analysis of recent .NET CVEs from public databases
and report on the effort to analyze and reproduce these exploits.
In summary, the paper offers the following contributions:

• We identify the root cause of Object Injection Vulnerabilities
and present a principled and practical approach to detect
such vulnerabilities in a framework-agnostic manner.

• We present the first systematic approach for detecting and
exploiting OIVs in .NET applications including the frame-
work and libraries.

• We develop SerialDetector [41], a practical open source
tool implementing a scalable taint-based dataflow analysis
to discover OIV patterns, as well as leveraging publicly
available gadgets to exploit OIVs in real-world software.

• We perform an thorough evaluation of OIV patterns in .NET-
based deserialization libraries showing that SerialDetector
can find vulnerable patterns with low burden on a security
analysis. We use these patterns in an in-breadth security
analysis of vulnerable applications to show that SerialDe-
tector can help uncovering OIVs effectively and efficiently.

• We carry out an in-depth security analysis of Azure DevOps
Server illuminating the different threat models. Drawing on

these threat models, we show SerialDetector in action to
identify and exploit highly-critical vulnerabilities leading to
remote code execution on the server.

II. TECHNICAL BACKGROUND

This section provides background information and illumi-
nates the core security issues with OIVs in .NET applications.
We identify the key ingredients in the lifecycle of an OIV,
distinguishing between application-level OIVs (Section II-A)
and infrastructure-level OIVs (Section II-B). Appendix A
provides a brief overview of the .NET Framework.

A. Application-level OIVs

Applications can be vulnerable to OIVs whenever untrusted
data instantiates an object of arbitrary type and subsequently
influences a chain of method calls resulting in the execution
of a dangerous operation. For an attack to be successful, the
following ingredients are required: (1) a public entry point
allowing the attacker to inject untrusted data; (2) a sensitive
method creating an object of attacker-controlled type; (3) a
gadget consisting of a chain of method calls that ultimately
execute a dangerous operation; (4) a malicious payload trig-
gering the execution of steps (1)-(3).

Consider a C# implementation of the classical Command
design pattern [20] for a smart home controller (Listing 1).
The controller implements the method CommandAction as
an entry point handling HTTP POST requests. Following the
design pattern, a developer creates an object of type name
dynamically using the method Activator.CreateInstance
of the .NET Framework. Subsequently, the code calls the
virtual method Execute to execute the command specified in
the input parameter args, e.g., a Backup command that runs
a database backup. The main benefit of this design pattern is
that a developer can define new commands without changing
the implementation of the method CommandAction. This can
be achieved by simply adding a new class that implements the
interface ICommand.

public class SmartHomeController : Controller {

[HttpPost]

public ActionResult CommandAction(string name, string

args) {

var t = Type.GetType(name);

var c = (ICommand) Activator.CreateInstance(t);

c.Execute(args);

return RedirectToAction("Index");

}}

public class Backup : ICommand {

public virtual void Execute(string parameters) {

DB.Backup(parameters);

}}

Listing 1: Implementation of Command pattern

Unfortunately, such flexible design comes with security
issues. Consider the class OSCommand implementing the same
interface ICommand to run a process based on the data from
parameters (Listing 2). The method Execute splits the
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input parameters to extract the actual OS command and its
arguments before the call to Process.Start.

public class OSCommand : ICommand {

public virtual void Execute(string parameters) {

var firstSpace = parameters.IndexOf(’ ’);

var command = parameters.Substring(0, firstSpace);

var args = parameters.Substring(firstSpace + 1);

Process.Start(command, args);

}}

Listing 2: Implementation of OSCommand

A developer might not even be aware of the existence of
OSCommand in the modules loaded by the application. An
attacker can use the class type OSCommand as a parameter
to the POST request to create an OSCommand object and
execute malicious commands in the target OS. For example,
a payload in a POST request body with two parameters,
name = OSCommand and args = del /q * results in re-
mote code execution, deleting all files in the current directory.

Observe that the above-mentioned OIV fits our tem-
plate: The application exposes a public entry point
(CommandAction) to call a sensitive method creating an object
of attacker-controlled type (Activator.CreateInstance).
Subsequently, it uses the object to trigger the execution of a
gadget (method Execute of class OSCommand) via a malicious
payload. To detect such attacks, a comprehensive analysis
should consider all implementations of the method Execute
in classes implementing the ICommand interface.

B. Infrastructure-level OIVs

OIVs can be present at the level of the infrastructure that
supports applications running on the server side. For .NET
technologies, the infrastructure includes the .NET Framework
and libraries (see Appendix A). A prime example of OIVs at
the infrastructure layer is insecure deserialization. Deserializa-
tion is the process of recreating the original state of an object
from a stream of bytes that was produced during a reverse
process called serialization. In the web domain, serialization
can be used to convert an object from the client side to a stream
of bytes that can be transmitted over the network and used to
recreate the same object on the server side. To achieve this, the
deserializer may instantiate objects based on metadata from the
serialized stream. Thus, an attacker can create an object of an
arbitrary type by manipulating the metadata in the serialized
stream, which may cause the deserializer to execute dangerous
methods of the object.

We illustrate OIVs in insecure deserialization with a run-
ning example which we will discuss further in Section III. We
consider the YamlDotNet library that implements serialization
and deserialization of data in the YAML format. Listing 3
shows the simplified code fragment used by YamlDotNet to
deserialize data obtained via the parameter yaml. The method
Deserialize is a public entry point that may receive data
from untrusted sources like HTTP request parameters, cookies,
or files uploaded to a web application. The method parses
the input and calls the method DeserializeObject with
the root YAML node as input. A type cast ensures that the

created object has the expected type T. However, the type cast
is executed only after the creation of the object graph, hence
the system will still create objects based on the information
from YAML data with no restriction on the type.

public T Deserialize<T>(string yaml) {

var rootNode = GetRootNode(yaml);

return (T) DeserializeObject(rootNode);

}

private object DeserializeObject(YamlNode node) {

var type = GetTypeFrom(node);

var result = Activator.CreateInstance(type);

foreach (var nestedNode in GetNestedNodes(node)) {

var value = DeserializeObject(nestedNode);

var property = GetPropertyOf(nestedNode);

property.SetValue(result, value);

}

return result;

}

Listing 3: Implementation of YAML deserializer

The method DeserializeObject creates an object
of the type specified by the YAML node and sets its
fields’ properties recursively. It uses a .NET Reflection
API to create object by a type defined at runtime (via
Activator.CreateInstance) and executes a setter method
for each property (via PropertyInfo.SetValue). An at-
tacker can find gadgets in the target system, i.e., the .NET
Framework and third-party libraries, that allow executing
malicious actions in their property setter. For example, the
class ObjectDataProvider can be used as gadget for the
YamlDotNet deserializer and any other deserializer that allows
the execution of property setters for arbitrary classes.

public class ObjectDataProvider {

public object ObjectInstance {

set {

this._objectInstance = value;

this.Refresh();

}}

public void Refresh() {

/*...*/

obj = this._objectType.InvokeMember(

this.MethodName, /*...*/,

this._objectInstance, this._methodParameters);

}}

Listing 4: Implementation of class ObjectDataProvider

Listing 4 shows a snippet of the class
ObjectDataProvider. The property setter of the object
ObjectInstance calls the method Refresh which in
turn invokes the method specified in MethodName using
the .NET Reflection API. Hence, the attacker controls
the properties ObjectDataProvider.MethodName and
ObjectDataProvider.ObjectInstance enabling the
execution of arbitrary methods.

3



To run arbitrary commands during YAML deserializa-
tion process, e.g. a calculator, an attacker leverage the class
ObjectDataProvider to create a payload as in Listing 5.
Specifically, the deserializer will execute the property set-
ter ObjectDataProvider.ObjectInstance and invoke the
method Process::Start to run calc.exe.

!<!System.Windows.Data.ObjectDataProvider> {

MethodName: Start,

ObjectInstance:

!<!System.Diagnostics.Process> {

StartInfo:

!<!System.Diagnostics.ProcessStartInfo> {

FileName: cmd,

Arguments: ’/C calc.exe’

}}}

Listing 5: YAML payload of ObjectDataProvider

The YamlDotNet’s OIV follows our template: The library
exposes a public entry point (Deserialize) to call a sen-
sitive method creating an object of attacker-controlled type
(Activator.CreateInstance). Subsequently, it uses the
object to trigger the execution of a gadget (the property setter
of class ObjectDataProvider) via a malicious payload. To
detect such vulnerabilities, a comprehensive analysis should
consider all implementations of the property setter methods
like SetValue in the codebase of the .NET Framework
and libraries. Observe that the analysis should target .NET
assemblies to account for OIVs in the framework and libraries.

III. OVERVIEW OF THE APPROACH

This section discusses the key insights of our approach
(Section III-A) and provides a high-level overview of the
architecture and workflow of SerialDetector (Section III-B).

A. Root cause of Object Injection Vulnerabilities

We now take a closer look at the vulnerability of
YamlDotNet library in Section II-B. Listing 3 shows that
the vulnerability occurs because of an insecure chain of
method calls during the deserialization of attacker-controlled
data. The chain starts from a call to the public method
Deserialize<T>(yaml) which uses the untrusted input in
variable yaml to create an object of arbitrary type via the
method Activator.CreateInstance and subsequently use
it to call the method SetValue. The latter executes the code of
a property setter of the created object using a property name.

The vast majority of related works leverage publicly avail-
able knowledge about signatures of vulnerable methods, like
Activator.CreateInstance and SetValue, to identify
such (magic) methods in a target codebase [13], [18], [32],
[33]. These works rely on the knowledge of vulnerable method
signatures to either build or reuse malicious gadgets. We argue
that such syntax-based approaches are not ideal as modern
applications may hide unknown methods that achieve the same
malicious effect. This leads us to the first research question:
(i) What is an appropriate criteria for identifying OIVs? To
help answering this question, we dive deeper into the analysis
of the two vulnerable methods of our example.

System.ReflectionSystem

YamlDotNet

Deserializer.Deserialize()

Activator.CreateInstance() PropertyInfo.SetValue()

RuntimeTypeHandle.Allocate() RuntimeMethodInfo.UnsafeInvokeInternal()

RuntimeMethodHandle.InvokeMethod()

Deserializer.DeserializeObject()

Fig. 1: OIV pattern for YamlDotNet Deserializer: public entry
point (green), sensitive sink (red), and attack trigger (blue)

The method Activator.CreateInstance performs a
sequence of method calls which results in executing the native
method RuntimeTypeHandle.Allocate(type). This
method takes as input a parameter type and uses it to define
the type of the returned object. We call such methods sensitive
sinks. In general, sensitive sinks are either native (external)
methods or run-time generated methods that return an object
of the type specified in their input parameter. The .NET
Framework contains in total 123 sensitive sinks. A similar
analysis of the method SetValue shows that the subsequent
sequence of method calls results in executing the native method
RuntimeMethodHandle.InvokeMethod(obj,..., sig),
which invokes the method sig of object obj. Hence, an
attacker controlling the type of the object obj and the name of
the method sig can execute arbitrary code as in our example.
We call such methods attack triggers since they determine
the first method of a gadget chain that leads to malicious
behavior. In fact, an attack trigger puts the system into a
state that does not meet the specification as intended by the
developer. Other potential candidates for attack triggers are
virtual method calls, e.g., the method Execute in Listing 1,
which enable attackers to execute concrete implementations
of these methods at their choice.

In light of this analysis, we identify the root cause of an
OIV based on three ingredients: (a) public entry points; (b)
sensitive sinks; and (c) attack triggers. We use these ingredients
to compute OIV patterns in large codebases. We define an OIV
pattern as a public entry point that triggers the execution of
a sensitive sink to create an object that controls the execution
of an attack trigger. Figure 1 depicts the OIV pattern for our
running example in Section II-B. Motivated by our notion of
OIV pattern, we address three additional key questions: (ii)
Can we provide practical tool support to detect OIV patterns
in large-scale applications including frameworks and third-
party libraries? (iii) How do we validate the usefulness of
the generated patterns? (iv) Are there real-world applications
to give evidence for the feasibility of the approach?

B. SerialDetector

Overview of SerialDetector. We have developed a static
analysis tool, dubbed SerialDetector [41], to detect and ex-
ploit Object Injection Vulnerabilities in .NET applications and
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Generation
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Exploit
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Template
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.NET Assemblies

Patterns

Gadgets

Application

Vulnerabilities

Fig. 2: Architecture and workflow of SerialDetector:
automated steps (green) and manual steps (blue)

libraries. Figure 2 describes the architecture and workflow of
SerialDetector. At high level, the tool operates in two phases:
A fully-automated detection phase and a semi-automated ex-
ploitation phase. In the detection phase, SerialDetector takes
as input a list of .NET assemblies and a list of sensitive sinks,
and performs a systematic analysis to generate OIV patterns
automatically. The exploitation phase matches the generated
patterns with a publicly available list of gadgets. When a gad-
get matches a pattern, we describe the gadget in a knowledge
base to generate malicious payloads for different formats. The
entry points of the matched pattern allow us to describe tem-
plates in the knowledge base. Populating the knowledge base
is a manual operation; the payload and template generation is
performed automatically based on the described rules. For a
target application, SerialDetector performs a lightweight call
graph analysis to identify control flow paths that make use
of the vulnerable templates described in the knowledge base.
Subsequently, it uses the automatically generated payloads to
validate their exploitability for the target application during the
exploit generation step. The exploit generation may require
modifying the payload and other application inputs, or a
combination of multiple vulnerabilities into one exploit. This is
a manual step requiring knowledge of the application’s threat
model and analysis of the data validation code, e.g., dynamic
analysis or application debugging. SerialDetector does not
automate this process, but provides aids such as automated
validation of modified payload on a vulnerable template and
automated generation of the call graph. We explain both
phases in detail in Section V-A. In Section VII, we use the
vulnerabilities found in the Azure DevOps Server to showcase
the exploit generation and validation process.

Static analysis. SerialDetector targets the Common Inter-
mediate Language (CIL) instead of working with the source
code such as C#. This choice is motivated by several reasons:
First, we aim at analyzing the code of the .NET Framework
to identify sensitive methods which are not available at the
source level. Second, this approach allows us to implement a
framework-agnostic analysis without any knowledge about the
known vulnerable methods of the framework. Third, we aim

at performing an in-depth security evaluation of our approach
on production software such as Microsoft Azure DevOps for
which the source code is not available. Fourth, CIL has fewer
language constructs that must be supported by the analyzer as
compared to the high-level languages. By focusing on CIL,
we do not lose any significant data that is relevant to our code
analysis. In fact, CIL is a type-safe language with complete
type information in the metadata. On the other hand, CIL
inherits well-known challenges for the analysis of stack-based
object-oriented intermediate languages, e.g., the emulation of
the evaluation stack and the reconstruction of control flow.

We develop and implement a principled and practical
field-sensitive taint-based dataflow analysis targeting the CIL
language. In Section IV we present the details of the analysis
for a core of CIL instructions. At the heart of this analysis
lies a modular inter-procedural abstract interpretation based
on method summaries, pointer aliasing, and efficient on-the-fly
reconstruction of the control flow graph. We present the algo-
rithms underpinning our analysis in a principled manner and
discuss various challenges and solutions related to low-level
language features. The analysis implements type-sensitivity, a
lightweight form of context-sensitivity, and a type-hierarchy
graph analysis for reconstruction of the call graph. We find
that these features provide a middle ground to implementing
scalable yet precise algorithms for detecting OIV patterns.
Similar analysis have been implemented in the context of
web applications [43], [47] and mobile applications [4], [21].
While these analysis leverage intermediate languages featuring
control flow and call graph reconstruction (e.g., FlowDroid
builds on the SOOT framework [48]), SerialDetector imple-
ments these features on the fly.

Roadmap of results. In Section V, we discuss our im-
plementation of SerialDetector including challenges and lim-
itations. Following Figure 2, the detection phase performs a
call graphs analysis for a set of input assemblies, e.g., the
.NET Framework and third-party libraries, to identify public
entry points that may reach sensitive sinks. Then, it uses such
information to carry out the dataflow analysis to identify attack
triggers, thus generating a list of OIV patterns. However, the
usefulness of the generated patterns depends on the existence
of matching gadgets that result in exploits. While gadget
generation is orthogonal to pattern generation, we evaluate
SerialDetector by analyzing .NET deserialization libraries with
publicly available gadgets [3]. Because an attack trigger is
the first method in a gadget, it is sufficient that an attack
trigger from our generated patterns matches the first method
of a gadget. Subsequently, we validate the feasibility of these
attacks using our payload generator. In Section VI, we discuss
the details of our evaluation showing that SerialDetector finds
patterns associated with vulnerable deserializers.

While these results show that SerialDetector is useful in
detecting OIV patterns in the .NET Framework and its deserial-
ization libraries, as well as in generating and validating exploits
for known gadgets, it is unclear whether these vulnerabilities
appear in production software. In fact, an application build
on top of the .NET Framework and libraries might still use a
vulnerable deserializer in a secure manner, e.g., by performing
validation of the untrusted input. To validate this claim, we
use SerialDetector to carry out a comprehensive in-breadth
security analysis of vulnerable .NET applications (Section VI)
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and an in-depth security analysis of the Azure DevOps Server
(Section VII). We report on the number of false positive and
false negatives of our analysis, and on the number of manual
changes of exploit candidates to generate a successful payload.

In Section VII we use SerialDetector’s call graph analysis
to identify control flow paths from public APIs of the Azure
DevOps Server to vulnerable entry points in the .NET Frame-
work. By exploring different threat models in the applica-
tion, SerialDetector found three critical security vulnerabilities
leading to Remote Code Execution in Azure DevOps Server.
In line with the best practices of coordinated disclosure, we
reported the vulnerabilities to the affected vendors. Microsoft
recognized the severity of our findings and assigned CVEs
to all three exploits. We also received three bug bounties
acknowledging our contributions to Microsoft’s security.

IV. TAINT-BASED STATIC ANALYSIS

This section presents a taint-based static analysis underpin-
ning the detection phase of SerialDetector. The analysis targets
CIL, an object-oriented stack-based binary instruction set, and
it features a modular inter-procedural field-sensitive dataflow
analysis that we leverage to detect OIV patterns for large
code. We provide an overview of the core language features
(Section IV-A), and discuss challenges and solutions for imple-
menting a precise, yet scalable, intra-procedural (Section IV-B)
and inter-procedural analysis (Section IV-C).

A. CIL language and notation

CIL is a stack-based language running on the CLR virtual
machine (see Appendix A). We focus on a subset of instruc-
tions to describe the core ideas of our analysis.

Inst ::= ldvar x | ldfld f | stvar x | stfld f | newobj T |
br i | brtrue i | call i | ret

We assume a set of variables x, y, args, · · · ∈ Var con-
taining root variables, i.e., formal parameters of methods,
and local variables; a set of object fields f, g, · · · ∈ Fld ; a
set of values v, l, · · · ∈ Val consisting of object locations
l, l1, · · · ∈ Loc ⊆ V al and other values, e.g., booleans true
and false; a set of class types C, T ∈ Types . We write
f [x 7→ v] for substitution of value v for parameter x in function
f and f(x) for the value of x in f . We use f(x)↓ to represent
that the partial function f is defined in x, and f(x)↑ otherwise.
We write (b ? e1 : e2) to denote a conditional expression
returning e1 if the condition b is true, e2 otherwise.

The memory model contains an environment E : Var 7→
Val mapping variables to values, a heap h : Loc×Fld 7→ Val
mapping object locations and fields to values, an (operand)
stack s and a call stack cs. The environment and heap map-
pings are partial functions, hence we write ⊥ for the undefined
value. A program P ∈ Prog consists of a list of instructions
Inst∗ indexed by a program counter index pc, i ∈ PC. We
tacitly assume there is set of class definitions including a set
of fields and a set of methods, and a distinguished method to
start the execution. Each method definition includes a method
identifier with formal parameters and the list of instructions.
We write sig ∈ Sig for the signature of a method which
consists of the method’s name and its formal parameters.

The execution model consists of configurations cfg ∈
Conf of shape cfg = (pc, cs, E, h, s) containing the program
counter pc ∈ PC , environment E ∈ Env , heap h ∈ Heap,
call stack cs = (pc, E, s)∗ with cs ∈ (PC × Env × Val∗)∗,
and stack s ∈ Val∗. We write ε to denote an empty stack
and t :: v to denote a stack with top element v and tail t.
The semantics of CIL programs is defined by the transition
relation→∈ Conf ×Conf over configurations, using the rules
in Figure 12. As expected, the reflexive and transitive closure
→∗ of→ induces a set of program executions. Notice that the
program P is fixed, hence the instruction to be executed next
is identified by the program counter pc. The semantics of CIL
is standard and we report it in Figure 12 in Appendix.

B. Intra-procedural dataflow analysis

We now present our intra-procedural dataflow analysis
based on abstract interpretation of CIL instructions. Motivated
by the root cause of OIVs, our abstraction overapproximates
operations over primitive types and focuses on tracking the
propagation of object locations from sensitive sinks to attack
triggers. Our symbolic analysis combines aliases’ computation
with taint tracking [37], [38] using a store-based abstraction
of the heap [26]. We present the key features of the analysis
implemented in SerialDetector via examples and principled
rules underpinning our algorithms.

Our abstract interpretation of CIL instructions leverages
a symbolic domain of values for object locations and other
primitive values. Abusing notation, we assume a set of sym-
bolic values Val = Loc ∪ Sv containing symbolic locations
l ∈ Loc and other symbolic values sv ∈ Sv . The latter
is used as a placeholder to abstract away operations over
primitive datatypes. We use symbolic configurations of shape
〈pc, E, h, s, φ, ψ〉 where the first four components correspond
to symbolic versions of the concrete counterparts, while φ and
ψ overapproximate symbolic stacks and control flow.

Challenges and solutions at high level. Symbolic analysis
for stack-based languages like CIL requires tackling several
challenges related to: (a) abstract representation of the heap;
(b) unstructured control flow and symbolic representation of
the stack; (c) sound approximation of control flow, e.g, loops.

We address these challenges using a store-based abstraction
of the heap and an efficient on-the-fly computation of merge
points for conditionals and loops via forward symbolic anal-
ysis. Our analysis is flow-insensitive, hence the abstract heap
graph and information about aliases holds at any program point
within a method. While some code may be traversed twice to
account for jump instructions, we ensure that the code is only
analyzed once. Moreover, we ensure the consistency of the
symbolic stack by recording the stack state for every branch
instruction and combining the stacks at merge points, while
updating the pointers in the heap and environment.

Abstracting the heap. We represent the heap as a directed
graph where nodes denote abstract locations in the memory and
edges describe points-to relations between symbolic locations.
Edges contain labels corresponding to the fields and variables
connecting the two locations. Here, the graph is computed from
the symbolic environment and the symbolic heap.

Figure 3 depicts the abstract semantics of the heap. For
simplicity, we assume that the environment E and the heap h
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S-STVAR
P(pc) = stvar x

(E′, h′, s′, φ′) = update(sv,E(x), E, h, s, φ)

〈pc, E, h, s :: sv, φ, ψ〉 → 〈pc+ 1, E′, h′, s′, φ′, ψ〉

S-STFLD
P(pc) = stfld f

(E′, h′, s′, φ′) = update(h(l, f), sv, E, h, s, φ)

〈pc, E, h, s :: sv :: l, φ, ψ〉 → 〈pc+ 1, E′, h′, s′, φ′, ψ〉

Fig. 3: Abstract interpretation of heap

are initialized to fresh symbolic values sv ∈ Sv , hence E(x)
and h(l, f) are always defined. Rules S-LDVAR, S-LDFLD,
and S-NEWOBJ (not shown) are similar to the corresponding
rules in Figure 12 but operate on symbolic values and ignore
the call stack cs. Rules S-STVAR and S-STFLD rely on an
update function to implement the flow-insensitive and field-
sensitive abstract semantics. This function takes as input two
locations (as well as the current environment, heap, stack, and
φ nodes) and merges the subgraphs rooted at those locations.
The algorithm visits the subgraphs in lockstep in a breadth-first
search (BFS) fashion and joins every location (node) with the
same field/variable label. This is achieved by creating a fresh
location and updating references to the new location. If the two
merged locations have fields/variables with the same name,
it recursively applies the update function. Observe that the
update modifies the state of the symbolic computation and may
affect different components of the configuration. This approach
is flow-insensitive as it updates symbolic configurations with
new symbolic values, instead of overwriting the old values of
the variables/fields.

1: arg.obj = new ClassB();

2: arg.next = new ClassA(); 4a: ldvar arg //S-LdVar

3: arg.next.obj = new ClassB(); 4b: ldfld next //S-LdFld

4: arg = arg.next; 4c: stvar arg //S-StVar

Listing 6: Merging heap locations

The code snippet in Listing 6 illustrates our symbolic
analysis of the heap. Our abstract interpretation yields the heap
graph in Figure 4a after analyzing the (CIL representation of)
instructions (1-3) in Listing 6. We now illustrate our analysis
for instruction (4) and its CIL representation (4a-4c). We first
load the symbolic locations in variable arg and field next
onto the symbolic stack by applying rules S-LDVAR and S-
LDFLD, respectively. This results in loading the location lb in
Figure 4a. Next, we apply rule S-STVAR for instruction (4c).
The rule considers the subgraphs rooted at location lb (the top
element of the stack) and at the location la (since E(arg) = la)
and applies the update function. Since both edges originating
from the locations la and lb are labeled with the field obj
(which contain the locations lc and ld), the algorithm merges
these locations to a fresh location lcd and updates the graph
as shown in Figure 4b.

Abstracting the control flow. The main challenge to
analyzing control flow instructions is the lack of structure

la lb

lc ld

arg

next

obj obj

(a) Before merging

lab

lcd

arg

next

obj

(b) After merging

Fig. 4: Graph representation of symbolic heap

and the preservation of symbolic stack’s consistency across
different branches. We implement an analyses that does not
require reconstructing of the CFG explicitly. Specifically, we
analyze instructions "sequentially" following the program or-
der imposed by the program counter pc and ensure consistency
of the symbolic stack and the heap on-the-fly. To achieve this,
we extend our symbolic configurations with two additional
data structures: a function φ : PC 7→ ℘(Stack) mapping
program counter indexes to sets of stacks to record the
symbolic stacks at the merge points of control flow branches,
and a set of program counter indexes ψ ⊆ ℘(PC ) to record
backward jumps associated with loops. The former is similar
to the standard φ-node is high-level languages and we use
it to merge the stacks corresponding to different branches in
the CFG. We assume that all stacks at a merge point have
the equal size, which is ensured by the high-level language
compiler (e.g., the C# compiler) that translates source code
to CIL code. The set ψ ensures that loops are not analyzed
repeatedly. Since our analysis is flow- and path-insensitive,
it suffices to analyze each basic block only once. Figure 5
illustrates our algorithm for control flow instructions. We use
a function mergeStacks : ℘(Stack) × Heap × Env × Φ 7→
Stack × Heap × Env × Φ to merge all stacks and update
the new symbolic configuration. Specifically, mergeStacks
merges symbolic locations pointwise, and updates the pointers
to the merged locations in the other components.

We describe the few interesting rules in Figure 5 via
examples. Consider the CIL representation of the C# ternary
operator in Listing 7, which assigns the location in var1 or
var2 to arg.obj depending on the truth value of flag. The
analysis should compute that field arg.obj points to the merged
location of variables var1 and var2. Observe that such case is
not handled by the update function in Figure 3. Our analysis
merges the locations in var1 and var2 on the stack using rule
S-STUPD. This rule has higher precedence over any other rule.
Initially, φ(pc) = ∅ for all program points. For every forward
jump, as in rules S-BRFWD and S-BRTRUEFWD, we store
the current stack for the target instruction. For instance, the
instruction at index (5), i.e., br 7, stores the symbolic stack
containing the locations in arg and var2 for φ(7). When
analyzing the instruction stfld obj at index (7), the analyzer
first applies rule S-STUPD to merge the stack stored in φ(7)
and the current stack, which contains the locations in arg
and var1. Then, rule S-STFLD ensures that the field arg.obj
contains the merged location.
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S-STUPD
φ(pc)↓ (E′, h′, s′, φ′) = mergeStacks(φ(pc) ∪ {s}, E, h, φ)

〈pc, E, h, s, φ, ψ〉 → 〈pc, E′, h′, s′, φ′[pc 7→ ⊥], ψ〉

S-STSKIP
s = ⊥

〈pc, E, h, s, φ, ψ〉 → 〈pc+ 1, E, h, s, φ, ψ〉

S-BRFWD
P(pc) = br i i > pc φ′ = φ[i 7→ φ(i) ∪ {s}]

〈pc, E, h, s, φ, ψ〉 → 〈pc+ 1, E, h,⊥, φ′, ψ〉

S-BRTRUEFWD
P(pc) = brtrue i i > pc φ′ = φ[i 7→ φ(i) ∪ {s}]

〈pc, E, h, s :: sv, φ, ψ〉 → 〈pc+ 1, E, h, s, φ′, ψ〉

S-BRBWD
P(pc) = br i i < pc φ′ = (pc ∈ ψ ? φ : φ[pc 7→ s]) (pc′, s′, ψ′) = (pc ∈ ψ ? (pc+ 1,⊥, ψ) : (i, s, ψ ∪ {pc}))

〈pc, E, h, s, φ, ψ〉 → 〈pc′, E, h, s′, φ, ψ′〉

S-BRTRUEBWD
P(pc) = brtrue i i < pc φ′ = (pc ∈ ψ ? φ : φ[pc 7→ s]) (pc′, ψ′) = (pc ∈ ψ ? (pc+ 1, ψ) : (i, ψ ∪ {pc}))

〈pc, E, h, s :: sv, φ, ψ〉 → 〈pc′, E, h, s, φ, ψ′〉

Fig. 5: Abstract interpretation of control flow

// arg.obj = flag ? var1 : var2;

1: ldvar arg // S-LdVar

2: ldvar flag // S-LdVar

3: brtrue 6 // S-BrTrueFwd

4: ldvar var2 // S-Ldvar

5: br 7 // S-BrFwd

6: ldvar var1 // S-StUpd and S-LdVar

7: stfld obj // S-StUpd and S-StFld

Listing 7: Ternary operator in CIL

While the previous rules ensure the consistency of the
stack, we should also cater for potential loops resulting from
backward jump instructions. Thanks to our flow-insensitive
analysis, it suffices to analyze the "loop body" only once.
Specifically, we use a set ψ to keep track of the control flow
instructions that trigger a backward jump and ensure that the
instructions at the jump target is analyzed only once (see
S-BRBWD and S-BRTRUEBWD). In particular, whenever an
unconditional jump has already been analyzed, i.e. pc ∈ ψ,
we set the stack to ⊥ (undefined) and move on to executing
the next instruction. An undefined stack will simply skip the
analyzes of the current instruction as in rule S-STSKIP unless
there was another jump to that instruction with a defined stack
(in which case rule S-STUPD applies)1.

We illustrate our analysis of backward jumps with the
example in Listing 8. The example models the CIL represen-
tation of the C# pattern while(flag) {loop body}. The
analyzer examines the instruction br 15 at index (1) via rule S-
BRFWD, recording the current stack for the instruction at index
(15) in φ and updating the stack to undefined. This is because
at this point we do not know if the next instruction at index
(2) will be reached from another configuration. Therefore, we
simply skip the following instructions (rule S-STSKIP) until
we reach a merge point, i.e., an instruction where φ(pc) is
defined. In our example, the merge point is the instruction at
index (15). The analyzer merges the stack in φ(15) with the

1We assume that φ(pc) ∪ ⊥ = φ(pc)

undefined stack using rule S-STUPD, and uses the new stack,
while updating the φ node. Subsequently, the analyzer loads
the variable flag onto the stack and examines the instruction
brtrue 2 at index (16) via rule S-BRTRUEBWD. Since 16 6∈ ψ,
this results in transferring control to the instruction at index
(2) and analyzing the loop body. If the analyzer reaches the
instruction brtrue 2 again, it finds that the instruction has
already been analyzed, i.e., 16 ∈ ψ, and continues with the
next instruction.

1: br 15 // S-BrFwd

2:

//loop body

15: // S-StUpd

// while (flag)

ldvar flag // S-LdVar

16: brtrue 2 // 2 x S-BrTrueBwd

Listing 8: While loops in CIL

Aliasing and taint tracking Recall that the goal of our
analyses is tracking information flows from sensitive sinks to
attack triggers. To achieve this, we enrich the location nodes in
our abstract heap graph with a taint mark whenever the return
value of a sensitive sink is analyzed. Thanks to our store-
based abstract heap model, the heap graph already accounts
for aliases to a given node. In fact, aliases can be computed
by looking at the labels of incoming edges to a given location
node. Therefore, we can compute the taint mark of a reference
by reading the taint mark of the node it points to.

Figure 6 provides an example of aliasing and taint tracking.
The call to the sensitive sink at line (1) pushes the return
value onto the stack, marks the corresponding node as tainted
and adds an edge labeled with b.foo to the tainted node.
Similarly, the instruction at line (2) creates an alias of b.bar
to the tainted node, which yields the heap graph in Figure 6b.
Finally, the analysis of the virtual call at line (3) reveals that
the caller b.bar is tainted, hence an attacker controlling its type
determines which concrete implementation of V irtualCall()
is executed. Therefore, we consider such method as a potential
attack trigger.

8



1: b.foo = SSink(arg);

2: b.bar = b.foo;

3: b.bar.VirtualCall();

(a) Code

la lb T

arg b

foo

bar

(b) Heap

Fig. 6: Aliasing and taint tracking

C. Modular inter-procedural analysis

We now present the inter-procedural symbolic analysis
underpinning our computation of OIV patterns. The analysis
relies on a preliminary stage that reconstructs the Call Graph
containing the entry points that may reach sensitive sinks.
Subsequently, it performs a modular analysis of the call graph,
based on method summaries, to determine OIV patterns.

Call graph analysis. We first analyze the target set of
CIL assemblies to identify method signatures associated with
call and callvirt instructions, and store them as keys in a
hash table with the caller methods as values. The hash table
represents a call graph, which we can reconstruct via backward
analysis. A path from a sensitive sink to an entry point can
be computed in O(n) time, where n is the call stack’s depth.
We also compute the type-hierarchy graph to determine all
implementations of virtual method calls. We assume that a
virtual call of a base method can transfer control to any
implementation of that method and store such information in
the call graph. The analyzer uses this information during the
backward reconstruction of the call graph from a sensitive sink
to entry points, as well as during the abstract interpretation of
callvirt instructions.

Inter-procedural analysis with method summaries. We
perform a modular dataflow analysis for every entry point
identified in the preliminary stage. Whenever our algorithm
reaches a new method, it triggers the intra-procedural analysis
(described in Section IV-B) to analyze the method inde-
pendently of the caller’s context, i.e., both the heap h and
the environment E are empty. As a result, it produces a
compact representation of the heap graph called summary. The
summary is then stored into a caching structure K, and it is
reused for every subsequent call to the same method.

We use the following notation to describe the abstract
interpretation of method calls: A state σ ∈ State is a tuple
(E, h, s, φ, ψ) representing the calling context in a symbolic
configuration and it is stored whenever we start the analysis of
a new method. The symbolic call stack cs ∈ (State × PC )∗

is a stack of pairs (σ, pc) containing the state of the caller
and program counter index of the caller in state σ. A partial
mapping K : Sig 7→ Sum caches method summaries for each
method signature. A method summary sum ∈ Sum is defined
by the tuple (E, h) consisting of the environment and the heap.

Figure 7 presents the algorithm for our summary-based
inter-procedural analysis of a call graph. We handle the follow-
ing cases: (a) calls to methods with summaries already present
in the cache K (rule S-CALLK); (b) calls to external/native
method with no implementation available (rule S-CALLEXT);

S-CALLK
P(pc) = call pc0 K(sigpc0)↓ σ′ = apply(K(sigpc0), σ)

〈pc, cs, σ,K〉 → 〈pc+ 1, cs, σ′,K〉

S-CALL
P(pc) = call pc0 K(sigpc0)↑

〈pc, cs, σ,K〉 → 〈pc0, cs :: (σ, pc),⊥,K〉

S-CALLEXT
P(pc) = call pc0 P (pc0)↑ l ∈ Loc fresh

〈pc, cs, 〈_, _, s, _〉_,K〉 → 〈pc+ 1, cs, 〈_, _, s :: l, _, _〉,K〉

S-END
sum = cmptSum(σ) σ′′ = apply(sum, σ′) P (pc)↑
〈pc, cs :: (σ′, pc′), σ,K〉 → 〈pc′ + 1, cs, σ′′,K[sig 7→ sum]〉

Fig. 7: Abstract interpretation of call graph

(c) calls to (non-recursive) methods with no summaries in the
cache K (rule S-CALL) ; and (d) updates of the cache K upon
termination of the analysis of a method (rule S-END).

Rule S-CALLK applies the cached summary of the method
with signature sigpc0 (at index pc0) to the current symbolic
state σ of the caller, using a function apply : Sum ×State 7→
State . In a nutshell, apply takes the root variables Var of
the summary consisting of the formal parameter arg and a
predefined variable rv ∈ Var storing the return value of the
method. Then, it pops off the top value from the stack in σ and
merges it with arg using the function update described in Sec-
tion IV-B. The merging process may affect other components
of σ that contain references to merged locations, resulting in
an updated state σ′. Rule S-CALLEXT handles external/native
method calls by pushing a fresh symbolic location onto the
stack whenever a method lacks implementation, i.e., P (pc0)↑.
Rule S-CALL triggers the intra-procedural analysis of a new
method by transferring control to its code at index pc0 and
storing the context of the caller in the symbolic stack cs. The
caller’s context contains the caller’s state and program counter
index pc. Observe that the analysis of the callee method is
performed in a context independent manner, i.e, σ′ = ⊥.
Rule S-CALL matches rule S-END to compute the summary
upon termination of the method’s intra-procedural analysis
(denoted by P (pc)↑). Subsequently, it applies the summary
to the caller’s context σ′ and caches it in K, and continues the
analysis with the caller’s next instruction at index pc′ + 1.

Example: Method calls. We illustrate the abstract inter-
pretation of non-recursive calls in Listing 8. The analysis starts
from the method EPoint and calls SSink which is an external
method, hence P (pc0)↑. Rule S-CALLEXT allocates a fresh
location and pushes it onto the stack to emulate the return
value. Because the method signature is defined as sensitive
sink, we mark the fresh variable as tainted. Subsequently, the
assignment stores the tainted value to the location in b.foo.

Next, we call the method CreateAlias which triggers an
intra-procedural analysis of its body via rule S-CALL after
storing the current σ and pc to the call stack. The analysis
applies rule S-STFLD to create an alias between arg.bar and
arg.foo. Finally, rule S-END builds a summary from the
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void EPoint(ClassA arg) {

var b = new ClassB();

b.foo = SSink(arg);

CreateAlias(b);

Foo(b.bar);

}

void CreateAlias(ClassB arg){

arg.bar = arg.foo;

}

void Foo(ClassB arg) {

ExternalMethod(arg);

}

(a) Code

lb T

b

foo
bar

(b) Heap

Fig. 8: Method calls

current symbolic state and stores it in the cache. The summary
generation algorithm traverses the heap graph h starting from
root variables V ar in E and stores visited nodes and references
to the summary. This is the only information that may affect
the context of the caller. Subsequently, the algorithm applies
the summary to the caller’s state to create a new state that
accounts for the effects of the method call, and proceeds with
executing the next instruction of the method EPoint. Figure 8b
depicts the effects of the summary applications, which add the
edge labeled with bar to the heap graph, thus causing the two
fields to point to the tainted node.

Finally, we analyze method Foo via rule S-CALL. Foo
contains an external method call (as analyzed by rule S-
CALLEXT) with argument arg as parameter. Since external
methods can be used as attack trigger, we store information
about the ExternalMethod in the node of the arg location.
The rule S-END builds and stores the summary, and applies it
to the EPoint context when reaching the end of the method.
Hence, we merge two locations (b.bar which is passed to Foo,
and arg from the summary), and detect the call to an attack
trigger with a taint mark. Finally, we store the chain from
EPoint to SSink and ExternalMethod as an OIV pattern.

V. IMPLEMENTATION

This section provides implementation details and limita-
tions of SerialDetector. Figure 2 overviews the architecture.

A. Anatomy of SerialDetector

SerialDetector [41] is written in C# and runs on the .NET
platform using the dnlib library [1] for parsing assemblies.

Pattern detection. The distinguishing feature of SerialDe-
tector is that it implements the framework-agnostic paradigm
and does not use any heuristics based on method or class names
to detect OIV patterns. The input consists of a set of .NET
assemblies and rules for sensitive sinks and attack triggers.
The sensitive sinks are initially described as a native method
that return an object of type System.Object. Thereby, we
assume that an attacker can manipulate either the parameter
of the sensitive sink or the runtime state to get an object

of arbitrary type. SerialDetector analyzes only CIL code in
.NET assemblies and does not support binary code as in native
methods. Therefore, we take a conservative approach that every
native method returns an object of any derived type as the
return type. We then mark the return object of the sensitive
sink as tainted. The attack trigger is described as either a native
(external) method that takes a tainted object as parameter or a
virtual method with the first argument marked as tainted.

The pipeline of the detection phase consists of four steps:
(1) SerialDetector builds an index of method call’s graph
for the whole .NET assembly dataset; (2) It filters all native
method signatures using the criteria defining the sensitive
sinks. This step yields the signatures of sensitive sinks, which
we use to build the slices of the call graph in the backward
direction, from the sensitive sinks to entry point methods;
(3) SerialDetector performs a summary-based inter-procedural
dataflow analysis as described in Section IV; (4) It outputs a
sequence of patterns containing calls to attack triggers for each
sensitive sink as well as traces from entry points to sensitive
sinks. We collect these patterns in a knowledge base and use
them as input to the exploitation phase.

Exploit generation and validation. Drawing on the
knowledge base from the previous stage, we manually identify
usages of vulnerable patterns in frameworks and libraries. To
this end, we leverage the YSoSerial.Net project [3] to create
templates that can be used to exploit vulnerabilities in a target
application. We do this by declaring a signature of each public
vulnerable method directly in C# code using DSL-like API.
Listing 9 shows the template for the vulnerable YamlDotNet
library from Section II-B.

var deserializer = new Deserializer();

Template.AssemblyVersionOlderThan(5, 0)

.CreateBySignature(it =>

deserializer.Deserialize(

it.IsPayloadFrom("payload.yaml").Cast<IParser>(),

typeof(object)));

Listing 9: Object Injection Template

We designed a DSL as custom LINQ expressions. LINQ
is a uniform programming model for managing data in C#.
Each method in the DSL call sequence refines the template
model. For example, we start with the Template static
class and call the method AssemblyVersionOlderThan to
specify a vulnerable version of the library. The next method
call CreateBySignature creates a template for the method
Deserialize of the YamlDotNet serializer and defines
as the first parameter the untrusted input with a payload
from payload.yaml. The DSL facilitates the description
of payloads and it allows to apply one payload to many
templates. The key feature of the DSL is usage the expression
tree as parameter to the method CreateBySignature. The
expression tree represents code in an abstract syntax tree
(AST), where each node is an expression. The method can
extract a signature of the calling method from the expression
tree, e.g., deserializer.Deserialize, to detect any usage
in a target application. Moreover, it can also compile and
run the expression tree code to test the payload. A main
advantage of template generation with our DSL is that it
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facilitates modification and testing of different payloads, which
is essential during exploitation, when SerialDetector sends
a signal upon successful execution of a malicious action.
SerialDetector comprises following steps for exploit generation
and validation:

1. Matching (Manual): To validate the results of the detection
phase, we match the generated patterns with actual sensitive
sinks and attack triggers of an exploit with a known gadget.
We generate a payload for the known gadgets and reproduce
the exploit of each target serializer. We attach a debugger
to our reproduced case and set breakpoints to the detected
sensitive sink and attack trigger calls. If the breakpoints are
triggered and the attack trigger performs a call chain to the
malicious action of our payload, then we conclude that the
pattern is exploitable.

2. Populating Knowledge Base (Manual): We use the results
of the matching to populate a knowledge base. We describe
the code of a gadget to create and transform to various
formats to generate the payload. We also describe signatures
of vulnerable entry points from the matched patterns in
templates as well as additional restrictions, e.g., the version
of a vulnerable library.

3. Payload and Template generation (Automated). SerialDetec-
tor automatically generates payloads and templates based on
described knowledge base rules.

4. Call Graph Analysis (Automated). We use the templates
as input for Call Graph Analysis to detect potentially
vulnerable templates in a target application. SerialDetector
generates the Call Graph from the application entry points
to the vulnerable calls described in the templates.

5. Template validation (Automated). SerialDetector automati-
cally generates and run tests for templates. It validates that
a given payload can exploit an entry point in the templates.
It also validates Call Graph Analysis step using template
description as a source for compiling the .NET assembly
with vulnerable code and it runs the analysis against this
sample. All information required for testing is extracted
from the knowledge base.

6. Exploit Generation (Manual). SerialDetector relies on the
human-in-the-loop model for exploit generation. It provides
an automatically generated call graph targeting a vulnerable
template and an input payload that exploits the template. A
security analyst explores the entry points of the call graph
subject to attacker-controlled data, and exploits them using
the original payload. The analyst may need to combine OIVs
with other vulnerabilities (e.g., XSS - see Section VII-C)
to execute a malicious payload for a target entry point.
If an exploit fails, the analyst investigates the root cause
using other tools (e.g., a debugger) and modifies the payload
according to application-specific requirements.

B. Challenges and Limitations

Virtual method calls. Static analysis for large code is very
challenging. We find that modularity and flow insensitivity are
essential for analyzing millions of LOC. One of the challenges
we faced was the analysis of virtual method calls. When per-
forming a call graph analysis, we assume that a virtual method
call may transfer control to a method of any instantiated type
that implements this virtual method. For a modular data flow
analysis, this means that we must analyze all implementations

of the method and apply all generated summaries. To reuse
merged summaries of all virtual method implementations,
we introduce fake methods that include concrete calls of all
implementations of a certain virtual method. We cache the
summary of such method for future use.

We implement a lightweight form of context-sensitive
analysis. The analyzer collects types of all created objects in a
global context and then resolves the virtual method calls only
for the implementations of the collected types. Because we use
the modular approach we need to track summaries that have
virtual calls. When a new type is instantiated, we invalidate
the summaries that have the virtual calls that may be resolved
to methods of the new type.

Some virtual methods of .NET Framework have hundreds
of implementations. Thereby, the analysis of all implementa-
tions is a very expensive operation that often does not give us
benefits. We implement several optimizations for virtual calls.
Whenever possible, the analyzer infers the type of virtual calls
in the intra-procedural analysis. Thereby, we can reduce the
number of implementations for data flow analysis. Otherwise,
we limit a count of implementations of virtual methods calls
for data flow analysis and track all cases where the analyzer
skips the implementations. We then perform a manual analysis
of such cases and pick the ones of interest for the next run of
the analysis.

Recursion. Another challenge is the modular analysis of
recursion calls. The analysis must ignore caching summaries
of intermediate methods in a chain of recursive methods.
The reason for this is that the summaries of intermediate
methods do not contain full data-flow information until we
complete the analysis of the first recursive method. However,
a program may have many calls of the same intermediate
method, hence we must reanalyze such method, although we
get the same incomplete summary. We use temporary caches
for the summaries of intermediate recursive methods to analyze
such methods only once within a recursion call. We then
invalidate the temporary cache when the analysis of the first
recursive method is completed.

Static fields. The CLI specification allows types to declare
locations that are associated with those types. Such locations
correspond to static fields of the type, hence any method has
access to the static fields and can change their value. While our
abstract semantics does not address static field, SerialDetector
does. We enrich the summaries with an additional root variable
storing the names of types with static fields. Thus, we can
access any location of the static field by using such variable
and the full access path. Then, we merge such root variable
as we do with other arguments of the method when applying
a summary to the calling method’s context.

Arrays. The CLI specification defines a special type for
arrays, providing direct support in CIL (newarr, stelem,
ldelem, and ldelema). Array instructions may perform integer
arithmetics when accessing an array element by taking its array
index from the evaluation stack. We do not support integer
arithmetics for primitive types in the current version of the
analyzer. Thereby, we overapproximate the array semantics
by assuming that all elements of an array point to the single
abstract location containing all possible values.

Unsupported instructions. The CLI specification supports
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method pointers and delegates [2]. A method pointer is a type
for variables that store the address of the entry point to a
method. A method can be called by using a method pointer
with the calli instruction. Delegates are the object-oriented
equivalent of function pointers. Unlike function pointers, dele-
gates are object-oriented, type-safe, and secure. Each delegate
type provides a method named Invoke with appropriate pa-
rameters, and each instance of a delegate forwards calls to its
Invoke method to one or more static or instance methods on
particular objects. SerialDetector does not track values for the
delegates and the method pointers, however it issues a warning
whenever such features are used.

Both CLI and the .NET Framework support reflection.
Reflection provides the ability to examine the structure of
types, create instances of types, and invoke methods on types,
all based on a description of the type. The current version
of the analyzer does not reconstruct the call graph based on
information of method invocations via the reflection.

VI. EVALUATION

This section presents our experiments to validate the effi-
ciency and effectiveness of SerialDetector. We leverage known
vulnerabilities in the .NET Framework and third-party libraries
as ground truth for checking the soundness and permissiveness
of the detection phase, as well as for evaluating the scalability
of analysis on a large codebase. To evaluate the exploitation
phase, we perform an in-breadth study of deserialization vul-
nerabilities on real-world applications over the past two years,
and report of the effort to exploit these vulnerabilities with
SerialDetector. We perform the experiments on an Intel Core
i7-8850H CPU 2.60GHz, 16 GB of memory, running Windows
OS and .NET Framework 4.8.04084. The analysis results and
data are available in SerialDetector’s repository [41].

First, SerialDetector indexes all code of the .NET Frame-
work and detects the list of sensitive sinks. The .NET
Framework consists of 269 managed assemblies with 466,218
methods and 50,399 types. SerialDetector completes this step
in 12.4 seconds and detects 123 different sensitive sinks.
Not all sensitive sinks create new objects dynamically based
on input data, hence we filter out such sensitive sinks
after manual analyisis. For example, the external method
Interlocked.CompareExchange is considered as sensitive
sink, however it only implements atomic operations like com-
paring two objects, hence we exclude it from our list.

Detection phase. To evaluate true positives, false positives,
and false negatives of the detection phase, we run SerialDetec-
tor against known OIVs in .NET Framework and third-party
libraries using insecure serializers from the YSoSerial.Net
project [3]. We use the deserialization methods of insecure se-
rializers as entry points for our data flow analysis. The analyzer
generates OIV patterns for each deserializer. We then match the
attack triggers with gadgets from YSoSerial.Net as an indicator
of effectiveness. SerialDetector confirmed exploitable patterns
for 10 deserializers. It also reported warning for 5 deserializers
DataContractJsonSerializer, DataContractSerializer, FsPickler,
NetDataContractSerializer, and XmlSerializer since it lacks
support for delegates calls. If a code snippet uses a delegate
to create a type, we lose information about that type, hence
SerialDetector cannot resolve virtual calls of that type.

Table I presents the results of our experiments. We report
the Version of the library or the framework containing that
library, and the number of different Methods analyzed for
each entry point. The analyzer generates a summary for each
method. We need re-analyze some methods, for example,
recursive methods or methods with virtual calls that must be re-
analyzed after creating an instance of the type with a concrete
implementation. Therefore, the number of summaries is always
greater than the analyzed methods.

The column Patterns shows the number of unique OIV
patterns for each serializer, while Priority Patterns shows
patterns that contain the methods of known gadgets. The
pattern consists of the attack triggers that are called on a
unique tainted object. It is unclear whether or not the rest of
attack triggers is exploitable, since this requires detection of
new gadgets, which we do not address in this work. Therefore,
the number of (priority) patterns minus one corresponds to the
number of (gadget specific) false positives.

Exploitation phase. We carry out an in-breadth analysis
of .NET applications vulnerable to OIVs using the follow-
ing methodology: (1) We collected vulnerabilities from the
National Vulnerability Database using the keyword ".NET"
and category "CWE-502 Deserialization of Untrusted Data"
as of January 1st, 2019. As a result, we obtained 55 matched
records; (2) We inspected the vulnerabilities manually and
found that 11 vulnerabilities were actually detected in .NET
applications, of which only 5 vulnerable applications were
available for download; (3) We analyzed these applications
with SerialDetector as reported in the first part of Table II;
(4) Since not all vulnerabilities of insecure deserialization are
marked as CWE-502, we searched the Internet for additional
OIVs and added them in our experiments, including the new
vulnerabilities that we found in Azure DevOps Server. In total,
we run SerialDetector against 7 different applications with
10 OIVs. SerialDetector detected vulnerable calls of insecure
deserializers and related entry points in all applications except
for the Telerik UI product, which uses the Reflection API
to call an insecure configuration of JavaScriptSerializer. The
current version of SerialDetector does not support reflection
for reconstructing the call graph and ignores such calls.

Table II contains information about the number of as-
semblies and analyzed instructions to illustrate the size of
applications. The column "Entry Points w/o Threat Model"
provides information about the count of all detected entry
points that reach insecure serializer calls. However, not all
assembly entry points are available for attackers to execute.
Some are never called by an application, while others require
privileges that are inaccessible to the attacker. The exploitable
entry points depend on the threat model which is specific to
an application. We describe the possible threat models for a
web application in Section VII-B. To provide an assessment
in line with the actual operation mode of SerialDetector, we
leverage the (known) vulnerable entry points and compute the
number of detected entry points for a specific threat model.
Thus, an attacker first identifies the parts of the target system
(assemblies) that are reachable for a threat model and then
runs a detailed analysis. The column "Entry Points w/ Threat
Model" reports the results of SerialDetector. The total number
of entry points estimates the upper bound (it also includes true
positives) on the number of false positives of our analysis.
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Version
Time
(sec)

Memory
(Mb) Patterns

Priority
Patterns Methods Summaries

Method
Calls

Applied
Summaries Instructions

BinaryFormatter .NET 4.8.04084 1.5 7,208 6 6 5,263 6,342 31,600 29,094 214,784
DataContractJsonSerializer .NET 4.8.04084 122.2 16,042 73 - 14,091 16,230 112,322 102,079 576,896

DataContractSerializer .NET 4.8.04084 51.9 13,942 73 - 13,631 15,748 109,179 99,294 562,410
FastJSON 2.3.2 3.3 7,495 24 15 6,564 7,701 41,615 37,740 273,806
FsPickler 4.6 1.5 7,216 7 - 3,552 4,302 22,927 20,362 152,343

JavaScriptSerializer .NET 4.8.04084 44.9 13,234 121 9 18,616 19,727 130,426 120,007 665,524
LosFormatter .NET 4.8.04084 86.3 15,278 9 9 18,941 21,631 146,864 135,843 773,037

NetDataContractSerializer .NET 4.8.04084 158.2 17,578 72 - 14,021 15,613 104,941 96,216 545,699
Newtonsoft.Json 12.0.3 7.6 7,776 13 10 12,560 14,373 90,385 84,208 496,888

ObjectStateFormatter .NET 4.8.04084 2.5 7,213 9 9 6,287 8,407 47,756 43,495 314,952
SharpSerializer 3.0.1 47.9 13,180 69 2 12,819 14,340 94,317 87,830 500,922
SoapFormatter .NET 4.8.04084 8.0 7,743 12 12 11,552 12,786 79,603 73,698 444,448
XamlReader .NET 4.8.04084 10.4 7,754 133 23 14,627 17,209 109,160 101,921 594,230

XmlSerializer .NET 4.8.04084 158.2 16,766 82 - 14,511 16,022 114,808 106,728 583,887
YamlDotNet 4.3.1 6.0 7,754 44 2 7,253 8,441 54,581 51,080 300,192

TABLE I: Evaluation results for the insecure serializers

Software Version Serializer
Entry Points

w/ Threat Model
(False Positives UB)

Entry Points
w/o Threat Model

(False Positives UB)

Assemblies/
Instructions

Payload
Changes

CVE-2020-14030 Ozeki SMS Gateway 4.17.6 BinaryFormatter 31 220 84/
1,866,312 0

CVE-2020-10915
CVE-2020-10914 VEEAM One Agent 10.0.0.750 BinaryFormatter 29 29 10/

199,185 1

CVE-2019-18935 Telerik UI
for ASP.NET AJAX 2019.2.514 JavaScriptSerializer - - - -

CVE-2019-10068 Kentico 12.0.0 SoapFormatter 1 1 191/
5,647,128 0

CVE-2019-19470 TinyWall 2.1.8 BinaryFormatter 4 30 4/
39,927 0

CVE-2019-0604 Microsoft SharePoint
Server 2019

16.0.
10337.12109 XmlSerializer

6,283
Microsoft.SharePoint.dll;

9
Microsoft.SharePoint.Portal.dll

49,007 55/
8,329,428 2

CVE-2019-1306 Azure DevOps
Server 2019

17.143.
28621.4 BinaryFormatter 14 20 326/

10,742,006 2

CVE-2019-0866
CVE-2019-0872

Azure DevOps
Server 2019 RC2 YamlDotNet 3 13 370/

9,863,890 1

TABLE II: Evaluation results for the real-world applications

CVE-2019-0604 in SharePoint Server has two ex-
ploitable entry points in different assemblies [49]. SerialDe-
tector finds that both entry points and many others reach
XmlSerializer::Deserialize call. An outlier is Mi-
crosoft.SharePoint.dll with 6,283 detected entry points. The
main cause of such high complexity is the tight coupling
of code in SharePoint Server and its main assembly Mi-
crosoft.SharePoint.dll, as well as our over-approximation of
virtual calls. For each vulnerable entry point, we followed
the approach described in Section V to generate and validate
the exploits. In our experiments, we changed the payload as
reported in Table II. We further clarify the practical details of
threat models and exploit changes in Section VII-A.

Performance. The analysis is quite fast for such a large
project as the .NET Framework. The average time of the
analysis for a single serializer is 47.4 sec. This shows the ad-
vantages of our modular inter-procedural analysis. We also ex-
perimented with a whole-program dataflow analysis algorithm
which did not terminate within a limit of hours. Our flow-
insensitive approach reduces the size of the heap graph. This
enables SerialDetector to apply summaries and merge locations
faster, thus improving the overall analysis time. Another factor
improving scalability is the usage of the lightweight context-
sensitive analysis. Earlier versions of SerialDetector performed

the analysis of virtual calls in a conservative way, analyzing
all implementations of a virtual method and applying the
summaries at call site. This approach generated correct patterns
for very few serializers (e.g., BinaryFormatter), but it did
not terminate for many others. The implementation of the
type-sensitive analysis improved performance for all tested
serializers.

False Positives. We also find attack triggers that are never
called for a tainted object. The root cause for these false
positives is flow-insensitivity of the data flow analysis. The
flow-insensitive approach allows us to control the heap size at
the expense of the precision of analysis. On the other hand,
our results show that the number of patterns that should be
reviewed manually by a security analyst is not overwhelming.

VII. IN-DEPTH ANALYSIS OF AZURE DEVOPS SERVER

We evaluate SerialDetector on production software to val-
idate its usefulness in practical scenarios. We choose Azure
DevOps Server as the main target for our investigations
mainly due to its complexity and diversity of threat models.
Section VII-A provides a brief summary of Azure DevOps
and Section VII-B provides a thorough overview of the threat
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models that we explored. Section VII-C describes process of
using SerialDetector to discover unknown vulnerabilities.

A. Microsoft Azure DevOps

The Azure DevOps Server (ADS) is a Microsoft product
that provides version control, reporting, requirements manage-
ment, project management, automated builds, lab management,
testing, and release management capabilities. These features
require integration with various data formats and serializers,
thus making it an excellent target for finding OIVs. ADS
hosts multiple projects across different organizations. Projects
are grouped into isolated collections and the system provides
functionalities to set up a project and its collections, as
well as to manage users in a flexible manner. Thereby, a
vulnerability that exposes high privileges in one project may
lead to information disclosure of another project. ADS stores
confidential information that is intellectual property (e.g., the
source code of products), hence a disclosure has high impact.

ADS consists of many services exchanging information
with each other, for example, the main web app, crawler and
indexer services. Such system design implies complex threat
models in which even internal data can be untrusted. The server
has many entry points such as request handlers, documented
REST APIs, plugin APIs, and internal and undocumented API.
After analyzing different threat models, we use SerialDetector
to automatically determine attacker-controlled entry points
leading to OIVs. We then scrutinize these entry points to find
RCE exploits using automated and manual analysis.

B. Threat models

We first consider the simple threat model of a web applica-
tion running under an OS account. ADS uses the NETWORK
SERVICE account in Windows by default. The code executing
in the web application process has restrictions according to
the OS account permissions. The web application usually has
access to different services into the internal network, e.g.,
indexing or caching services that handle the application data.
The application may also have access to a database with
OS account permissions or specific credentials. Thereby, any
code that executes into the web application process may have
access to the database. Users communicate only with the web
application in the demilitarized zone (DMZ) and do not have
access to the internal network.

Figure 9 illustrates the expected information flows between
services and users via black arrows. Any user can act as
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an attacker and send payloads to the web application. If the
application has an entry point that receives user data and
subsequently uses code that is subject to OIVs, we can access
any resources available to the OS account. This is depicted by
OS Account trust boundaries in Figure 9. The attacker may
send a payload to a vulnerable application directly (arrow
1) and get access to local files (arrow 2c), services into the
internal network (arrows 2a, 2b) or any data from the web
application memory. Example 1 illustrates this scenario.

Our second threat model addresses the question: Can an
OIV be exploited if it processes data from internal services or
files only? The answer depends on other components of the
system. Figure 10 presents the threat model for such cases.
An attacker may already be inside DMZ network and execute
code with very restricted privileges. For example, the attacker’s
process may have access only to the shared files originating
from the web application. If these files are processed by code
subject to OIVs, the attacker can transfer the payload through
files (arrow 1a), escalate privileges to the web application
account (arrow 2a), and ultimately gain access to all resources
inside the OS Account area in Figure 10.

Another scenario includes remote attacks through chains
of vulnerabilities in other services. A service that receives
untrusted user data may have vulnerabilities such as Server-
Side Request Forgery (SSRF) enabling an attacker to deceive
the server-side application to make requests to an arbitrary
server, including internal servers. A service may also have
insufficient data validation and allow to store a payload to an
internal service that subsequently makes this data available to
code vulnerable to OIVs. For example, an attacker may abuse
a data validation vulnerability in the Agent service (arrow 1b)
and send the payload to the Internal Service (arrow 2b). The
Internal Service may index the data and send the payload to
an application with OIVs (arrow 3b). As a result, the attacker
will gain access to all resources inside the OS Account area.

Our third threat model (Figure 11) targets scenarios where
only a user with administrator privileges can get access to
code subject to OIVs. ADS exposes web applications with a
rich user management subsystem enabling the owner to create
isolated projects with their own administrator accounts. We
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depict this setting via the trust boundaries Admin Project A and
Admin Project B. This is a typical scenario in cloud-based web
applications where a user can register a separate project and
become the administrator of that project. A single application
process often serves several isolated projects. In this case, an
attacker can register an administrator account for their own
project and exploit an OIV directly (arrow 1a) to gain access
to all resources of OS Account including the database and the
data of any other projects (arrow 2a).

If the attacker has access only to a subset of features, e.g.,
a user with minimal privileges, they can exploit a chain of a
client-side and object injection vulnerabilities to carry out the
attack. For example, the attacker can exploit an XSS vulnera-
bility to run malicious JavaScript code into the administrator’s
browser and use it to relay the malicious payload to OIV code
that is available only to the administrator (path 1b, 2b, 3b, 4b).

C. SerialDetector in action

We used SerialDetector to analyze the Azure DevOps
Server against OIVs. We described templates of OIV in inse-
cure serializers and run the exploitation phase of SerialDetector
to determine which insecure serializers ADS uses. The tool
analyzed the codebase of the application and built the Call
Graph from entry points to the given insecure methods. The
analyzer handled 422 assemblies that contain 630,251 methods
and 11,258,350 instructions. This analysis was completed
in 174 sec. Thereby, we detected an usage of 7 serializers
in the codebase of ADS: BinaryFormatter, DataContractSe-
rializer, JavaScriptSerializer, Newtonsoft.Json, XamlReader,
XmlSerializer, YamlDotNet. We have checked method calls of
DataContractSerializer, JavaScriptSerializer, Newtonsoft.Json,
XamlReader and XmlSerializer, and concluded that it is being
used in the safe mode for untrusted data.

RCE via BinaryFormatter. The BinaryFormatter matched
the patterns generated by SerialDetector, hence we could

instantiate objects for a malicious gadget and execute a pay-
load. However, the BinaryFormatter handles data from local
storage which an attacker cannot control directly. Following
the threat model in Figure 10, SerialDetector found that one
of the methods that call BinaryFormatter is located in the
code of the Search Engine. The Search Engine computes
indexes of text data like source files and Wiki pages to enable
quick search of information. This service is a part of Web
App in the threat model and is not accessible from outside.
The indexes represent binary formatted data managed by the
Storage Service. The Storage Service allows to get indexes
from other components of the system and makes them available
to the Search Engine. This corresponds to Internal Service in
the threat model. A separate service Crawler tracks changes
in the Git repository, parses the changed text files according
to their format, and sends the resulting data to the Storage
Service. The data in the Git repository is untrusted because
users with minimal privileges usually have access to some
repositories. This user-controlled data corresponds to User
node in Figure 10. Hence, the security of the system relies on
proper validation of the data from Git to the Crawler Service.

We analyzed the validation algorithms of the Crawler
Service and identified the control flow path from the method
that pulls updated Wiki pages from Git, parses the Markdown
format of Wiki pages, and stores the parsed data in indexes. To
exploit this path, we generated a payload with SerialDetector,
stored the payload to the Wiki page, and waited for the Crawler
to transfer the payload to indexes and for the Search Engine
to deserialize the data using BinaryFormatter. However, the
exploitation failed, hence we attached a debugger to the Agent
Service to identify the instructions that changed the payload.

The Crawler first validates that the Wiki page is a text
document. It uploads the file as a byte array and verifies that
the content uses Unicode encoding by checking the first bytes.
The payload for BinaryFormatter always starts with the byte
0x00 and the next 4 bytes contain an integer value of the
ID of the root serialized object. The Crawler accepts the one
sequence of the first bytes of the header that starts with 0x00 as
Unicode format, and it is 0x0000FEFF. Thereby, we changed
the root ID of the payload to get the header to correspond
to Unicode format, tested a new payload for BinaryFormatter
using SerialDetector, and managed to bypass this validation.

We run the exploit using the new payload and failed again.
Following our human-in-the-loop approach, we started a new
manual iteration of the “investigating, fixing and testing” loop.
The debugger revealed that the Crawler Service parses the Wiki
page as Markdown document and stores the parsed data to
the index. Because we use the binary data instead of a valid
Markdown document, the parser rejected storing the document
to the indexes. However, when the parser throws an exception,
the Crawler Service stores the content of Wiki page to the
index as is. This allows us to transfer the payload to the
BinaryFormatter via the indexes. We found a bug in Markdown
parser which throws an exception for certain incorrect strings.
We then added the string to the original payload, created and
tested the second version of the payload with SerialDetector,
and run the exploit on ADS successfully. The attack propagates
the payload from the attacker-controlled Git repository to
the input of the BinaryFormatter using Crawler and Storage
services, as depicted by the path 1b, 2b, 3b in Figure 10.
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We have reported the vulnerability to Microsoft following
the coordinated disclosure principles. Microsoft assigned CVE-
2019-1306 and released a patch to address the vulnerability.
The fix uses a look-ahead approach [16] to control class
loading, depending on the type name. The .NET Framework
provides the class SerializationBinder that allows to use
the look-ahead approach by configuring BinaryFormatter with
a custom implementation of the binder. Thereby, a developer
can create only safe types during deserialization and avoid
instantiating unsafe types. The fixed version filters out the
types via a whitelist which prevents the OIV exploitation.

RCE via YamlDotNet. ADS uses the YAML format
for describing pipelines to automatically build and test the
code of projects. The YAML pipeline configuration file may
be stored in the source code repository of a project. ADS
uploads the configuration file from the repository, deserializes
it, and queues a build task to the Build Agent. The agent
performs building and testing of the code from the repository
following the YAML configuration file. For security reasons,
the documentation recommends to run the agent in an isolated
environment. Thus, code execution vulnerabilities during the
build and test process are not directly exploitable in a typical
configuration. However, the Web Application of ADS performs
deserialization of the YAML file before running the agent. This
boosts the impact of code execution in the Web Application to
affect the entire system. For instance, an attacker can escalate
to privileges of the OS Account running the Web Application.

We used SerialDetector to build the call graph of method
calls that reach the YamlDotNet deserialization methods. By
examining the entry points of the call graph, we found that the
public Web API allows to run a build process using the YAML
configuration file. We generated a payload using SerialDetector
and ran the build process with our payload as the build
configuration. Upon failure of our first attempt, we started
the application debugging to identify a conditional statement
causing the failure. The build configuration handler required
small changes in the payload to pass it to the serializer. We
just added the string --- as the first and the last payload lines.

However, YAML-based pipelines were a new experimental
feature at the moment and they were disabled by default. The
feature can be enabled by the administrator locally on the
machine. We also found an undocumented Web API to enable
the feature remotely, but such request requires administrator
privileges in ADS. This scenario corresponds to the threat
model in Figure 11. One ADS instance supports few project
collections with different user roles. However, the administra-
tor of one collection may not have access to another collection.
If the user with administrator privileges exploits the OIV and
triggers an RCE, this user can get access to the resources and
data of all collections. The path 1a, 2a shows this attack.

We demonstrated higher impact of the YamlDotNet OIV
by looking for XSS vulnerabilities. We found two XSSs using
static and manual analysis. The first one can be exploited when
the victim opens a PDF file from the source code repository
using the ADS web interface. We use a weakness of Internet
Explorer to execute scripts embedded into PDF files (now this
is also fixed). Thereby, an attacker needs to prepare a malicious
PDF file, upload it to the repository, and craft the link to the
PDF file using the viewer of ADS. When the administrator
opens this link in Internet Explorer, the embedded script sends

requests with administrator privileges to ADS triggering the
deserialization of the malicious YAML file. Thus, the attacker
executes an RCE attack on the target ADS with minimal
privileges (i.e., only access to the source code repository).

The second XSS targets a victim that opens a page with
the test description. ADS uses the Test hub feature for tracking
the manual testing of applications. It provides three main types
of test management artifacts: test plans, test suites, and test
cases. The test case description field had insufficient validation
and sanitization of the input text. The attacker may inject
JavaScript in the description field and get a stored XSS on
the Test Case page. When the administrator opens this page,
the JavaScript code is executed in the administrator’s browser
allowing for requests to Web API with administrator privileges.
We exploited the vulnerability similarly to the RCE on the
server. The path 1b, 2b, 3b, 4b illustrates the attack.

We reported these vulnerabilities to Microsoft following
the coordinated disclosure principles. Microsoft assigned CVE-
2019-0866 and CVE-2019-0872 for each vulnerable attack
chain and fixed it. The XSS vulnerabilities were fixed by
adding additional validation to the web page and by requiring
users to download the PDF document instead of opening it
in the browser. To prevent the OIV exploitation, Microsoft
implemented their own lightweight YAML serializer using a
parser from the YamlDotNet. This serializer does not allow
to instantiate an object based on the type of information from
the file. It deserializes only a small predefined subset of types
which prevents the composition of a malicious gadget.

VIII. RELATED WORKS

This section discusses related works targeting object injec-
tion vulnerabilities and injection vulnerabilities.

Object Injection Vulnerabilities. The closest related re-
search is the work of Dahse et al. [11], [13], which implements
static analysis to systematically detect gadgets in common PHP
applications. Like us, they implement static taint analysis to
detect exploitable vulnerabilities. The key difference is that
SerialDetector’s analysis operates at the assembly level to
discover new OIV patterns, while Dahse et al. target PHP
source code via well-known attack triggers (called magic
methods in their setting). On the other hand, SerialDetector
relies on known gadgets. An interesting avenue for future work
is to explore the complementary techniques by Dahse et al. to
implement gadget generation in SerialDetector.

Shahriar and Haddad [40] propose a lightweight approach
based on latent semantic indexing to identify keywords that are
likely responsible for OIVs and apply it systematically to PHP
applications to find new vulnerabilities. Rasheed et al. [35]
study DoS vulnerabilities in YAML libraries across different
programming languages and discover several new vulnerabili-
ties. Recently, Lekies et al. [28] showed that code-reuse attacks
are feasible in the client-side web applications by proposing a
new attack vector that breaks all existing XSS mitigations via
script gadgets. Cristalli et al. [10] propose a dynamic approach
to identify trusted execution paths during a training phase
with benign inputs, and leverages this information to detect
insecure deserialization via a lightweight sandbox. Hawkins
and Demsky [23] present ZenIDS, a system to dynamically
learn the trusted execution paths of an application during an
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online training period and report execution anomalies as po-
tential intrusions. Dietrich et al. [14] investigate deserialization
vulnerabilities to exploit the topology of object graphs con-
structed from Java classes in a way that leads dererialization
to DOS attacks exhausting stack memory, heap memory, and
CPU time. SerialDetector focuses on generating OIV patterns
targeting low level features of the framework and libraries. Our
results are complementary and can help improve the precision
of these techniques. Moreover, to our best knowledge, none
of the existing static analysis has been applied to complex
production software such as Azure DevOps Server.

Our work draws inspiration on exploitation techniques de-
veloped by the practitioners’ community [17], [18], [22], [32].
We leverage these results for the exploitation phase to match
our patterns with existing gadgets [3]. We refer to Muñoz and
Mirosh [32] for an excellent report on deserialization attacks
in .NET and Java libraries. Seacord [39] provides a thorough
discussion on OIV defenses via type whitelisting. Our results
are complementary to gadget generation techniques and can
help these works uncovering unknown gadgets.

Tool support Koutroumpouchos et al. [27] develop Ob-
jectMap, a toolchain for detecting and testing OIVs in Java
and PHP applications. While targeting different languages,
ObjectMap shares similar goals as SerialDetector’s payload
and exploit generation modules. Gadget Inspector [22] is a tool
for discovering gadget chains that can be used to exploit dese-
rialization vulnerabilities in Java applications. SerialKiller [33]
is a Java deserialization library implementing look-ahead dere-
rialization [16] to secure applications from untrusted input. It
inspects Java classes during naming resolution and allows a
combination of blacklisting and whitelisting.

Injection Vulnerabilities Code reuse vulnerabilities have
been studied in breadth in the context of injection vulnerabil-
ities in web applications [6], [9], [12], [24], [28]–[30], [43],
[44], [47], [47]. For the .NET domain, Fu et al. [19] propose
the design of a symbolic execution framework for .NET
bytecode to identify SQL injection vulnerabilities. Doupé et
al. [15] implement a semantics-preserving static refactoring
analysis to separate code and data in .NET binaries with
the goal of protecting legacy applications from server-side
XSS attacks. Our work is exclusively focused on OIVs and
yields results that target such vulnerability in depth. Except
for significant engineering challenges with .NET assemblies
(including the framework and libraries), our taint-based data
flow analysis follows the existing line of work targeting web
and mobile application vulnerabilities at the bytecode level
broadly [4], [7], [21], [30], [43], [47].

IX. CONCLUSION

We have pushed the research boundary on key challenges
for OIVs in the modern web. Based on these challenges, we
have identified the root cause of OIV and proposed patterns
based on the triplet: entry points, sensitive sinks, and attack
triggers. We have presented SerialDetector, the first principled
and practical tool implementing a systematic exploration of
OIVs via taint-based static analysis. We have used SerialDetec-
tor to test 15 serialization libraries as well as several vulnerable
applications. We have performed an in-depth security analysis
of the Azure DevOps Server which led SerialDetector discover
RCE vulnerabilities with three assigned CVEs.
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C-LDVAR
P(pc) = ldvar x v = E(x)

〈pc, cs, E, h, s〉 → 〈pc + 1, cs, E, h, s :: v〉

C-LDFLD
P(pc) = ldfld f v = h(l, f)

〈pc, cs, E, h, s :: l〉 → 〈pc + 1, cs, E, h, s :: v〉

C-BR
P(pc) = br i

〈pc, cs, E, h, s〉 → 〈i, cs, E, h, s〉

C-STVAR
P(pc) = stvar x E

′
= E[x 7→ v]

〈pc, cs, E, h, s :: v〉 → 〈pc + 1, cs, E
′
, h, s〉

C-STFLD
P(pc) = stfld f h

′
= h[h(l, f) 7→ v]

〈pc, cs, E, h, s :: v :: l〉 → 〈pc + 1, cs, E, h
′
, s〉

C-NEWOBJ
P(pc) = newobj T l ∈ Loc fresh h

′
= h[(l, f) 7→ ⊥]

〈pc, cs, E, h, s :: l〉 → 〈pc + 1, cs, E, h
′
, s〉

C-RET
P(pc) = ret st = (pc

′
, E

′
, s

′
) pc

′′
= pc

′
+ 1

〈pc, cs :: st, E, h, s :: v〉 → 〈pc′′, cs, E′
, h, s

′
:: v〉

C-BRTRUE
P(pc) = brtrue i pc

′
= (v ? i : pc + 1)

〈pc, cs, E, h, s :: v〉 → 〈pc′, cs, E, h, s〉

C-CALL
P(pc) = call i st = (pc, E, s) E

′
= E[arg 7→ v]

〈pc, cs, E, h, s :: v〉 → 〈i, cs :: st, E
′
, h, ε〉

Fig. 12: Operational semantics of CIL

APPENDIX

A. A Primer on .NET Technologies

The .NET Framework is a managed execution environ-
ment for Windows providing a variety of services to its
running applications. The framework consists of two major
components: The Common Language Runtime (CLR), which
is the virtual machine that handles running apps, and the
.NET Framework Class Library (FCL), which provides a
library of reusable code that developers can call from their
applications. The FCL implements a collection of reusable
types for user interfaces (e.g., XAML serializer), data access,
web application development (e.g., JSON serializer), network
communications (e.g., SOAP serializer) and other features.
The .NET Framework implements the Common Language
Infrastructure (CLI) specification, an ISO and Ecma standard
that describes executable code and a runtime environment.
Compilers for C# and F# generate code in the Common
Intermediate Language (CIL) that can be executed in the CLI
runtime. CIL is an object-oriented binary instruction set within
the CLI specification. For our purposes, CIL provides a unified
language for analyzing code from the .NET Framework and
its applications in absence of source code.

The .NET Framework allows to dynamically instantiate
arbitrary objects based on user-provided types and data. This
is typically achieved via reflection which allows to examine
the structure of types, create instances of types, and invoke
methods on types, all based on the description of a type.
Alternatively, the .NET Framework can instantiate an object
at runtime via dynamic code generation by getting a pointer
to a method and generating the CIL code of that method at
runtime.
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