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Abstract—Mobile ad fraud is a significant threat that victim-
izes app publishers and their users, thereby undermining the
ecosystem of app markets. Prior works on detecting mobile ad
fraud have focused on constructing predefined test scenarios that
preclude user involvement in identifying ad fraud. However, due
to their dependence on contextual testing environments, these
works have neglected to track which app modules and which
user interactions are responsible for observed ad fraud.

To address these shortcomings, this paper presents the design
and implementation of FraudDetective, a dynamic testing frame-
work that identifies ad fraud activities. FraudDetective focuses on
identifying fraudulent activities that originate without any user
interactions. FraudDetective computes a full stack trace from
an observed ad fraud activity to a user event by connecting
fragmented multiple stack traces, thus generating the causal
relationships between user inputs and the observed fraudulent
activity. We revised an Android Open Source Project (AOSP)
to emit detected ad fraud activities along with their full stack
traces, which help pinpoint the app modules responsible for the
observed fraud activities. We evaluate FraudDetective on 48,172
apps from Google Play Store. FraudDetective reports that 74 apps
are responsible for 34,453 ad fraud activities and find that 98.6%
of the fraudulent behaviors originate from embedded third-party
ad libraries. Our evaluation demonstrates that FraudDetective is
capable of accurately identifying ad fraud via reasoning based
on observed suspicious behaviors without user interactions. The
experimental results also yield the new insight that abusive ad
service providers harness their ad libraries to actively engage in
committing ad fraud.

I. INTRODUCTION

The mobile ad has been a compelling motivator that drives
app publishers to develop innovative apps. Nowadays, mobile
ads have become pervasive. Recent research shows that the
mobile ad market has expanded to reach 187 billion USD
in 2020, which comprises 30.5% of the global ad market
budget [49].

Whereas the mobile ad ecosystem facilitates the virtuous
cycle of bringing innovation to mobile computing, ad fraud
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Fraudulent App Samsung Browser

Explicit Android Intent

• Package :  com.sec.android.app.sbrowser
• URL      :  https://www.bithumb.com/...

Invoking a browser without 
user interaction

Fig. 1: Ad fraud example: The invocation of a different app
via Android explicit Intent, which is triggered without user
interaction.

has become a major security threat. Previous studies [47],
[52], [73] have demonstrated that the total losses due to ad
fraud amount to approximately 9%-20% of the annual market
budget for global mobile advertising. For instance, ZeroAccess
operates the world’s largest botnet, making $100,000 daily via
ad fraud [64].

To maintain the sanity of Google Play Store, protecting
users from mobile ad fraud, Google has published a developer
policy regarding mobile ads [30] that denounces abusive ad
libraries for their excessive monetization. Also, Google Android
security has actively identified apps with abusive behaviors that
result in ad fraud [54].

Previous studies proposed novel dynamic testing frame-
works, MAdFraud [25] and MAdLife [21], designed to identify
ad fraud in Android apps. Whereas they demonstrate their
efficacy in finding apps that commit ad fraud, these frameworks
lose sight of which user interactions and app modules cause the
commission of ad fraud. MAdFraud conducts dynamic testing
of apps without any interaction, emulating an environment
involving no user interaction. MAdLife focuses on identifying
full-screen ads that pop up in the foreground immediately after
an app starts. However, depending on these types of contextual
testing environments inevitably limits the testing of target app
functionalities.

Our contributions. We design and implement FraudDetective,
a dynamic testing framework for identifying mobile ad fraud
initiated via Android apps. We define an ad fraud activity as
(1) a click URL request submission for which the targeted ad
service counts user clicks or (2) an invocation of a different app
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in the foreground without any explicit user interaction. Figure 1
is an example of the latter type of ad fraud activity, which
instantiates the Samsung Android browser with a Bithumb sign-
up page without having any user input. By definition, identifying
an ad fraud activity requires computing the causality between
that fraudulent activity and explicit user interaction, such as a
touch or a drag event. For instance, it is benign for a mobile
app to invoke the Chrome browser with a promotional page
when a user touches a banner ad for Nike sneakers. On the
other hand, when this mobile app invokes the browser with
the same page but without user touch, it becomes an ad fraud
activity.

Prior approaches [21], [25] to the runtime detection of ad
fraud activities have suffered from two types of problems: 1)
they have neglected to model the causality between observed
fraud activities and user interactions precisely, resorting to
leverage restricted testing environments having no user input;
and 2) their methods have been unable to track which app
modules conduct an observed ad fraud activity.

To address these issues, we propose to compute a full stack
trace to capture such causal relationships. A full stack trace
is a sequence of callees that lie within the calling context
from an execution entry to a statement committing an ad fraud
activity. This stack trace contributes to identifying the existence
of explicit user input and determines which source classes
invoked the ad fraud activity, revealing the culprit module
within an app committing ad fraud.

However, a stack trace for a fraud activity is often frag-
mented due to the usage of multiple threads, message queues
connecting event generators and their handlers, and external
Chromium WebView instances separated from apps. To compute
the non-fragmented full stack trace for an observed fraud
activity, we revise an Android Open Source Project (AOSP)
that corresponds to Android Oreo [5] and leverage this AOSP
to emit execution logs of ad fraud activities and their stack
traces. FraudDetective harnesses this AOSP for its dynamic
testing of apps, connects fragmented stack traces via collecting
execution logs, and identifies ad fraud activities.

We evaluate FraudDetective on 48,172 apps that Fraud-
Detective crawled from Google Play Store. Of 48,172 apps,
FraudDetective identifies 74 apps that commit 34,453 ad fraud
activities. We further analyze whether these observed ad fraud
cases originate in the apps themselves or in ad libraries
embedded in these apps. We find that 98.6% of the observed
activities originate from ad libraries, which account for 73 of the
74 apps identified. This observation yields the new insight that
abusive ad library providers play a key role in the commission
of ad fraud by exploiting actual user devices. That is, an ad
service provider invites various app developers to embed their ad
libraries and commits ad fraud by victimizing mobile users with
mobile apps from these developers. Consequently, the victims
contribute to increasing ad traffic by visiting certain promotional
websites, as orchestrated by these ad library providers.

In addition, we observed that one Google Play Store app has
been used to forcibly invoke YouTube and Naver [42] mobile
apps in the foreground and redirect their users to web pages or
videos promoting specific products and services. Although
YouTube and Naver do not conduct excessive promotions,
ad fraud activities from this app may lead to users blaming

YouTube and Naver because their apps with promotional content
are brought into the foreground without explicit user interaction.
Thus, users have left related negative feedback about YouTube
and Naver apps at Google Play Store. However, FraudDetective
finds, through the analysis of full stack traces of observed ad
fraud activities, that the culprits are abusive ad libraries that
have redirected users by invoking these apps via cross-app
Android Intents.

By computing full stack traces of ad fraud activities, we
improve the precision of ad fraud detection compared to prior
work. We believe that this capability is an important requisite for
dynamically identifying ad fraud behaviors, which is applicable
to vetting mobile apps in many app stores, thereby protecting
users from ad fraud campaigns.

II. BACKGROUND

A. Mobile ad ecosystem

Serving mobile ads is a prevalent method of monetizing
mobile apps. App developers integrate their mobile apps with
a mobile ad library, and the embedded library conducts the
rendering of ads at the screen estates of its hosting app.
The usage of such mobile ad libraries is quite prevalent;
approximately 56% of Android apps in Google Play Store
include AdMob, an ad library managed by Google [16].

There are three key participants in the mobile advertising
ecosystem: publisher, advertiser, and ad service provider. (1)
A publisher is an app developer who monetizes their app by
integrating an ad library managed by an ad service provider. (2)
An advertiser or their agency designs an ad campaign for their
target audiences and requests the launch of such ad campaigns
to an ad service provider. (3) An ad service provider connects
the advertisers’ need for greater exposure to their ads with
the publishers’ offer to serve ads. This ad service provider
also offers an ad library for publishers to include. When a
publisher embeds this ad library, it fetches ads from the ad
service provider and then renders the ads at user devices. Each
rendered ad is called an ad impression, which typically refers
to an image or a video rendered one time.

Ad service providers offer various ways of charging adver-
tisers for their services. In general, there are three representative
methods of billing advertisers: cost-per-mile (CPM), cost-per-
click (CPC), and cost-per-install (CPI). CPM, CPC, and CPI
involve charging an advertiser for rendered ad impressions,
user clicks, and app installs, respectively. For instance, when
an ad service provider asks $5 CPM for a given campaign,
an advertiser is required to pay 5 USD when this campaign
delivers 1,000 ad impressions to audiences.

B. Mobile ad fraud

Mobile ad fraud refers to an operation that generates
unwanted ad traffic involving ad impressions, clicks, or conver-
sions, thus generating fraudulent revenues. This paper focuses
on two types of ad fraud: click fraud and impression fraud.

Click fraud. Click fraud refers to a fraudulent operation
generating illegitimate clicks that consume the marketing budget
of a victim advertiser [46], [79]. A click fraud adversary could
be an abusive publisher, an ad service provider, or a competitor
of a targeted advertiser. The motivation for publishers and ad
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service providers to engage in click fraud is to inflate their
CPC prices by promoting a fraudulently high CPC [36], [82].
An advertising competitor may recruit a botnet network to click
ad impressions of a targeted advertiser, thus depleting their ad
budget.

A successful click fraud campaign is highly dependent on
generating click URL requests that a target ad service provider
accepts and counts toward the billing of a target advertiser. A
typical click URL points to an ad server and redirects users to
a landing page. Consider the click URL example below:

http://click.cauly.co.kr/caulyClick?

App ID︷ ︸︸ ︷
code=aRU5Bq1u

&id=466158
Ad ID

&unique_app_id=kr.kbac3k.ktv

Package name

&click_action=click

Label of click URL

&...

This click URL points to the Cauly ad network and contains
information that indicates an application identifier (aRU5Bq1u),
an application package name (kr.kbac3k.ktv), and a publisher
(466158) that initiated the request.

Therefore, there exist two ways of implementing click fraud:
1) the attacker sends a vast volume of click URL requests
that a target ad service provider accepts by leveraging her
own botnet networks [26], [28], [64]; 2) alternatively, the
attacker deceives users into actually clicking ad impressions,
thus generating admissible click URL requests from users’
devices [82]. The former method requires an understanding
of how the ad service provider generates an admissible click
URL request. On the other hand, the latter requires no such
understanding but necessitates deceiving a large number of
users into clicking unwanted ad impressions [82].

Impression fraud. One key requirement of mobile ads is to
render ad impressions; advertisers are often charged by the
number of rendered impressions. An attacker is able either
to hide ads underneath other visible elements on the screen
or create invisible ads by making them small [32], [56]. In
either case, no ad impressions are exposed to users, but the
users’ devices still send ad impression requests, which results
in advertisers being charged.

III. MOTIVATION

Preserving the sanity of app markets (e.g., Google Play
Store) is an essential task for protecting the security and privacy
of market users, thus establishing long-term success. Therefore,
Google has been operating an Android app analysis framework,
known as Bouncer, to find malware [39], apps with known
security vulnerabilities [67], and ad abusing apps [54].

Considering that the number of Android apps in Google
Play Store surpassed 2.8 million as of October 2019 [17],
analyzing mobile apps in an automatic way is paramount to
the scalable detection of malicious or abusive applications. To
this end, previous research has proposed novel dynamic testing
frameworks designed to identify Android apps committing ad
fraud [21], [25].

MAdFraud is designed to identify fraudulent click URL
requests without authentic user clicks [25]. It observes outgoing
HTTP URL requests and their responses while not interacting
with an app under testing, which simulates an execution
environment with no user intervention. MAdLife is another
dynamic analysis framework that detects abusive full-screen ad

impressions rendered without any user interactions. It compares
the pre-click and post-click log data and screenshots of a
target app and classifies it as abusive when two data points
are equivalent, denoting that the app has already rendered the
full-screen ad impression event before the framework conducts
an actual click [21].

We argue that these previous frameworks suffer from four
limitations as follows. (1) Their approaches are unable to
manifest causal relationships between user interactions and
fraudulent activities, such as an automatic submission of a
click URL request triggered without user touch. MAdFraud
classifies all observed HTTP requests with click URLs as
abusive when a target app is in the foreground or background.
It creates a specific testing environment in which the target
app cannot obtain legitimate user inputs. Thus, when this app
requires user interaction before committing ad fraud, MAdFraud
inevitably produces a false negative. MAdLife identifies an
ad fraud activity when a target app shows an ad landing
page in the foreground before clicking WebView ads. It only
focuses on identifying click fraud that involves clicking a
WebView instance and misses computing causal relationships
of fraudulent activities not involving WebView.

(2) The previous strategies cannot pinpoint which app
module conducts ad fraud. Because both approaches only take
external behaviors into account, they lose sight of internal app
logic and are thus unable to determine the culprit committing
observed ad fraud. The offender might be a target app under
testing or one of the embedded libraries in the hosting app.
We observed that 73 apps conducted ad fraud by means
of their embedded third-party libraries (§VI-B). Note that
pinpointing abusive modules helps app developers patch their
apps, especially when they inadvertently conduct click fraud
by including fraudulent ad libraries. Auditors also benefit from
being able to penalize the identified ad services in order to stop
their fraud campaigns, instead of needing to track the patch of
each identified app.

(3) Neither system interacts with a target app, leading them
to cover only a small portion of the functionalities. By design,
MAdFraud should not have user interactions during its testing.
This limitation brings with it the inevitable shortcoming of
limited testing coverage. When a target app requires app-specific
permission consents or the touching of user controls to initiate
abusive behaviors, MAdFraud will produce false negatives.

(4) Both systems leverage emulators to conduct dynamic
testing. Thus, the systems may not observe ad fraud activities
that only appear at real mobile devices [51], [57].

Note that the aforementioned four limitations also become
technical challenges that a next-generation dynamic testing
framework should address for the accurate detection of mobile
ad fraud. In this paper, we define an ad fraud activity as a
click URL request submission or an invocation of other apps
via cross-app Intents without genuine user interaction. For the
accurate detection of these ad fraud activities, we propose a
dynamic ad fraud detection framework, FraudDetective.

To address the first and second technical challenges, we
revised an Android operating system so that it produces a
full stack trace from an execution entry to a sink method
that sends a click URL request or invokes a cross-app Intent.
FraudDetective is able to identify whether each full stack trace

3



4. Collect logcat

Log
DB

Ad fraud Report

Ad fraud Detect

5. Detect ad fraud

App
Store

APK
Crawler

APK
DB

1. Crawl APKs

Internet

Touch Record

Touch Record

Touch Record

…

HTTP Record

HTTP Record

Intent Record

…

Web Interface

Task

Analysis
Worker

2. Schedule analysis task

Analysis
Worker

Task Scheduler

…

3. Execute target apps

… …

APK Crawler

…

Pixel2
Device

APK 
Crawler

Testing
Process #1

APK Fetcher

Log Collection

App Event
Generator

…

Fig. 2: FraudDetective architecture: A workflow overview of dynamic Android app testing.

originates from actual user interactions, thereby addressing the
first challenge. Each stack trace consists of executed callees
with their classes, denoting which class modules are responsible
for implementing each callee. Note that this stack trace helps
auditors pinpoint in-app modules that explicitly conduct ad
fraud, thereby addressing the second challenge.

FraudDetective is capable of supporting various user in-
teractions to increase its testing coverage. Unlike MAdFraud
and MAdLife, full stack traces untangle the testing strategy
with user interaction from ad fraud detection policies, thereby
addressing the third challenge. In response to the final challenge,
FraudDetective uses actual Android mobile devices with a
modified AOSP image to minimize possible false negatives.

IV. FRAUDDETECTIVE OVERVIEW

FraudDetective is an automated dynamic testing framework
that (1) crawls Android apps from a given app market, (2)
schedules an analysis task that specifies a list of apps to vet,
(3) executes apps in accordance with a specified testing strategy
on real mobile devices with a revised Android Open Source
Project (AOSP) framework, (4) collects tagged execution logs
via ADB Logcat [8], and (5) identifies ad fraud activities from
the collected logs.

Figure 2 depicts the architecture of FraudDetective and
provides a workflow overview of identifying ad fraud cases. It
starts by crawling Android Package Kits (APKs) from Google
Play Store. We implement an APK crawler that harvests APKs
and writes them into the APK storage.

FraudDetective employs the Task Scheduler module with
a web administrator page. A FraudDetective user schedules
an analysis task via this web interface. This analysis task
specifies a list of mobile apps stored in the APK storage
and a dynamic testing duration. Then, the Task Scheduler
dispatches a specified task to an available analysis worker in
which dynamic testing actually occurs. This producer-consumer
architecture is implemented via a message queue framework,
RabbitMQ, which distributes tasks among different hosts via
network channels.

An analysis worker refers to a host machine connected
to Android mobile devices or Android emulators. For each
connected mobile device or emulator, an analysis worker
instantiates a testing process that (1) fetches APKs in the

analysis task, (2) executes APKs and interacts with them via
generating user interactions, and (3) collects tagged execution
Logcat logs [8]. Note that each Android device runs a revised
AOSP, which leaves specified tags for ad fraud-related execution
logs. These marks play an important role in pruning unnecessary
logs for storage at the log database. The revised AOSP logic
leaves a tag when a target app invokes HTTP(S) outgoing
request APIs or Intents. Furthermore, the revised AOSP
framework also leaves logs of actual parameter values and
stack traces, which enable FraudDetective to compute full
stack traces for observed suspicious behaviors. Each full stack
trace holds causality information, indicating whether a user
initiates each observed behavior. That is, this revised AOSP
plays the role of emitting Android internal information to an
analysis worker, which helps identify which user actions and
libraries have committed ad fraud.

FraudDetective supports analyzing apps in parallel to
facilitate detection. The Task Scheduler is able to control
multiple analysis workers, and each worker is able to control
heterogeneous Android mobile devices. For the prototype of
FraudDetective, we used eight Android Pixel 2 devices.

Finally, the ad fraud detector module verifies the stored
full stack traces for each task and reports identified ad fraud
activities as well as the in-app modules responsible for invoking
the identified fraud activities.

V. DESIGN

We define an ad fraud activity that FraudDetective aims
to detect (§V-A) and describe how FraudDetective computes
a full stack trace (FST ) for each observed fraud activity,
a sequential list of multiple stack traces leading to the ad
fraud activity (§V-B). The section then describes how we
augmented an AOSP to compute such FSTs (§V-C) and how
FraudDetective precisely detects ad fraud, given an FST and
its corresponding ad fraud activity (§V-D). Lastly, we describe
the testing policy employed by FraudDetective to trigger ad
fraud activities (§V-E).

A. Ad fraud activity

FraudDetective is designed to detect an ad fraud activity,
which is a sensitive Android API invocation with a param-
eter invoking ad fraud without involving user interaction.
Consider the invocation of new URL(adClickUrl)

4



Sink method name

android.app.Activity.startActivity()

android.app.ContextImpl.startActivity()

android.app.Fragment.startActivity()

android.content.ContextWrapper.startActivity()

java.net.HttpURLConnection()

org.apache.http.client.methods.HttpRequestBase.setURI()

android.webkit.Webview.loadUrl()

android.webkit.Webview.reload()

android.webkit.Webview.goForward()

android.webkit.Webview.pageUp()

android.webkit.Webview.pageDown()
com.android.webview.chromium.

WebViewContentsClientAdapter.onLoadResource()

TABLE I: Sensitive Android APIs that invoke ad fraud
activities.

.openConnection() triggered without user interaction.
Because it sends a click URL request to an ad service
without explicit user interaction, FraudDetective considers this
invocation to be an ad fraud activity. Similarly, a non-user-
initiated invocation of the startActivity [7] API with
an Intent value that invokes other apps with URLs is also
considered to be an ad fraud activity.

To precisely detect ad fraud activities, it is crucial to check
for the existence of user interaction that causes the ad fraud
activities. For this, we designed FraudDetective to emit ad fraud
candidates for sensitive API invocations and to compute a full
stack trace (FST ) for each candidate, which helps determine
the existence of user interaction.

Formally, an ad fraud candidate is an executed invocation
statement that calls one of the predefined sensitive Android
APIs with an actual parameter indicating ad fraud. Note that
this candidate does not model whether a genuine user input
triggers this invocation. In this paper, we abbreviate an ad fraud
candidate and a confirmed ad fraud activity as an FC and an
F , respectively.

By definition, the computation of an FC requires a list of
sensitive Android APIs and actual parameters for each API
invoking ad fraud. In this paper, we focus on identifying ad
fraud that involves transmissions of click URL requests and
invocations of other apps via cross-app Intents.

Sensitive Android APIs. Table I shows a list of 12 sensitive
Android APIs that FraudDetective monitors. Four of them
involve Android Intent invocations, while six of them instantiate
WebView instances. To compile the list, we investigated
Android API references [3], [4] as well as 15 mature apps
and checked which APIs have been used for sending click
URL HTTP(S) requests to ad services.

Argument patterns. FraudDetective requires the specification
of the click URL patterns used in the invocations of the sensitive
Android APIs in Table I. We conducted a preliminary study to
generalize common click URL patterns. We first searched for ad
SDKs of which SDK descriptions and source code are available
from the Internet, thereby collecting 20 ad SDKs. Among
them, we identified click URL patterns from the descriptions
of five ad SDKs, namely, Adjust, AppsFlyer, Kochava, Tune,

and LinkMine [2], [55]. For seven other ad SDKs, namely,
AppLovin [18], Facebook [35], Unity Ads [76], AdMob [40],
MoPub [60], TNKFactory [75], and Cauly [20], we integrated
each ad library with our testing app and observed click URL
patterns by clicking banner and full-screen ads.

From the collected click URLs of these 12 ad networks,
we devised click URL patterns. We implemented regular
expressions that (1) check for the existence of at least one /click,
/clk, or /aclk token in a given URL path and (2) check whether
the number of URL parameters is over eight. Furthermore, it
checks whether the domain of a given URL is among the ad
networks listed in EasyList [34] or NoTracking [62].

We acknowledge that our approach is a heuristic based on a
limited number of ad SDKs. However, note that FraudDetective
is able to accept arbitrary URL patterns that auditors want to
monitor. Once a URL pattern is secured, FraudDetective is able
to report an app module that sends URLs matching the given
pattern. One possible way of identifying unknown click URLs
is to leverage a machine learning classifier, which MAdFraud
deploys when identifying click URLs. However, this approach
suffers from false positives and negatives depending on the
collected training instances. Instead, we focus on devising a
regular expression that gives no false positives.

We further specified FCs to be invocations of cross-app
Intents that call other apps. Instead of focusing on a limited
number of popular apps, including YouTube, Google Play Store,
and major browsers, we designed FraudDetective to detect apps
that invoke other apps besides themselves.

Note that FraudDetective leverages a revised AOSP (§V-C)
to leave an FC in Logcat execution logs. From each FC,
FraudDetective also extracts (1) the source class of an invoked
statement FC as well as (2) the FST that shows all the
methods used (and their classes) to reach the FC from a
program entry. This additional information helps FraudDetective
determine (1) whether an FC originates from a hosting app
or one of its libraries and (2) what user interactions trigger the
FC, thus pruning false positives of ad fraud (§V-D).

B. Full stack trace

For each FC, there exists an FST from a program entry
to the invocation of a sensitive Android API. We model a full
stack trace FST as the sequence of all the preceding transitive
callers of its FC from a program entry. Therefore, each FST
contains all the callees to reach its FC from its entry point, and
the last element of the FST is the invocation statement calling
a sensitive Android API with an actual parameter indicating
ad fraud.

Note that an FST can be one stack trace (ST ) reaching an
FC or merged multiple STs to reach an FC from a program
entry point. For instance, when a target app uses a new thread to
invoke an FC, the stack trace at the invocation of the FC does
not contain an original program entry. Thus, FraudDetective
should connect such fragmented STs to compute a complete
FST . Section V-C provides further relevant details.

By design, an FST captures how a user input invokes its
corresponding event handler. For example, the left-hand side of
Figure 3 shows an FST that is a single ST from the program
entry, com.android.internals.os.ZygoteInit.ma
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Ad WebView

com.android.internal.os.ZygoteInit.main
…
android.view.InputEventReceiver.dispatchInputEvent
android.view.ViewRootImpl$WindowInputEventReceive
r.onInputEvent
…
android.view.View.dispatchTouchEvent

Execution Trace
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Genuine click event

Ad WebView

com.android.internal.os.ZygoteInit.main
…
com.libraryc.ServiceHandler.handleMessage
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com.libraryc.JobTask.run
com.libraryc.ServiceHandler.click1
…
android.view.View.dispatchTouchEvent

Execution Trace

Click occur by 
fraud code

Fraud click event

Fig. 3: Examples of two stack traces: One triggered by a
genuine user touch and the other triggered by a forged touch
event.

in, to the touch screen motion event handler, android
.view.View.dispatchTouchEvent. Because all the in-
voked methods that precede dispatchTouchEvent be-
long to Android system classes, this FST is triggered
by an authentic user touch. On the other hand, the
FST in the right-hand figure shows several classes be-
longing to Library C, a third-party ad library that pre-
cedes the invocation of dispatchTouchEvent. This
means that the touch event handler is forcibly invoked by
com.libraryc.ServiceHandler.click1 in this ad
library, which denotes an ad fraud full stack trace (AFST ).

When a touch event occurs, the event is delivered from
an Android Activity to a View instance by dispatch-
TouchEvent. This dispatchTouchEvent is a controller
that decides how to route touch events [11], [12], [72].
Specifically, the dispatchTouchEvent processes 16 types
of user action events, including touch, drag, move, button
press, and scroll. Note that the Android OS always invokes
this dispatchTouchEvent when the aforementioned user
actions occur in any Android Activity windows [72]. Therefore,
unforged stack traces leading to this dispatchTouchEvent
invocation hold only Android internal classes, not developer-
defined classes.

We leveraged this hierarchical call pattern to identify
genuine user touch events. For each FC and its FST , FraudDe-
tective checks for the presence of user- defined code in the FST
that precedes the invocation of a dispatchTouchEvent.
If found, FraudDetective labels this FST as an (AFST ), and
its FC becomes an F . The presence of an AFST indicates
the occurrence of an F .

When FraudDetective computes an FST , this FST con-
tains all the STs in which the FST involves a user interaction,
such as touch and drag. If the FST does not involve any user
input, the FST only captures the last ST—the one closest to
the FC. That is, FraudDetective focuses on tracking FSTs that
involve user interaction via using dispatchTouchEvent.

Note that an AFST is a key technical component that
contributes to FraudDetective identifying the causal relation-
ships between user inputs and ad fraud activities as well as
pinpointing the source classes of observed ad fraud activities,
which MAdLife and MAdFraud [21], [25] did not address.

C. Augmenting an AOSP

The objective of augmenting an AOSP is three-fold: (1) to
leave Logcat execution logs indicating FCs, (2) to connect
fragmented STs generating a complete FST , and (3) to

identify source classes in which FCs occur. To this end, we
augmented the AOSP 8.1 (Android Oreo) and revised 793
LoC in the original AOSP as well as the Chromium Android
WebView library.

Ad fraud candidates. As Table I shows, we revised eight
Android APIs that send HTTP(S) requests, thus leaving tagged
execution logs that list called methods with destination URL
addresses. We also revised four Intent methods to leave an actual
Intent parameter upon their invocation. Thus, an Android device
with the revised AOSP leaves an FC in Logcat logs. For each
FC, the revised AOSP also emits its corresponding FST . This
FST is a sequential list of fragmented STs, each of which
is a stack trace of callees. Thus, the last callee of a previous
stack trace is responsible for invoking the first callee of the
next stack trace in this FST . The ad fraud detector module
harnesses these computed FSTs to prune FCs originating
from genuine user inputs.

Connecting fragmented STs. We conducted a preliminary
study to identify which cases fragment a complete FST
into multiple STs. We investigated three ad libraries, namely,
MoPub [60], Cauly [20], and AppLovin [18]. We observed
four cases that require connecting fragmented STs: (1) an FC
invoked in a new thread separated from a main app thread;
(2) an FC invoked in a thread in the thread pool managed
by Android concurrent queues; (3) an FC invoked by an
android.os.Handler class exchanging a message among
threads; and (4) an FC invoked in a Chromium WebView
instance of which the logic is implemented in a separate external
library and not a part of the AOSP.

Figure 4 depicts the first three cases of simplified example
code required to link fragmented STs. In the first case, we
observed that two ad libraries create a new thread upon
a user interaction and send ad requests within this new
thread. For instance, an OnClick event handler invokes
a new thread, and this new thread executes an FC that
invokes a sensitive Android API. At this point, the ST of
the FC via new Exception().getStackTrace() does
not capture the OnClick event handler accepting a user touch
event. To compute a non-fragmented FST , we revised the
java.lang.Thread class in the AOSP. The revised AOSP
remembers a ST that instantiates a new thread, thus enabling
the mapping of each new thread to its parent ST in which
this thread was created. We also implemented a global hash
table that maps a given thread ID (TID) to its parent ST . We
revised java.lang.Thread.start() so that when a new
thread starts, its parent thread propagates the current ST to
this child thread, and the child thread stores the delivered ST
with its current TID in the hash table before it starts. Therefore,
FraudDetective connects the ST of an FC in a new thread to
the ST of its parent thread.

We also observed that several ad libraries recycle an
existing thread in a thread pool instead of creating a new
thread. This engineering practice makes the previous ap-
proach ineffective because of this type of augmented system
method, such as java.lang.Thread.start(), cannot
link a parent thread in which a user event happens to
another recycled thread in which the FC occurs. However,
these libraries do use an Android concurrent queue, such
as java.util.concurrent.SynchronousQueue, to
wake inactive threads in a thread pool. Thus, we revised
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Stack Trace Connection Example 3Stack Trace Connection Example 2

class MainActivity {
void clickGeneration() {
…
Thread t = new Worker();
t.start();
…
} 

}

ST1
class Worker extends Thread 
{
@override
void run() {
…
HttpURLConnection c =               
URL.openConnection();

c.getResponseCode();
…
} 

}

ST2

class MainActivity {
ThreadPool pool;
void clickGeneration() {
…
pool.queue.add(URL);
…
}

}

ST3
class ThreadPool extends 
Thread{
PriorityBlockingQueue queue;
@override
void run() {
…
Request req = queue.poll();
req.process();
…
}

}

ST4

class MainActivity {
CustomHandler mHandler;
void clickGeneration() {
…
mHandler.sendMessage(URL);
…
}

}

ST5

class CustomHandler extends
Handler {
@override
handleMessage(Message m) {
…
makeRequest(m.URL);
…
}

}

ST6

Stack Trace Connection Example 1

Stack Trace propagation via 
a new thread Stack Trace propagation via 

PriorityBlockingQueue

Stack Trace propagation via 
Android Handler

Fig. 4: Pseudo-code examples of ST connections via AOSP modification.

concurrent queue classes to propagate the ST of a parent
thread that sends a wake-up signal to a recipient thread that
accepts this signal. We created a wrapper class for elements in
the concurrent queues. This wrapper class has an element field
that references the original element and another field that stores
the ST information. The functions that move and change queue
elements, such as dequeue, enqueue, comparator, heap, indexing,
and remove, have been revised to use the wrapper class instead
of that of the original element; this process enables each element
to correspond to the ST of the thread that enqueues the element.
Therefore, when a thread that performs the enqueuing of an
element is different from the thread that conducts the dequeuing
of the element, the ST is delivered to the dequeuing thread.
Therefore, FraudDetective is able to connect multiple STs
fragmented over different threads that share one thread pool.
The middle example in Figure 4 corresponds to this case. The
parent ST3 is linked to ST4 because the thread is invoked
upon receiving a URL via queue, a shared priority queue.

The third case involves using the android.os.Handler
class. Developers usually use this class to make a scheduled
runnable thread. This runnable thread is later invoked upon the
delivery of messages over an android.os.MessageQueue
class instance. Because an ST in this type of invoked runnable
thread is separate from the ST of the parent thread send-
ing a wake-up signal, we revised the AOSP code of an-
droid.os.MessageQueue and android.os.Message
as follows. We modified android.os.Message to store
the ST of the thread that enqueues a message to an an-
droid.os.MessageQueue instance. When the message
is dequeued, the ST in this message is also delivered to
the recipient thread that dequeued the message. For the
above process, we modified the enqueue and dequeue func-
tions, android.os.MessageQueue.enqueueMessage
and android.os.MessageQueue.next. The right side
of Figure 4 represents this last case, which links ST5 and ST6
via android.os.Handler.

The last case involves a Chromium WebView instance,
which is not a part of the AOSP. Android apps often
instantiate a Chromium WebView instance via the an-
droid.webkit.WebView interface and load a web page
that involves loading various sub-resources, including JavaScript
files, web pages within iframe instances, images, and others.
Unfortunately, the augmenting AOSP cannot capture these sub-
resources loading within this given web page because such
loading occurs in Chromium WebView. To connect the ST
of a thread that loads a web page to an FC that fetches sub-
resources in Chromium WebView, we revised the Android
Chromium and WebView client source code as follows. We

Ad Click URLHttpURLConnection.open
(Ad Click URL);

Type-2 ad fraud

WebView.dispatchTouchEvent
(MotionEvent.obtain(…));

Click Traffic
Ad WebView

Click
Type-1 ad fraud

Without user 
interaction

Application Change

Web Browser

Intent.setAction(VIEW);
Intent.setExtra(URL);
startActivity(intent);

Type-3 ad fraud YouTube

Ad Network

Ad Network

Fig. 5: FraudDetective considers three types of ad fraud, each
of which occurs without user interaction. Type-1 ad fraud
programmatically generates a forged click and lets the app
send click URL requests. Type-2 ad fraud occurs when the
fraud code calls HttpURLConnection to generate an ad
click URL request without any user interactions. Type-3 ad
fraud forcibly causes the victim to visit a target URL using
YouTube or web browsers via an Android intent.

revised the OnLoadResource function in both Chromium
and Android WebView, which is always invoked when loading
resources, to collect the URL of each loaded resource. We also
revised the loadUrl, goBack, reload, and postUrl
methods of the android.webkit.WebView AOSP class
to capture the ST of a thread in which the app loads a web
page. In order to map this ST to a sub-resource loaded in
Chromium, we created an interface that sends and receives
data between android.webkit.WebViewClient in
AOSP and chromium.WebViewContentsClientAdapter
in Chromium. We have FraudDetective to send the ST for
each sub-resource to the AOSP side and then connect this ST
to the ST that invoked a web page loading via a Chrome API
invocation.

D. Detecting ad fraud activities

For a given pair of an FC and its FST , FraudDetective
identifies an F . To this end, the ad fraud detector checks
whether the FST originates from a forged interaction or a
genuine user interaction, such as user touch or drag. In this
paper, a forged interaction refers to an artificial interaction
via programmatic dispatchTouchEvent invocations that
mimic a genuine user touch.

We designed the ad fraud detector to identify three types
of ad fraud activities, as shown in Figure 5. A Type-1 F refers
to a click URL transmission triggered by a forged user click
on a WebView instance rendering ad impressions. A Type-2 F
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is a click URL transmission triggered without user interaction.
Lastly, a Type-3 F is an invocation of other mobile apps via a
cross-app Intent, which brings them into the foreground without
user interaction.

To identify a Type-1 F , FraudDetective checks all the
methods in ST ∈ FST to see whether there exists a
dispatchTouchEvent invocation. If so, FraudDetective
then checks all the source classes of the method calling this
invocation. When any of these classes is not an Android
internal class, FraudDetective determines that the FST has
been triggered by a mimicked interaction because either the app
itself or one of its libraries has forged this touch interaction.

For a given pair of an FC and its FST , FraudDetective
classifies the FST as a Type-2 or Type-3 AFST when there is
no user interaction event handler in the FST . This means that
this FST does not originate from any user interaction. When
an F occurs via sending a click URL request, FraudDetective
labels this FST as a Type-2 AFST . A Type-2 AFST contains
only the last ST . When an FST is to send a cross-app
Intent and the argument of this Intent invocation calls other
apps, FraudDetective labels this FST as a Type-3 AFST .
FraudDetective only collects the last ST in the FST when
there is no user interaction.

Interestingly, we observed several ad libraries that invoke
not only mobile browsers, including the Chrome and Samsung
mobile browsers, but also a mobile app associated with a
popular portal website, Naver [61]. The goal of these ad
libraries is to cause users to search using certain keywords in
the Naver mobile app, thus manipulating portal search rankings
by exploiting victims’ mobile devices (§VII-B).

Modules responsible for detected ad fraud. Remind that
FraudDetective computes an AFST for each detected F . From
this AFST , FraudDetective classifies whether the app or its
embedded third-party module is responsible for executing the F .
FraudDetective first checks whether the app itself invokes the F .
It first computes the longest common prefix between the source
class that invoked the F and the app package name. When the
namespace nesting of this common prefix is two or deeper, such
as com.musicpackage, FraudDetective classifies that the
given F occurs due to the app itself. Otherwise, FraudDetective
deems that the F is due to a third-party library. The employed
heuristic can produce false reports when a hosting app or third-
party libraries obfuscate their class names via ProGuard [45].

To validate the efficacy of this simple policy, we manually
confirmed whether third-party modules were indeed responsible
for executing the fraud detected by FraudDetective in the
73 apps that FraudDetective detected (§VI-B). However, it
is possible for malicious ad-serving web pages to exploit such
third-party modules to initiate ad fraud (§VII-A). In this case,
FraudDetective is still able to attribute an exploited module
within the app to the observed ad fraud, thereby helping auditors
to investigate root causes external to the app itself.

For each AFST , we extracted three classes within the
AFST that appear ahead of triggering the F . We then checked
whether these identified classes were from third-party libraries
via the following three methods: 1) we decompiled each
identified class and manually checked whether each matched
open-sourced ad SDKs; 2) we checked whether the decompiled
code of each identified class appeared across the 74 apps

that FraudDetective detected; and 3) we confirmed that each
identified class did not reference any classes that belonged to
the app itself.

When matching classes to confirm their equivalence, we
compute signatures for these classes based on the argument and
return types of member functions in the classes. For a given
class, we extract the argument and return the value types of all
the member functions and then concatenate these types for its
signature. Note that Bakes et al. [19] suggested the employed
signature-based method for identifying third-party libraries and
claimed its resiliency to common code obfuscations, including
ProGuard.

E. Task scheduling and dynamic testing

The Task Scheduler assigns an analysis task to each analysis
worker. An analysis worker conducts dynamic testing as the
task describes.

Task scheduling. In the default setting, a task specifies five
Android APKs to test with a testing duration of 1,500 seconds.
To reflect app usage patterns of real users, all workers rotate
apps in the foreground every 15 seconds. This means that
one in five applications is always running in the foreground
while the other applications run in the background. Thus, each
application has 20 chances to run in the foreground, where it
runs for 300 seconds. This round-robin testing strategy helps
cover realistic usage scenarios, such as the execution of apps
in the background and multiple executions of the same app.

Analysis worker. A worker manages an ADB USB connection
with each mobile device. Because this ADB connection can be
disconnected due to the long testing time, the worker monitors
its USB connection status and reconnects when a disconnection
occurs.

A worker also conducts dynamic testing while executing
a testing process. FraudDetective leverages an Android UI
Automator [9] to perform user interactions. FraudDetective
also uses ADB commands in order to trigger certain device
events, such as battery status changes. The testing process
performs the following six actions in random order.

• Turn off the screen, wait for two seconds, and then
turn on the screen.

• Press the home/back button, wait for one second,
and then press the recent button to go back to the
application [6].

• Press the volume down button once, wait for one
second, and then press the volume up button once.
Repeat this procedure five times.

• Change the battery charging status (charge off and on,)
and change the value to 50%, 15%, and 5% at two
seconds intervals.

• Open the Android notification bar and close it in one
second.

• Rotate the screen 90 degrees left, 90 degrees right, and
to the up-side-down landscape position at two second
intervals.

Note that Android malware checks whether the underlying
Android OS is on an emulator, and it often reveals its ill
intent behaviors when it is highly likely that authentic users
are using their devices [1], [51], [77]. Thus, we mimicked
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# of
download ∼5K

5K
∼

100K

100K
∼

500K

500K
∼

1M

1M
∼

5M

5M
∼

10M

10M
∼

50M
50M∼ Total

# of apps 7,368 10,828 8,573 5,311 8,793 3,877 2,426 996 48,172

TABLE II: Number of collected Android apps with download
numbers.

normal use cases using real Pixel 2 devices and invoked daily
system events, such as volume down/up and battery charging
alerts. Also, Shirazi et al. demonstrated that device users often
watch their smartphones in mobile and trigger the landscape
mode [68]. Thus, we also included such behaviors for testing.

Furthermore, to increase dynamic testing coverage, FraudDe-
tective automatically passes any system/custom consent or full-
screen consent panels by pushing the consent or close buttons
in the current activity. Because a system consent (Android
permission consent) or full-screen consent panel often blocks
the execution of a target app, FraudDetective uses the UI
Automator to parse the current screen’s UI information and
push buttons with “consent,” “yes,” “ok,” “agree,” “confirm,”
“go,” “continue,” “start” and ohter messages to pass pop-up
dialog panels. Note that this ability to conduct dynamic testing
stems from FraudDetective computing of FSTs. Each FST
carries its user interaction source, which enables FraudDetective
to identify the F .

VI. EVALUATION

A. Experimental setup

We conducted experiments on two host machines running
64-bit Ubuntu 18.04 LTS with Intel i7 8700 (3.2GHz) CPUs
and 16GB of main memory. One host implemented the Task
Scheduler, which distributes analysis tasks. The other one was
an analysis worker that detects ad fraud activities by testing
apps specified in assigned tasks. This worker was connected
with eight Pixel 2 devices.

Crawled mobile apps. We collected 48,172 Android apps
from Google Play Store. We collected these apps via two
crawling methods. The first method is to use the Google Play
unofficial Python API [31], which enables crawling the top 100
ranked apps from each of the 35 Google Play categories. From
April 2019 to September 2020, we collected 10,024 apps. To
cover less popular apps, we also randomly sampled additional
38,148 apps from APK mirror sites [13], [14], [15]. Note that
we deliberately selected these mirror sites because they only
mirror authentic apps from Google Play Store. Table II shows
the popularity of the crawled mobile apps.

B. Ad fraud

FraudDetective classified each identified F as one of the
three ad fraud types (§V-D). To test a total of 48,172 apps,
FraudDetective took approximately 36 days with eight Pixel 2
devices. Table III shows the number of detected mobile apps
that commit ad fraud with their fraud types. Specifically, Fraud-
Detective found 34,232 Type-2 fraud activities, corresponding
to the existence of 34,232 click URL requests triggered without
user interaction. From each app that committed ad fraud,
FraudDetective detected an average of 497 ad fraud requests
per app.

Type # of records
(# of apps)

Responsible module
Module # of apps Ratio

Type-1 0 (0)
App 0 0%

Library 0 0%

Type-2 34,232 (66)
App 1 1.5%

Library 65 98.5%

Type-3 221 (8)
App 0 0%

Library 8 100%

TABLE III: Number of detected apps of each fraud type and
responsible modules.

Library M
1

Library L
1

Library K
1

Library J
1

Library I
2

Library H
2Library G

3

Library F
5
Library E

6

Library D
8

Library C
8

Library B
9

Library A
26

Fig. 6: Fraudulent app distribution by ad libraries committing
ad fraud.

Table III also presents the number and percentage of
libraries that are responsible for each type of identified ad fraud.
A responsible module refers to a class within an app committing
observed ad fraud activities (§V-D). Of 66 apps committing
Type-2 ad fraud, FraudDetective reported that 98.5% of the
observed fraud activities stemmed from third-party libraries.
Figure 6 shows the distribution of third-party libraries that
intentionally or unintentionally committed ad fraud in the 73
apps, which include eight apps that committed Type-3 ad fraud,
while the others committed Type-2 ad fraud.

FraudDetective reported that click URL requests originated
from Library A without user interaction in 26 apps. Considering
that Library A is a popular ad service provider with a large
user audience, we further analyzed the reported AFSTs
in these 26 apps and found a new fraud case that abuses
Library A. FraudDetective reported that click URL requests
originated web pages from Library A WebView instances
without user interaction. The web pages included <link>
tags that generated more than 40 ad click URLs. That is, the
abuser designed an ad campaign that serves ad impressions that
generate click requests, thus committing ad fraud without user
interaction. We describe this in greater detail in Section VII-A.

Meanwhile, Library B and C intentionally committed ad
fraud by creating an ad WebView instance that does not
display on the main screen. This invisible WebView instance
loads click URLs, thereby sending click requests to various
ad services without user interaction. Section VII-B provides
further details. Libraries D, G, J, and K also intentionally
committed ad fraud by generating ad click requests using
java.net.HttpURLConnection. FraudDetective also re-
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# of
download ∼1K 1K∼

50K
50K∼
500K

500K∼
5M

5M∼
100M 100M∼ Total

# of apps 6 8 16 15 22 7 74

TABLE IV: Number of detected fraudulent apps with download
numbers.

ported that Libraries F and H generated click URL requests
using the WebView loadURL function.

Table IV shows the number of downloads for the detected
fraudulent apps, which illustrates the impact of the detected ad
fraud. There exist 29 apps with more than five million installs,
thus demonstrating that today’s ad fraud detection systems
require further improvement to prevent abusers from victimizing
benign app users. Furthermore, the new abuse case in Library
A motivates a thorough examination of ad impressions and
their outgoing requests.

FraudDetective also observed eight Type-3 ad fraud activi-
ties that involve cross-app Intents from eight apps. These apps
invoke other apps without any user interactions.

One app using Library B used cross-app Intents to invoke a
browser app with a specific page or the YouTube app with a spe-
cific video in the foreground. The app redirects users to several
webpages promoting Bitcoin websites and a cosmetics sales
blog. Section VII-B further describes its fraudulent behaviors.
Two other apps also created a cross-app Intent. The Intent action
is android.intent.action.VIEW, which invokes the
default browser with a URL. The URLs of the Intent are all the
same: http://www.fofy.com/red.php?utm_source=
1. When we visited this URL, the final landing page was from
a subdomain of http://www.fofy.com, which rendered
Google display ads. This means the above Intent action is
able to generate ad impression revenue. Note that http:
//www.fofy.com has been variously reported by the spyware
and malware reporting community as forcing users to visit their
webpage [53], [58]. FraudDetective concluded that Library E
committed this ad fraud behavior. The remaining five apps
created an Intent that invokes Play Store, which promoted
mobile apps without any interactions.

These experimental results yield the new insight that several
ad service providers actively commit ad fraud to promote
specific websites or products in which users have not expressed
interest. That is, these ad service providers victimize their
publishers as well as the users of apps from these publishers
to increase ad click and impression traffic. We also emphasize
that FraudDetective contributes to pinpointing fraudulent third-
party modules inside these identified apps, which can help app
auditors not only to understand observed ad fraud but also to
propose that these app developers change their ad libraries.

Responsible disclosure. We reported all of our findings to
Google as well as identified ad library vendors to address the
identified fraud behaviors.

Ad fraud confirmation. We investigated the current status
of 74 fraudulent apps that FraudDetective reported. As of
September 15, 2020, among the 74 apps, 19 apps had been
removed from Play Store, and 49 apps have been updated. We
further analyzed whether the latest versions of these 49 updated
apps have removed their ad libraries committing ad fraud. We
confirmed that 22 out of the 49 updated apps removed the

# of Apps MAdFraud MAdLife FraudDetective

# of Test Apps 165K† 143K‡ 48K‡

# of Fraud Apps 21 38 74
† Malware + Third-party Stores
‡ Google Play Store

TABLE V: MAdFraud [25] vs. MAdLife [21] vs. FraudDetec-
tive (click fraud).

identified ad libraries, demonstrating the correctness of our
identification results.

C. Comparison with previous studies and false negatives

We compared our experimental results with those of
MAdLife [21] and MAdFraud [25] in Table V. FraudDetective
analyzed fewer applications than the previous tools did but
found more fraudulent apps. Note that the numbers in the first
and second columns are from their findings [21], [25].

Because we were unable to obtain the source code of
MAdFraud and MAdLife, we analyzed how many of the 74
apps that FraudDetective detected would have been missed by
these tools. Note that MAdLife mainly finds abusive clicks
on WebView instances. However, FraudDetective is able to
find click fraud that does not involve any user click but still
sends click URL requests. Both MAdFraud and MAdLife
use Android emulators for dynamic analysis. On the other
hand, FraudDetective leverages real devices and triggers various
events, which helps increase dynamic testing coverage.

MAdFraud. In order to find 36 out of the 74 fraudulent
apps, it was necessary for FraudDetective to pass permission or
consent windows when the apps started. Because MAdFraud
does not interact with apps, it is unable to find these 36 apps.
Note that MAdFraud was built upon the Android emulator
in 2014 of which the version is below 6.0 and which does
not support dynamic system permission. Therefore, MAdFraud
did not need to pass any of these system permission windows
for further execution. However, we observed that 28 apps
presented their own custom consent windows and start-up ads
that block execution, which necessitates explicit user interaction
for further execution. MAdFraud is also unable to detect two
apps committing ad fraud involving cross-app Intents without
user interaction because it only monitors outgoing click URL
HTTP requests. Thus, it misses requests for promotional web
pages from other mobile apps, including browsers and YouTube.

MAdLife. We contacted the authors of MAdLife and received
the names of packages and their app versions for 38 apps
in which they found click fraud behaviors in their previous
study [21]. Of the 38 apps, we checked 30 apps with FraudDe-
tective, excluding two apps for which APKs are not available
on the Internet and six apps in which we did not observe any
fraudulent behaviors due to their deprecated services.

FraudDetective successfully reported 30 fraudulent apps
with no false negatives. Of the 30 apps, FraudDetec-
tive identified 29 fraudulent apps with the same fraud
behavior; they invoked a cross-app Intent with the an-
droid.intent.action.VIEW action, which invokes a
default browser with Fofy and Leadbolt ad network URLs
without involving user interaction. Unlike the 74 fraudulent apps
that FraudDetective identified from our dataset (§VI-B), the
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Fig. 7: Line coverage differences between the environments with
and without user interaction. The Y-axis represents a coverage
difference: line coverage with interaction while testing the app
− line coverage without interaction while testing the app.

observed AFSTs originated from Library E and another third-
party library. FraudDetective also identified that the remaining
app fired a cross-app Intent that invoked a default browser with
the website of the app itself. This website served the same
service as the app, thus making this report a false positive.

The experimental results demonstrate that FraudDetective
is able to detect all of the ad fraud cases that MAdLife found
in its previous study. Furthermore, FraudDetective reported that
these fraudulent behaviors originated from the apps themselves.

False negatives. To assess false negatives, we further collected
apps with known click fraud behaviors. We searched through
various sources, including recent press releases about identified
fraud campaigns [23], [50], [63]. However, we were only able
to collect six fraudulent apps, each of which was downloaded
over 10M times from Google Play Store. Note that it is often
difficult to know the specific versions of fraudulent apps, and
they are often unavailable from public app stores, including
APK mirror websites. Lastly, many known fraudulent apps
were found to no longer exhibit fraudulent behaviors due to
the deprecation of their C&C servers.

Among the six known fraudulent apps, FraudDetective
detected all of the apps that commit Type-2 fraud, producing no
false negatives. FraudDetective also reported that the module
responsible was Library D, which generated 194 click URL
requests from these six fraudulent apps. When merging these six
apps with the 30 apps identified by MAdLife, FraudDetective
identified all of these fraudulent apps, reporting no false
negatives.

D. Efficacy of user interaction

We evaluated the degree to which conducting user inter-
actions in FraudDetective contributes to increasing testing
coverage and improving the identification of fraud activities.

Line coverage. We measured the line coverage of a given APK
using ACVTool [66]. We tested a given app for five minutes
with and without the user interactions described in §V-E. Since
ACVTool does not support APKs using Multidex, we tested
36 apps among the 112 fraudulent apps that FraudDetective
and MAdLife found.

Figure 7 shows the difference from covered lines with user
interactions to those without user interactions for each app.
The differences vary from 5 to 2,885 lines; user interactions
contributed to increased coverage of 853.39 lines on average.

Operation Avg. Execution Overhead

Resource loading in WebView 0.916 ms
HTTP request in HttpURLConnection 0.224 ms
Activity change using Intent 0.231 ms
Touch event 0.392 ms
ST propagation via a new Thread 0.731 ms
ST propagation via PriorityBlockingQueue 1.145 ms
ST propagation via Handler 0.883 ms

TABLE VI: Execution overhead of FraudDetective for each
operation that we modified in the AOSP framework.

Fraud activities. We checked whether user interactions con-
tributed to finding fraud activities. Among the 112 fraudulent
apps consisting of 74 apps that FraudDetective found and 38
apps reported by MAdLife, we were able to reproduce fraud
activities in 73 apps. At the time of conducting this evaluation,
25 apps were deprecated, and click fraud campaigns became
dormant in the other 14 apps.

Of the 73 apps, FraudDetective required no user interactions
to find 23 apps. Among the remaining 50 apps, 36 apps
required bypassing startup ads or custom consent windows,
seven required consent to Android permission system windows,
five required bypassing both of permission system and custom
consent windows, and two required bypassing all three of the
aforementioned windows.

We observed that the transition of a testing app from the
background to the foreground helped close startup splash ads
and contributed most to increasing line coverage and finding
more fraudulent apps. We further describe the interesting case
study of Library B, which attempts to avoid fraud detection in
§VII-C.

E. Finding ad fraud with Android emulators

To test the efficacy of FraudDetective in detecting ad fraud
using Android emulators, instead of real devices, we set up
FraudDetective to test the 74 fraudulent apps identified using
the Android Virtual Device (AVD) emulator [10]. Out of the
50 apps, we were unable to install 19 apps in an AVD device
due to their usage of ARM native libraries. Furthermore, we
observed that the AVD emulator environment drastically slows
down the execution of these 19 apps. Each fraudulent app took
more than 20 minutes to instantiate, thus rendering infeasible
the execution of the 19 apps in the AVD emulator.

Considering that MAdLife used the Genymotion Android
emulator [37] for their dynamic testing, we also tested the
Genymotion Android emulator with Android 8.1 Google Pixel
2 for FraudDetective. However, we were again unable to
install the 19 fraudulent apps using ARM native libraries.
The experimental results demonstrate that leveraging real
mobile devices contributes to expanding the testing coverage
of FraudDetective by supporting diverse apps developed in
various execution environments.

F. Performance overhead

Table VI presents the execution overhead for each operation
that we modified in the AOSP framework. We randomly
sampled a total of 170 apps and tested each app for five minutes
using FraudDetective. In this experiment, we triggered a click
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Listing 1: An ad HTML page of Library A that generates click
URL requests.

1 <html>
2 ...
3 <body>
4 <a href="" target="_blank"

style="text-decoration: none;">
5 <img src="" />
6 </a>
7
8 <link rel="stylesheet"

href="https://tracking.appxigo.com/click
9 /9840/18?ref_id=05EB1711-1EDF-44DC-9488-803D4D

10 0547198f7eaaf1a6d14d6bb58b1cd2e164c6e0&sub_pub=
11 7991f1375594407b84f8160e&app_name=ticketmaster&
12 custom1=[click_id]8f7eaaf1a6d14d6bb58b1cd2e164
13 c6e0-!-5e8bfaee-76015-e8bf-ee76-1c354534371
14 -!-1588176638.180842-!-366e0279-1ee0-4433-
15 9ca6-22b603745f81" />
16
17 ...

event five times for each app testing instance because we
modified the event handling logic in the AOSP framework. As
the table shows, the performance overhead is negligible; all
executions were completed within 1.2 ms on average.

FraudDetective generated an average of 1032.6 Logcat
messages in five minutes, which took up approximately 2.29
MB. For analyzing a total of 48,172 apps, FraudDetective
required a disk space of 224 GB.

VII. CASE STUDIES

We present two representative ad fraud cases that are notable
by the extent of their abuse and explain newly obtained insights
into how attackers commit mobile ad fraud.

A. Case 1: Click fraud abuse of Library A ad impressions

FraudDetective reported 17 apps with Library A for sending
click URL requests without user interaction; it also reported that
the observed requests originated from the embedded Library
A.

We investigated each identified FST and its F ; each F was
invoked from the WebView instances that Library A instantiates
and uses for rendering ad impressions. Every observed click
URL request stemmed from the same web page: https:
//cpi-offers.com/fantastic.html. Listing 1 above
shows part of the web page content. It contained approximately
40 <link> tags, each of which embedded a different click
URL, thus generating click requests when a WebView instance
rendered the page. These click URL requests targeted six ad
network services, namely, Appxigo Media, Ad4Game, g2afse,
AppsFlyer, and Xapads.

In this case, the adversary abuses Library A to generate
click URL requests without involving any user interactions. She
designs an ad campaign that embeds payloads and leverages
the ad network of Library A to victimize the app publishers
of Library A as well as their users to generate a large volume
of click traffic. The novelty of this observed attack is that
the attacker directly exploits WebView instances in which ad
impressions are usually rendered without any user interaction.

Package Name # of Intents

com.android.chrome 34
com.naver.whale 8
mobi.mgeek.TunnyBrowser 8
net.daum.android.daum 8
com.nhn.android.search 28
com.cloudmosa.puffinFree 8
com.google.android.youtube 12
com.sec.android.app.sbrowser 8
org.mozilla.firefox 8
Play Store 11
default browser 88

Total 221

TABLE VII: Apps that commit impression fraud invoked via
Intents.

In summary, the adversary exploited vulnerable Library A
WebView instances to commit click fraud, and FraudDetective
reported this in-app Library A WebView instance from which
click URL requests are originated with exploiting web pages.

B. Case 2: Impression fraud via invoking third-party apps

FraudDetective identified two apps connected to Type-3
fraud activities. It reported that eight fraudulent apps generated
133 explicit Intents and 88 implicit Intents, respectively.

Table VII collates the target apps invoked via Intents initiated
by ad fraud campaigns. com.gmail.heagoo.appdm.adv
and video.editor.no.watermark invoked a default
browser via the URL of http://www.fofy.com/
red.php?utm_source=1 without user interaction.
FraudDetective reported that the identified AFST is
perpetrated by Library E.

On the other hand, com.camera.catmera fires explicit
Intents that invoke prevalent apps, including Chrome, Puf-
fin [43], Naver [61], Firefox, YouTube, and Play Store, thus
bringing up one of the target apps without any user interactions.
FraudDetective also reported one ad library responsible for the
133 ad fraud activities observed.

We believe that the motivation of this ad library is to
increase incoming traffic toward designated web pages with
the aforementioned mobile apps. When analyzing the URLs
specified in these observed Intents, it appears that this ad library
conducts a keyword search for specific restaurants by invoking
the Naver browser. The keywords used include restaurant names
and locations, which may increase the search rankings of the
restaurant names in the portal website operated by Naver. This
ad library also redirects users to the sign-up page of a Bitcoin
trading site, a blog selling cosmetic products, and a YouTube
video site promoting video games and golf lessons. We believe
that these websites belong to advertisers who launched ad
campaigns with the ad service provider using this ad library.

The ad fraud outlined above entails various side-effects.
Although this ad library commits ad fraud and invokes other
apps without user interactions, users blame the invoked apps,
including Naver and YouTube, for promoting certain websites
and videos. YouTube and Naver app pages in Google Play
Store have negative comments from users complaining about
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This app forces ads to appear on Naver or other 
browsers. No ads appear as soon as I delete this 
app.

Ads are automatically displayed in a web browser 
every day. This application was the cause. After 
deleting the application, the problem was fixed.

Catmera

Alice

Bob

Fig. 8: Negative reviews of the com.camera.catmera app
in Google Play Store: There were more than 30 complaints
about advertising pop-ups occurring in a browser without user
interaction.

the forcible switch into these apps without any user interactions.
It is natural that when users are compelled to see unwanted
promotional videos or messages from the Naver and YouTube
apps, it adversely affects those brands. Figure 8 also shows
comments from victims to the effect that these abrupt pop-ups
of Naver and YouTube apps disappeared when they removed
com.camera.catmera.

We reported the identified Library B, to Google and Naver.
Law enforcement is currently conducting an investigation of
this ad network vendor.

C. Case 3: Ad library avoiding fraud detection

We discovered code for avoiding fraud detection in Library
B. We analyzed the source code by using JADX [71] to
decompile apps that commit ad fraud. Library B commits ad
fraud when all of the following three conditions are satisfied:
(1) a device is not in the battery charging status; (2) a device
does not have any of the specific apps listed in Table VIII; and
(3) a device is in Wi-Fi connection status.

The first condition is related to detection in a device
under testing that is connected to any USB port. Note that
a USB connection is needed to control devices using ADB
for automated testing. However, FraudDetective is able to find
this app because it changes the battery status while conducting
dynamic testing.

The second condition is to avoid devices with traffic
monitoring apps. According to our manual analysis of the
decompiled library, it does not show abusive behaviors when
the apps in Table VIII exist in the device. Note that the five
apps capture network traffic originating from the device. Thus,
we concluded that these ad libraries hide themselves when

Application name Purpose

Packet Capture HTTP traffic capture
IP Tools Network status monitor
Network Scanner Network status monitor
Network Utilities Network traffic monitor
tPacketCapture HTTP traffic capture

TABLE VIII: Apps that an abusive ad library detects to conceal
their abusive behaviors.

Package Name # of Requests

com.sisunapp.wisesaying 1,192
com.wtwoo.girlsinger.worldcup 883
com.somansa.factory_kyh 393
com.appsnine.compass 386
com.camera.catmera 379
com.pump.noraebang 226
kr.yncompany.myrecipes 42
com.serendipper16.chattinganalysis 32

Total 3,533

TABLE IX: Apps that commit click fraud attributed to the
same publisher due to one embedded library.

there is a risk of being monitored by other security monitoring
apps.

The last condition is related to preventing users from
noticing the massive volume of cellular data usage caused by
abusive apps. Because these apps generate ad click traffic even
in the background, their data usage is obviously high, which
could motivate users to remove them. Therefore, these apps
limit themselves to conducting click fraud when the devices
use Wi-Fi, which is relatively less restrictive in generating ad
traffic.

D. Case 4: Click fraud traffic with common publisher identifiers

FraudDetective further analyzed the 34,232 Type-2 ad fraud
activities (§VI-B) that send click URL requests to various ad
services. Among the observed 34,232 click URL requests, we
noted that eight different apps share the same app identifier in
their click URL requests to the “LinkMine” ad network.

Table IX shows the eight identified apps and the number
of observed ad requests committing click fraud with the same
app identifier. All the requests in Table IX were issued from
the same third-party ad library.

According to its ad SDK description [55], this app identifier
refers to a publisher identifier that attributes user clicks to an
app publisher. That is, this identified ad library leverages other
apps to send click URL requests and allows all these requests
to be attributed to a specific app publisher.

Considering that this app publisher gets paid more due to
all the aggregated clicks from other apps, we believe that this
app publisher is responsible for committing click fraud and has
a strong connection with the third-party ad library committing
Type-2 ad fraud activities.

VIII. LIMITATIONS

FraudDetective is designed to report in-app modules for
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identified ad fraud, which helps app publishers patch their
apps. Furthermore, this capability also helps auditors provide
actionable notices to benign publishers using fraudulent ad
libraries. FraudDetective enables this attribution of observed ad
fraud via computing FSTs. However, FraudDetective has a lim-
itation in its implementation regarding connecting fragmented
STs. Note that we have modified SynchronousQueue
and PriorityBlockingQueue to propagate information
from one thread to another that share the same thread pool
(§V-C). When a developer uses an unmodified concurrent
queue among the five remaining concurrent queues for their
app, FraudDetective will produce an incomplete FST , thus
producing false positives. However, among a total of 28,160 ad
fraud activities from the 74 apps, we observed no false positive.
We believe that this implementational limitation is fixable with
more engineering time and effort.

Another limitation of FraudDetective stems from its depen-
dence on the click URL patterns with which it is supplied. We
generalized click URL patterns from the manual investigations
of seven major ad libraries and five major ad networks (§V-A).
However, there still exist different patterns of click URLs
that we did not capture, thus producing false negatives. One
mitigation is to leverage a trained machine-learning classifier,
similar to the MAdFraud method for classifying click requests.
However, this approach also requires a training dataset that
represents diverse click URL patterns to increase accuracy.
Therefore, we leveraged a coarse regular expression that
captures HTTP requests with many parameters having at least
one “click” word. Then, via a source code audit, we double-
checked whether the reported FCs were indeed ad fraud
activities. We confirmed that all the reported 74 apps committed
ad fraud via sending click URL requests without involving user
consent.

Another limitation of FraudDetective is that it requires
manual ad library identification. In the case of an ad SDK with
open-source code, ad library identification can be performed
automatically by comparing the source code with the decom-
piled APK source code. According to previous studies, it is
possible to distinguish known third-party libraries with high
accuracy [19], [22], [38]. This approach requires having the
published code of ad SDKs against which a given code can be
compared. In our evaluation, we observed five ad libraries of
which the code and libraries were unavailable on the Internet.
Therefore, for those five ad SDKs, we leveraged the names
of classes responsible for ad fraud activities to deduce ad
service names. When these class names are obfuscated, we find
matching classes from other apps without obfuscation, thereby
deducing ad service names from the matching classes without
obfuscation.

IX. RELATED WORKS

A. Mobile ad click fraud

Previous studies of identifying click fraud in mobile
advertising focus on developing dynamic testing frameworks.
MAdFraud [25] ran Android apps with an Android emulator
for 60 seconds each in the background and foreground while
emulating no user interaction. It then found ad click traffic
which occurred under the testing environment involving no user
interaction. MAdLife [21] found that 37 Android apps always

navigated to an ad’s landing page without user interaction.
This behavior of forcing users to go to an ad landing page by
launching an Android app was found through the Genymotion
Android emulator [37]. These testing tools played an important
role in revealing the occurrence of mobile click fraud. However,
they did not compute the causal relationship between the
occurrence and the cause of ad click fraud.

Cho et al. investigated how effectively mobile ad networks
responded to click fraud [24]. They developed ClickDroid,
a mobile ad click bot, which clicks mobile ads periodically.
ClickDroid attempted to avoid the detection of mobile click
ad fraud in ad networks by modifying a device identifier each
time it clicked on a mobile ad. A total of 100 clicks were
performed through each of eight major mobile ad networks,
and only two mobile ad networks detected traffic abnormalities,
demonstrating ad networks’ incapability of identifying click
fraud.

B. Web ad click fraud

Ad network services have strived to detect ad click fraud by
analyzing click fraud traffic patterns using ad fraud filters [27],
[28], [41], [81]. Many filters have been studied, such as
identifying a high click ratio on a specific website [28] or
checking duplicate clicks on the same ad [81].

Ad fraudsters often make fraud profit using botnets that
infect victims’ hosts [64], [80]. ZeroAccess infected approx-
imately 1.9 million host machines [59], generating approxi-
mately $2.7 million in monthly revenue, primarily through
ad click fraud. The Federal Bureau of Investigation (FBI),
European Cybercrime Centre (EC3), and ad network vendors,
such as Microsoft, worked together to eradicate the ZeroAccess
botnet and took legal actions [59].

Clickjacking has been reported an effective way of con-
ducting click fraud [33], [48], [82]. Furthermore, Zhang et al.
demonstrated that abusive third-party JS scripts have mod-
ified click URLs in their hosting websites (e.g., ‘<a
href=“Click URL”>’), thus hijacking authentic users’
clicks [82].

C. Analyzing ad libraries

Previous studies have investigated mobile ad libraries in
their excessive permissions usages, aggressive collections of
private information, and inherent vulnerabilities leading to
private information leakage [29], [44], [74], [78]. To this end,
researchers have proposed systems that restrict permission
usages by ad libraries or separate ad library modules from its
hosting app via isolating them in different processes [65], [69],
[70]. Moreover, prior approaches proposed detection methods
of identifying specific third-party libraries, which abuse their
hosting apps and permissions [19], [22], [83].

X. CONCLUSION

In this paper, we design, implement, and evaluate FraudDe-
tective, a dynamic testing framework for uncovering ad fraud.
We compute the causal relationship between a user interaction
event and an ad fraud activity and model it into a full stack
trace. To compute these full stack traces in dynamic testing,
we revise Android system classes and let a target app under
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dynamic testing execute the revised system code, thus leaving
execution logs. FraudDetective leverages these execution logs
to determine whether observed full stack traces actually commit
ad fraud without genuine user interactions.

FraudDetective found 34,453 observed ad fraud activities
perpetrated by 74 apps, clearly demonstrating its efficacy in
discovering ad abuse. It also reports that 98.6% of apps commit
ad fraud by means of their ad libraries. This new insight
suggests that app publishers and their users have become victims
of ad fraud and invites further research on practical defenses
to prevent these ad libraries from committing ad fraud.
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