
As Strong As Its Weakest Link: How to Break
Blockchain DApps at RPC Service

Kai Li∗ Jiaqi Chen∗ Xianghong Liu∗ Yuzhe Tang∗ � XiaoFeng Wang† Xiapu Luo‡
∗ Syracuse University. Emails: {kli111,jchen217,xliu167,ytang100}@syr.edu

† Indiana University Bloomington. Email: xw7@indiana.edu
‡ Hong Kong Polytechnic University. Email: csxluo@comp.polyu.edu.hk

operates on a blockchain full node maintained directly by
the DApp owner (i.e., an in-house RPC node) or a set of
nodes hosted by a third party (i.e., a third-party RPC service)
intended to ease DApp deployment. Given the ever-growing
blockchain states (e.g., 130 GB and 1.8 TB for a fully synced
and an archived Ethereum node, respectively, as of 2018),
the RPC service plays an increasingly important role in the
DApp ecosystem, scaling DApp clients to low-end mobile
devices and web browsers. Major blockchains today flock
to roll out RPC supports, which spawn a good number of
services in practice, including nine service providers (as is
evaluated in this work) supporting the Ethereum’s JSON-
RPC interface [16], blockchain.info [5] with Bitcoin’s JSON-
RPC [2], dfuse.io [13] and greymass.com [39] with EOSIO’s
Chain API [6], stellar.org [46] with Stellar Horizon [23], etc.
These services host the majority of DApps; for instance, at
least 63% of Ethereum based DApps use one RPC service [10].

DApp

clients

RPC

service
JSON-
RPC

Block/tx
synchronization

Blockchain

peers

Fig. 1: The system of blockchain RPC service

Despite its importance, the RPC service is less decentralized
(one to hundreds of nodes) than the blockchain network (of
tens to hundreds of thousands of nodes) and therefore could
become a single point of failure should a denial of service
(DoS) attack happen, which could lead to the collapse of the
whole DApp ecosystem. It is important to note that DoS is
known to pose a significant threat to the blockchain ecosystem,
particularly in Bitcoin exchanges and mining pools [56], [64],
[52]. We believe such an attack can also be launched against
a victim RPC service, allowing a service competitor to steal
customers from the victim. Besides, the perpetrator who denies
a RPC service can illicitly manipulate the transaction order of
a financial DApp [51], [49] and gain profit. For instance, in an
auction for registering an Ethereum domain [17] or purchasing
a CryptoKitty [7], a bidder can delay others’ bidding transac-
tions through denying the RPC service they use to win the
auction at an unfairly low price. As another example, a client
depositing to a hash-time-lock contract (HTLC), as widely
used in blockchain applications (e.g., atomic intra-chain or
cross-chain swaps [55] and payment channels [31], [59]), can
defer the withdrawal of the deposit after the expiration of

Abstract—Modern blockchains have evolved from cryptocur-
rency substrates to trust-decentralization platforms, supporting
a wider variety of decentralized applications known as DApps.
Blockchain remote procedure call (RPC) services emerge as an
intermediary connecting the DApps to a blockchain network.
In this work, we identify the free contract-execution capabilities
that widely exist in blockchain RPCs as a vulnerability of denial
of service (DoS) and present the DoERS attack, a Denial of
Ethereum RPC service that incurs zero Ether cost to the attacker.

To understand the DoERS exploitability in the wild, we
conduct a systematic measurement study on nine real-world
RPC services which control most DApp clients’ connection
to the Ethereum mainnet. In particular, we propose a novel
measurement technique based on orphan transactions to discover
the previously unknown behaviors inside the blackbox RPC
services, including load balancing and gas limiting. Further
DoERS strategies are proposed to evade the protection intended
by these behaviors.

We evaluate the effectiveness of DoERS attacks on deployed
RPC services with minimal service interruption. The result shows
that all the nine services tested (as of Apr. 2020) are vulnerable
to DoERS attacks that can result in the service latency increased
by 2.1X ∼ 50X . Some of these attacks require only a single
request. In addition, on a local Ethereum node protected by
a very restrictive limit of 0.65 block gas, sending 150 DoERS
requests per second can slow down the block synchronization of
the victim node by 91%.

We propose mitigation techniques against DoERS without
dropping service usability, via unpredictable load balancing,
performance anomaly detection, and others. These techniques
can be integrated into a RPC service transparently to its clients.

I. INTRODUCTION

With the advent of operational blockchains, decentralized
applications (DApps) running atop these systems are gaining
popularity, providing decentralized finances (DeFi), online
gaming, information-security infrastructures, etc. A typical
DApp, as illustrated in Figure 1, is architectured in three
layers: DApp clients running inside web browsers send re-
quests to a Remote Procedure Call (RPC) service that trans-
lates the clients’ requests to cryptocurrency transactions or
queries to a blockchain P2P network. Such a RPC service

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23108
www.ndss-symposium.org

the lock (so-called grieving [51]) by denying the RPC service
used by the withdrawal, thus retaining the deposit. With such
significant implications, this security risk, however, has never
been studied before.

Menace of DoERS. Our research shows that indeed this risk is
realistic and serious: today’s RPC services are vulnerable and
can be easily disabled by a new type of DoS attacks (which we
call DoERS or Denial of Ethereum Rpc Service) that exploit
the free execution capability they expose. More specifically,
blockchain systems support the Gas-free execution of a smart
contract on an individual RPC node, such as Ethereum’s
eth_call RPC [28] (and eth_estimateGas [29] run-
ning the same code path). An eth_call can be triggered
to run any smart contracts including those reading and/or
updating their states. Unlike the transaction-triggered smart
contract execution, the eth_call-triggered execution occurs
locally on the recipient RPC node, and its state update, if any,
will not be propagated to or reflected in the global blockchain
state. The purpose of such a capability is to enable a variety
of real applications in pre-production contract testing (e.g.,
estimating the smart-contract cost before DApp deployment by
estimateGas), “stored-procedure” like database analytics
on blockchain (e.g., the GraphQL queries [12] and decen-
tralized financial analysis [20]), and others. Most importantly,
eth_call is often free: the charge for its execution is not
mandated by Ethereum and instead left to individual RPC
services, which tend to waive the expense for attracting DApp
clients, as observed in practice. Therefore, the adversary can
deploy on the blockchain an attack smart-contract involving a
resource-consuming procedure (e.g., an infinite loop of hash-
ing computations) and then trigger it through eth_call. This
attack is shown in our research to effectively stop a node from
performing critical operations for all DApps it hosts, including
block/transaction synchronization, serving RPC requests, etc.

Notably, DoERS is different from other DoS attacks on
the blockchain network, as studied in the prior research [62],
[42], [21], [60]. First, it aims at disrupting the communication
channel between a blockchain and its DApps by blocking
third-party RPC services (in Figure 1), not taking down the
blockchain itself as the other attacks do. Second, our attack
exploits a unique weakness – Gas-free contract execution on
RPC-enabled Ethereum nodes (Section II), while existing DoS
attacks seek under-priced instructions for attacking replicated
smart-contract execution [62], [42], [21] or misusing mining
mechanisms [60].

The attack is non-trivial to carry out. We need to overcome
the protection already in place on each Ethereum node, such
as limiting each call’s Gas (i.e., Gas limit) and time (i.e.,
timeout), through strategically delivering continuous queries
at an alarmingly low rate below the victim’s rate limit (§ III).
Also it is less clear how extensively RPC interfaces are open
to the public on the nodes operated by the DApp owners.
Even more challenging is the use of third-party RPC services,
which typically run a load balancer in front of RPC nodes.
Such a balancer hides the node(s) serving a specific DApp and

spread out its clients’ requests using undisclosed strategies.
Understanding how it works is critical to the success of
an attack targeting a specific DApp or a specific client of
the DApp. For this purpose, we performed an analysis and
measurement study on Ethereum.
Measurement and findings. More specifically, there are three
types of nodes in an Ethereum network: the nodes not accept-
ing any RPC requests (non-RPC nodes), the nodes with public
RPC ports, responding to the requests from any web clients
(public RPC nodes), and the nodes with private RPC ports,
only communicating with specific web servers (private RPC
nodes). The majority of the private nodes are the backends of
third-party RPC services such as ServiceX61 and ServiceX5.
Since most DApps rely on these well established services to
connect to Ethereum [10], such private nodes play the critical
role in controlling connections between DApp clients and the
Ethereum network. Thus, our research focuses on measuring
these private nodes.2

We first detected the presence of Gas limits on the private
RPC nodes in nine leading RPC services. We proposed a
detection technique that makes eth_calls with varying Gas
amounts and performs a binary search to find out the Gas
limit. The measurement reveals that five out of the nine major
RPC services do not configure Gas limits of any kind and the
other four set a rather nonrestrictive limit of more than 1.5
block gas.

Further we looked into the load balancers deployed by
the nine third-party RPC services. To reverse-engineer their
operations, we developed a novel probing technique based
upon orphan transaction, which stays on one node without
being propagated to others. Our approach delivers one orphan
transaction through a given RPC service and then sends in
the second one that attempts to double-spend the first. If both
are assigned to the same node by the balancer, the second
transaction will fail (as it double-spends the first one), and
otherwise, it will also go through (as the two transactions
reside on different nodes). By observing the transaction out-
come, we systematically analyzed 9 popular services (§ IV-A).
Our study reveals different load-balancing strategies, assigning
requests to nodes according to the client’s IP (e.g., ServiceX5),
service API key (e.g., ServiceX4) or timings of RPC calls (e.g.,
ServiceX6). Based upon the discoveries, a DoERS attack can
be adjusted to target a DApp, a client or the client’s visit to
a given DApp, depending on their RPC services’ balancing
strategies (§ IV-A). Among all 8 services, we conclude that 5
can be exploited to block a specific client or a DApp, without
fully taking down the whole services. Our study of Gas limit
reveals that another five RPC services out of the nine don’t
configure any Gas limit. Also interesting is our measurement
of rate limits, which turns out to be less aligned with the

1In this paper, we refer to the nine services by numbered names from
ServiceX1 to ServiceX9. We intentionally avoid use their real names to protect
their identities and operations.

2Nevertheless, we also measure public RPC nodes and uncover 348 of
them vulnerable in today’s Ethereum mainnet running 8927 nodes (as of Apr.
2020). This additional measurement study is described in Appendix A.

2

public information (e.g., the measured rate limit of ServiceX5
is twice the one published on their website).
Attacks. In addition to the above targeted attacks, we de-
sign DoERS strategies that are specific to the measurement
findings. For nodes without Gas limits, DoERS strategically
sends a single RPC request exploiting the Ethereum Virtual
Machine’s (EVM’s) CODECOPY instruction such that it evades
all other known protections (in timeout, load balancing and
rate limiting) until it crashes the victim node. This is caused
by the EVM design of atomically executing instructions that
even a thrown timeout cannot interrupt. For nodes with Gas
limits, DoERS sets the “payload” size of each RPC call below
the specific Gas limit and increases the request rate to cause
visible damage. Because of the innate computation asymmetry
between sending a RPC on the client and executing programs
on the RPC node, the required request rate remains low as
observed in our evaluation.

To verify the impacts DoERS will have on real Ethereum
peers3 and services, we performed a carefully-designed ex-
periment on these services, in a way the effectiveness of the
attacks can be observed without significantly downgrading
their services (§ V-A). Our study reveals that all nine tested
services are vulnerable to the DoERS attacks that cause notice-
able performance degradation, increasing the service latency
by 2.1X ∼ 50X . Notably, sending a single DoERS request
can cause the latency to increase by 10X (30X) on ServiceX5
(ServiceX3), without triggering any exception. In addition, the
evaluation study verifies that the proposed attack strategies can
effectively evade the deterministic load balancing in services,
such as ServiceX5 and ServiceX4.

We conduct experiments on an Ethereum peer under our
control. The controlled experiments allow us to explore more
extensively the combinations of attack parameters and to
evaluate the effectiveness of attacks in the presence of out-of-
gas, timeout and other exceptions. The study shows the attack
can slow down block synchronization, in addition to causing
latency increases. Particularly, we found sending DoERS RPCs
at a rate as low as 150 per second under a very restrictive
limit of 0.65 block gas was adequate to slow down block
synchronization on a blade-server class machine by 91%.
Mitigation. Mitigating the DoERS threat without undermining
the usability of the RPC service is nontrivial. For example,
setting a low Gas limit for each request alone does not work
well, as the protection can still be evaded by the attack using
multiple DoERS requests. An exceedingly low Gas limit could
also complicate the design of a DApp and downgrade its
usability [19]. Indeed, we observed in our measurement study
that no RPC service adopts a Gas limit below 1.5 block gas. So
instead of capping the Gas usage for each request, we propose
to limit the Gas for each service client, to defeat the multi-
request attack. For this purpose, we addressed the challenge
of identifying the requests from a specific client in an open-
membership scenario using its performance profile and further
developed the technique to capture performance anomalies.

3We will use “nodes” and “peers” interchangeably in this paper.

Another direction is to make the behavior of the frontend
load balancer unpredictable (independently assigning each
request to a randomly selected peer) so as to weaken a DoERS
attack on a specific set of backend peers. The challenge
here is that the balancer for today’s DApp processes both
RPC and transaction requests, and the latter may require
certain dependency relations to be preserved: e.g., an ERC20
token’s approve call and a subsequent transferFrom call
should be assigned to the same peer to keep their order. This
challenge has been addressed in our research with a DoERS-
secure load balancer that differentiates transaction requests
from RPC queries (including eth_call), so that the queries
that could lead to DoERS are distributed independently across
peers while the transaction requests are handled under their
dependency constraints (e.g, order preservation).

In general, DoERS is enabled by an open-membership
RPC service that allows for free execution of arbitrary smart-
contract programs on its peers shared by different DApps.
Invalidating any condition here can defeat the attack, but
may also affect the fundamental security-usability trade-off
expected from practical protection. Such trade-offs have been
extensively discussed in the paper. Our proposed mitigation
techniques can be built into a RPC service and are transparent
to its clients (§ VI).

Contributions. The contributions of the paper are outlined as
follows:
• New attack. We identify a new denial of service weakness
in today’s blockchain, showing that the widely existing free
query calls enable a potential resource depletion attacks on
RPC services, a weakest link of the DApp ecosystem. Also
we implemented the attack on Ethereum incurring zero Ether
costs and demonstrated the real-world impact of the threat
across leading RPC services.
• New understanding. We performed a systematic measure-
ment study on the nine leading RPC services that control
the connection between most DApp clients and the Ethereum
network. Our measurement on leading RPC services’ load
balancers, using a novel orphan-transaction based prober, has
brought to light the hidden strategies they take, which enables
targeted attacks on DApps and clients they serve.
• Mitigation. We also studied the potential mitigation on the
new threat, identifying a few promising solutions, including
the ones that selectively penalize the DApps or clients con-
suming a large amount of resources on a node.

Roadmap. The rest of the paper is organized as follows: the
background is introduced in Section II; the research formula-
tion is presented in Section III; the measurement of DoERS
exploitability among RPC services are presented in Section IV;
attack evaluation is presented in Section V; countermeasures
are described in Section VI. Related works are presented in
Section VII before discussion on responsible disclosure in
Section VIII and conclusion in Section IX.

II. BACKGROUND: BLOCKCHAIN AS A DAPP PLATFORM

Public blockchain is a distributed system that stores a

3

ledger of “transaction” history on a peer-to-peer network.
The P2P network is designed to scale, by admitting anyone
on the Internet without identification (i.e., open membership)
and by providing incentives in cryptocurrency reward to the
nodes who “mine” in the network. Mining means that all
participating nodes race to solve a puzzle and to decide
which transactions to be included in the next block. Based on
these mechanisms, real-world blockchains, including Bitcoin,
Ethereum, EOS, etc., see a large operational P2P network
(e.g., thousands to hundreds of thousands of peers) and enjoy
a higher degree of trust decentralization than conventional
systems.

Smart contracts and Gas: A smart contract is a user
program running on a blockchain. While Bitcoin’s contract,
Script [4], is domain specific, more extensible blockchains
including Ethereum and EOS support running Turing-complete
smart contracts. On Ethereum, a client can request to run
a smart contract with the provided arguments, if she pays
a certain amount of fees known as Gas. The purpose of
the Gas mechanism is to prevent denial of service to any
Ethereum full nodes (as will be described in related work
in § VII), which should be differentiated from this work
whose goal is to DoS the RPC nodes. A smart contract (more
precisely, the bytecode of the contract) is replicated to all
Ethereum nodes and executing the contract is triggered by
a transaction that propagates the invocation information to the
Ethereum network. This transaction also specifies Gas price
which indicates how much the client is willing to pay for each
unit of the computation carried out in a smart contract. The
higher Gas price, the faster the transaction gets propagated to
the blockchain network.

DApp platform: The blockchain is widely used as a source
of trust decentralization and underpins today’s decentralized
web applications, known as DApps. A DApp is typically
a javascript program residing in a webpage that accesses
information on the blockchain by invoking DApp-specific
smart contracts. For instance, the CryptoKitties DApp [7]
is a market for digital pets sales. Its system consists of an
off-chain website that runs DApp javascript code [7] and
five smart contracts on the blockchain [8]. Likewise, Melon
terminal [33] is a financial DApp that runs financial-analysis
in smart contracts on Ethereum and presents statistics in an
off-chain webpage.

RPC services: To bridge the DApp web clients and
blockchain, remote procedure call (RPC) services are essential.
A RPC service accepts the JSON requests sent from a DApp
client inside a web browser and translates them into queries or
transactions. To do so, a RPC service internally runs one or a
group of blockchain full nodes. Ethereum’s RPC interface [16]
includes 43 open queries and 3 privileged operations such as
sendTransaction. A valid privileged operation must be
sent from a cryptocurrency owner for signing the operation
using her private key, while a RPC query can be open
membership in that it can be sent by anyone on the Internet
without identification. Unlike transactions propagated to the
blockchain network, a RPC query is served locally within the

service.
Speculative smart-contract execution (eth_call): The

particular capability of interest to DoERS is Ethereum’s
speculative smart-contract execution in eth_call (and
eth_estimateGas on the same code path in both Ethereum
clients Geth [32] and Parity [27]). eth_call specula-
tively runs any smart contracts, in a different way from the
conventional contract execution triggered by transactions. The
difference is two-fold: 1) eth_call-triggered execution runs
only on the serving RPC node and is not being propagated.
This capability applies not only to the so-called pure/view
functions [41], but also to any state-updating functions, as
we tested in Ethereum Virtual Machine (EVM). The updated
state however is not propagated and not reflected in the global
blockchain state (hence the name, speculative execution). 2)
eth_call does not mandate charging fees from a contract
execution. Instead, such a decision is left to the hands of a
service provider. In most practical RPC services, eth_call
is offered free, as a means to attract DApp clients and
developers, which is essential for growing their customer base.

Gas limit is a feature in Ethereum clients (e.g., Geth
and Parity) that bounds the amount of Gas an individual
eth_call invocation can consume.

III. THE DOERS ATTACK AND RESEARCH FORMULATION

Our threat model involves three actors: an attacker
sends one or multiple malicious, crafted RPC requests to
an Ethereum RPC service that also serves the regular RPC
requests from a benign client. In practice, the benign client can
be a DApp. The goal of the attacker is to deny the RPC service
to the benign client, for instance, increasing its RPC response
time. The Ethereum RPC service can be a single Ethereum
node choosing to accept RPC requests (the basic model) or a
a group of Ethereum nodes behind a frontend infrastructure
(e.g., load balancing) to accept RPC requests (the third-party
service model). This section considers the basic setting while
the third-party service model is presented in § IV.

1 contract DoERS-C {
2 function exhaustCPU(uint256 payload_size1) public returns

(bool){
3 bytes32 target=0xf...f;
4 for (uint256 i=0; i<payload_size1; ++i){
5 target = keccak256(abi.encodePacked(target));}
6 return true;}
7 bytes32[] storage;
8 function exhaustIO(uint256 payload_size1) public returns(

bool){
9 for (uint256 j=0; j<payload_size2; ++j) {

10 storage.push(0xf...f);}
11 return true;}
12 function exhaustMem(uint256 payload_size3) pure public

returns(bool) {
13 bytes32[] memory mem = new bytes32[](payload_size3);
14 mem[payload_size3-1] = 0xf...f;//"CODECOPY" allocate

memory
15 return true;}}

Fig. 2: The exploitable smart contract to exhaust the computing
resources (in CPU, memory allocation, etc.) of the victim node

4

The DoERS attack is constructed based on an exploitable
smart contract that contains resource-consuming procedures.
In this paper, we use the DoERS-C contract in Figure 2
as an example, while there can be many alternative designs
— how to design the most “effective” smart contract for the
attack is out of the scope of this paper. Contract DoERS-C
includes three exploitable functions that aim at depleting
CPU, memory and IO resources, respectively, on the victim
node. Specifically, function exhaustCPU runs a loop of
hashing computation. Function exhaustIO runs a loop of
storage updates in order to incur IO operations; note that
Variable storage is persisted in the smart-contract’s stor-
age. Function exhaustMem runs a single operation (EVM
instruction CODECOPY) to allocate a large array in memory.
The three functions all take an argument called payload
size, which controls the number of iterations of the loop (in
exhaustCPU and exhaustIO) and the size of the array
(in exhaustMem). This argument is essentially a knob for
tuning the level of resource consumption incurred by the smart
contract.

The DoERS attack is executed in two steps: 1) The attacker
client deploys the DoERS-C smart contract to Ethereum by
sending a transaction. This step costs a small amount of Ether.
2) The attacker sends one or multiple eth_call RPCs to
the victim node to trigger one of the three exhaustXX
functions in DoERS-C. By specifying a large payload size,
the execution of these functions incurs a large amount of
resource consumption on the victim node. The purpose here
is to cripple the node’s functionality in block/transaction syn-
chronization, serving co-siding RPCs, blockchain mining, etc.
Since eth_call does not charge Ether (the main currency
unit of Ethereum), the cost of the attack is low. We also
describe a zero-Ether DoERS in § VI-A2 that eliminates the
Ether cost in the first step.

In practice, the configurations of Ethereum nodes may
thwart the above basic attack. For instance, Ethereum’s Gas
limit, if configured, would limit the amount of computation
that can be incurred by each DoERS request. To evade the
protection, a sophisticated attacker should lower the payload
size to avoid triggering the Gas limit, and instead send multiple
such smaller DoERS requests at a certain rate to make the
service unavailable to the victim. Also, other protective mea-
sures could be in place to raise the bar for a successful DoERS
attack, such as timeout, rate limiting, load balancing, as well as
other unknown mechanisms inside the black box RPC services
(e.g., performance isolation, hypothetically). Based upon this
observation, we set the goal of our research as follows:

The goal of our research is to understand the risk of
DoERS across deployed Ethereum RPC nodes and services.
Particularly, we analyzed the private nodes serving the back-
end of third-party RPC services to measure their susceptibility
to the attack, motivated by the fact that most DApp clients are
connected to the Ethereum network through such third-party
RPC services [10].

Towards the goal, 1) we conducted a systematic measure-
ment study on nine leading RPC services on the market

to analyze the behaviors of their load balancers, Gas limits
and rate limits; 2) we designed the strategies that evade
the protection discovered, in order to make the attack more
effective (§ IV) and 3) we evaluated the impacts of our low-
cost strategies on existing services and local nodes (§ V).

IV. EXPLOITABILITY MEASUREMENTS ON RPC SERVICES

This section describes our measurement study including
methodology and results on real-world third-party services.
Our goal is to understand the internal of a blackbox RPC
service by measuring service features in load balancing, Gas
limits and rate limiting, as modeled next.

Modeling a RPC service: A RPC service runs web servers
on the frontend to accept JSON-RPC requests and run several
Ethereum RPC nodes on the backend to process those requests.
Each frontend web server may run rate-limiting and load
balancing on the received requests. The service model is
illustrated in Figure 3.

A. Measuring Blackbox Load Balancers: Methodology

1) Goals: To characterize a load balancer, we first describe
a detailed model. A load balancer receives JSON-RPC requests
sent from DApp clients’ web browsers. The DApp of a JSON-
RPC request is identified by one or a few API keys. The JSON-
RPC request can also be identified by the IP address where the
browser resides. Given an incoming request, the load balancer
makes a decision regarding which RPC peer on the service
backend should the request be forwarded to. The goal here is to
characterize a load balancer in terms of its forwarding policy.
Specifically, we aim at answering the following questions:

LB0. Given two RPC queries from the same IP and with the
same API key, does the load balancer forward them to
the same RPC peer?

LB1. Given two RPC queries with different API keys, does the
load balancer forward them to the same RPC peer?

LB2. Given two RPC queries from different IPs, does the load
balancer forward them to the same RPC peer?

LB3. Given two RPC queries with the same API keys and same
IP but sent with TT seconds apart, does the load balancer
forward them to the same RPC peer?

2) Methods: The key technique to enable answering the
above questions is whether one can detect the presence of a
load balancer. Specifically, given two incoming RPC requests,
the presence of a load balancer entails the two requests are
forwarded to different RPC peers in the service backend.

Design rational: To detect load balancing in a blackbox
service, our key idea is to exploit the way that Ethereum clients
including both Geth and Parity handle orphan transactions.
Recall that each Ethereum transaction is associated with a
count, called nonce, from its issuing client. Given the nonce
of the latest transaction of a client, an orphan transaction is
a transaction sent from the same client and with a nonce no
smaller than nonce+2. An Ethereum peer receiving an orphan
transaction handles it in the following manner: It will store the
transaction locally and evict it under one of the two conditions:
1) If a transaction with nonce + 1 is received, the orphan

5

Load balancer

DApp clients

RPC service

Private
RPC
peers

Ethereum P2P

network

Browsers

RPC
requests

Tx/block synchronization

Dapp js

Wallet

library

Fig. 3: RPC
service model

1 bool detectLB_byOrphan(URL srv, int stall){
2 //current nonce plus two is orphan tx
3 int txHash=srv.sendTransaction(fromAddr,

toAddr,Ether,nonce+2,gasPrice);
4 try{srv.sendTransaction(fromAddr,toAddr,

Ether,nonce+2,gasPrice-1);
5 }catch(Exception e){
6 //no load balancing for sendTx RPC
7 Tx tx1 = srv.getTransaction(txHash);
8 waitTime(stall);
9 Tx tx2 = srv.getTransaction(txHash);

10 //no load balancing for RPC queries
11 return !(tx1 != null && tx2 != null);}
12 return true;}
13
14 bool detectLB_byBlockNo(URL srv, int time){
15 for(int i=0;i<BOUND;i++&&sleep(time)){
16 records.add(srv.getBlockNumber());}
17 return !isMonotonicIncreasing(records);}

Fig. 4: Benchmarks to characterize load bal-
ancing in a RPC service

Fig. 5: Characterizing the load balancing of RPC services
(7 means no load balancing detected or no gas limit, either
making the service exploitable. XIP-Y key means sending
two requests from X IPs and with Y API keys to detect
load balancing.)

Type RPC services 1IP-1key 1IP-2key 2IP-1key Gas
(LB0) (LB1) (LB2) limit

i
ServiceX1 7 7 7 7
ServiceX2 7 7 7 7
ServiceX3 7 7 7 50

ii ServiceX4 7 3 7 7
ServiceX5 7 7 3 7

iii

ServiceX6 3 3 3 10
ServiceX7 3 3 3 7
ServiceX9 3 3 3 5
ServiceX8 3 3 3 1.5

transaction becomes unorphaned and, together with transaction
of nonce + 1, will be propagated to the entire P2P network.
2) If no transaction with nonce+ 1 is received, the peer will
drop the transaction after a timeout, say Ot. A subtle fact is
that an orphan transaction can be replayed and updated before
it becomes unorphaned. Specifically, an Ethereum peer, upon
receiving two orphan transactions of the same nonce, will fail
the second one if its gas price is lower than 110% of the
gas price of the first transaction. In a RPC service, if one can
send such two orphan transactions and observe the success
of the second transaction, she can infer whether there is a
load balancer forwarding the second transaction to a different
backend peer than the first one.

Measurement mechanisms: Based on the above idea, we
design a benchmark program to detect the presence of a
load balancer inside a blackbox service. The program, namely
detectLB_byOrphan in Figure 4, works as follows: It first
sends an orphan transaction with nonce+2 and gas price to
a target RPC service (nonce is the nonce of latest confirmed
transaction) and observes the returned hash txHash (Line 3).
It then sends the second orphan transaction, with the same
nonce+2 but paying gas price−1. If the second transaction
fails (Line 4), it implies the second transaction is forwarded
to the same backend peer with the first transaction; no load
balancing is detected. Then, it further sends RPC queries to
eth_getTransactionByHash(txHash) (Line 7). Af-
ter waiting for a time period specified in the argument stall,
it sends the second transition(txHash) RPC query
(Line 9). If both getTransaction(txHash) RPCs return
successfully, it means no load balancing is detected for RPC
queries. What’s noteworthy in our benchmark design is that we
additionally require sending two RPC queries at different time
points to confirm the absence of load balancing. In our prelim-
inary design without the two getTransaction(txHash)
queries, we found certain RPC services may exercise different
load-balancing policies for different types of RPCs (i.e., priv-
ileged RPCs like sendTransaction() and open queries
like getTransaction(txHash)).

To double-check the measurement result, we
design a second detection mechanism based on RPC
queries getBlockNumber. The benchmark, namely
detectLB_byBlockNo in Figure 4 works as following: It
sends a series of getBlockNumber queries, one every two
seconds, to a target RPC service and observes the sequence
of block numbers returned. If an “anomaly” is detected, it
implies the presence of a load balancer in RPC queries. Here,
the anomaly is defined as a getBlockNumber query sent
earlier in time returns a block number larger than a later
query. This reasoning here is that if all getBlockNumber
queries are forwarded to the same RPC peer, the block
number returned should monotonically increase with time.

The purpose of using two benchmarks is to complement
each other (either confirm or dispute the results of each other),
as the detectLB_byOrphan can be accurate on the case
of asserting no load balancing and detectLB_byBlockNo
can be accurate on the case of detecting load balancing.

B. Measurement Results: Load Balancers

We conducted a series of experiments in order to answer
questions LB0, LB1, LB2 and LB3.

For LB0, we set up the benchmark programs in such
a way that all RPC requests are sent out with a single
API key and from a single client (of a single IP). We
run both benchmark programs, detectLB_byOrphan and
detectLB_byBlockNo, against the nine RPC services. For
each service, we collect the results (true or false) of the two
benchmarks and crosscheck them before determining whether
load balancing is present. In particular, we set the RPC rate
(interval in benchmark detectLB_byBlockNo) to the
maximal value right below the service rate limit (see the
measurement result in § IV-E).

In experiments, the two benchmarks mostly agree with
each other. That is, when detectLB_byOrphan detects
load balancing (no load balancing), detectLB_byBlockNo
confirms the same. The only exception is ServiceX9, on
which detectLB_byOrphan detects load balancing but

6

0 25 50 76 101 126 152 177 203 228

Timeline (second)

0

20

40

60

80

100

O
rp

h
a
n
 t

x
 s

u
c
c
e
s
s
 r

a
te

 (
%

)

(a) ServiceX6

0 8 17 26 35 44 53

Timeline (second)

0

20

40

60

80

100

O
rp

h
a
n
 t

x
 s

u
c
c
e
s
s
 r

a
te

 (
%

)

(b) ServiceX9

Fig. 6: Load balancing w.r.t. request timing: The Y axis is the
success rate of orphan transaction sent in the benchmark; it
implies whether the load balancer forwards the RPC request
to a new peer.

detectLB_byBlockNo does not (i.e., no observed case
of decreased block numbers). detectLB_byBlockNo on
ServiceX9 also return many failed results (i.e., block numbers
being 0) which may be the culprit of the inaccuracy.

For LB1, we send RPC requests with two API keys and
from the same client IP. For LB2, the RPC queries are
sent with the same API key and from two client IPs. In
the two cases, the different RPC requests apply to Line
7 and Line 9 in Figure 4 for detectLB_byOrphan. In
detectLB_byBlockNo, each step would send out two dif-
ferent RPC queries at the same time, and the “block-number-
decreased” anomaly is detected on the combined sequences of
the two query results.

Results: The measurement results are presented in Table 5.
We find three types of load-balancing behaviors w.r.t. LB0,
LB1 and LB2: Type i) No load balancing of any sort,
represented by ServiceX1, ServiceX3 and ServiceX2, (ii) De-
terministic load balancing that entails two subtypes: Type ii-a)
No load balancing detected when RPC queries are sent with
the same API key and from different IPs; this is represented by
ServiceX4, Type ii-b) No load balancing detected when RPC
queries are sent from the same IP but with different API keys;
this is represented by ServiceX5, and Type iii) Comprehensive
load balancing detected, when RPCs are sent from the same IP
and with the same API key; this is represented by ServiceX6,
ServiceX9, ServiceX7 and ServiceX8.

LB3: We further conduct a measurement study for LB3; we
design a simple benchmark to do so which issues a series of
sendTransaction RPCs, with each two TT seconds apart.
We run the benchmark against all services with load balancing
(i.e., except for Type-i services). Most load balancers do not
exhibit dependency to timing. The exceptions are ServiceX6
and ServiceX9 gateway.

Results: In ServiceX6, with TT = 5 seconds, we consis-
tently observe the following behavior of ServiceX6’s load
balancer: The decision which backend peer to forward a
request to is made based on the timing of the request. The
experimental result is reported in Figure 6a. The result shows a
four-minute period (where our raw result is more than an hour)
when a series of transactions from the same from address are

sent to ServiceX6. Every minute,4 ServiceX6’s load balancer
will forward a transaction to a new peer if the transaction is the
first one after the 0th, 10th or 15th second in the minute. All
transactions sent between 15th and 60th seconds of a minute
will end up with the same three backend peers in that minute.

The result of ServiceX9 is illustrated in Figure 6b, which is
measured under 10 RPCs per second. In the first 25 seconds
of any minute, there is a successful orphan transaction every
5 seconds, implying a new backend peer is allocated. After
that, orphan transactions keep failing until the 40th second.

The deterministic behavior of real load balancers discov-
ered in our research apparently serves an important purpose
– maintaining consistency across dependent transactions of
DApps: for instance, the order between an approval and
a subsequent transferFrom of an ERC20 token should be
preserved, so the load balancer always forwards these requests
to the same backend node. This property, however, can be
exploited to concentrate DoERS attack payloads on a small
set of nodes to enhance their effectiveness, as elaborated in
§ IV-C2.

C. Attack Strategies Evading Load Balancer
An attacker can leverage the above measurement results

to adjust an DoERS attack to specific services. Here, we
present sample attack strategies specific to Type-ii and Type-
iii services (note that Type-i service essentially runs no load
balancer and can be attacked in a straightforward way).

1) Targeted Attacks to Type-ii Services: The deterministic
behavior of a Type-ii load balancer can be exploited to launch
a DoERS attack targeted at specific DApp victims. We propose
strategies that a DoERS attacker can use to select victims
adaptively to the service types, namely Type-ii(a) and Type-
ii(b) services.

Targeted attack to Type-ii(a) services: Recall that a DApp
web client commonly sends requests to a RPC service, using
API keys. As the API key has to be disclosed on DApp
websites to all visiting browsers, the DoERS attacker can
easily obtain the API key. The attacker then sends DoERS
requests with the API key to the service. Recall that a Type-
ii(a) service forwards requests with the same API key to the
same peer, despite of which IPs they are sent from. Thus, the
DoERS requests will be processed by the same nodes serving
other requests of the same API key. By this means, the attacker
can disable the RPC node and further delay the service to other
clients of the same DApp. Therefore, the DoERS attack can
disable all clients of a victim DApp.

Targeted attack to Type-ii(b) services: Initially, the at-
tacker prepares a “malware” token contract, called M-Token,
which encodes the exhaustXX programs in DoERS-C. For
instance, the balanceOf function in the token internally calls
exhaustCPU(1000000).

The attacker distributes the malware token M-Token to
victim DApp clients. To do so, the attacker can set up a token
faucet similar to gitcoin [18], that gives away free M-Tokens
and, as a honeypot, attracts victim owners.

4Here, it requires the timeline is aligned with the Unix timestamp.

7

Later the victim owner may open her wallet DApp as usual.
She will be surprised to find her DApp webpage unresponsive,
because the webpage sending RPC requests to a service would
make the service run M-Token’s balanceOf function and
get stuck. Further more, not only M-Token’s balance is not
viewable on the victim owner’s webpage, but also the balances
of other benign tokens are not responding. Because both the
benign RPCs (to run benign tokens’ balanceOf) and the M-
Token’s RPCs are sent from the same browser, thus the same
IP, the Type-ii(b) service forwards them to the same backend
peer. By this means, the M-Token RPCs can denial-of-service
the benign tokens’ RPCs.

2) Exploiting Timing Dependency to Attack Type-iii Ser-
vices: Recall our measurement results in § IV-A that the load
balancers of RPC services exhibit timing dependency: if two
requests are sent close in time, the balancer forwards them to
the same backend peer, for purposes such as preserving the
ordering between the two requests. This predictable behavior
can be exploited to direct DoERS requests to just a few peers,
undermining their services to some DApps without saturating
the entire service backend. This results in a low cost and more
effective attack on multi-node RPC services.

Specifically, consider ServiceX6 as an example. As revealed
from our measurement study (§ IV-A), ServiceX6’s load
balancer forwards all incoming requests received within a
minute (with time aligned) to at most three distinct backend
peers. So an attack can exploit this timing dependency to send
all its DoERS requests in one minute to land on three specific
nodes, which can effectively deny their services to DApps.
Particularly, if the attacker knows when a specific DApp or
its client issues requests (e.g., through eavesdropping on its
communication or aiming at a known auction deadline when
bids would come in), he could produce a few attack requests
within the 1-minute window to block the three backend peers
serving the DApp. This strategy enables a low-cost attack in
which one does not need to overload hundreds of backend
peers (e.g., more than 192 peers behind ServiceX6, as mea-
sured in Appendix C), which is very expensive, to undermine
the service to some DApps and their clients. Note that such a
“flash attack” (e.g., one minute for ServiceX6) can still have
serious consequences, e.g., frontrunning a competing bid in
a decentralized auction. The effectiveness of this attack is
evaluated in § V-A2.

D. Measuring Gas Limits: Methodology

Given a RPC service, the goal is to test the presence of
any Gas limit configured on the service’s backend peers. Our
test program, named by rpc_gasLimit, is in List A.15.
The goal of the test program is to find the maximal argument
(arrayLength in function exhaustMem()) that does not
trigger the out-of-gas exception, a value that implies the Gas
limit. To do so, the program starts with an initial guess on the
target arrayLength value, then grows the guess exponen-
tially until the first exception is observed. It then enters the
second phase that binary-search the Gas-limit corresponding
value of arrayLength. After the target value V is obtained,

1 float rpc_gasLimit(IP rpcNode){
2 int lengthLower=0; int lengthUpper=500;//0/500 block gas
3 while (lengthUpper - lengthLower > 1){
4 arrayLength = (lengthLower + lengthUpper) / 2;
5 try{
6 rpcNode.eth_call(exhaustMem,arrayLength);
7 } (Exception e) {
8 if(e instanceOf OutofGasException){
9 lengthUpper = arrayLength;

10 } else { //no gas limits
11 return 0;}
12 } else {
13 lengthLower = arrayLength;}}
14 return localNode.estmateGas(exhaustMem,arrayLength);}

Fig. 7: Measure Gas limit of an RPC node

the program then uses a local RPC node (under our control)
to run estimateGas() with function exhaustMem under
V . The returned value is the Gas limit. Note that our design
uses exhaustMem function which consumes Gas faster than
the other two exhaustXXs and can finish before Ethereum’s
default 5-second timeout.

E. Measurement Results: Gas & Rate Limits

We measure the Gas limits of the backend peers by using
program rpc_gasLimit in Figure A.15. Here, we assume
that different nodes in the same RPC service have the same
Gas limit. The results are illustrated in Table 5 which shows
that four out of nine services configure the Gas limit: Ser-
viceX3/ServiceX6/ServiceX9/ServiceX8 respectively set Gas
limit at 50/10/5/1.5 block gas.5 The services without Gas limits
are particularly vulnerable to our DoERS attacks.

In our extended study, we also measure the rate limits de-
ployed in many services’ frontend. The rate limits are intended
to protect the service against distributed DoS. However, rate
limiting without real-world identities can be easily bypassed
by a Sybil attacker who registers multiple service accounts and
accumulates much higher rate limits. Yet, requiring the DApp
clients (e.g., a web browser surfing a DApp page) to expose
real-world identities is impractical. We thus don’t consider
rate limiting as an effective protection against DoERS. One
can essentially bypass all RPC services’ rate limit by using as
many API keys or IPs as needed. Nevertheless, we measured
rate limits and observe the measured limits are commonly
inconsistent with the published rate limits on their website.
The measurement result is deferred to Appendix B.

F. Attack Strategies Evading Gas Limit

For the RPC node without Gas limit, we design a single-
request DoERS attack that has the power of evading all
other protective measures we will observe in the next section
(including rate limiting and load balancing). The attack sends a
single request with a very large payload size (e.g., 109) to run
the exhaustMem function in the DoERS-C smart contract.
The key observation here is this: exhaustMem runs a single
EVM instruction, namely CODECOPY, to allocate a large
memory. Running a single EVM instruction is atomic and is

5Through our responsible disclosure, after our study, ServiceX5 has set
a limit of 10 block gas.

8

not interrupted, even when there is a timeout. Thus, the DoERS
attacker can increase the payload size of an exhaustMem
invocation to evade the 5-second timeout, causing a higher
resource consumption and more sever service damage, as will
be evaluated in § V-B.

For the RPC node with Gas limit, the attacker can send
multiple DoERS requests, each with a medium payload size
under the Gas limit. If the requests are sent at a sufficiently
high rate, there will be visible service interference, as will be
evaluated in § V-A and § V-B.

G. Summary of Attack Strategies

We summarize what an actual DoERS attacker can do, with
respect to different real-world situations. We consider the goal
of the attacker is to cause maximal damage to the DApp
ecosystem, while minimizing her cost.

C1) For nodes or services without Gas limit, the DoERS
strategy is to send a single request invoking exhaustMem
with a big-number payload size (e.g., 264). If this crashes the
EVM on the victim node, the attacker waits for 30 seconds
and pings the node before sending the request again. This
strategy also applies to any services without Gas limits — the
single-request attack evades the protection of a load balancer.

C2) For nodes with Gas limit, the DoERS strategy is to
set the payload size of an individual request under the Gas
limit and to send multiple such requests at a certain rate. In
the case of a very low Gas limit, the attacker can tune up the
request rate; because there is innate asymmetry between the
service and the DoERS attacker, the attacker can expect to
cause significant damage to an individual node at low cost (as
will be evaluated in § V). This strategy applies to public RPC
peers and Type-i services without load balancers.

C3) For Type-iii services with Gas limit, there can be
two DoERS strategies. One (C3a) is to follow the C2 strategy
and to increase the rate as necessary to DoS all backend peers
in the service. Given the small service scale (tens of peers),
the DoERS asymmetry still helps keep attacker’s cost low (see
§ VI-A1 for an analysis). The other strategy (C3b) is to predict
load-balancing behaviors and design specific attacks, as will
be demonstrated in ServiceX6.

C4) For Type-ii services with Gas limit, the DoERS
strategy is to mount targeted attacks. As described in § IV-C,
the target can be a specific DApp client, a DApp, or a web3
library. The targeted attacks can evade the deterministic load-
balancing behaviors in Type-ii services.

V. EVALUATION OF DOERS ATTACKS

In this section, we evaluate the effectiveness and cost of
DoERS attacks. The attack effectiveness will be measured
by service performance degradation in latency increase, block
synchronization slowdown, and others. The attack cost will be
measured by the attack rate. Note that an DoERS attack costs
zero Ether by design as described in § VI-A2. Specifically, the
evaluation aims to answer the following questions:

• Are real-world RPC services and peers exploitable under
DoERS attacks? How much increase in response time will

be caused by DoERS with “minimal” payload and rate
(i.e., without causing any exception) on the real services?
§ V-A answers these questions.

• On a local Ethereum node, how much damage can
DoERS cause with payload and rate large enough to
trigger and bypass exceptions? The damage is measured
not only in response-time increase, but also in block
synchronization slowdown, mining rate slowdown, etc.
§ V-B answers these questions.

A. Evaluation on Deployed Services

1) Ethics-Driven Evaluation: Methodology: The goal is to
verify whether a deployed RPC service is exploitable under
DoERS attack. The main challenge comes from designing an
effective test on the target services, without attacking them —
The intensity of the test needs to be high enough to cause
observable effects while it should be low enough to minimize
actual performance degradation. The key idea here lies in
discovering what we call the “minimally effective” parameters
of the DoERS test. A DoERS test is minimally effective if
1) the difference between the response time of regular RPC
requests under the test and that without the test is statistically
significant, and 2) the response time of regular RPCs increase
with the payload size and request rate.

More concretely, in the evaluation, we set up a virtual-
machine (VM) instance in Google Cloud Platform (GCP) [24]
for probing (a probing node) and another VM instance in
Amazon EC2 [1] for measurement (a measurement node).
With this setup, the two nodes do not share anything on their
paths to a RPC service, and hence minimize performance
interference between probing and measurement. During an
experiment, we warm up the measurement node (in its network
connection) by sending out three regular RPC requests (e.g.,
eth_getBlockNumber) to the target service. Then the
measurement node sends out regular RPC requests at a rate
of one request every two seconds. The response time of these
regular RPCs is recorded. From the 30-th second after the
measurement node starts, we launch the probing node which
sends DoERS requests with minimally effective parameters.
The probing node lasts for ta seconds and the measurement
node continues for another 60 seconds after that.

In order to discover the minimally effective DoERS pa-
rameters, we did a series of carefully designed pre-tests in
a local machine: We set up the local Ethereum node and
conduct local tests to find the DoERS parameters such that
the response time with and without the test differ by 5×
times. During the pre-tests, we vary the attack parameters
in payload size, probe rate and contract type. Note that
5× will be an estimate as the hardware spec on the local
node is different that on deployed services. The local pre-
tests produce several sets of candidate DoERS parameters,
each set is a triplet 〈type, p, rx〉 where type/p/rx is contract
type/payload size/attack rate. For instance, 〈CPU, 20M, 10〉
means a DoERS attack exploit exhaustCPU function with

9

payload size being 20M 6 and attack rate being 10 requests
per second. In particular, rx = 0 means that a single DoERS
request is sent out in the entire test process. Based on the above
design, on each test, we would send a total of 60∗2/2+3 = 63
regular RPC requests plus at most ta ∗ rx DoERS requests.
We set the attack duration ta such that the number of DoERS
requests can be upper-bounded before the test.

Besides, we avoid directly using large attack parameters
(e.g., attack rates, payload sizes), which would have resulted
in severe damages to the service. Instead, we test each service
with a sequence of smaller and gradually increasing param-
eters, with the intention to discover the “trend” or how the
server response time grows with increasing parameters. Such
a trend allows to predict service response time under large
parameters without causing the actual damage (see Figure 8b).
With such measures, we expect each of our tests to affect no
more than three nodes (out of hundreds) on the backend of
each service for a short period of several minutes, to minimize
the impact on its normal operations.

2) Evaluation Results: We follow the above methodology
and test all nine services. Note that both measurement and
probing VM instances do not run Geth, but instead run
Curl [9] to send RPC requests. We first describe the experiment
with ServiceX2 as an example. We run a series of tests
described above with different minimally-effective parameters.
Each test produces a timeline of RPC response times. For
instance, Figure 8a reports such a timeline on ServiceX2 under
DoERS attacks exploiting exhaustCPU with 30, 000 payload
and at the rate of 30 requests per second. The result shows a
moderate 5× slowdown under the specific attack setting.

From there, we vary attack rate with payload size fixed at
0.07M (vary payload sizes with attack rate fixed at 18 per
second). In each test, we define the attack-effective period by
the period that the response time increases by at least 1.2×
than the response time without attacks. Then we calculate
the average response time during the attack-effective phase
and report it in Figure 8b. The result clearly shows that
the response time grows with increasing payload size and
attack rates. For ethical reasons, we stop our test at maximal
payload size 0.15M or maximal rate 30 per second, resulting
in maximal response time at about 100 milliseconds. Also, our
experiments observe no timeout or other exceptions thrown.
The trend revealed in the figure implies that an actual attacker
can use larger parameters than ours to cause a much longer
RPC delay towards crashing the service.

DoERS attacks to Type-iii services: We conduct exper-
iments on ServiceX6 as an example Type-iii service. In the
experiment, DoERS requests are sent to exhaustCPU with
payload size 1.5M at the rate of 200 requests per second. The
1.5M payload size makes the per-request Gas right below the
Gas limit of ServiceX6 service. The attack lasts for 20 seconds,
and we observe a protective measure taken by ServiceX6–
15 seconds after the attack starts, the DoERS requests are
returned with null. The timeline of measured response time is

6We use M and K to denote a million and a thousand, respectively.

illustrated in Figure 8d. The RPC response time increases from
40 milliseconds before the attack to 160 milliseconds after the
attack, leading to a 5× increase. We suspect two causes: First,
ServiceX6’s load balancing depends on the timing of requests:
all DoERS requests sent within one minutes are collocated to
the same three RPC nodes. Second, there are hundreds of peers
on the backend of ServiceX6 and all peers are saturated by
the DoERS attacks.

Targeted attacks to Type-ii services: Among Type-ii
services, ServiceX5 is a representative service whose load
balancer distinguishes requests based on IPs; recall Table 5.
We conduct two tests that differ only by where the DoERS
requests are sent. The specific result is in Figure 9a: If the
DoERS requests are sent from a different IP from where the
measurement requests are sent (as in our original setup), no
increase of response time can be spotted. However, if we send
the DoERS requests from the same IP with the measurement
requests, the response time clearly increases right after the
attack starts at the 5th second in Figure 9a. To eliminate the
possibility of performance interference between probing and
measuring, we conducted an extra test by sending DoERS
requests at the same rate but with a much small payload size
(e.g., 3 iterations in a loop) and no response-time increase
can be observed. The result corroborates our measured load-
balancing behavior and directly shows that the adaptive attack
strategy (recall § IV-C) is effective on ServiceX5. Note that in
Figure 9a, the attack sends only a single request exploiting
exhaustMem with 20M payload size. The 10X increase
of response time is caused by this single DoERS request.
We also conduct similar experiments on the other Type-ii
service, ServiceX4, where DoERS requests are sent with the
same/different API key with the measurement requests. The
result, presented in Figure 9b, similarly show the effectiveness
of our attack strategies – under the DoERS with the same
API key, a 6× slowdown (from 0.4 seconds to 2.4 seconds)
is caused while under the DoERS of the same API key, there
is no visible service slowdown.

Single-request memory DoERS: For RPC services with no
gas limits, the DoERS attacker can send a single RPC request
to execute the exhaustMem that bypasses any load balanc-
ing. On ServiceX2, we send a single request with parameters
eth_call(exhaustMem(5 ∗ 107)), and we report the
response times in Figure 10a. After the attack starts at the 5th
second, the response time grows up by 20× (from 0.1 seconds
to 2 seconds). On ServiceX5, we similarly a single request
with parameters eth_call(exhaustMem(1∗109)). From
Figure 10b, the response time is increased by 150× (from 0.2
seconds to 30 seconds).

Summary of attack parameters: Table I summarizes the
effective attack parameters we found on these services. It can
be seen that most existing services, with or without Gas limits,
can be successfully attacked, causing an observable response-
time increase by at least 3.8×. On ServiceX2, for instance, the
parameters to cause 3.8× increase are 〈CPU, 0.15M, 30〉; note
that payload size 0.15M amounts to 0.2 block gas. Currently
ServiceX2 does not set Gas limits; but our result implies that

10

0 10 20 30 40 50 60

Timeline (second)

0.0

0.1

0.2

0.3

0.4

0.5

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(a) ServiceX2 (i) 〈CPU, 30K, 30〉

!"

#$

##

#%

#&

#"

'$

($

"$

)$

!$$

!!$

!#$

!'$

!%$

!*$

#$ %$ &$ "$!$$!#$

+
,,
-
./
01
-
,2
03
4
2
10
52
.6
7
8
9

:
-
;
<6
-
8
05
=>
2
03
?
!
$
@
'
9

A25467520,=B203B59

4-;<6-8

1-,2

(b) ServiceX2 (i) w. varying rates &
payloads

0 10 20 30 40 50 60 70 80 90
Timeline (second)

0

2

4

6

8

10

12

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(c) ServiceX8 (iii)
〈CPU, 0.6M, 200〉

0 10 20 30 40 50
Timeline (second)

0

100

200

300

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

(d) ServiceX6 (iii) 〈CPU, 1.5M, 200〉

Fig. 8: exhaustCPU attacks to RPC services (Type-i and iii)

0 10 20 30 40 50
Timeline (second)

0

1

2

3

4

5

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

Different IPs

Same IP

(a) ServiceX5 〈Mem, 50M, 0〉

0 6 12 18 24 30 36 42 48 54 60

Timeline (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

Different API keys

Same API key

(b) ServiceX4 〈CPU, 40k, 30〉

Fig. 9: Targeted attacks to RPC services (Type-ii)

0 6 12 18 24 30 36 42 48 54 60

Timeline (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(a) ServiceX2 〈Mem, 50M, 0〉

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Timeline (second)

0

10

20

30

40

50

60

70

80

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(b) ServiceX5 〈Mem, 1000M, 0〉
Fig. 10: A single-request attack exploiting exhaustMem to
nodes without gas limits

TABLE I: Minimally effective attack parameters: Gas* in the number of
block gas. In parenthesis are Gas limits.

Services 〈type,payload,rate〉 Time Gas*
ServiceX1 〈CPU, 2M, 10〉 16× 13
ServiceX2 〈CPU, 0.15M, 30〉 3.8× 0.2
ServiceX3 〈CPU, 3M, 0〉 30× 19.5 (50)
ServiceX5 〈Mem, 50M, 0〉 10× 5000
ServiceX4 〈CPU, 0.04M, 30〉 4× 0.3
ServiceX6 〈CPU, 1.5M, 200〉 5× 10 (10)
ServiceX7 〈CPU, 5M, 10〉 15× 32.5
ServiceX9 〈CPU, 0.04M, 30〉 2.1× 0.3 (5)
ServiceX8 〈CPU, 0.6M, 200〉 110× 1.5 (1.5)

even if they set a very low Gas limit, like 0.2 block gas
(which by the way is unlikely because of interference with
service usability as will be discussed in § VI), it is still not
enough to defend against DoERS attacks. ServiceX3 can be
effectively attacked at a Gas limit as low as 19.5 block gas,
which is much lower than their current Gas limit (50 block
gas). ServiceX6 can be attacked with their current Gas limit (of

10 block gas), causing 5× response-time increase. We notice
that the minimally effective payload sizes differ from different
services and this can be caused by different hardware specs
of the machines run in these services.

B. Evaluation on a Local Full Node

! "! !# $! %## %"! %!# "##

&''()*+,('-+./-,+0-)1234

#5#

#5"

#56

#57

#58

%5#

9
:1
)
*
+0
;
2
)
+0
:1
<
3
1
<
2

=(;:1(3+$!>+.56?+9@4

=(;:1(3+#5%A+.57!+9@4

=(;:1(3+%A+.75!+9@4

No timeout

Timeout
Timeout

(a) Block sync. slowdown under
exhaustCPU

5 30 55 80 105 130 155 180 205 230
Payload size (10^6)

0

2

4

6

8

A
tt

a
c
k
 r

e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
) Request returned success

Timeout thrown

(b) exhaustMem and timeout

Fig. 11: Evaluate DoERS attacks on a local node

In order to evaluate the damage caused by DoERS more
extensively, we conduct experiments on a local machine under
our control. The machine is a blade server with a 32-core
2.60GHz Intel(R) Xeon(R) CPU (E5-2640 v3), 256 GB RAM
and 4 TB SSD disk. We set up a Geth v1.99 client on the
server and fully synchronize it with the Ethereum mainnet.
We turn on the RPC on this full node with default settings.
The probing node and measurement node are run on the same
commodity computer as before (§ V-A2).

The first experiment evaluates the DoERS’s impact on
the block synchronization rate on the victim. In the exper-
iments, we measure the local victim node’s current block
height, denoted by Bv . To do so, the measurement node
sends eth_getBlockNumber RPCs to the victim. We also
monitor the block height of a regular mainnet node by Br and
record the initial block height before the attack by B0. From
there, we report a metric that we call block synchronization
slowdown: Br(10)−Bv(10)

Br(10)−B0
where Br(10)/Bv(10) is the block

height 10 minutes after the attack starts. In the experiment,
we vary the payload size and the attack rate, and report the
slowdown in Figure 11a.

The result shows that block synchronization slowdown
reaches as high as 96% with attach parameter 〈CPU, 1M, 100〉.
When the payload size is 0.1M which amounts to a Gas limit

11

of 0.65 block gas, the DoERS attacker can cause synchroniza-
tion slowdown by 91%, at the rate of 150 RPCs per second.
Note that 0.65 block gas is very restrictive and is lower than
any Gas limits we observe on all real RPC services and peers.
In the figure, each point is labeled by whether a timeout is
triggered during the test. It can be seen the DoERS attack of
parameters 〈CPU, 0.1M, 100〉 does not trigger timeout yet still
causes a 50% synchronization slowdown.

The second experiment shows how timeout can be effec-
tively evaded by exhaustMem on nodes without Gas limits;
recall the attack strategy C1 in § IV-G. In this experiment,
we conduct a series of tests, each of which sends a single
exhaustMem request with increasing payload sizes. We
report the response time of the attack request as in Figure 11b.
When the payload size increases, the response time grows,
first without timeout (in the red line) and then with timeout
(in the blue line). It is clear that after timeout occurs, in-
creasing payload sizes still leads to the increase of response
time. This implies that the exhaustMem-based DoERS can
essentially evade the timeout and increases payloads to crash
the machine. The severe damage is applicable to the 348 public
RPC nodes and the five RPC services that do not configure
Gas limits. The explanation for this attack is the following:
exhaustMem contains an EVM instruction CODECOPY that
runs a loop inside EVM to allocate memory of arbitrary length.
Executing the instruction is atomic and can not be interrupted
in between by a timeout; throwing a timeout has to wait until
the completion of the instruction.

C. Evaluating DApp Response Time under DoERS

0 42 84 126 168
Timeline (second)

0.0

0.5

1.0

1.5

2.0

2.5

R
e
s
p
o
n
s
e
 t

im
e
 (

m
il
li
s
e
c
o
n
d
) No attack

Under attack

(a) DApp response time w/wo attacks
〈CPU, 800K, 200〉 against ServiceX9

0 5 10 15 20 25 30 35 40 45 50
Interval (second)

0.0

0.5

1.0

1.5

2.0

2.5

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(b) DApp response time w/wo attacks
〈CPU, 800K, 200〉 against ServiceX9

Fig. 12: DoERS attacks on a metamask-based DApp

Fig. 13: Screen-
shot of DApp

Our objective is to evaluate the impacts
of DoERS on real-world DApps. Recall
Figure 3; a typical DApp architecture in-
cludes user-facing web pages, wallet clients
running as browser extensions such as
metamask [35], the RPC service it uses
and a remote blockchain network. It is
known that most DApp webpages rely on
metamask and third-party RPC services to
communicate with Ethereum [35], which
has also been confirmed in a simple mea-
surement study we conduct: Among the top
26 DApps (in terms of active user number)

from dappradar.com7, 20 (with combined 201, 500 active
users in 30 days) use metamask. So we focus on the response
time for metamask-based RPC clients.

Specifically, our experiment is based upon a browser run-
ning a sample DApp that we develop on top of meta-
mask. The sample DApp is a web button to get the latest
block from the Ethereum network, through an RPC query
eth_blockNumber. Here, metamask is configured to con-
nect to a sample RPC service, namely ServiceX9.

Also, we run a javascript code that issues a metamask query
every X seconds. We first set X = 25 seconds, since RPC
results cached by metamask expire every 20 seconds (based
on our experiment results). In the experiment, we measure and
compare the response times of the “getBlock” button with and
without a DoERS attack on the RPC node, as illustrated in
Figure 12a, under the following parameters: 200 requests per
second and a payload of 8∗105. As we can see from the figure,
the response time perceived by the client becomes significantly
longer in the presence of the attack, causing a 10× slowdown.
We present the screenshots of our DApp with/without the
DoERS attack in Figure 13 which are taken from the full
video demo shared on our public website.8

We then vary the interval X between 5 seconds and 50
seconds. We rerun the above experiment for three times,
and report the average response time and their variance in
Figure 12b. The result shows a shorter average response time
can be observed if the internal is below 20 seconds, which
matches the conjectured effect of result caching in metamask.

VI. COUNTERMEASURE

A. Analyzing Known Countermeasures

1) Effectiveness of Gas Limits: In the Ethereum commu-
nity, Gas limits are provided as the primary defense to denial
of RPC service. Both Geth and Parity provide configuration
knobs to set the Gas limit on a RPC instance. Ideally, the
service provider should set a Gas limit low enough to protect
their nodes from DoS attacks.

In practice, finding a “meaningful” value for the Gas limit
is non-trivial if not impossible at all. There are two restric-
tions/challenges: 1) Setting a low Gas limit could negatively
affect the service usability. For instance, a benign DApp wants
to send a Google BigQuery-style RPC [3] to the blockchain
service which would be blocked by a low Gas limit. This inten-
tion between a security-concerning service provider who wants
to set a lower Gas limit and a usability-desiring client rooting
for a higher Gas limit is real and has been observed [19]. In the
end, the service provider often puts customer experience over
the service security, by increasing the Gas limit, such as from
2 to 10 block gas in [19]. 2) More fundamentally, blockchain
RPCs supporting Turing-complete programs cause asymmetry
of computing cost between the client side and service side.
That is, in a usable setup, the client-side cost in sending a

7https://dappradar.com/rankings/protocol/eth
8https://sites.google.com/view/doersdemo/

12

RPC request is supposed to much lower than the server-side
cost of executing the smart contract. The “perfect” DoERS
security will entail equating the client-side cost and server-
side cost, which will lead to very restrictive loops (e.g., fewer
than ten iterations) and would be detrimental to the service
usability.

Empirically, the table in Figure I shows mixed results:
On the one hand, some services, notably ServiceX2 and
ServiceX4, can be effectively attacked even if the Gas limits
are set as low as 0.2 and 0.3 block gas. Let alone that a
low Gas limit is unlikely to be deployed in practice due to
the impacts to service usability. Our experiments with local
nodes described in § V-B also suggest there are effective attack
parameters even with low Gas limits as 0.65 block gas. On the
other hand, there are services which could mitigate DoERS
vulnerability by deploying a reasonably low Gas limit. For
instance, if ServiceX5 deploys the Gas limit of 10 block gas
(which is the case after our disclosure of the problem to them
in May, 2020), it would make the DoERS harder to succeed.

We believe setting a Gas limit is necessary but not sufficient;
in other words, complementary defensive measures to Gas
limiting are needed to provide effective DoERS protection.

2) Contract Banning and Zero-Ether DoERS: Recall that
the first step in DoERS (in § III) requires the attacker to
deploy a smart contract at her own cost. From our experience
with ServiceX7, a service provider who monitors the RPC
performance can correlate the latency spikes to a malicious
smart contract; they can take measures to ban all subsequent
RPCs accessing the malicious contract. This will force the
attacker to deploy the DoERS-C smart contract to a new
address which could increase her cost in Ether.

We propose a zero-Ether DoERS that incurs zero monetary
cost to the attacker, as a technique to evade a contract-
banning service provider. The zero-Ether DoERS exploits the
“state override” extension of eth_call in the recent Geth
release [14], [25]. This feature allows a client to upload a
smart contract at the invocation time of eth_call, instead
of using a separate transaction. Specifically, the eth_call
request carries the bytecode of a smart contract in its “state
override” argument and invoke to run a certain function in the
bytecode on the RPC node.

With this capability, the attacker can mount the DoERS
attack in one step without paying any Ether. The attack works
by the attacker sending a crafted eth_call request that
includes the code of exhaustXX in its “state override” object
and specify the invoked function to be exhaustXX. We have
tested this zero-Ether DoERS attack on our local RPC node
running Geth v1.9.2 [25].

B. Proposed Countermeasures

The root cause of DoERS is an open-membership RPC ser-
vice that allows for free execution of arbitrary smart-contract
programs on its peers shared by different DApps. Intuitively,
“falsifying” any condition in this root cause should harden
the security against DoERS attacks, such as removing open-
membership (e.g., by authenticating DApp clients based on

their true identities), charging the contract execution triggered
by eth_call, limiting the computation expressiveness (e.g.,
prohibiting loops) and avoiding any sharing of a RPC node
among DApps. Along these design directions, we encounter
a fundamental trade-off between DoERS security and service
usability. For instance, the service provider can simply refuse
to admit any eth_call triggering to run loops, which,
while eliminating DoERS, comes at the expense of not being
able to serve the benign DApps that do rely on loops; there
are real-world smart contracts like this, such as financial
analysis [20]. Also, requiring DApp clients to present real-
world identities would be impractical or against the design of
blockchain information transparency. We believe eliminating
the DoERS vulnerability without affecting service usability is
fundamentally difficult, if not impossible at all. Beyond simply
Gas limiting, we propose a variety of mitigation techniques
without dropping service usability, by performance anomaly
detection, requiring security deposit, secure load balancing,
atomic EVM execution (as will be described next), and other
feasible defenses such as performance isolation. These tech-
niques can be engineered in a RPC service at the layers of
both service frontend and the underlying EVM.

Unpredictable yet consistency-preserving load balanc-
ing: We design a secure and practical RPC load balancer that
serves two purposes. First, it is expected to preserve the order
between dependent transactions, which is important to ensure
the correctness and fairness of the target DApp’s operations.
Specifically, two transactions issued sequentially from the RPC
client need to keep that order in the blockchain’s final trans-
action history. For instance, for an ERC20 token contract, the
call approve needs to be followed by transferFrom, or
otherwise, the execution will fail. Second, the load balancer’s
behavior should be unpredictable in the sense that it inde-
pendently forwards different incoming requests to randomly
selected backend peers. Any determinism in load balancing
can be exploited to direct the DoERS payloads to a few victim
peers, allowing the attacker to overload them at a low cost.

However, preserving cross-request consistency could be
in conflict with achieving load-balancing unpredictability.
For instance, independent assignment of the approve and
transferFrom calls could cause the calls to be handled
by different backend peers, which will send them indepen-
dently to miners, rendering the order of their reception on
the miners hard to maintain. Note that since approve and
transferFrom are transactions issued from different sender
accounts, Ethereum’s builtin nonce mechanism does not apply
here. Our research shows that the load balancers in existing
RPC services are designed to favor consistency preservation
(DApp semantics) over unpredictability (§ IV-B).

We believe that this challenge is fundamentally caused by
the use of the a single balancer to process both transactions
(write to a block chain) and RPC queries (read from the
chain). The former requires cross-request consistency while
the latter does not. Since DoERS targets the RPC queries,
we could simply separate them from transaction requests,
through two load balancers, to protect the RPC peers through

13

unpredictable assignment of the queries. More specifically, one
balancer handles only transactions while the other forwards
only RPC queries (including the eth_call’s), independently
and randomly selecting a peer from the RPC service for each
query (through a uniform distribution). To this end, the load
balancer can internally maintain a secret true-random number
or the current workload that decides the destination backend
peer a RPC query should be forwarded to. In the meantime,
the transaction-only balancer distributes the requests under the
constraint of preserving consistency, just like what has been
done by ServiceX6 today (transactions with temporal locality
given to the same backend peer).

A limitation of this dual-balancer solution is that it does
not ensure transaction-query consistency: that is, the order be-
tween a transaction and a RPC query related to the transaction
may not be preserved. One way to address this issue could
be simply handing over such a transaction-query pair to the
transaction balancer, so they can be assigned to the same peer
and propagated to the blockchain in the right order.

Performance anomaly detection plus security deposit:
As we analyzed, simple performance monitoring with contract
banning can be evaded by our zero-Ether DoERS. We propose
a countermeasure against the zero-Ether DoERS. The key idea
is for the service provider to require security deposit from any
potential clients, such that a benign client’s deposit will be
refunded and a malicious client’s deposit will be confiscated
to discourage any further attacks. In the proposed framework,
1) the service provider only processes RPCs from a client
having made security deposits. 2) The service provider monitor
the performance and detect DoERS requests as performance
anomalies. 3) After identifying attackers, the service provider
confiscates deposits from attackers and refunds benign clients.

The success of the countermeasure hinges on whether
the performance monitor can distinguish malicious DoERS
requests from benign RPCs. Here, our assumption is that
a DoERS attacker who wants to keep her cost low and to
evade existing DDoS protections has to make each malicious
eth_call cause a significant amount of computations much
more than a benign RPC.

Interruptible EVM instructions: The success of single-
request DoERS can be attributed to atomic EVM instructions
that timeout cannot interrupt. To avoid this attack vector, EVM
should allow the “long-lasting” execution of a single instruc-
tion (e.g., CODECOPY in exhaustMem) to be interrupted
by timeout. This may require engineering to change EVM’s
instruction scheduling algorithm and to enforce the maximal
memory size allocated by a single CODECOPY call.

VII. RELATED WORKS

Blockchain DoS security: Since the advent, public
blockchains have been a target of DoS attacks. A variety
of DoSes have been designed and practiced on the different
layers of a blockchain system in smart-contract execution [44],
[30], transaction processing [51], [34], [40], mining-based
consensus [26], [60], and the underlying P2P network [54],
[58], [43], [63]. For instance, in the P2P network layer, an

eclipse attack [54], [58] aims to isolate a DoS-victim peer
from the network and a routing attack [43], [63] employs
BGP hijacking to intercept network traffic towards partitioning
it. Among these attack vectors, of particular relevance are
the DoSes that evade the Gas-based mechanism for smart-
contract execution. Under-priced EVM instructions, notably
EXCODESIZE [42] and SUICIDE [21], have been identified
and exploited in practice DoS attacks. Ethereum EIP150 [44]
fixes the bugs by increasing the Gas associated with these
instructions. Broken metering [62] further exploits the runtime
variation of an EVM instruction, with the goal to lower
contract-execution throughput (gas per second) at low cost.
Defensive mechanisms [47] have been proposed to punish
contracts that excessively execute a particular (vulnerable)
instruction. Unlike existing DoS attacks, DoERS uniquely
targets the RPC-service layer of a blockchain node. DoERS
is extremely low-cost and does not incur no Gas or Ether),
which differs from existing DoSes that incur significant Gas.

Blockchain RPC attacks: In the existing literature, the only
research work on the attacks exploiting blockchain’s RPC is a
measurement of currency stealing attacks [48]. In the currency-
stealing attack, an adversarial client exploits the time window
between an account-unlocking RPC request and a transaction-
send request, such that she can gain unauthorized access to an
account unlocked on a RPC service. DoERS differs from the
RPC-based currency stealing attack in that it does not exploit
the privileged RPCs (e.g., account unlocking and transaction
sending) but focus on the open RPC queries that allow smart-
contract execution.

Blockchain measurements: Passive measurement [57] re-
veals various deployment information in Ethereum network
(e.g., node distribution, network sizes, etc.). The approach
taken is to launch several Ethereum nodes and collect the mes-
sages they exchange with their neighbors, which are analyzed
to uncover network information. There are other measurement
works focusing on Bitcoin network topology [50], [53], Mon-
ero P2P network [45], ERC20 token networks [65], etc. The
measurement studies in this work focus on the DoERS security
and leverage a novel measurement method based on orphan
transactions that are not taken in existing works.

VIII. RESPONSIBLE DISCLOSURE

We have disclosed the DoERS vulnerability to the developer
communities of Geth [15] and Parity/OpenEthereum [38], as
well as all tested service providers. The bug reports are sent
in May, 2020, leaving tested services at least 9 months to fix
the bug before disclosing the vulnerability publicly (in Feb.
2021).

We have received a total of $260 bounty in Ether and are
informed by the RPC services that bug fixing is in progress.
For instance, our bug report has been acknowledged in Geth
v1.9.16 release (July 10, 2020), which sets a new default limit
to 25 ∗ 106 Gas. Also after our reporting, ServiceX5 sets a
new limit to their service at 25 ∗ 106 Gas, and invites us for
further testing.

14

IX. CONCLUSION

This paper presents the first measurement study on the
security of Ethereum’s RPC-enabled nodes under denial of
service attacks. The results reveal that five out of the nine
popular services (as of Apr. 2020) have turned on RPCs with-
out configuring any Gas limits. These peers are particularly
vulnerable and can be crashed by the proposed DoERS attack
that sends as few as a single eth_call request at zero
Ether cost. While the four other services including ServiceX6
have configured Gas limits, the limits are so nonrestrictive
that a properly configured DoERS attack can cause a latency
increase by 2.1× ∼ 50×, as verified in our probes. On a local
node protected by a very restrictive limit of 0.65 block gas,
sending 150 RPC requests per second can slow down the block
synchronization of the victim by 91%.

This work addresses the challenge of eliminating the Do-
ERS vulnerability without affecting service usability. We pro-
pose mitigation beyond simply limits the Gas; these techniques
include unpredictable load balancing, performance anomaly
detection, and interruptible EVM instructions. They are easy
to be engineered in a RPC service at the layers of both service
frontend and the underlying EVM.

ACKNOWLEDGMENT

The authors thank anonymous NDSS reviewers. The
first four authors are partially supported by NSF Grant
CNS1815814. XiaoFeng Wang is supported in part by the NSF
CNS-1618493, 1838083 and 1801432. Xiapu Luo is supported
by Hong Kong RGC Project (No. 152193/19E).

REFERENCES

[1] Amazon ec2 - amazon web services. https://aws.amazon.com/ec2/.
[2] Api reference (json-rpc). https://en.bitcoin.it/wiki/API reference

(JSON-RPC).
[3] Bigquery: Serverless, highly scalable, and cost-effective cloud data

warehouse. https://curl.haxx.se/.
[4] Bitcoin script. https://en.bitcoin.it/wiki/Script.
[5] Blockchain explorer. https://www.blockchain.com/explorer.
[6] Chain api — eosio developer docs. https://developers.eos.io/

manuals/eos/latest/nodeos/plugins/chain api plugin/api-reference/
index#operation/get account.

[7] Cryptokitties: Collect and breed digital cats! https:
//www.cryptokitties.co/.

[8] Cryptokitties on dapp radar (showing five smart contracts deployed on
ethereum). https://dappradar.com/app/3/cryptokitties.

[9] curl, command line tool and library for transferring data with urls. https:
//curl.haxx.se/.

[10] Dapp survey results 2019. https://medium.com/fluence-network/dapp-
survey-results-2019-a04373db6452.

[11] Devp2p library (used in ethereum). https://github.com/ethereum/
devp2p/.

[12] Eip 1767: Graphql interface to ethereum node data. https://
eips.ethereum.org/EIPS/eip-1767.

[13] Eosio on dfuse. https://docs.dfuse.io/guides/eosio/.
[14] Eth namespace: Geth provides “state override” extensions to the standard

“eth call”. https://geth.ethereum.org/docs/rpc/ns-eth.
[15] Ethereum bounty program. https://bounty.ethereum.org/.
[16] Ethereum json rpc. https://ethereumbuilders.gitbooks.io/guide/content/

en/ethereum json rpc.html.
[17] Ethereum name service.
[18] Faucet in gitcoin. https://gitcoin.co/faucet.
[19] Gas limit on eth call? https://community.infura.io/t/gas-limit-on-eth-

call/1115/.

[20] getfunddetails in the melon protocol. https://github.com/melonproject/
protocol/blob/f5bc07870c0f6a88a1b0ec855752dbd9cc6a23f5/src/
contracts/factory/FundRanking.sol#L8.

[21] Geth nodes under attack again (reddit). https://www.reddit.com/r/
ethereum/comments/55s085/geth nodes under attack again we are
actively/.

[22] Geth requires manual configuration to enable rpc. https://github.com/
ethereum/wiki/wiki/JSON-RPC#json-rpc-endpoint.

[23] Go sdk — stellar developer — rest api. https://www.stellar.org/
developers/horizon/reference/index.html.

[24] Google cloud: Cloud computing services. https://cloud.google.com/.
[25] Internal/ethapi: allow eth call with custom code. https://github.com/

ethereum/go-ethereum/issues/19836.
[26] Irreversible transactions: Finney attack. https://en.bitcoin.it/wiki/

Irreversible Transactions#Finney attack.
[27] Json rpc api - wiki. https://wiki.parity.io/JSONRPC.
[28] Json-rpc in ethereum wiki (eth call). https://github.com/ethereum/wiki/

wiki/json-rpc#eth\ call.
[29] Json-rpc in ethereum wiki (eth estimategas). https://github.com/

ethereum/wiki/wiki/json-rpc#eth\ estimateGas.
[30] Known attacks - ethereum smart contract best practices.

https://consensys.github.io/smart-contract-best-practices/known
attacks/#dos-with-block-gas-limit.

[31] Ligntning network, scalable, instant bitcoin/blockchain transactions.
[32] Management apis by go ethereum. https://github.com/ethereum/go-

ethereum/wiki/Management-APIs.
[33] Melon terminal. https://melon.avantgarde.finance/.
[34] Memoria 700 million stuck in 115,000 unconfirmed bitcoin trans-

actions. https://www.ccn.com/700-million-stuck-115000-unconfirmed-
bitcoin-transactions/.

[35] Metamask: A crypto wallet & gateway to blockchain apps. https:
//metamask.io/.

[36] Nmap: the network mapper - free security scanner. https://nmap.org/.
[37] Node discovery protocol in devp2p. https://github.com/ethereum/

devp2p/blob/master/discv4.md.
[38] Parity bug bounty program. https://www.parity.io/bug-bounty/.
[39] Public apis on greymass, an eosio block producer. https://greymass.com/

en/apis.
[40] Report: Bitcoin (btc) mempool shows backlogged transactions, increased

fees if so? https://goo.gl/LsU6Hq.
[41] Solidity in depth – contracts, section: View function and pure function.

https://solidity.readthedocs.io/en/v0.4.24/contracts.html.
[42] Transaction spam attack: Next steps. https://blog.ethereum.org/2016/09/

22/transaction-spam-attack-next-steps/.
[43] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin:

Routing attacks on cryptocurrencies. In IEEE Symposium on SP 2017,
pages 375–392, 2017.

[44] Vitalik Buterin. Eip150: Gas cost changes for io-heavy operations.
[45] Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo

Verı́ssimo. Exploring the monero peer-to-peer network. IACR
Cryptology ePrint Archive, 2019:411, 2019.

[46] Raphael Lefbvre Renaud Larsen Cathy Pill, Sarah Levin Weinberg.
Stellar: Smart influencer marketing platform. stellar.io.

[47] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo,
Man Ho Au, and Xiaosong Zhang. An Adaptive Gas Cost Mechanism
for Ethereum to Defend Against Under-Priced DoS Attacks. In ISPEC
2017, pages 3–24, 2017.

[48] Zhen Cheng, Xinrui Hou, Runhuai Li, Yajin Zhou, Xiapu Luo, Jinku
Li, and Kui Ren. Towards a first step to understand the cryptocurrency
stealing attack on ethereum. In RAID 2019, pages 47–60, 2019.

[49] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0:
Frontrunning, transaction reordering, and consensus instability in de-
centralized exchanges. CoRR, abs/1904.05234, 2019.

[50] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton,
Andrew Pachulski, Andrew Miller, and Bobby Bhattacharjee. Tx-
probe: Discovering bitcoin’s network topology using orphan transac-
tions. In Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22,
2019, Revised Selected Papers, pages 550–566, 2019.

[51] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok:
Transparent dishonesty: Front-running attacks on blockchain. In
Financial Cryptography and Data Security - FC 2019 International

15

Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February
18-22, 2019, Revised Selected Papers, pages 170–189, 2019.

[52] Amir Feder, Neil Gandal, J. T. Hamrick, and Tyler Moore. The impact of
ddos and other security shocks on bitcoin currency exchanges: evidence
from mt. gox. J. Cybersecur., 3(2):137–144, 2017.

[53] Matthias Grundmann, Till Neudecker, and Hannes Hartenstein. Exploit-
ing transaction accumulation and double spends for topology inference
in bitcoin. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark,
Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors,
Financial Cryptography and Data Security - FC 2018 International
Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao,
March 2, 2018, Revised Selected Papers, volume 10958 of Lecture Notes
in Computer Science, pages 113–126. Springer, 2018.

[54] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on bitcoin’s peer-to-peer network. In Jaeyeon Jung and
Thorsten Holz, editors, USENIX Security 2015, Washington, D.C., USA,
pages 129–144. USENIX Association, 2015.

[55] Maurice Herlihy. Atomic cross-chain swaps. In ACM Symposium on
PODC 2018, pages 245–254, 2018.

[56] Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek, and
Tyler Moore. Game-theoretic analysis of ddos attacks against bitcoin
mining pools. In Financial Cryptography and Data Security - FC
2014 Workshops, BITCOIN and WAHC 2014, Christ Church, Barbados,
March 7, 2014, Revised Selected Papers, pages 72–86, 2014.

[57] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew
Miller, and Michael Bailey. Measuring ethereum network peers. In
Proceedings of IMC 2018, pages 91–104, 2018.

[58] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource
eclipse attacks on ethereum’s peer-to-peer network. IACR Cryptology
ePrint Archive, 2018:236, 2018.

[59] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
Sprites: Payment channels that go faster than lightning. CoRR,
abs/1702.05812, 2017.

[60] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal,
and Ari Juels. Bdos: Blockchain denial of service, 2019.

[61] OpenEthereum. Parity opens rpc by default only to requests
from localhost. https://github.com/openethereum/openethereum/
blob/597cbc2d6c62cae6374f8e6fce6eb954de3504cb/parity/cli/tests/
config.full.toml.

[62] Daniel Pérez and Benjamin Livshits. Broken metre: Attacking resource
metering in EVM. CoRR, abs/1909.07220, 2019.

[63] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk Kang. A
Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network. In
To appear in Proceedings of IEEE Symposium on Security and Privacy
(IEEE S&P), 2020.

[64] Marie Vasek, Micah Thornton, and Tyler Moore. Empirical analysis
of denial-of-service attacks in the bitcoin ecosystem. In Financial
Cryptography and Data Security - FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected
Papers, pages 57–71, 2014.

[65] Friedhelm Victor and Bianca Katharina Lüders. Measuring ethereum-
based ERC20 token networks. In Financial Cryptography and Data
Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts
and Nevis, February 18-22, 2019, Revised Selected Papers, pages 113–
129, 2019.

APPENDIX

A. Exploitability Measurements on Ethereum Peers

The initial state of the measurement study is a list of
Ethereum peers’ IPs collected from the mainnet (based on a
passive measurement method [57]; see details in § A2). Given
the peers’ IPs, our first measurement module (§ A1a) is to
classify whether each peer is a valid, public RPC peer. Validity
means that the peer should not be a honeypot. Each identified
public RPC peer is a potential victim under DoERS, as its
IP and RPC port is known. The second measurement module
(§ A1b) is to profile these potential victim peers and to obtain
their gas limit. Recall that a gas limit can prevent a naive
DoERS attack. With the knowledge of the IP, RPC port, and

gas limits of an Ethereum peer, a practical DoERS attack that
evades the gas limit can be readily adjusted and mounted. The
measurement results and security implications are discussed
respectively in § A2 and in § IV-F.

1) Measurement Methodology:

1 int TestPublicRPC(Peer peerIP){
2 int res;
3 int[] ports = nmap(peerIP);
4 for(int port : ports) {
5 try{ res = getRPC(peerIP,port).getBlockNumber();
6 } catch (Exception e) { if (e instanceOf Timeout)

continue; }
7 return port; }
8 return -1;} // not a RPC node
9

10 bool TestHoneypot(Peer peerIP){
11 //tx is a double-spend
12 try{ txhash = peerIP.sendTransaction(tx);
13 } catch(Exception e){ return false; }
14 if (txhash > 0) return true; //is a honeypot
15 else return false;}

Fig. A.14: Benchmark programs to characterize a public RPC
peer

a) Module 1: Classify Ethereum Peers: A public RPC
peer is an Ethereum peer who accepts RPC requests from
anyone on the Internet. To distinguish a public RPC peer from
a non-RPC peer, we aim to answer the following questions: 1)
if a peer has a port that responds to incoming RPC requests,
and 2) if a RPC peer is a honeypot.

To test if a peer supports RPC, we set up a mea-
surement node to scan the ports of a target peer, using
nmap [36] and starting with the default ports, 8545. For
each open port identified, it then sends a RPC request (e.g.,
eth_getBlockNumber()) and observes any response be-
fore timeout.

A honeypot in this work is an Ethereum peer who does
not follow the Ethereum protocol and conceals its derailing
behavior to appear as a honest node. For instance, a honeypot
peer falsely returns success to any received transactions with-
out actually validating them, or it does validate a transaction
but without propagating it. In practice, honeypot nodes exist
for measurement or attacking purposes (e.g., useful to attract
actual attackers without affecting the mainnet [48]). From the
DoERS’s point of view, a honeypot may not be a preferred
target as it does not serve real DApp workloads. To test if
a peer is a honeypot, our measurement node first sends to
the target peer a double-spending transaction and observes
the response. If the response is a success (meaning falsely
admitting a double-spending transaction), the peer must be a
honeypot. Otherwise, our measurement node then sends a valid
transaction, and observe if the transaction will appear in other
Ethereum peers. If not, the target peer is a honeypot. In our
approach, the first step is free and the second step uses very
low gas prices to reduce the cost.

b) Module 2: Test Gas Limits: Given a public Ethereum
RPC peer identified by the previous Module 1, the goal of
Module 2 is to test if there is any Gas limit configured on the
peer, and if so how much the limit is.

Our test program, named by rpc_gasLimit, is in

16

1 float rpc_gasLimit(IP rpcNode){
2 int lengthLower=0; int lengthUpper=500;//0/500 block gas
3 while (lengthUpper - lengthLower > 1){
4 arrayLength = (lengthLower + lengthUpper) / 2;
5 try{
6 rpcNode.eth_call(exhaustMem,arrayLength);
7 } (Exception e) {
8 if(e instanceOf OutofGasException){
9 lengthUpper = arrayLength;

10 } else { //no gas limits
11 return 0;}
12 } else {
13 lengthLower = arrayLength;}}
14 return localNode.estmateGas(exhaustMem,arrayLength);}

Fig. A.15: Measure Gas limit of an RPC node

List A.15. The goal of the test program is to find the maximal
argument (arrayLength in function exhaustMem()) that
does not trigger the out-of-gas exception, a value that implies
the Gas limit. To do so, the program starts with an initial
guess on the target arrayLength value, then grows the
guess exponentially until the first exception is observed. It
then enters the second phase that binary-search the Gas-limit
corresponding value of arrayLength. After the target value
V is obtained, the program then uses a local RPC node
(under our control) to run estimateGas() with function
exhaustMem under V . The returned value is the Gas limit.
Note that our design uses exhaustMem function which
consumes gas faster than the other two exhaustXXs and can
finish before Ethereum’s default 5-second timeout.

2) Measurement Results: Public RPC peers: We conduct
a passive measurement study on the Ethereum DevP2P net-
work [11] for a 96-hour period (from April. 08 to April. 12
2020). This passive measurement method is inspired by [57].
We launch eight measurement nodes and remove the default
maximal number of the neighbors allowed on them, such
that each node can be connected by as many Ethereum
peers as possible. The dynamic nature of Ethereum and its
peer discovery mechanism [37] ensures that our measurement
nodes can be constantly discovered by and connected to new
Ethereum peers. In the measurement period, we record the
IPs of all the neighbors of our eight measurement nodes, and
remove the duplicated ones. Additionally, for each connected
neighbor, our measurement node gets engaged in the Ethereum
handshake process9 through which the network identifier of the
neighbor is revealed (more specifically, in the genesis block
header exchanged through the STATUS message). We then
select the neighbor peers with the “mainnet” identifier. During
this 96-hour period, the measurement node finds a total of
8924 distinct Ethereum peers in the mainnet.

Based on the 8924 mainnet peers, we run our benchmark
scripts in Figure A.14 against each peer. It finds 439 public
RPC peers, among which 348 (91) use the default (non-
default) RPC ports (the default RPC port is 8545). Among the
439 public RPC peers in the mainnet, 436 are non-honeypots.

Gas limits: We then move forward to measure the Gas limits

9The handshake process runs a series of protocols including RLPX,
DevP2P and Ethereum subprotocol, and the STATUS message is in the
Ethereum subprotocol.

TABLE II: Measurement results of public RPC peers in
Ethereum

Ethereum-mainnet peers 8927
RPC peers in mainnet (default/non-default
port)

439 (348/91)

Public RPC peers (i.e., w. a RPC port, in
mainnet and non-honeypot)

436

Public RPC peers without gas limits 348
Public RPC peers with gas limits 88

of these non-honeypot, mainnet, RPC peers (which we will
simply refer to as public RPC peers). We used the script in
Figure A.15. We found out of 436 public RPC peers, 88 have
a non-zero Gas limit, among which two have a limit of 782.5
block gas, one has a limit of 214 block gas and all others
running Parity have 50 block gas as the limit.10

Timeout: On nodes without gas limits, we measure the
response time of a RPC call throwing timeout exception and
observe the measured time on all nodes is consistent with the
default 5 second timeout in EVM.

3) Attack Strategies and Security Implication: This result
reveals two types of RPC nodes on Ethereum mainnet: 348
RPC peers without gas limits and 88 RPC peers configured
with a quite loose gas limit (mostly 50 block gas).

For the RPC node without gas limit, we design a single-
request DoERS attack that has the power of evading all
other protective measures we will observe in the next section
(including rate limiting and load balancing). The attack sends a
single request with a very large payload size (e.g., 109) to run
the exhaustMem function in the DoERS-C smart contract.
The key observation here is this: exhaustMem runs a single
EVM instruction, namely CODECOPY, to allocate a large
memory. Running a single EVM instruction is atomic and is
not interrupted, even when there is a timeout. Thus, the DoERS
attacker can increase the payload size of an exhaustMem
invocation to evade the 5-second timeout, causing a higher
resource consumption and more sever service damage, as will
be evaluated in § V-B.

For the RPC node with gas limit, the gas limit, which is
mostly 50 block gas, is rather loose. The attacker can send
multiple DoERS requests, each with a medium payload size
under the gas limit. If the requests are sent at a sufficiently
high rate, there will be visible service interference, as will be
evaluated in § V-A and § V-B.

The insecurity of RPC nodes further imply the insecurity
of DApps. Because by default, RPC open to public clients
is turned off on Geth [22] and Parity [61], the fact that
these identified nodes have RPC manually turned on could
mean they are intentionally used to host some DApps, as an
in-house solution. The insecurity of these RPC nodes could
affect the DApps hosted in house.

4) Evaluation on DoERS Effectiveness: We select a pub-
lic node from our measurement result (i.e., the mainnet
scan of IPs/ports) that did not set Gas limits. On this
node, we mount a DoERS attack with following parameters:

10The default gas limit in Parity is 50 block gas.

17

0 10 20 30 40 50 60

Timeline (second)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(a) 〈Mem, 80M, 0〉

0 10 20 30 40 50 60

Timeline (second)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
)

(b) 〈CPU, 50K, 60〉
Fig. A.16: Evaluate DoERS on a Public RPC Node
(18.179.10.63:8545)

eth_call(exhaustCPU(5 ∗ 104)) at the rate of 60 re-
quests per second. The result is reported in Figure A.16b.
After the attack starts at the 5th second, the response time
is increased by 2× (from 0.2 seconds to 0.4 seconds).

On the same node, we then send the following single-request
attack: eth_call(exhaustMem(8 ∗ 107)). The result is
in Figure A.16a which shows a 4× increase of response time
after the attack starts (from 0.2 seconds to 0.8 seconds).

B. Measuring Rate Limits on RPC Services

Many RPC services have deployed rate limiting on their
frontend. We write a simple test program that sends RPCs at
a certain rate for a period of time. During the measurement,
we increase rates and vary the measurement duration, to
observe if an “max rate reached” exception is thrown or if
the response returns null. The exception means a maximal
rate is reached. Here, what’s sent are normal RPCs, such as
eth_getBlockNumber.

The results in Table III show that the measured rate limits
are often inconsistent with the numbers published on services’
websites.
C. Estimating Peer Count

Recall (§ IV-A) that some services’ load balancers depend
on the timing of the requests. Based on the timing dependency,
we can design further measurements and estimate the peer
count of the service. To do so, we first measure the expiration
time of an orphan transaction. To do so, we send an orphan

TABLE III: Characterizing Ethereum RPC services in gas and
rate limits (in red are the detected absence of gas limits which
poses vulnerability. Also can be seen is the inconsistency
between the rate limits published on their websites and the
rates revealed thru. the measurements.)

RPC services Client Rate limits (free tier) MiningPublished Measured

ServiceX1 N/A 3/sec. 1 ∼ 2/sec. 7
ServiceX2 Geth

ethshared
Unlimited > 7200/min. 7

ServiceX3 Parity 2/sec. < 2/sec. 3

ServiceX4 Geth Unlimited 6000 ∼ 6060/min. 7
ServiceX5 N/A 5/sec./IP 2.33 ∼ 2.66/sec. N/A

ServiceX6 Geth-
omnibus

105/day (40.60 ∼ 40.75) ∗ 105/day 7

ServiceX7 Geth 400/min 240 ∼ 300/min 7
ServiceX9 AnonymizedUnlimited 750 ∼ 900/min. 7

transaction with nonce + 2 (nonce is the nonce of the latest
confirmed transaction) and wait t seconds before sending the
second transaction with nonce + 1. The second transaction
makes the orphan transaction become un-orphaned. Thus by
checking whether the orphan transaction was propagated (thru.
eth_getTransaction), one can know that if the orphan
transaction has lived t seconds. In other words, the lifetime
of an orphan transaction must be longer than t seconds. By
varying t, one can get the exact expiration time of an orphan
transaction. By this means, we measure ServiceX6 and obtain
that an orphan transaction expires in 64 minutes.

With the knowledge of orphan expiration time t and the
timing behavior, one can infer the peer count in a RPC service.
We design the following experiment: In a period of 64 minutes,
we send three orphan transactions every minute (in its first
20 seconds). We observe that all 192 orphan transactions
succeeded. This result implies that there are at least 192 RPC
peers in the backend of ServiceX6.11

We have measured ServiceX9’s orphan expiration time in
the similar fashion with ServiceX6 and obtained 40 second.
This result implies there are at least 6 nodes in the backend
of ServiceX9 service.

11Otherwise, with fewer than 192 peers, it would cause at two orphans to
collide on the same peer, one of which must fail.

18

