
RandRunner: Distributed Randomness from
Trapdoor VDFs with Strong Uniqueness

Philipp Schindler∗, Aljosha Judmayer†∗, Markus Hittmeir∗, Nicholas Stifter∗‡, and Edgar Weippl†
∗SBA Research †Universität Wien ‡TU Wien

Abstract—Generating randomness collectively has been a long
standing problem in distributed computing. It plays a critical
role not only in the design of state-of-the-art Byzantine fault-
tolerant (BFT) and blockchain protocols, but also for a range
of applications far beyond this field. We present RandRunner,
a random beacon protocol with a unique set of guarantees that
targets a realistic system model. Our design avoids the necessity of
a (BFT) consensus protocol and its accompanying high complexity
and communication overhead. We achieve this by introducing a
novel extension to verifiable delay functions (VDFs) in the RSA
setting that does not require a trusted dealer or distributed key
generation (DKG) and only relies on well studied cryptographic
assumptions. This design allows RandRunner to tolerate adver-
sarial or failed leaders while guaranteeing safety and liveness of
the protocol despite possible periods of asynchrony.

I. INTRODUCTION

Generating cryptographically secure randomness locally is
essential for secure communication. While being a challeng-
ing topic in itself, there exists a range of well established
approaches to solve this problem. These range from direct
support within modern operating systems, using a variety of
different entropy sources, to dedicated CPU instructions or
external hardware devices. However, as soon as randomness is
not required on an individual basis but rather used collectively,
local solutions fail to provide convincing evidence that some
claimed random value was indeed derived randomly. Still,
as outlined by the extensive body of prior works [42], [45],
[16], [10], a broad range of applications relies on collec-
tively used randomness. This includes the design of BFT
and blockchain protocols, cryptographic parameter generation,
e-voting, auditable selections, online gaming and gambling,
privacy enhancing technologies, as well as Smart Contracts
and other forms of multi-party computation. To address these
scenarios, randomness from trusted third parties, for example,
the NIST random beacon or random.org, may be used. How-
ever, the additional trust assumptions and reliance on a central
randomness provider, which may know the beacon values
well in advance before publishing, or could even manipulate
the produced values without being detected, is undesirable.
Fortunately, there exists a range of distributed protocols which
can be used instead to avoid trusting centralized services.

The techniques used by modern protocols for distributed
randomness generation have advanced significantly since coin

tossing protocols and the notion of a random beacon, in-
troduced by Blum [5] and Rabin [40] in 1983. As recently
compared by Schindler et al. [42], modern techniques include
threshold cryptography, in particular publicly-verifiable secret
sharing (PVSS) [31], [16], [45], [42] and threshold signature
schemes [14], [29], as well as verifiable random functions
(VRFs) as seen in Algorand [17] and Ouroboros Praos [31].
Additionally, methods in which randomness is extracted from
existing data sources such as the Bitcoin blockchain [10], [4],
[38] or published financial data [18] have been considered.
Methods based on delay functions (also known as slow-time
functions) have been described [33] and were later realized via
the Ethereum Smart Contract platform [12]. Recently, methods
based on delay functions have received increased interest with
the rise of verifiable delay functions (VDFs) [6], [7], [39], [46].
Although the characteristics of VDFs make them a promising
candidate for their use in random beacon protocols, the number
of protocols utilizing VDFs to construct random beacons is
rather limited. To the best of our knowledge, there exists only
RANDAO [13] which collects entropy from different parties
to be used as input for a VDF, as proposed by J. Drake and
discussed in the online ethresear.ch forum [22]. Apart from this
discussion, there has not been any formal security analysis of
the scheme.

In this paper, we demonstrate how VDFs, specifically
strongly unique trapdoor VDFs which we introduce in Sec-
tion II, can be leveraged to construct a new category of random
beacon protocols. We describe RandRunner, a random beacon
protocol with a unique set of security guarantees that also
offers excellent scalability, performance and responsiveness.
Our new protocol aims to fulfill all desirable properties pre-
viously considered for randomness beacons. These include
the key properties of unpredictability, bias-resistance, avail-
ability/liveness as well as public-verifiability. In other words,
an adversary must neither be able to predict future random
beacons before they become publicly available, nor bias the
distribution of the produced randomness, nor prevent the
protocol from making progress. Furthermore, each produced
protocol output must be efficiently verifiable even by third
parties. As an extension to liveness and bias-resistance, we
also set out to achieve the property of guaranteed output
delivery [16], [42], ensuring that an adversary cannot even
prevent the protocol from producing an output in any protocol
round. In addition, RandRunner’s construction and protocol
description remains both simple to understand, as well as
efficient (in terms of communication and verification complex-
ity). To derive and prove the correctness of a fresh protocol
output, only a single message, around 10 KB in size1, has

1This is essentially the proof size of the used VDF [39].

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23116
www.ndss-symposium.org

to be disseminated throughout the network of nodes running
the protocol. The underlying message distribution mechanism
is decoupled from the core protocol, providing the flexibility
to adapt to a particular deployment scenario. For example,
in large networks gossip protocols with communication com-
plexity of O(n log n) and higher latency may be used, while
reliable broadcast with lower latency and complexity O(n2)
may suit smaller networks. By construction, our protocol
ensures predetermined agreement on the sequence of random
numbers produced without the necessity of continuous Byzan-
tine agreement (BA). This also guarantees bias-resistance and
public-verifiability and even allows for progress/liveness under
periods of full asynchrony.

A. Contribution

Summarizing, the contributions of this paper are as follows:

• We extend the concept of trapdoor verifiable de-
lay functions (T-VDFs), as initially defined by
Wesolowski [46], by formally defining the strong
uniqueness property.

• We show how to instantiate T-VDFs that achieve this
property and prove the security of our construction.

• Using a T-VDF with strong uniqueness as the main
building block, we specify a new randomness beacon
protocol called RandRunner and prove that it provides
the desired security properties.

• We simulate the execution of our newly proposed
protocol to demonstrate its practical feasibility under
various scenarios and protocol configurations.

• We discuss and compare our solution to other state-
of-the-art protocol designs.

B. Paper Structure

In Section II, we introduce the required background in-
formation on the topic of verifiable delay functions (VDFs),
define trapdoor VDFs with the property of strong uniqueness,
and show how to construct this type of VDF in practice. We
provide an example and a first overview of the design of
our randomness beacon, using the constructed VDF as the
main cryptographic component, in Section III, describe our
system and threat model in Section IV, and give the details
of our construction in Section V. Section VI presents our
security proofs and simulation results for the protocol. Finally,
we compare our design with existing state-of-the-art protocols
in Section VII and conclude our paper in Section VIII. In
the appendix, we provide a notation reference as well as
additional evaluation results for a wide range of possible
protocol parameterizations and scenarios to further highlight
the feasibility of our approach in practice.

II. TRAPDOOR VDFS WITH STRONG UNIQUENESS

In this section, we summarize the original concept of verifi-
able delay functions (VDFs) and define the exact requirements
for a VDF serving as the main cryptographic component in
our random beacon protocol: a trapdoor VDF with the strong

uniqueness property2. We finally show how such a VDF can
be constructed using standard cryptographic assumptions and
provide the corresponding security proofs.

A. Background

VDFs were first introduced by Boneh et al. [6] in 2018, and
have since received increased attention from other researchers
(see, e.g., [6], [46], [39], [7], [20], [32], [44], [25], [24], [34]).
As introduced by Boneh et al. [6], [7], a VDF is a function
f : X → Y which maps every input x ∈ X to an unique
output y ∈ Y . Computing the VDF is sequential in the sense
that it takes a prescribed amount of time, whether or not it
is executed on multiple processors. Verification, on the other
hand, should be as quick as possible. Closely following Boneh
et al.’s definition [6], a VDF is described via a set of three
algorithms:

Setup(λ) → pp is a randomized algorithm that takes a
security parameter λ as input and outputs public parameters
pp sampled from some parameter space PP .

Eval(pp, x, T)→ (y, π) takes public parameters pp ∈ PP , an
input x ∈ X and a time parameter T ∈ N and outputs a y ∈ Y
together with a proof π.

Verify(pp, x, T, y, π) → {accept , reject} takes public para-
meters pp ∈ PP , an input x ∈ X , a time parameter T ∈ N,
the output y ∈ Y and the corresponding proof π and outputs
accept if y is the correct evaluation of the VDF on input
(pp, x, T) and reject otherwise.

Setup may require secret randomness as input. This secret
input must not be recoverable by any party after Setup is
completed, as knowledge of the secret randomness (depending
on the construction) can be used to break the uniqueness and/or
sequentiality properties of the VDF. In practice, e.g., in an
RSA-based setting, this complicates the setup as the generation
of the parameters requires either the use of a trusted dealer
who has to delete the secret randomness after the process, or
a rather complex secure multi-party computation.3 As we will
show, the trapdoor VDFs we use in RandRunner’s protocol
design avoid these disadvantages.

VDFs as introduced above have to satisfy certain proper-
ties, namely:

1) ε-evaluation time: a runtime constraint for Eval ,
2) sequentiality: Eval must not be parallelizable, and
3) uniqueness: Verify must accept a single output per

input (except with negligible probability).

We give the definition of these properties for the specific kind
of VDF we require in the following and refer the reader to the
excellent works of Boneh et al. [6], [7] and Pietrzak [39] for
a formal definition of these properties in the general setting.

2An interesting observation, noted by one anonymous reviewer, is that
verifiable random functions (VRFs) [35] and these T-VDFs share the strong
uniqueness property. The main difference is that (T-)VDFs are (slowly)
publicly computable whereas VRFs are not.

3In a recent result, Frederiksen et al. [27] provide an implementation for
the malicious two-party setting. Using server grade hardware connected via
a 40.0 Gbps network link, they we able to achieve average runtimes of 35
seconds. However, we are not aware of any practical solutions for the malicious
multi-party setting which would be desirable for the setup of VDFs.

2

B. On Trapdoors and Strong Uniqueness

For our random beacon protocol, we require a special kind
of VDF, namely a trapdoor VDF which ensures strong unique-
ness. Regarding the corresponding definitions we give below,
we closely follow Boneh et al.’s work [7] for the traditional
setting. Whereas their work only considered public parameters
generated by Setup, our definition covers all parameters from
the parameter space PP . All valid parameters, in particular
all parameters generated by Setup, are part of PP . However,
PP is defined in terms of the specific properties the parameters
have to fulfill instead of being implicitly defined via Setup.
This also allows us to reason about VDFs for which the
parameters are generated by an adversary, and it is crucial
for the definition of ε-evaluation time and strong uniqueness.

Trapdoor VDFs, as initially described by Wesolowski [46],
are a modification and extension to traditional VDFs such
that the Setup algorithm, in addition to the public parameters
pp, outputs a secret key or trapdoor sk to the party invok-
ing the setup algorithm. This parameter sk is kept secret
by the invoker, whereas pp is published. Furthermore, the
algorithm TrapdoorEval(pp, x, T, sk) → (y, π) provides an
alternative way to evaluate the VDF efficiently, i.e., within time
Ø(poly(λ)), for parties which know the trapdoor sk. Parties
without this knowledge, as in the traditional VDF case, can still
compute the output by executing Eval . However, they require
(1 + ε)T sequential computational steps to do so.

Definition 1. (ε-evaluation time) For all inputs x ∈ X and
all public parameters pp ∈ PP , the algorithm Eval(pp, x, T)
runs in time at most (1 + ε)T .

Due to the introduction of the trapdoor, and in contrast
to traditional VDFs, the sequentiality property only holds for
parties which do not know the trapdoor, a property we make
use of in the construction of our random beacon.

Definition 2. (Sequentiality without trapdoor) A parallel al-
gorithm A, using at most poly(λ) processors, that runs in time
less than T cannot compute the function without the knowledge
of a secret trapdoor sk. Specifically, for a random x ∈ X and
all public parameters pp output by Setup(λ), if (y, π) is the
output of Eval(pp, T, x), or TrapdoorEval(pp, x, T, sk), then
the probability that A can compute y in less than T steps is
negligible.

Strong uniqueness extends the requirement for uniqueness
to a setting in which the public parameters of the VDF may
be generated by an adversary. This setting was not considered
in Wesolowski’s paper [46], and unfortunately, Wesolowski’s
VDF also does not achieve this property. In their case, both
uniqueness and sequentiality can be broken by an adversary
knowing the trapdoor. We however envision a range of appli-
cations for trapdoor VDFs where this property is crucial. This
includes, e.g., scenarios in which parties set up their VDF
individually, as is the case with our randomness beacon.

Definition 3. (Strong Uniqueness) For each input x ∈ X , and
all public parameters pp ∈ PP , exactly one output y ∈ Y
is accepted by Verify , with negligible error probability (even
if the public parameters pp have been adversarially gener-
ated). Specifically, let A be an efficient algorithm that outputs
(pp, x, T, y, π) such that Verify(pp, x, T, y, π) = accept . Then

Pr[Eval(pp, x, T) 6= y] is negligible.

Notice that we follow Boneh et al.’s most recent definition
of uniqueness [7], whereas uniqueness was previously implic-
itly defined by the properties of correctness and soundness [6].

C. Design Rationale

Efficient VDF designs, for example the protocols by
Wesolowski [46] or Pietrzak [39], operate in groups of un-
known order, such as the well known RSA groups or class
groups of an imaginary quadratic field [11]. While the security
of RSA groups has been studied for decades, the parameter
setup for the VDF (i.e., computing the modulus N as the
product of two safe primes) is considered difficult without re-
quiring a trusted dealer. Class groups of an imaginary quadratic
field do not require this trust assumption, but their security
properties are less studied compared to the RSA case. With
our protocol design, however, we show how we can leverage
RSA-based VDFs without the trusted dealer requirements. This
allows us to rely on well tested primitives, while avoiding
additional trust assumptions.

The key motivation for the VDF design we use is that the
party that sets up the VDF can always quickly compute it using
the trapdoor generated during the setup. If this party fails to do
so when required, any other party can step in and eventually
obtain the same result by evaluating the VDF without the
trapdoor. To construct a trapdoor VDF with strong uniqueness
as outlined in Section II-B, we rely on two components:

1) the VDF design by Pietrzak [39] in the RSA setting
and

2) the zero-knowledge proof techniques for safe primes
by Camenisch and Michaels [15], ensuring that an
adversary cannot cheat during the VDF setup and
consequently cannot break the uniqueness of the
scheme.

On a high level, Pietrzak’s VDF is based on the conjecture that
for some random input x ∈ Z∗N and RSA modulus N = p · q,
the computation of y = x2T (mod N) requires T sequential
squarings without knowledge of the factorization of N :

x→ x2 → x22

→ x23

→ ...→ x2T (mod N) , (1)

an idea originally described in the context of time-lock puzzles
by Rivest et al. [41]. The tuple (p, q) can be used as a trapdoor,
because the knowledge of the group order φ(N) = (p−1)(q−
1) enables one to efficiently compute y:

e = 2t (mod φ(N)), y = xe (mod N) . (2)

The construction of a trapdoor VDF from Pietrzak’s VDF
follows naturally, as the trapdoor is simply given by the primes
p and q. In fact, the setup we use is actually simpler than in the
non-trapdoor case, in which one has to assume a trusted dealer
that generates N and later deletes p and q, or, alternatively,
that N is generated without anyone knowing the factors using a
multi-party computation. In our approach, the zero-knowledge
proof techniques by Camenisch and Michaels [15] are used
instead. They ensure that the assumptions for the original secu-
rity proof of the uniqueness property of Pietrzak’s VDF ([39],
Theorem 1) are fulfilled, even if N is generated adversarially.

3

Furthermore, these techniques only rely on common crypto-
graphic assumptions, are quite efficient [15], and can be made
non-interactive using the Fiat-Shamir heuristic [15], [26].

D. Construction

In the following, we describe the complete construction of
a trapdoor VDF with strong uniqueness. We closely follow
the definitions by Boneh et al. [6], [7] and Pietrzak [39] to
define our VDF, mapping inputs x ∈ X to outputs y ∈ Y ,
whereby X := QR+

N and Y := QR+
N . Hereby, we use

QR+
N to denote the group of signed quadratic residues modulo

N (see [39], Section 2.2), and λRSA to denote a security
parameter, specifying the length of the RSA modulus in bits,
which offers at least λ bits of security4. The symbol π is
used to represent a correctness proof of the evaluation of the
VDF. It contains a list of intermediate values, which can be
used to later check the result of the computation efficiently.
Furthermore, let PP := {pp | VerifySetup(λ, pp) = accept}
denote the space of all public parameters. Notice that Eval ,
TrapdoorEval and Verify are only defined for parameters
pp ∈ PP . In our random beacon protocol, we ensure that
we only ever use VDFs with parameters pp ∈ PP by
checking all public parameters once at the start of the protocol.
The complete construction of our trapdoor VDF with strong
uniqueness is as follows:

Setup(λ)→ (pp, sk)

1) Sample two random safe primes p = 2p′ + 1 and
q = 2q′+1 of size λRSA/2, where p′ and q′ are prime
and fulfill the following side-conditions required for
the used proof techniques [15], [28]: p, q, p′, q′ 6≡ 1
(mod 8), p 6≡ q (mod 8), p′ 6≡ q′ (mod 8).

2) Run the zero-knowledge protocol for proving that a
known N is the product of two safe primes ([15],
Section 5.2) and the protocol “proving the knowledge
of a discrete logarithm that lies in a given range”
([15], Section 2.2) to show that the prime factors
p and q are λRSA/2 bits each. Let πN denote the
resulting proof obtained by running both protocols
non-interactively using the Fiat-Shamir heuristic.

3) Return pp := (N, πN) as the public parameters and
sk := (p, q) as the secret key (trapdoor).

VerifySetup(λ, pp)→ {accept , reject}
Return accept if the validity of pp can be successfully checked
by using the verification procedures corresponding to the proof
techniques used in step 2) of Setup as specified by Camenisch
and Michaels [15]. Return reject otherwise.

Eval(pp, x, T)→ (y, π)
Run the evaluation algorithm VDF .Sol(N, (x, T)) → (y, π)
as originally defined by Pietrzak ([39], Section 6) and return
its result.

TrapdoorEval(pp, x, T, sk)→ (y, π)
Derive the group order φ(N) = (p−1)(q−1) from the secret
trapdoor sk := (p, q) and execute the evaluation algorithm

4Typical choices for λRSA are between 2048 and 4096 bits. See e.g.,
https://www.keylength.com/ for a comparison of different recommendations.

VDF .Sol(N, (x, T)) → (y, π) efficiently. As illustrated in
Equation 2, the result y = x2T as well as the values required
for the proof π can be computed efficiently by reducing large
exponents in the computations modulo φ(N).

Verify(pp, x, T, y, π)→ {accept , reject}
Return the result of the verification algorithm
VDF .Ver(N, (x, T), (y, π)) as originally defined by Pietrzak
([39], Section 6).

E. Security Assumptions

We inherit the security assumptions from (i) Pietrzak’s
VDF [39] in the RSA setting as well as (ii) for the proof
techniques from Camenisch et al. [15]. Consequently, we
assume:

• Factoring N is hard.

• Computing x2T is sequential in (QR+
N , x), where x

is a generator5.

• The existence of groups G = 〈g〉 of large known order
Q and a generator h, where computing discrete loga-
rithms is hard and the value of dlogg(h) is unknown.

• Hash functions are modeled as Random Oracles [3].

F. Security Proof

In this section we show that our construction of a trapdoor
VDF with strong uniqueness achieves the required security
properties, i.e., ε-evaluation time, sequentiality without trap-
door, and strong uniqueness. Therefore, the security proof
of our trapdoor VDF construction extends the security proof
provided by Pietrzak [39] for the underlying VDF. As the prop-
erties of ε-evaluation time and sequentiality (without trapdoor)
are not affected by our extension to the trapdoor setting, we
focus on showing that our construction indeed achieves strong
uniqueness. We prove that this property is achieved by first
revisiting Pietrzak’s original security statement for uniqueness,
and then show how our construction ensures all preconditions
required to apply the original proof in our setting.

Theorem 1. As given in [39]. If the input (N, x, T) to the
protocol satisfies

1) N = p · q is the product of two safe primes, i.e.,
p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′.

2) 〈x〉 = QR+
N .6

3) 2λ ≤ min{p′, q′}.

Then for any malicious prover P̃ who sends as first message
y anything else than the solution to the RSW time-lock puzzle,
i.e., y 6= x2T [a verifier] V will finally output accept with
probability at most 3log(T)

2λ
.

The security proof of the above statement ([39], Section 4)
shows that Pietrzak’s VDF achieves uniqueness. For unique-
ness to hold in the original model, only the case in which

5As Pietrzak ([39], Section 2.2) shows, this assumption is essentially equal
to the sequentiality assumption of the RSA time-lock puzzle [41] in (Z∗N , ·).

6That is, x generates QR+
N , the [signed] quadratic residues modulo N .

For our choice of N we have |QR+
N | = |QRN | = p′q′, so 〈x〉 :=

{x, x2, ..., xp′q′} = QR+
N . [39]

4

the public parameters pp (i.e., N in this setting) are generated
by Setup have to be considered. In this case, N and p′, q′

satisfy conditions 1) by construction and 3) for all reasonable
choices of λRSA as λRSA � λ. Condition 2) is met because
almost every x ∈ QR+

N generates QR+
N . A trivial exception

is 1, which can easily be checked for, and some hard to find7

elements of order p′ or q′.

For strong uniqueness, however, the uniqueness property
needs to hold for all public parameters pp ∈ PP . Conse-
quently, we need to show that conditions 1), 2) and 3) still
hold, in particular without restricting pp to be generated by
Setup.

Lemma 1. For all public parameters pp ∈ PP and random
inputs x ∈ QR+

N the protocol described in Section II-D ensures
that conditions 1), 2) and 3) as required by Theorem 1 are
satisfied.

Proof: Recall that PP := {pp | V erifySetup(λ, pp) =
accept}. Since VerifySetup only accepts pp after running the
verification technique from Camenisch et al. [15], which shows
that (i) N is the product of two safe primes and (ii) p and q
are of size λRSA/2 conditions 1) and 3) are satisfied. Since
N = p · q is the product of two safe primes p = 2p′ + 1,
q = 2q′ + 1, the group QR+

N of size p′q′ contains only 1 +
(p′ − 1) + (q′ − 1) elements which do not generate QR+

N .
Consequently, the probability of picking such a small order
element at random, i.e., 1+(p′−1)+(q′−1)

p′q′ , is negligible and thus
satisfies condition 2) for random inputs.

Regarding condition 2), we note that for the application
within our randomness beacon we only use random inputs,
therefore the probability of randomly generating a problematic
value is negligible in this case. However, for applications in
which the adversary can freely select a particular value x, it
can be a problem to ensure that condition 2) indeed holds in
all cases. An efficient procedure to check this property in this
setting was stated as an open problem in Pietrzak’s work [39].
With the following formula, we provide an efficient way to
verify if x is indeed a generator of QR+

N , thereby describing
a method to check if condition 2) holds for all inputs instead
of requiring random inputs:

〈x〉 = QR+
N if x ∈ QR+

N ∧ gcd(x2 − 1, N) = 1 . (3)

A short proof of the above statement is presented in Ap-
pendix A. Note that membership in QR+

N is also efficiently
decidable by computing the Jacobi symbol of x modulo N
(see Section 2.1 in [39]).

III. CONCEPTUAL DESIGN

RandRunner is a distributed randomness beacon which
relies on trapdoor VDFs with strong uniqueness, previously
introduced in Section II, as the key cryptographic building
block. These VDFs are set up prior to the start of the protocol.
In particular, each party running the protocol is responsible for
the initialization of its individual VDF. It keeps the trapdoor
generated during setup secret, while making the verification

7The probability of finding such elements, without knowing the factors of
N , is negligible since there are only p′− 1 or q′− 1 elements of order p′ or
q′ respectively, whereas QR+

N contains p′q′ elements.

Fig. 1: Schematic execution of RandRunner with three nodes
n1, n2 and n3, over a period of seven rounds r1, ..., r7

parameters and the cryptographic proof of the setup’s correct-
ness publicly available.

Following this initial protocol setup, the main protocol
execution can start. The execution of the protocol proceeds
in consecutive rounds. At the end of each round a fresh
random beacon output is produced. In the common case, the
protocol is driven one step/round forward, as a dedicated party
– a leader which changes every round – uses its trapdoor
to evaluate its VDF based on the previous random beacon
output. The leader initiates a broadcast of the result together
with a short correctness proof which enables all parties to
verify and complete the current round. In case of an attack, a
malicious or failed leader, or network issues, the protocol can
still advance, as all parties are able to evaluate the VDF of the
current round without the trapdoor. This is further illustrated
in Figure 1, showing a protocol execution with three nodes.
In this example, the sequence of leaders (n1, n2, n3, n1, . . .)
is derived in a round-robin fashion. In the rounds r1 and r2,
the respective leaders evaluate the VDFs and send the results
to all parties – the protocol progresses quickly. In the third
round r3, the leader n3 fails to forward the result to the other
parties. Therefore, nodes n1 and n2 are slowed down as they
are required to evaluate this round’s VDF without the trapdoor.
In the meantime, node n3 already starts computing the result
of the following rounds, but the other nodes catch up, because
in round r4 and r5 node n3 has to compute the VDFs without
the trapdoors.

In any case, the strong uniqueness property of the used
VDF ensures that the result obtained via the trapdoor and
by evaluation are equal. As the unique output of one VDF
serves as the input of the next VDF, the entire sequence of
random beacon values generated through these chained VDFs
is deterministic and predetermined after the initial protocol
setup. By relying solely on the computation of the (chained)
unique VDF outputs, either with or without the trapdoor, as
random beacon values, agreement on the sequence of these
values by all participants is trivially achieved. Therefore, our
protocol design avoids the necessity for a Byzantine consensus
protocol during execution to agree on random beacon values
and the hereby associated requirements and overheads such
as high communication complexity. Further, as RandRunner’s
beacon values are deterministic, the protocol does not suffer
from inconsistencies due to network partitions. Hence, an
adversary may only be able to influence the unpredictability
guarantees of the presented design, for which we show in

5

Section VI-D that it can be sufficiently bounded within our
protocol such that the desirable properties expected from a
random beacon are nevertheless achieved.

IV. SYSTEM AND THREAT MODEL

The adversary’s goals are to violate the security guarantees
expected for a random beacon protocol. In particular, the
adversary might try to bias the produced randomness, induce
a liveness- or consistency failure, or trick a (third) party into
accepting an invalid random beacon. Another attack is to
learn/predict future random beacon outputs before other nodes
obtain those values. We consider the following system model
in which we demonstrate the security of our protocol against
all of these attacks:

We assume a fixed set of n participants P = {1, 2, . . . , n}
with corresponding public parameters P = {ppi | i ∈
P ∧ VerifySetup(λ, ppi) = accept}. The validity of these
parameters can independently and non-interactively be verified
by all parties, and only valid participants with valid parameters
form the set P . For our analysis, we consider a static adversar-
ial model where at most f nodes may be corrupted and exhibit
Byzantine behavior, i.e., deviate arbitrarily from the protocol.
A node is termed correct or honest if it does not engage in any
incorrect behavior over the duration of the protocol execution,
otherwise it is considered Byzantine. Adaptive adversaries and
their impact on security are further discussed in Section VI-D6.

Messages sent by correct participants are reliably delivered
within a bounded network delay of ∆NET seconds. However,
within this work we also show that the unique properties of our
VDF-based construction provide an upper bound ∆VDF on the
time it takes any participant to learn of the next random beacon
value independent of the actual network delay, guaranteeing
a notion of liveness to the protocol that is not captured by
more classical protocol designs. Specifically, we outline that
only unpredictability is affected by network asynchrony while
all other properties are upheld regardless. After a sufficient
period of network stability where ∆NET holds, i.e., some
global stabilization time (GST) [23], unpredictability is again
achieved quickly. Our simulation results in Appendix C show
that in practice the original unpredictability guarantees are
restored within a linear amount of time relative to the duration
of network asynchrony.

To start the protocol, we assume an initial unpredictable
value R0 which becomes available or is computed by all
parties after the setup is completed. This bootstrapping step
is further described in Section V-B. We furthermore inherit
the security assumptions for the underlying trapdoor VDF
with strong uniqueness, as described in Section II, and model
cryptographic hash functions as random oracles. All VDFs
are configured such that correct nodes are able to evaluate
them within ∆VDF time without knowledge of the trapdoor.
We grant the adversaries a computational advantage allowing
them to perform this computation α times faster, i.e., within
∆VDF/α seconds. The number T of iterations used for eval-
uating the VDFs is empirically derived as it highly depends
on the speed of the actual implementation. It is set such that
executing T iterations of the VDF takes approximately ∆VDF

seconds on the best hardware available.

In Section VI-D, we carefully analyze the interplay be-
tween the protocol parameters ∆NET , ∆VDF , α and the
assumption regarding the adversarial strength (f vs. n). For
example, if the adversary can compute a VDF as quickly as
correct nodes, i.e., α = 1, and the parameter ∆VDF and ∆NET

are chosen such that ∆VDF � ∆NET , the protocol achieves
unpredictability (against all attacks) as long as the adversary
controls less than half of all nodes, i.e., f < n/2. If we
consider a (weaker) covert adversary [1], which secretly wants
to predict future values, instead we show that our protocol can
even tolerate a majority of nodes under the adversary’s control
(Section VI-D5).

V. THE RANDRUNNER PROTOCOL

In this section, we provide details on how to setup and
execute the RandRunner protocol. Throughout our description,
we will reuse the Setup, VerifySetup, Eval , TrapdoorEval
and Verify algorithms introduced in Section II-D.

A. Setup

Before the random beacon protocol can be started, each
participant has to execute the parameter generation, exchange
and verification steps:

Parameter Generation: Regarding initialization, each par-
ticipant i has to generate the public parameters ppi used with
its individual trapdoor VDF with strong uniqueness. Each party
i computes the public parameters ppi and the corresponding
secret trapdoor ski by executing Setup(λ). Note that λ (and
λRSA in the specific case) are globally agreed upon security
parameters, i.e., they cannot be selected by the participant
individually as the produced parameters would be considered
invalid by other participants.

Parameter Exchange: After all parties have completed the
initialization, they have to exchange their public parameters
ppi, but keep their individual trapdoor ski secret. At the
end of this step, each participant should have the same set
P∗ = {pp1, pp2, ..., ppn∗} containing the public parameters
of all participants. There are several options how to realize
this in practice, ranging from the use of a consensus protocol
or public blockchain used as a bulletin board, to an offline
exchange where all parties come together in person.

Parameter Verification: Finally, each party verifies the set
of exchanged parameters. For the particular VDF we use, this
is accomplished by running VerifySetup(λ, ppi) for all ppi ∈
P∗. Since VerifySetup is a deterministic function, all honest
participants implicitly agree on the result for each ppi. All
invalid parameters can be removed from the set P∗ to form
P , the set of verified public parameters. The remaining parties
which provided the valid parameters form the set P of parties
executing the protocol.

B. Bootstrapping

After all public parameters are set up, exchanged and
verified, the protocol is ready to be executed. Starting the
protocol requires an initial random beacon value R0 which
becomes available to all parties running the protocol after the
setup is completed at approximately the same time. R0 is used

6

to select the leader for the first protocol round and serves as
the input to the first (leader’s) VDF being evaluated.

One can of course use an output of another randomness
beacon protocol as initial value R0. Fortunately, there are a
range of possible solutions which avoid this circular depen-
dency, because the properties required from R0 are less strict
compared to the properties expected from a random beacon.
In particular, we require that R0 is unpredictable at the time
the public parameter are set up and that it is of high min-
entropy. This independence of the generated parameters and
R0 then ensures that adversaries cannot tweak their public
parameters in a way which would give them a unfair advantage
at protocol start. A rather simple, yet secure method to obtain
R0 is to use the block hash of some future block from an
existing blockchain such as Bitcoin or Ethereum.8 Notice that
a miner-introduced bias is not a problem for bootstrapping our
protocol because bias-resistance is not required for R0, yet
using a existing blockchain in this way does not provide an
efficient randomness beacon with strong guarantees, as among
many properties the missing bias-resistance is crucial for the
latter purpose.

C. Execution

After successful completion of the protocol setup and
bootstrapping, the participants are ready to start the proto-
col execution. The aim of this execution is to provide a
continuous sequence of publicly-verifiable, unpredictable and
bias-resistant random beacon values R1, R2, ..., R∞. We give
the full protocol from the viewpoint of a node i ∈ P in
Algorithm 1 and describe the details for protocol execution as
follows: Our protocol proceeds in consecutive rounds. At the
beginning of each round r ≥ 1, a unique leader `r is selected.
For this purpose we consider two different approaches: round-
robin selection (RandRunner-RR) and randomized sampling
(RandRunner-RS) of a leader with uniform probability from
all nodes P , using the previous protocol output Rr−1 as seed
for the selection. We provide the details for both approaches in
Section V-D. Independent of the method chosen, the protocol
produces a new random beacon value Rr, i.e., a fresh 256 bit
value as output of a cryptographic hash function at the end of
each round.

Execution (common case): In each round r, it is the
leader’s duty to advance the protocol into the next round. It
does so by first mapping the previous random beacon value
Rr−1 to the input space of its VDF using a cryptographic
hash function Hin : {0, 1}256 → X`r :

xr ←− Hin(Rr−1) . (4)

Here, the leaders public parameters pplr define the input and
output space X`r and Y`r of `r’s VDF, whereas xr is used
to denote the input to `r’s VDF in round r. Then, the leader
computes the output yr and corresponding proof πr of its VDF
as follows:

(yr, πr)←− TrapdoorEval(pplr , xr, T, sk`r) . (5)

Finally, the values (yr, πr) are broadcast to all nodes. As soon
as such a message is received, a node checks the correctness

8In the unlikely case that there is indeed a fork for the exact block used,the
randomness beacon can be executed in parallel until the fork is eventually
resolvedand the initial value R0 becomes agreed upon.

of the received values using Verify(pplr , xr, T, yr, πr). If the
values are valid, the node can compute the round’s random
beacon output Rr by applying a cryptographic hash function
Hout : Y`r → {0, 1}256 to the output:

Rr ←− Hout(yr) . (6)

Execution (failure / adversarial case): In case the leader
does not fulfill its duties as described, independent of whether
it failed or actively tried to attack the protocol, we still want to
ensure that each round r is completed and produces the same
result. To achieve this, at the beginning of round r each non-
leader node immediately starts to compute the round’s VDF
output (yr, πr)←− Eval(pplr , xr, T) in the background. Due
to the sequentiality property of the VDF, this computation takes
at least T sequential steps. However, after completing those
steps (or receiving the valid values from the round’s leader)
the values yr and πr are available and Rr can be derived as
before (see Formula 6). Here, the strong uniqueness property
of the VDF ensures that the resulting values are always equal
to the ones computed by the leader.

D. Leader Selection

In this section, we describe two possible leader selection
strategies which can be used in our protocol design, namely
randomized round-robin and sampling uniformly at random.
Depending on the used strategy, the achievable unpredictability
guarantees differ to some extent. Random sampling bounds the
predictability of the sequence of future leaders and ensures a
probabilistic guarantee for the unpredictability of the random
beacon, whereas the round-robin approach can provide an
absolute bound for unpredictability but the entire sequence of
leaders is known after R0 has been published. For a detailed
analysis we refer to Section VI-D.

Randomized Round-Robin (RandRunner-RR): When em-
ploying randomized round-robin as the leader selection method
in our protocol, we rely on R0 to deterministically derive a
randomized sequence P̃ of the protocols participants P . In
other words, R0 is used as a seed to shuffle (a canonical
representation of) the set of participants P to obtain the list
of participants in randomized order. Let P̃[j] denote the jth

element of this list using 0-based indexing. Then, the leaders
for all rounds r ≥ 1 are defined as follows:

`r := P̃[r mod n] . (7)

Randomized sampling (RandRunner-RS): In this case, the
output from the previous round, i.e., Rr−1, is used to sample
the leader `r for round r uniformly at random from the
set of all parties P . Interpreting the 256-bit beacon outputs
as numbers, a simple approach which guarantees that each
participant i, denoted by its index from 1 to n, is selected
with probability (very close to) 1/n, is to define `r as:

`r := (Rr−1 mod n) + 1 . (8)

E. Dissemination

As described in Section V-C and given in Algorithm 1 (line
8), the leader of each round r is responsible for broadcasting
the VDF’s unique output yr and the corresponding proof πr.
If all nodes follow the described protocol and the network is

7

Algorithm 1: The RandRunner protocol as executed by each node i ∈ P
Input: ski, {pp1, pp2, ..., ppn}, T , R0

Output: R1, R2, R3, ...R∞
begin

set r ←− 1
repeat forever

derive the round’s leader lr // details provided in Section V-D
compute xr ←− Hin(Rr−1) // maps Rr−1 to in input space of the VDF
if i = `r then

// in this case, this node (i) is the leader of round r, so the trapdoor ski is used to quickly compute the VDF
compute (yr, πr)←− VDF .TrapdoorEval(ppi, xr, T, ski)
broadcast (yr, πr)

else
// otherwise we obtain the VDF output via the network or by evaluation without the trapdoor
start computing (yr, πr)←− VDF .Eval(pplr , xr, T)
while (yr, πr) is not yet computed/received do

listen for incoming messages (y, π)
if message (y, π) received and VDF .Verify(pplr , xr, T, y, π) = accept then

set (yr, πr)←− (y, π)

compute and output Rr = Hout(yr) // maps the VDF output yr to a 256 bit string
set r ←− r + 1 // move to the next round

reliable, then this broadcasting step is as simple as the leader
sending the values (yr, πr) to the other n − 1 participants
directly. This would result in a communication complexity of
O(n). However, an adversarial leader might selectively send
out this information to a subset of all nodes. While any node
can always derive (yr, πr) by computing the round’s VDF
eventually, a slowdown for the subset of nodes which did
not receive the message from the adversarial leader is intro-
duced. A potential consequence is a violation of RandRunner’s
unpredictability guarantees (see Section VI-D): Some correct
nodes, in inadvertent collaboration with the adversary, may
progress faster than the other correct nodes. The root cause
for this phenomenon is a combination of two events: (i) an
adversary only selectively sent information to some correct
nodes and (ii) some correct nodes are not yet able to verify
the information received from other correct nodes, as they are
missing values from prior rounds (not sent to them by the
adversary). Since there is no way to influence the adversary’s
actions, we focus on (ii) for our countermeasures. In particular,
we set out to ensure that after a correct leader broadcasts
(yr, πr) all (correct) nodes already have, or timely receive, the
information required from prior rounds to verify these values.
Two possible strategies to accomplish this are given in the
following:

1) Reliable Broadcast: A straightforward solution is to em-
ploy a reliable broadcast where every (correct) node forwards
any valid message (yr, πr) it received to all other nodes once.
This results in a communication complexity of O(n2) as each
of n nodes sends O(n) bits per round, minimizes latency
(∆NET is small) as message are not relayed over multiple
hops, and is practical as long as the number of nodes n is
reasonably small.

2) Gossip protocol: If n is large, one can use gossip/rumor
spreading protocols instead. Here, one node, in our case

the leader of the current round, initiates the spreading of
the information (yr, πr) by sending it to a random subset
of nodes. All nodes which have received a valid message
continue to forward the message to another subset of nodes
until all nodes are eventually informed with high probability.9
As messages are forwarded over multiple hops, typically
logarithmically many, latency increases compared to the prior
approach (∆NET is higher). However, the communication
complexity is significantly reduced to (at least) O(n log n) in
total or O(log n) per node respectively. We refer to the works
of Demers et al. [21], Karp et al. [30], and the large body of
subsequent work for further details on gossip protocols.

These approaches are provided exemplary as an optimiza-
tion of the dissemination layer is not the main focus of
this work. Our security proofs presented in Section VI are
agnostic to the selected information dissemination approach.
Any optimization, which can reliably disseminate our small
and inherently verifiable message (yr, πr) in every round,
is suitable. The choice of the approach largely depends on
the intended application scenario. As a general guideline, we
consider that reliable broadcast is best suited if the num-
ber of participants n is small, as it minimizes latency and
is straightforward to implement. The larger the number of
participants n, the more appropriate gossip-based approaches
become. Additionally, we note that one may actually use
all available network bandwidth in favor of a lower latency
instead of minimizing the communication costs to achieve
best possible performance in practice. Either way, an expected
higher latency ∆NET can be compensated by increasing the
∆VDF parameter, which defines the number of iterations T
for the used VDFs.

9For the case of RandRunner, the unlikely delivery failures a probabilistic
gossip protocol may produce are not a problem, as the transmitted values are
eventually obtained via evaluation of the VDFs after at most ∆VDF time.

8

VI. SECURITY GUARANTEES

A. Liveness

Intuitively, a distributed protocol achieves the liveness
property if an adversary cannot prevent the protocol from
making progress. A stronger form of liveness, specifically
in the context of random beacon protocols, is the property
of guaranteed output delivery [16], [42]. A protocol which
achieves this property additionally ensures that the adversary
can not even prevent the protocol from producing a fresh
output in each round. As this stronger form of liveness is
also closely related to the bias-resistance property (see Sec-
tion VI-B), it is crucial for a randomness beacon protocol
such as RandRunner which targets the continuous provision of
random numbers. As we outline in the following, our protocol
achieves liveness and its stronger form of guaranteed output
delivery, independent of the adversary’s actions and network
conditions.

Theorem 2. (Liveness & Guaranteed Output Delivery) Each
correct node which has completed some round r ≥ 0, com-
pletes round r + 1 and outputs a new random beacon Rr+1

within at most ∆VDF seconds.

Proof: Round r = 0 is completed by all nodes as soon as
the protocol setup is finished and the initial random beacon R0

becomes available. For all other rounds r ≥ 1, each node can
non-interactively derive the unique round leader `r using the
specified leader selection algorithm and use the hash function
Hin to derive the input xr for `r’s VDF. With the Eval
function, each node can further compute the result (yr, πr) of
the VDF within ∆VDF seconds. Finally, Hout is used to map
yr to Rr. Since both the time required to compute the leader
selection algorithm and the hash functions are negligible, each
node can output Rr within ∆VDF seconds after it completed
the previous round.

B. Bias-Resistance

Bias-resistance ensures that an adversary cannot manipulate
the produced random beacon values to its advantage. Ideally,
a protocol fully prevents that an adversary can influence
the distribution of the produced outputs. As adversaries can
even benefit from just withholding produced results after they
become available to them, the strongest form of bias-resistance
can only be achieved by protocols which also guarantee that
an output is produced in every round.

Theorem 3. (Bias-Resistance) For any round r ≥ 1, the output
Rr can not be influenced in any way after the protocol setup
is completed.

Proof: As discussed in the section on liveness, the result
of round Rr is derived from Rr−1 by mapping Rr−1 to a
value xr from the input space of the leader’s VDF, computing
the leader’s VDF to obtain (yr, πr), and finally mapping yr to
Rr. The mapping steps just use (deterministic) hash functions
and are thus not prone to any manipulation by the adversary.
The VDF is computed using either the Eval or TrapdoorEval
algorithm. Due to the strong uniqueness property of the VDF
the obtained result yr is equal, no matter which of the two
algorithms is used. Also, in case an adversarial leader sends
out some invalid message (y′r, π

′
r), all correct nodes check the

values using the Verify algorithm and only accept a single
unique output per input. Consequently, also the VDF step is
deterministic and fully verifiable, and the full derivation step
from Rr−1 to Rr cannot be influenced by the adversary in
any way. As the setup of the protocol is executed and verified
before the first input R0 becomes available, and each step is
shown to be deterministic, bias-resistance is ensured during
the entire execution of the protocol.

C. Public-Verifiability

In order to verify the correctness of a random beacon output
Rr, a (third-party) verifier needs a transcript of the protocol’s
execution. A valid transcript can be provided by any correct
party and consists of

1) the public parameters P of all protocol participants,
2) the initial random beacon value R0, and
3) the round’s VDF output (ys, πs) for all s ∈

{1, 2, ..., r}.

The setup of the protocol can be publicly verified, as
specified in Section V-A. The same is true for each step in
the protocol execution: As seen in the proofs for liveness
and bias-resistance, the random beacon output Rr of every
round r ≥ 1 is derived cryptographically from the previous
output Rr−1. The only primitives used are cryptographic hash
functions for mapping in- and outputs, and trapdoor VDFs with
strong uniqueness. In order (for a third party) to verify the
correctness of a protocol output Rr, given Rr−1, the involved
hash functions are recomputed and the correctness of the
VDF computation is checked by using the Verify algorithm.
Essentially, a third party just follows the protocol as described
for a participant i in Algorithm 1, leaving out the evaluation
and communication steps.

Regarding computation complexity, the verification of each
round r requires the execution of two hash functions and one
Verify algorithm. The costs for the hash functions are negli-
gible, and also the Verify algorithm is efficient as it requires
only around three exponentiations for typical parameters of the
VDF [39]. Furthermore, the verification complexity does not
depend on the number of parties executing the protocol.

D. Unpredictability

Unpredictability describes a security guarantee which en-
sures that the adversary’s ability to predict future protocol
outputs is bounded. Depending on the particular protocol, this
bound can be absolute or probabilistic. An absolute bound
ensures that, for some fixed d ≥ 1, the adversary cannot
obtain the protocol output of round r + d, when correct
nodes only know the outputs up to round r. A probabilistic
bound guarantees that the likelihood that the adversary can
successfully predict d future protocol outputs drops exponen-
tially as d increases linearly. For our protocol the achieved
bound depends on the chosen leader selection method. In the
following, we prove that the round-robin variant (RandRunner-
RR) ensures an absolute unpredictability bound of d = f · α
(see Theorem 4), whereas our stochastic simulations show
that random sampling of leaders (RandRunner-RS) guarantees
that predicting future values becomes exponentially less likely
when d increases.

9

1) The adversary’s strategy: In a leader-based protocol like
RandRunner, the adversary can always predict future random
beacon outputs to some extent. This is possible because in
every round the corresponding leader knows the output before
sending it to the other parties. In our case, an adversarial leader
can compute the round’s output by evaluating its VDF using
the trapdoor. Clearly, this is faster compared to correct nodes,
which only obtain such outputs after the adversary chooses
to broadcast them, or if they compute the VDF without the
trapdoor, which takes ∆VDF seconds. In order to extend this
advantage to multiple rounds, the adversary must withhold the
output of the VDF on purpose. In case the adversary is lucky,
and continues this strategy of withholding its outputs, the
adversary increases its advantage (i.e., the number of outputs
it knows before the correct nodes do) as long as a continuous
sequence of adversarial nodes are selected as leaders. However,
due to the randomized leader selection, long sequences of this
kind quickly become unlikely. As soon as an honest node is
selected as leader, the adversary’s advantage decreases as the
adversary is not in possession of the trapdoor for an honest
node’s VDF and consequently has to spend ∆VDF/α time to
predict one additional step. We recall that α ≥ 1 denotes the
adversary’s VDF computation speed relative to correct nodes.
An α value of 1.5, for example, means that we assume that
the adversary can compute VDFs up to 50% faster. In the
meantime, the honest nodes work on reducing the adversary
advantage. For each round in which the adversary was selected
as leader, honest nodes have to spend ∆VDF time to catch
up one step. As soon as all adversarial leaders’ outputs have
been computed (and a correct leader is selected again) it
takes them only ∆NET seconds to compute and distribute
a new random beacon output, thus quickly diminishing the
adversary’s advantage.

2) A first glance at RandRunner’s unpredictability bounds:
Rounds with an adversarial leader benefit the adversary in
terms of its ability to predict future protocol outputs, whereas
rounds with a correct leader benefit the honest nodes. This
rather natural phenomenon can be observed in our stochastic
simulations and constitutes the basis for the security proof
of Theorem 4. However, as it is so fundamental, we want
to provide further insights into why this is indeed the case:
In each round r, we either have an adversarial or correct
leader. In case the leader is adversarial, the adversary can
immediately predict the outcome Rr of round r using the
leader’s trapdoor for the evaluation of the VDF. The correct
node may be delayed by up to ∆VDF seconds before they learn
Rr if the adversary does not broadcast the round’s VDF output
and proof as specified by the protocol. Clearly, following the
strategy of withholding this information the adversary gains a
(temporary) advantage in its ability to predict future protocol
outputs. In the other case, i.e., in rounds with an honest leader,
all honest nodes advance by one round within ∆NET time,
whereas the adversary can only advance to the next round after
it received the round’s output from the leader or obtained the
result by computing the leader’s VDF without the trapdoor.
If the adversary cannot finish this computation before the
message from the leader is received, all honest nodes catch up
and all the adversary’s advantage in diminished. Otherwise, the
adversary loses some of its advantage as it takes the adversary
∆VDF/α time to proceed to the next round, whereas the honest
nodes require at most ∆NET < ∆VDF/α seconds.

With this intuition at hand, we now have an informal look
on the unpredictability guarantees RandRunner-RR provides in
a simplified scenario in which not only the adversary, but also
the honest nodes can communicate without a network delay
(∆NET = 0). In this setting, the protocol achieves absolute
unpredictability for d = f ·α as long as the following inequality
is fulfilled:

n > f + f · α . (9)

For the case that the adversary and the honest nodes can
compute VDFs at the same speed, i.e., α = 1, this is reduced
to a standard majority assumption n > 2f . In case the
adversary can compute VDFs faster (α > 1), the fraction
of honest nodes compared to adversarial mode must increase
accordingly. In cases where ∆NET > 0 and ∆VDF � ∆NET ,
the simplified bound provided by the above inequality for the
∆NET = 0 case closely resembles the general bound we prove
in Theorem 4. This more precise bound carefully considers
the interplay between the network delay ∆NET and the VDF
computation time ∆VDF .

3) Unpredictability for RandRunner-RR: If we use (ran-
domized) round-robin as the leader selection method, our
protocol achieves an absolute unpredictability bound of d =
f ·α rounds for all configurations which satisfy the following
inequality:

f · α ≤ (n− f) ·
(

1− ∆NET · α
∆VDF

)
(10)

or, equivalently:

n ≥ f +
f · α

1− ∆NET ·α
∆VDF

. (11)

To simplify the formulation of the following statements show-
ing this claim, we formally define two intuitive terms: the kth
period of rounds and the adversary’s advantage:

Definition 4. For every natural number k, the kth period of
rounds of the protocol is defined by the n consecutive rounds
(k − 1)n+ 1, (k − 1)n+ 2, ..., kn.

For example if n = 5, rounds 1 to 5 form the 1st period
of rounds (k = 1), rounds 6 to 10 the 2nd period (k = 2) and
so on.

Definition 5. The adversary has advantage v ≥ 0 with respect
to round r if and only if the following two conditions hold:

1) Some correct node knows the protocol output of round
r, but no correct node knows the output of round r+1.

2) The adversary knows the protocol output of round
r + v, but not of round r + v + 1.

In our proof of Theorem 4, we will show by induction
on k that there is no kth period of rounds of the protocol in
which the advantage of the adversary with respect to any round
exceeds f · α. We start by showing the following Lemma 2,
which will help us to establish the induction base.

Lemma 2. For all protocol configurations which fulfill In-
equality 10, the following holds: If the adversary has advan-
tage 0 with respect to some round r, its advantage with respect
to the rounds r + 1, r + 2, . . . , r + n is at most f · α.

10

Proof: We start by first considering rounds with a correct
leader. In this case, the time required for the adversary to
predict a protocol output is bounded by the VDF computation
time of ∆VDF/α, whereas the correct nodes advance to the
next round within ∆NET seconds. Since ∆NET ≤ ∆VDF/α
holds for all protocol configurations fulfilling Inequality 10,
the number of rounds the adversary can predict never increases
during periods with honest leaders. Consequently, to obtain an
upper bound for the number of predictable rounds, we only
have to consider rounds with adversarial leaders. Within a pe-
riod of n consecutive rounds, there are exactly f such rounds,
which are consecutive in the worst case. Let us consider this
worst case for our upper bound: At the beginning of these f
rounds, the adversary immediately obtains the results of all
of those rounds, as it can use the adversarial leaders’ VDF
trapdoors to compute the results. The honest nodes, on the
other hand, have to compute f VDFs without the trapdoor
(assuming that the adversary withholds the results), requiring
f ·∆VDF seconds to complete. In the same time, the adversary
may already try to compute the VDFs of the honest leaders
in the next few rounds. As it takes the adversary ∆VDF/α
time to compute one such VDF (without the trapdoor), it can
compute at most

f ·∆VDF

∆VDF/α
= f · α (12)

outputs during this time period. Consequently, as soon as
the honest nodes finish the computations for the f rounds
of adversarial leaders and hence catch up by f rounds, the
adversary’s ability to predict future protocol outputs increases
from f to f − f + f · α = f · α rounds. From that point on,
there are only rounds with correct leaders remaining, and as
the number of rounds the adversary can predict cannot increase
in rounds with correct leaders, the correctness of the lemma
follows.

Next, we prove a claim that will be important for the
induction step of the proof of Theorem 4.

Lemma 3. For all protocol configurations which fulfill In-
equality 10, the following holds: If the adversary has advan-
tage v ≤ f · α with respect to some round r, its advantage
with respect to round r + n is at most v′ ≤ f · α.

Proof: In the worst case, all correct nodes can complete
n consecutive rounds within

∆w = f ·∆VDF + (n− f) ·∆NET (13)

seconds, because there are f rounds in which the adversarial
leader may not broadcast the result, requiring ∆VDF time
each, and (n − f) rounds with correct leaders which make
progress immediately and broadcast the results within ∆NET

seconds. If during this time period the adversary obtains a
round’s output by relying on a correct node’s message, instead
of obtaining it via computation by itself, the adversary could
not predict this value – its advantage with respect to this
round is zero. Consequently, this lemma immediately holds
by Lemma 2. If, on the other hand, the adversary does not
rely on messages from correct nodes for its progress, it can

compute the outputs of at most

w = f +
∆w

∆VDF/α
= f +

f ·∆VDF + (n− f) ·∆NET

∆VDF/α
(14)

rounds during the period of ∆w seconds, because there are
f steps in which the adversary immediately obtains the result
as an adversarial node is leader, whereas all other steps rely
on computing a VDF without a trapdoor, taking ∆VDF/α
time each. In other words, the adversary advances by w
rounds, while, during the same period of time, the correct
nodes advance by n rounds. As w ≤ n follows directly from
rearranging Inequality 10, the adversary cannot increase its
advantage (v′ ≤ v) and the lemma holds.

Theorem 4. (Unpredictability): All protocol configurations
satisfying Inequality 10 guarantee absolute unpredictability for
d = f · α.

Proof: The statement is equivalent to the claim that the
adversary’s advantage with respect to any round never exceeds
f · α. We give a proof by induction on the kth periods of
rounds and start with the induction base k = 1. Since the
adversary cannot predict the initial random beacon value R0,
Lemma 2 implies that the adversary’s advantage with respect
to the rounds 1, 2, ..., n is bounded by f ·α. This already proves
that the statement is true for the first period.

For the induction step, we have to show that if the adver-
sary’s advantage with respect to the rounds in the kth period is
bounded by f ·α, the same is true for the rounds in the (k+1)th

period. Consider the rounds (k−1)n+1, (k−1)n+2, . . . , kn
of the kth period. We apply the induction assumption together
with Lemma 3 and obtain that the advantage of the adversary
in the rounds kn + 1, kn + 2, ..., (k + 1)n is at most f · α,
which we wanted to prove.

We have shown that there is no kth period of the protocol
containing a round in which the adversary’s advantage exceeds
f · α. This covers all rounds and hence concludes the proof.

In order to simplify the exposition of the proof, Theorem 4
and definition 5 consider the adversary’s ability to predict
future protocol outputs relative to some honest node. However,
if one wants to consider the unpredictability guarantee relative
to all / the slowest honest node, a very similar result applies
as all correct nodes synchronize within ∆NET time in the
broadcasting step of the protocol. Therefore, the same security
bound of f ·α rounds holds for all nodes if we add an additive
term of ∆NET , i.e., the adversary does not have advantage
f · α + 1 for longer than ∆NET time. The additional term
of ∆NET time is required as we assume that the adversary
can send and receive messages (also from the correct nodes)
without any network delay, whereas messages between correct
nodes experience a network delay of up to ∆NET seconds.

4) Unpredictability for RandRunner-RS: As described in
Section V-D, the leaders in RandRunner can also be selected
uniformly at random (RandRunner-RS) as an alternative to
the round-robin style leader selection (RandRunner-RR) anal-
ysed in the previous section. Due to the probabilistic nature
of selecting leaders, RandRunner-RS provides a probabilistic

11

guarantee of unpredictability, whereas RandRunner-RR guar-
antees an absolute bound for the adversary’s ability to predict
future outputs. The reason for this difference is that the round-
robin leader selection ensures that there cannot be more than
f adversarial nodes within any period of n rounds at any point
in the protocol execution. When leaders are picked at random,
however, there can be up to u ≤ v adversarial leaders in any
period of v rounds (for an arbitrary number of rounds v),
although the likelihood of having a high fraction of adversarial
leaders during such a period decreases exponentially for longer
periods.

Similar to the round-robin case, the probabilistic guarantee
for unpredictability can be provided as long as the honest nodes
make progress faster than the adversarial nodes. Let pA :=
f/n and pH := 1 − pA denote the probability of selecting
an adversarial or honest leader respectively. Then the rates of
progress, i.e., the average time required per protocol round,
λH for the correct nodes and λA for the adversary, are given
as follows:

λH :=
1

∆NET · pH + ∆VDF · pA
(15)

λA :=
1

∆VDF/α · pH
. (16)

Intuitively, RandRunner-RS works as long as correct nodes
progress faster than adversarial nodes, i.e., if λH > λA,
because any advantage an adversary has in some round will
disappear after a sufficient number of rounds. The more both
rates differ, the quicker any advantage disappears and the
more unlikely a big advantage becomes. Obtaining a closed
form expression for the corresponding probability appears
difficult, as the advantage of the adversary in a particular
round depends on the previous protocol state as well as on the
sequence of future leaders. However, by simulating protocol
executions we can derive these probabilities empirically. This
is illustrated in Figure 2 which presents our simulation results,
considering different assumptions in regard to the fraction of
adversarial nodes (pA) and the adversary’s advantage in terms
of sequential computation speed for the VDF, denoted by α.
For the parameters ∆NET and ∆VDF , we select a fixed ratio
of ∆NET/∆VDF = 1/10, as we observe that the simulation
is typically more sensitive to a change of pA and α. For each
of the exemplary parameters picked, we simulate the protocol
execution for 1010 rounds10. At any point in time where a
state change happens, i.e., when a new value is received or
computed, we measure any potential advantage the adversary
has in comparison to the other nodes, and use this measurement
to derive the probabilities that it can predict a certain number of
rounds at any particular point in time. An extended evaluation
is provided in Appendix B. The source code used to obtain
the simulation results is publicly available on Github [43].

5) Unpredictability against a covert adversary: In the
previous sections, we analysed the unpredictability guarantees
RandRunner provides in regards to an adversary which actively
attacks the protocol during execution. However, in practice an
adversary can hardly profit from any attack on unpredictability
if the correct network participants are aware of the fact that
the protocol is being attacked. The base for the detection

10For ∆NET = 5 seconds, this corresponds to more than 1500 years of
protocol execution in real time.

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
a
b

il
it

y
of

su
cc

es
sf

u
l

p
re

d
ic

ti
on pA = 0.25, α = 1.0

pA = 0.25, α = 1.25

pA = 0.33, α = 1.0

pA = 0.33, α = 1.25

pA = 0.41, α = 1.0

pA = 0.41, α = 1.25

Fig. 2: Simulation of RandRunner-RS’ unpredictability guar-
antees, showing the likelihood of adversaries with different
strengths (pA, α) being able to predict future protocol outputs
at any particular point of the protocol’s execution, simulated
over a duration of 1010 rounds. (∆NET/∆VDF = 1/10)

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
ab

il
it

y
of

su
cc

es
sf

u
l

p
re

d
ic

ti
o
n pA = 0.33, α = 1.0

pA = 0.33, α = 1.25

pA = 0.50, α = 1.0

pA = 0.50, α = 1.25

pA = 0.66, α = 1.0

pA = 0.66, α = 1.25

pA = 0.75, α = 1.0

pA = 0.75, α = 1.25

Fig. 3: Simulation of RandRunner-RS’ unpredictability guaran-
tees against covert adversaries. As in Figure 2, the simulation
shows the likelihood of successful prediction by adversaries of
different strengths (pA, α) considering a simulation duration of
1010 rounds. (∆NET/∆VDF = 1/10)

of ongoing attacks is that correct nodes expect new protocol
outputs in intervals of at most ∆NET seconds. There are only
two reasons for protocol outputs being delayed any further:

1) an adversarial leader withholds the next protocol
output or

2) the network behaves asynchronously.

As the second case is unlikely if ∆NET is properly configured,
any delay is a strong indicator for an attack. This leads us to
the notion of a covert adversary [1] which aims to hide all
traces that can be used for detecting the attack.

RandRunner is resilient against covert adversaries, because
a covert adversary has to broadcast new protocol outputs
after at most ∆NET seconds to make sure the attack stays
invisible. Also, the computation time available to compute
honest leaders’ VDFs is reduced to ∆NET . Therefore, the
bound of λH > λA for achieving unpredictability in the
general case is reduced to the following inequality considering
the covert case:

∆NET < ∆VDF/α · pH . (17)

The bigger the (relative) difference between both sides, the
more the fraction of adversarial nodes pA and their com-
putational advantage can be increased. A particular distin-

12

https://github.com/PhilippSchindler/RandRunner

guishing advantage compared to other protocol designs is that
RandRunner even works against an attacker which controls
a majority of nodes in the covert adversary model. This is
illustrated in Figure 3, where we, among others, consider an
adversary which controls 75% of all nodes in the system.
As for the non-covert case, we provide additional simulation
results for a range of different parameters in Appendix B.

6) Unpredictability against an adaptive adversary: In the
static adversary model, it is assumed that the adversary may
control up to a threshold of f nodes. Those nodes may
behave Byzantine, however the set of nodes controlled by
the adversary is fixed and defined prior to the start of the
protocol. Another commonly encountered adversarial model
is concerned with adaptive corruptions [14], [36]. Adaptive
adversaries may decide which nodes to corrupt (take control
of) based on information collected during the execution of the
protocol. As in the static case, the adversary’s capabilities are
bounded by the threshold f . A further distinction can be made
between fully adaptive and mildly adaptive adversaries [36],
where the former implies practically instantaneous corruptions,
whereas the latter incurs some non-zero delay before a cor-
ruption takes effect. In practice, a fully adaptive adversary is
likely an unrealistically strong assumption, in particular if we
consider communication delay to be non-zero. Nevertheless,
we discuss the resilience of the RandRunner protocols against
both variants of adaptive adversaries.

We recall that the security proof provided for RandRunner-
RR explicitly covers the worst case of f consecutive ad-
versarial nodes. Consequently, the absolute unpredictability
bound (see Theorem 4) remains unaffected even if an adaptive
adversary of either flavor is assumed. As we elaborate in Ap-
pendix D, RandRunner-RR additionally provides probabilistic
unpredictability guarantees before this unpredictability bound
is reached, very similar to the probabilistic guarantee shown
for RandRunner-RS. However, because in essence this is
achieved by randomizing the round-robin sequence of leaders
after (static) corruptions have taken place, these additional
probabilistic guarantees in RandRunner-RR do not hold for
mildly or fully adaptive corruptions.

RandRunner-RS provides probabilistic guarantees regard-
ing unpredictability. Intuitively, the further into the future an
adversary wishes to predict beacon values, the less likely
they are to succeed. Considering an adaptive adversary,
RandRunner-RS’s probabilistic guarantees degrade gracefully,
depending on the number of corruptions and the time required
to corrupt the nodes. In the worst case, considering a fully
adaptive adversary which may instantaneously corrupt up to
f nodes, our simulations show that the adversary’s prediction
capabilities are shifted by f rounds. In other words, in this
case the adversary can pick a single point in time at which it
is able to once instantaneously corrupt at most the sequence of
the next f leaders, and thereby predict the outcome of the next
f protocol rounds. However, after that point the probability of
predicting any further rounds again start to drop exponentially.
This is to be expected behavior and can be seen as granting
the adversary a one-time lead of f rounds. Fortunately, in
practice the worst case of a fully adaptive adversary is highly
unrealistic. In a more realistic case, corruptions would require a
considerable amount of time, i.e., much longer than ∆NET and
∆VDF . In this case however, by the time the adversary is able

to successfully corrupt the next leader it has already fulfilled
its duty of broadcasting the next beacon value, rendering the
attack ineffective for gaining an additional advantage over
static corruptions. Thus, such mildly adaptive corruptions do
not affect the guarantees provided.

The analysis of adaptive adversaries for both RandRunner-
RR and RandRunner-RS serves to further highlight their
different properties and potential use cases. In particular, if
resilience against fully adaptive adversaries is deemed a ne-
cessity, utilizing RandRunner-RR and waiting for the absolute
unpredictability bound presents a solution. We point out that
for this scenario a smaller set of participants is advantageous in
regard to the required waiting periods before unpredictability
can be guaranteed. On the other hand, RandRunner-RS can
offer unpredictability with probabilistic guarantees that incurs
shorter waiting periods, if mildly adaptive adversaries are
assumed.

VII. RELATED WORK

In recent years, a wide range of possible approaches to ob-
tain publicly-verifiable randomness have been presented. This
includes solutions which extract randomness from existing
systems. In this regard, Clark and Hengartner [18] show how
to collect (small amounts) of entropy from closing prices of
stocks. As noted by Pierrot and Wesolowski [38] this approach
relies on the assumption that the published financial data
cannot be manipulated. Similarly, the works of Bonneau et
al. [10] and Bentov et al. [4] demonstrate how to extract near-
uniformly distributed bits from one or a sequence of Bitcoin
blocks. However, as stated by the authors and analyzed in
later work [38], these approaches cannot provide truly unbiased
randomness.

The line of research on blockchain protocol designs, in
particular Algorand [17] and Ouroboros Praos [19], can also
be used to obtain distributed randomness. Both protocols
internally use verifiable random functions [35] (VRFs) to
produce a sequence of random numbers. In this way, both
designs can output randomness as a byproduct of their oper-
ation without any significant additional communication cost.
Using hashchains instead of VRFs, Azouvi et al. [2] present
a solution with similar characteristics as a Smart Contract for
the Ethereum blockchain. However, all of these approaches,
where the adversary might be responsible for computing and
then revealing the next random output, are not strictly bias-
resistant, as the adversary can always decide to withhold the
next random output after gaining knowledge of it [42]. Strong
bias-resistance, as also provided by RandRunner, ensures that
there is a guaranteed protocol output in every round, regardless
of the actions taken by the round’s leader.

Protocols which can provide strong bias-resistance have
also been constructed by using threshold cryptography, in
particular using publicly-verifiable secret sharing ([31], [16],
[45], [42]) or unique threshold signatures ([14], [29]). The
proposal of running and combining the results of n se-
cret sharing instances, as seen in the Ouroboros [31] and
Scrape [16] protocols, has since been improved by Syta et
al. [45] (RandHerd) and recently Schindler et al. [42] (Hy-
dRand). HydRand achieves a communication complexity of
O(n2) in a synchronous system model with n = 3f + 1
participants, without requiring a distributed key generation

13

(DKG) protocol or relying on pairing-based cryptography. As
it is the case with RandRunner, unpredictability for HydRand
is achieved after a few rounds, whereas the approaches of
Cachin et al. [14] and Dfinity [29] ensure unpredictability
after a single round. The two latter approaches also achieve
a communication complexity of O(n2). They, however, rely
on a trusted dealer or DKG protocol and, e.g., BLS [9],
[8], as a unique pairing-based threshold signature scheme. In
comparison, RandRunner is built using an RSA-based VDF
and does not require a trusted dealer or DKG protocol for its
setup. Its communication complexity improves upon all the
threshold cryptographic approaches, as a single leader drives
the protocol forward, whereas the interaction between all, or at
least a large subset of the participants, is required for the other
protocols. Regarding the guaranteed output delivery property,
HydRand can output fresh randomness at regular intervals as it
operates in a fully synchronous system model, whereas Rand-
Runner and other protocols which are safe under asynchrony
can only guarantee that an output is produced every round.
For RandRunner, the round duration may vary depending on
network conditions or if the protocol is attacked, but is upper
bounded by the ∆VDF parameter. The delay RandRunner
introduces in these circumstances can be seen as an advantage,
as any delay serves as a strong indicator for an active attack
(assuming network outages are rare) and thus strengthens the
confidence in the protocol if it progresses as fast as expected.
Similar to Cachin et al. [14], our protocol ensures consistency
even under asynchronous network conditions and proceeds at
the network speed when not attacked, whereas HydRand loses
consistency if the synchrony assumption is violated and cannot
progress faster than the initially specified network delay, i.e.,
does not offer optimistic responsiveness [37]. Dfinity’s security
proofs also rely on synchrony.

A different line of research focuses on the instantiation of
a randomness beacon based on delay functions (also known
as slow-time functions), which can be seen as predecessor to
VDFs (as used in RandRunner) without an efficient verification
procedure. Using this primitive, Lenstra and Wesolowski [33]
designed the Unicorn protocol, in which in a first phase a
set of distrusting parties collect a pool of inputs. In a second
step those inputs are hashed and fed into a delay function, the
output of which forms the randomness. As the delay parameter
is picked such that no party can compute the output during
the time when changes to the inputs are allowed, the result is
bias-resistant and unpredictable as long as at least one party
provides a random input with sufficient entropy. A similar
approach is later implemented by leveraging a Smart Contract
on the Ethereum platform for agreement on the inputs [12].
To circumvent the limitations of the platform, the authors of
this approach describe an interactive, incentive-based game for
verification. We believe that these systems and the underlying
idea of first agreeing on a set of inputs and then executing a
long-running (verifiable) delay function on these inputs are
well suited for scenarios in which unpredictable and bias-
resistant randomness is required infrequently. In comparison,
RandRunner does not require an agreement protocol for the
VDF inputs and can provide a sequence of random numbers in
short intervals and with much lower communication overhead.
Moreover, RandRunner can also ensure unpredictability in
scenarios where the adversary can compute the VDF faster
than honest nodes.

VIII. CONCLUSION

By extending the VDF introduced by Pietrzak [39] to a
trapdoor VDF with strong uniqueness, which may be of inde-
pendent interest, we lay the foundation for our novel random-
ness beacon protocol RandRunner. Our design and the proper-
ties we achieve are unique in many ways. First, RandRunner
is extremely simple: It is built on top of cryptographic hash
functions, and the introduced VDF is based on the well studied
RSA assumption. The setup of the protocol does not require a
DKG protocol and can be verified non-interactively. Instead of
relying on a Byzantine or blockchain-based agreement protocol
to ensure consistency across all nodes, consistency is achieved
by leveraging the strong uniqueness property of the underlying
VDF. Thereby, the protocol essentially provides a predeter-
mined, yet unpredictable sequence of random numbers. This
novel design has tremendous advantages in terms of efficiency
and scalability, as the removal of the agreement protocol
reduces communication costs significantly. In our case, only
a single message of approximately 10 KB in size has to be
propagated through the network to produce a fresh random
beacon output.

Additionally, our design is very resilient to temporary
network delays or network outages. Although being designed
for practical deployment scenarios with bounded network
delay, RandRunner retains consistency and liveness even if
the network connectivity between correct nodes breaks down
completely. We have proven that RandRunner achieves unpre-
dictability under a synchronous network model, and provided
stochastic simulations to analyze the protocol in case of
temporary network failures. Under these circumstances, we
observed that the provided unpredictability guarantees degrade
gradually, even when we consider an adversary which is not
affected by the network delays. Furthermore, our results also
show that the protocol can recover quickly, i.e., in a linear
amount of time respective to the duration of the network
outage.

Whenever the network is in good condition, and the
protocol is not under attack, the protocol is responsive [37],
[47] and proceeds at the speed of the network, i.e., it is not
slowed down by introducing artificial delays. Attacks introduce
a (parameterizable) slowdown of the protocol, serving as a
strong indication for an ongoing attack. This leads us to the
additional evaluation of RandRunner in a covert adversary
model [1], in which the adversary wishes to hide its attack
traces. Our results show that unpredictability is achieved even
if a majority of nodes is under adversarial control or the
adversary can evaluate VDFs significantly faster compared to
the other nodes.

ACKNOWLEDGMENT

This material is based upon work partially supported by
(1) the Christian-Doppler-Laboratory for Security and Quality
Improvement in the Production System Lifecycle; The finan-
cial support by the Austrian Federal Ministry for Digital and
Economic Affairs, the Nation Foundation for Research, Tech-
nology and Development and University of Vienna, Faculty
of Computer Science, Security & Privacy Group is gratefully
acknowledged; (2) SBA Research; the competence center SBA
Research (SBA-K1) funded within the framework of COMET

14

Competence Centers for Excellent Technologies by BMVIT,
BMDW, and the federal state of Vienna, managed by the
FFG; (3) the FFG Bridge 1 project 864738 PR4DLT. We
additionally thank Krzysztof Pietrzak for valuable discussions
and his answers to our technical questions regarding the used
VDF, as well as the anonymous reviewers for the excellent
feedback we received.

REFERENCES

[1] Y. Aumann and Y. Lindell, “Security against covert adversaries: Ef-
ficient protocols for realistic adversaries,” in Theory of Cryptography
Conference. Springer, 2007, pp. 137–156.

[2] S. Azouvi, P. McCorry, and S. Meiklejohn, “Winning the caucus race:
Continuous leader election via public randomness,” arXiv preprint
arXiv:1801.07965, 2018.

[3] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM
conference on Computer and communications security, 1993, pp. 62–
73.

[4] I. Bentov, A. Gabizon, and D. Zuckerman, “Bitcoin beacon,” arXiv
preprint arXiv:1605.04559, 2016.

[5] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” ACM SIGACT News, vol. 15, no. 1, pp. 23–27, 1983.

[6] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Annual international cryptology conference. Springer,
2018, pp. 757–788.

[7] D. Boneh, B. Bünz, and B. Fisch, “A survey of two verifiable delay
functions,” Cryptology ePrint Archive, Report 2018/712, 2018.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps,” in Eurocrypt, vol.
2656. Springer, 2003, pp. 416–432.

[9] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” Advances in Cryptology ASIACRYPT 2001, pp. 514–532, 2001.

[10] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source,” Cryptology ePrint Archive, Report 2015/1015,
2015.

[11] J. Buchmann and H. C. Williams, “A key-exchange system based on
imaginary quadratic fields,” Journal of Cryptology, vol. 1, no. 2, pp.
107–118, 1988.

[12] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and random-
ness beacons in ethereum,” in S&B ’17: Proceedings of the 1st IEEE
Security & Privacy on the Blockchain Workshop, 2017.

[13] V. Buterin, “Randao++,” 2017, Accessed: 2020-05-11. [Online].
Available: https://redd.it/4mdkku

[14] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
in Proceedings of the nineteenth annual ACM symposium on Principles
of distributed computing. ACM, 2000, pp. 123–132.

[15] J. Camenisch and M. Michels, “Proving in zero-knowledge that a
number is the product of two safe primes,” in International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
1999, pp. 107–122.

[16] I. Cascudo and B. David, “Scrape: Scalable randomness attested by
public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537–556.

[17] J. Chen and S. Micali, “Algorand,” arXiv preprint arXiv:1607.01341,
2016.

[18] J. Clark and U. Hengartner, “On the use of financial data as a random
beacon.” EVT/WOTE, vol. 89, 2010.

[19] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[20] L. De Feo, S. Masson, C. Petit, and A. Sanso, “Verifiable delay
functions from supersingular isogenies and pairings,” in International
Conference on the Theory and Application of Cryptology and Informa-
tion Security. Springer, 2019, pp. 248–277.

[21] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the 6th ACM
Symposium on Principles of distributed computing, 1987, pp. 1–12.

[22] J. Drake, “Minimal VDF randomness beacon,” 2018,
Accessed: 2020-07-08. [Online]. Available: https://ethresear.ch/t/
minimal-vdf-randomness-beacon/3566

[23] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” vol. 35, no. 2. ACM, 1988, pp. 288–323.

[24] N. Döttling, S. Garg, G. Malavolta, and P. N. Vasudevan, “Tight ver-
ifiable delay functions,” Cryptology ePrint Archive, Report 2019/659,
2019.

[25] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass, “Continuous
verifiable delay functions,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2020,
pp. 125–154.

[26] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the theory and
application of cryptographic techniques. Springer, 1986, pp. 186–194.

[27] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas, “Fast dis-
tributed rsa key generation for semi-honest and malicious adversaries,”
in Annual International Cryptology Conference. Springer, 2018, pp.
331–361.

[28] R. Gennaro, D. Micciancio, and T. Rabin, “An efficient non-interactive
statistical zero-knowledge proof system for quasi-safe prime products,”
in Proceedings of the 5th ACM conference on Computer and commu-
nications security, 1998, pp. 67–72.

[29] T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology
overview series, consensus system,” CoRR, vol. abs/1805.04548, 2018.
[Online]. Available: http://arxiv.org/abs/1805.04548

[30] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized
rumor spreading,” in Proceedings 41st Annual Symposium on Founda-
tions of Computer Science. IEEE, 2000, pp. 565–574.

[31] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Inter-
national Cryptology Conference. Springer, 2017, pp. 357–388.

[32] E. Landerreche, M. Stevens, and C. Schaffner, “Non-interactive crypto-
graphic timestamping based on verifiable delay functions,” in Inter-
national Conference on Financial Cryptography and Data Security.
Springer, 2020, pp. 541–558.

[33] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and
trx,” Cryptology ePrint Archive, Report 2015/366, 2015.

[34] M. Mahmoody, C. Smith, and D. J. Wu, “A note on the (im)possibility
of verifiable delay functions in the random oracle model,” Cryptology
ePrint Archive, Report 2019/663, 2019.

[35] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[36] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in 31st International Symposium on Distributed
Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[37] ——, “Thunderella: Blockchains with optimistic instant confirmation,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 3–33.

[38] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s en-
tropy,” Cryptography and Communications, vol. 10, no. 1, pp. 211–233,
2018.

[39] K. Pietrzak, “Simple verifiable delay functions,” in 10th innovations in
theoretical computer science conference (itcs 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[40] M. O. Rabin, “Randomized byzantine generals,” in Foundations of
Computer Science, 1983., 24th Annual Symposium on. IEEE, 1983,
pp. 403–409.

[41] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” 1996.

[42] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “HydRand:
Efficient continuous distributed randomness,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, May 2020, pp. 32–48.

15

https://redd.it/4mdkku
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
http://arxiv.org/abs/1805.04548

[43] P. Schindler, A. Judmayer, M. Mittmeir, N. Stifter, and E. Weippl,
“RandRunner Research Artifacts,” 2020. [Online]. Available: https:
//github.com/PhilippSchindler/RandRunner

[44] B. Shani, “A note on isogeny-based hybrid verifiable delay functions,”
Cryptology ePrint Archive, Report 2019/205, 2019.

[45] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 444–460.

[46] B. Wesolowski, “Efficient verifiable delay functions,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2019, pp. 379–407.

[47] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in 2019
ACM Symposium on Principles of Distributed Computing, 2019, pp.
347–356.

APPENDIX

A. Efficient Check for 〈x〉 = QR+
N

At the end of Section II-F, we provided an efficient way
to verify if x is a generator of QR+

N . In the following, we
provide the postponed correctness proof for the statement:

〈x〉 = QR+
N if x ∈ QR+

N ∧ gcd(x2 − 1, N) = 1 . (18)

Proof: We show the above statement by deriving a contra-
diction. Assume that x does not generate the group QR+

N , i.e.,
〈x〉 6= QR+

N . This means that the order of x in QR+
N is not

equal to p′q′. One easily verifies that we may write x = ap
′

mod N or x = aq
′

mod N for some a. This implies x2 = 1
mod p or x2 = 1 mod q, hence the gcd(x2 − 1, N) in (18)
cannot be 1.

B. Additional Simulation Results

As outlined in Sections IV and VI-D the selection of
the parameter ∆VDF , which determines the time parameter
T for the VDF, is crucial for the unpredictability guarantees
provided by RandRunner. In our simulation results presented
in the main paper, we considered setting ∆VDF such that
∆NET/∆VDF = 1/10, a choice which works well across a
wide range of scenarios. To further support the process of
picking a suitable value for ∆VDF , we provide additional
simulation results in Figures 4–7. As before, we run our
simulation over a period of 1010 rounds for each parameter
set and consider both types of adversaries, i.e., an attacker
which (i) does and (ii) does not want to hide its traces. We
fix ∆NET = 1 and vary ∆VDF , as the simulation results only
depend on the relation ∆NET/∆VDF of the parameters ∆NET

and ∆VDF . In general, we observe that increasing ∆VDF

compared to ∆NET strengthens the protocol’s unpredictability
guarantee, while at the same time introducing longer delays
whenever a leader fails or withholds an output on purpose. The
bigger the adversarial strength, i.e., the fraction of adversarial
nodes pA and their advantage in computation speed compared
to the honest nodes α, the more important is it to select higher
values for ∆VDF . Regarding the covert adversary model we
analysed in Section VI-D5, Figure 8 further illustrates the
correspondence between the protocol parameters regarding the
security bound ∆NET < ∆VDF/α · pH (Inequality 17).

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
a
b

il
it

y
of

su
cc

es
sf

u
l

p
re

d
ic

ti
on pA = 0.25, ∆V DF = 5

pA = 0.25, ∆V DF = 10

pA = 0.25, ∆V DF = 20

pA = 0.33, ∆V DF = 5

pA = 0.33, ∆V DF = 10

pA = 0.33, ∆V DF = 20

pA = 0.41, ∆V DF = 5

pA = 0.41, ∆V DF = 10

pA = 0.41, ∆V DF = 20

Fig. 4: RandRunner-RS’ unpredictability (α = 1,∆NET = 1)

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
ab

il
it

y
o
f

su
cc

es
sf

u
l

p
re

d
ic

ti
on pA = 0.50, ∆V DF = 5

pA = 0.50, ∆V DF = 10

pA = 0.50, ∆V DF = 20

pA = 0.66, ∆V DF = 5

pA = 0.66, ∆V DF = 10

pA = 0.66, ∆V DF = 20

pA = 0.75, ∆V DF = 5

pA = 0.75, ∆V DF = 10

pA = 0.75, ∆V DF = 20

Fig. 5: RandRunner-RS’ unpredictability, considering a covert
adversary (α = 1,∆NET = 1)

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
ab

il
it

y
of

su
cc

es
sf

u
l

p
re

d
ic

ti
on α = 1.0, ∆V DF = 5

α = 1.0, ∆V DF = 10

α = 1.0, ∆V DF = 20

α = 1.25, ∆V DF = 5

α = 1.25, ∆V DF = 10

α = 1.25, ∆V DF = 20

Fig. 6: RandRunner-RS’ unpredictab. (pA = 0.33,∆NET = 1)

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
ab

il
it

y
o
f

su
cc

es
sf

u
l

p
re

d
ic

ti
o
n α = 1.0, ∆V DF = 5

α = 1.0, ∆V DF = 10

α = 1.0, ∆V DF = 20

α = 1.5, ∆V DF = 5

α = 1.5, ∆V DF = 10

α = 1.5, ∆V DF = 20

Fig. 7: RandRunner-RS’ unpredictability, considering a covert
adversary (pA = 0.66,∆NET = 1)

C. Recovery from Asynchronous Network Conditions

We recall that RandRunner relies on network synchrony
to ensure the unpredictability guarantees described in Sec-

16

https://github.com/PhilippSchindler/RandRunner
https://github.com/PhilippSchindler/RandRunner

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100
p

ro
b

a
b

il
it

y
of

su
cc

es
sf

u
l

p
re

d
ic

ti
on pA = 0.50, α = 1.0, ∆V DF = 5

pA = 0.50, α = 2.0, ∆V DF = 10

pA = 0.50, α = 4.0, ∆V DF = 20

pA = 0.66, α = 1.0, ∆V DF = 5

pA = 0.66, α = 2.0, ∆V DF = 10

pA = 0.66, α = 4.0, ∆V DF = 20

pA = 0.75, α = 1.0, ∆V DF = 5

pA = 0.75, α = 2.0, ∆V DF = 10

pA = 0.75, α = 4.0, ∆V DF = 20

Fig. 8: RandRunner-RS’ unpredictability, considering a covert
adversary; showing relations of pA, α and ∆VDF (∆NET = 1)

tion VI-D. Therefore, during periods of asynchrony, i.e., in
situations in which correct nodes cannot disseminate message
within ∆NET seconds, the protocol’s unpredictability guaran-
tees are gradually weakened. However, by design, RandRunner
ensures liveness and consistency even during periods in which
correct nodes cannot communicate with each other at all.
During periods of asynchrony an adversary can increase its
advantage (in terms the of number of random beacon output it
can predict), whereas honest nodes catch up and RandRunner
regains its unpredictability guarantees quickly once network
connectivity is restored. In particular, this is the case when
we consider a perfectly coordinated adversary which is not
affected by the network delays or is itself responsible for
the asynchronous network conditions. Considering this worst
case, our simulation results in Figures 9 and 10 show how
quickly the original unpredictability guarantees are restored
after the network conditions normalize. We observe that the
recovery time required increases linearly with the duration
of the asynchronous period. Consequently, short periods of
asynchrony have very little effect on the provided guarantees,
whereas the protocol can still recover rather quickly even
from long-lasting asynchronous network conditions. We note
that in practice we only expect long-lasting asynchronous
periods in extremely unlikely circumstances. In any case, a
client using the produced random numbers is likely to notice
the problem due to the temporary slowdown of the protocol
and can consequently take appropriate countermeasures on the
application layer, e.g., it may require a longer delay prior to
the use of future outputs.

For our simulations we consider different parameterizations
of RandRunner-RS, vary the duration of network outages (in
multiples of the ∆NET parameter), and plot the mean time
until unpredictability guarantees are restored, with the standard
deviation highlighted. Concretely, we report the average recov-
ery time (y-axis) of 100000 simulation runs for each outage
duration (x-axis). In in each run, we simulate a network outage
for the given duration at a random point in time. Considering
the (theoretical) worst case, we assume that during the network
outage/attack correct nodes cannot communicate with each
other at all, yet the adversary can perfectly coordinate its
actions and does not mind being detected during the attack.

D. Comparison of Probabilistic Unpredictability Guarantees

We omitted to present simulation results for RandRunner-
RR in the main part of this paper, as we have provided a formal

0 200 400 600 800 1000

duration of network outage (in units of ∆NET)

0

500

1000

1500

2000

ex
p

ec
te

d
re

co
ve

ry
ti

m
e

(i
n

u
n

it
s

o
f

∆
N
E
T

)

pA = 0.25

pA = 0.33

pA = 0.41

Fig. 9: Mean time and standard deviation for recovery
of RandRunner-RS’ unpredictability after a network outage
(∆NET/∆VDF = 1/10, α = 1.0)

0 200 400 600 800 1000

duration of network outage (in units of ∆NET)

0

500

1000

1500

2000

ex
p

ec
te

d
re

co
ve

ry
ti

m
e

(i
n

u
n

it
s

of
∆
N
E
T

)

α = 1.0

α = 1.25

α = 1.5

Fig. 10: Mean time and standard deviation for recovery
of RandRunner-RS’ unpredictability after a network outage
(∆NET/∆VDF = 1/10, pA = 0.33)

proof for the provided unpredictability guarantees. However, in
addition to the bounds proven in Section VI-D, RandRunner-
RR also provides stochastic guarantees similar to RandRunner-
RS. In general, we observe that the probabilistic guarantees
of RandRunner-RR approach the guarantees RandRunner-RS
provides with an increasing number of participants n consid-
ering equivalent scenarios. In other words, the probabilistic
guarantees of RandRunner-RS give an upper bound for the
(stronger) guarantees of RandRunner-RR. This is further illus-
trated in Figure 11, which also highlights RandRunner-RR’s
proven absolute bound of d = 8 rounds for the given example
with n = 24, f = 8 nodes.

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro

b
a
b

il
it

y
o
f

su
cc

es
sf

u
l

p
re

d
ic

ti
on

RandRunner-RR (n = 24, f = 8)

RandRunner-RR (n = 100, f = 33)

RandRunner-RR (n = 1000, f = 333)

RandRunner-RS (pA = 0.33)

Fig. 11: Comparison of RandRunner-RR/RS’s probabilistic
unpredictability guarantees (∆NET/∆VDF = 1/10, α = 1.0)

17

E. Notation Reference

TABLE I: Notation Randomness Beacon

Symbol Description

n number of nodes running the protocol
f number of adversarial / Byzantine nodes
α ≥ 1 adversaries VDF computation speed relative to the

correct nodes
P set of participants running the protocol
P set of verified public parameters
P∗ set of public parameter prior to verification
r, s ≥ 1 some protocol round as specified by the context
d, v, w number of rounds as specified by the context
R0 initial random seed for the protocol
Rr protocol output at round r
i ∈ P some node running the protocol as specified by the

context
`r ∈ P leader of round r
ppi public parameters for node i’s VDF
ski secret key / trapdoor for node i’s VDF
∆NET network propagation delay (between correct nodes)
∆VDF correct nodes’ upper bound for the computation

time of Eval (the VDF parameter T is set accord-
ingly)

∆VDF/α adversary’s lower bound for the computation time
of Eval

pA fraction of adversarial nodes (f/n)
pH fraction of honest/correct nodes (1− f/n)
λA, λH rate of progress for the adversarial and hon-

est/correct nodes
∆w RandRunner-RR’s worst case completion time of n

consecutive protocol rounds for correct nodes
P̃ randomized sequence of the set of participants P
P̃ [j] j th element of P̃ using 0-based indexing
kth period the sequence of rounds (k − 1)n + 1, (k − 1)n +

2, ..., kn

TABLE II: Notation VDFs

Symbol Description
X input space of the VDF, X = QR+

N in our case
Y output space of the VDF, Y = QR+

N in our case
PP public parameter space of the VDF
T ∈ N time parameter of the VDF (number of iterations)
x ∈ X input to the VDF
y ∈ Y output of the VDF
π correctness proof for the VDF output
pp ∈ PP public parameters of the VDF
p, q large safe primes
N RSA modulus
πN proof that N is a product of two safe primes of size

λRSA/2

QR+
N group of signed quadratic residues modulo N

λ security parameter
λRSA security parameter for an RSA-based VDF

TABLE III: Notation Algorithms

Algorithm Description

Setup(λ)→ pp setup function for a (general) VDF
Setup(λ)→ (pp, sk) setup function for a trapdoor VDF
VerifySetup(λ, pp)→ {accept , reject} verification algorithm for the parameters generated by Setup(·)
Eval(pp, x, T)→ (y, π) VDF evaluation algorithm (without knowledge of the trapdoor)
TrapdoorEval(pp, x, T, sk)→ (y, π) VDF evaluation algorithm with knowledge of the trapdoor
Verify(pp, x, T, y, π)→ {accept , reject} verification algorithm for the VDF evaluation
Hin : {0, 1}256 → X cryptographic hash function mapping a 256-bit string to the input space of the VDF
Hout : Y → {0, 1}256 cryptographic hash function mapping a VDF output to a 256-bit string

18

	Introduction
	Contribution
	Paper Structure

	Trapdoor VDFs with Strong Uniqueness
	Background
	On Trapdoors and Strong Uniqueness
	Design Rationale
	Construction
	Security Assumptions
	Security Proof

	Conceptual Design
	System and Threat Model
	The RandRunner Protocol
	Setup
	Bootstrapping
	Execution
	Leader Selection
	Dissemination
	Reliable Broadcast
	Gossip protocol

	Security Guarantees
	Liveness
	Bias-Resistance
	Public-Verifiability
	Unpredictability
	The adversary's strategy
	A first glance at RandRunner's unpredictability bounds
	Unpredictability for RandRunner-RR
	Unpredictability for RandRunner-RS
	Unpredictability against a covert adversary
	Unpredictability against an adaptive adversary

	Related Work
	Conclusion
	References
	Appendix
	Efficient Check for x = QRN+
	Additional Simulation Results
	Recovery from Asynchronous Network Conditions
	Comparison of Probabilistic Unpredictability Guarantees
	Notation Reference

