
Bitcontracts: Supporting Smart Contracts in Legacy
Blockchains

Karl Wüst∗, Loris Diana∗, Kari Kostiainen∗, Ghassan Karame†, Sinisa Matetic∗, Srdjan Capkun∗
∗Department of Computer Science, ETH Zurich

†NEC Labs

In this paper, our main goal is to design a solution that adds
expressive smart contract execution support as a subsystem
to existing legacy blockchain systems. The primary usage of
our solution is to enhance systems like Bitcoin that have no
built-in smart contract capabilities. The secondary usage is
to extend the contract execution capabilities of platforms like
Ethereum that support contracts but have severe limitations on
the complexity of allowed computations.

Previous work. Recent research has explored different ways
to add contract execution capabilities to blockchains.

For instance, Arbitrum [25] and ACE [50] use off-chain
execution models, where contract issuers appoint a set of
managers who are responsible for executing the contract and
communicating the results back to the chain. Hyperledger
Fabric [5] uses a similar model in a permissioned setting with
an execute-order-validate architecture in which transactions are
executed before ordering. The main drawback of such solutions
is that they are newly purpose-built systems, and therefore
such systems cannot be deployed on legacy systems without
modifying the underlying blockchain.

Another proposal, FastKitten [16], relies on enclaved exe-
cution and collaterals, but only supports short-lived contracts
that are restricted to known participants. In addition, such a
system cannot tolerate enclave compromise. Recently discov-
ered attacks [11], [45], [29], [13], [44] have shown that TEE
compromise is a relevant threat. We discuss the limitations of
previous solutions in more detail in Section II-B.

Our solution. In this paper, we propose a novel system called
Bitcontracts that adds expressive smart contract execution
capabilities to legacy cryptocurrencies without requiring pro-
tocol changes to the legacy system, and overcomes the main
limitations of previous solutions.

The starting point of our solution is an off-chain execution
model, similar to previous systems like Arbitrum, ACE, or
Fabric. In Bitcontracts, the contract issuer appoints a set
of service providers that execute the contract’s code. The
appointed execution set is recorded on the chain together with
the contract’s code and the contract participants are free to
choose if they accept this set. Instead of requiring that all
service providers agree on the execution result (as is done in
Arbitrum) or trusting the execution environments fully (as is
required in FastKitten), we leverage a more flexible quorum-
based trust model similar to ACE, where execution results
are accepted when t out of n service providers report the
same result. Such a model can provide both strong security
(up to t− 1 service providers can be compromised) and good
availability (up to n−t service providers can be unresponsive).

Abstract—In this paper we propose Bitcontracts, a novel
solution that enables secure and efficient execution of generic
smart contracts on top of unmodified legacy cryptocurrencies
like Bitcoin that do not support contracts natively. The starting
point of our solution is an off-chain execution model, where the
contract’s issuers appoints a set of service providers to execute
the contract’s code. The contract’s execution results are accepted
if a quorum of service providers reports the same result and
clients are free to choose which such contracts they trust and use.
The main technical contribution of this paper is how to realize
such a trust model securely and efficiently without modifying the
underlying blockchain. We also identify a set of generic properties
that a blockchain system must support so that expressive smart
contracts can be added safely, and analyze popular existing
blockchains based on these criteria.

I. INTRODUCTION

Smart contracts, popularized by systems like
Ethereum [48], allow nearly arbitrary business logic to
be implemented without a trusted third party. Smart contracts
are programs whose code and execution results are recorded
on the chain. A typical contract enables contract participants
to load money to an address or account that is controlled by
the contract’s code which defines how the loaded money can
be later moved out of the contract.

Adding contracts to currencies. While the concept of smart
contracts has shown great promise, many currently popular
cryptocurrencies, such as Bitcoin [36], Litecoin, Ripple [2] or
Stellar [3], do not natively support them. Therefore, it becomes
relevant to investigate if contract execution capabilities can be
added to such blockchains. Since such blockchain platforms
have already attracted significant amounts of investment, users
and developers, it is often preferable to extend those platforms
with contract execution rather than try to migrate the existing
users, assets, and investments to other platforms.

Another reason for extending existing blockchains with
new contract execution capabilities is the fact that even if
some of the existing platforms support contracts, the types
of contracts that can be implemented on these systems may
be severely limited. For example, Ethereum uses a Turing-
complete programming language, but the complexity of com-
putations that can be implemented as contracts are very re-
stricted, due to the built-in block gas limit.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24294
www.ndss-symposium.org

The main technical challenge that we solve is how to
realize such a trust model securely and efficiently without re-
quiring any modifications to the underlying legacy blockchain
platform. To achieve this, Bitcontracts leverages the follow-
ing two ideas. Our first observation is that by storing the
state of each contract on the chain, the service providers
can remain stateless which reduces protocol complexity and
simplifies deployment, since service providers do not need
to communicate with each other and do not have to run
expensive (in terms of communication) consensus protocols
to agree on the current state of the contract which makes our
solution efficient. Our second observation is that by binding
the validity of each execution result to the latest valid state of
the chain, we can enable arbitrary quorum sizes and prevent
race conditions where the adversary obtains two acceptable
quorums for different execution results affecting the same
contract. Due to these observations, Bitcontracts does not
instantiate a new consensus protocol. Instead, Bitcontracts
is purposefully designed such that it guarantees execution
integrity and serializability by leveraging the existing con-
sensus protocols of the underlying legacy blockchain. We do
this using an execute-order model, which ensures (at ordering
time) that only serializable transactions can be included in
the chain. This is a crucial difference to the order-execute-
validate architecture of Hyperledger Fabric, which requires an
additional validation step that cannot be retrofitted into a legacy
blockchain without protocol changes. We discuss this in more
detail in Section II-B.

Bitcontracts requires no changes to the underlying legacy
blockchain, as long as it supports four generic properties. The
first property is auxiliary storage which is needed to store
contract state on the chain. Auxiliary storage is possible by
encoding data to legacy transactions. The second is collective
authorization which is supported as multi-signature transac-
tions by most blockchains. The third is state dependency which
ensures serializability in our solution. State dependency is
implicitly supported in all UTXO-based systems and can be
explicitly enforced in most account-based systems. The fourth
property is transaction atomicity which enables contracts to
perform complex operations safely.

We analyze popular cryptocurrencies, including Bitcoin,
Litecoin, Zcash, Ethereum, Ripple, and Stellar and show that
these properties are supported in most popular blockchain
deployments. In few cases, when one of the properties is
missing, we explain how they could be easily added.

Finally, we analyze Bitcontracts in three ways. First, we
explain how contract execution can be incentivized in a solu-
tion like Bitcontracts through standard means like execution
fees and subscription models. Second, we prove that Bitcon-
tracts provides strong safety and liveness guarantees under
our chosen, flexible trust model. And third, we implement a
prototype of Bitcontracts that runs Python contracts on top
of unmodified Bitcoin and other legacy cryptocurrencies and
show that the involved transaction fees are small (e.g., few
USD cents per contract call). We also evaluate the transaction
sizes and costs for Bitcontracts in comparison to Ethereum, by
crawling data from 130k Ethereum blocks and leveraging the
contract call transactions from the 100 most popular Ethereum
contracts. We conclude that running popular smart contracts
in Bitcontracts is practical — and often even cheaper than in

Ethereum.

Contributions and roadmap. To summarize, in this paper we
make the following contributions:

• New solution: We propose Bitcontracts that enables
secure, efficient and expressive smart contracts on un-
modified legacy cryptocurrencies (Sections III & IV).

• Requirement analysis: We identify the minimal set of
properties that a blockchain needs to provide to al-
low expressive smart contracts and analyze the existing
blockchains based on this criteria (Section V).

• Bitcontracts analysis: We explain how incentives can
be added to Bitcontracts (Section VI); we prove that
Bitcontracts provides safety and liveness (Section VII);
we provide a Bitcoin-compatible implementation of Bit-
contracts (Section VIII); and we evaluate the execution
costs of Bitcontracts on popular blockchain platforms as
well as an analysis of the costs of executing popular real-
world smart contracts in Bitcontracts (Section IX).

II. PROBLEM STATEMENT

In this section, we motivate our work and explain the
limitations of previous solutions.

A. Motivation

Blockchain technology has gathered significant business
interest that is largely focused on smart contracts and their
applications (see Appendix A for brief background).

Three basic options for deploying smart contracts ex-
ist: The first is to use an existing blockchain platform like
Ethereum that provides built-in contract support. The second
is to create a new blockchain platform. And the third option—
which we investigate in this paper—is to retrofit contract
execution capabilities to an existing and unmodified legacy
blockchain.

There are several reasons to enhance existing platforms
with new contract execution capabilities. The first reason is
that platforms like Bitcoin have already gathered significant
investment and user base. For instance, at the time of writing
(June 2020), the market cap of Bitcoin is more than half of
the entire blockchain market [1]. Migrating all the invested
funds and existing users to a new platform is expensive and
complicated.

The second reason is that successfully launching a new
blockchain platform is hard. A fully-functional blockchain
platform requires an entire ecosystem, including developers,
tools, miners, investors, users, clients and more. Bootstrapping
all of this from scratch is very expensive and likely to fail.

The third reason is that existing blockchain platforms with
smart contract support have significant restrictions on the types
of computations that can be implemented. For example, the
gas limits of Ethereum restrict contracts to very simple and
short computations. In many business use cases, it would be
desirable to run more complex computations than what is
allowed by Ethereum currently.

And fourth, the existing smart contract platforms are based
on dedicated (often niche) programming languages. For exam-
ple, Ethereum in practice requires the use of Solidity or Vyper

2

that can be compiled to EVM bytecode1. Most developers are
more familiar with general-purpose languages like Python or
Java. Developers would benefit if they could use their favorite
programming language for writing smart contracts and if the
same contract code could be re-used across different smart
contract platforms.

Given these reason, our main goal in this paper is to add
expressive smart contract execution capabilities to existing
legacy blockchains, with a secondary goal of enabling develop-
ers to write contracts in their favorite programming language.
We focus on enabling Ethereum-style smart contracts which is
probably the most common definition of the term “smart con-
tract”. In Appendix A, we discuss how Ethereum-style smart
contracts compare to other types of on-chain computations
such as ones that operate on private data.

B. Limitations of Previous Solutions

Side-chain execution. One known approach to extend legacy
currencies with additional functionality is to use a side-chain.
Several proposals for side chain mechanisms exist, targeted
at different use-cases. For example, Liquid [19] is targeted at
enabling fast asset transfers, but does not provide expressive
smart contracts. Rootstock (RSK) [30] enables smart contracts
for Bitcoin using a side chain that is based on its own currency
(RBTC) that is pegged to the value of a Bitcoin. This is
achieved by issuing an amount of RBTC only when the
same amount of BTC was previously locked under a multisig
condition to a threshold set of trusted parties. Smart contracts
can then be run on the RSK side chain and perform payments
using RBTC. Side chains – no matter their purpose – generally
require trust in a fixed set of parties (or even a single trusted
party) [41], instead of allowing contract participants to accept
trust assumptions on a per-contract basis. This means that only
contracts whose users trust the same set of parties can co-exist
on the same side chain and interactions between contracts
on separate chains is not possible. In addition, in terms of
usage, a side chain is equivalent to moving funds to a separate
blockchain system except for the (usually) fixed exchange rate
between the currencies of the two systems. Users that want
to use a contract on the side chain first need to move funds
to the side chain and wait for enough confirmations to pass
before they can use the contract. After the execution they then
need to move the funds back to the main chain if they want
to hold their funds on the main chain. This requires a total of
five transactions for a single contract execution (two each on
the main chain and side chain for moving the funds back and
forth, plus one for contract execution).

Off-chain execution. Another approach is to run contract
code off-chain in few chosen execution nodes. Arbitrum [25],
ACE [50], and Yoda [17] follow this approach. In Arbitrum,
the contract issuer appoints a set of “managers” who are
responsible for executing the contract. Once a contract call
is complete, the managers send the execution results to miners
who accept them only if all managers report the same exe-
cution result (otherwise the system falls back to an expensive

1Creating compilers that compile other languages to EVM-bytecode is,
of course, possible but would require significant engineering effort for each
language.

dispute resolution protocol). Since contracts are executed de-
coupled from the consensus process, systems such as ACE,
Arbitrum, and Yoda enable execution of complex contracts
without slowing down the consensus process. However, the
main drawback of such solutions is that they require changes
to miners and thus such solutions cannot be deployed to legacy
blockchains without modifications to the blockchain protocol.

State channels [33], [21], [22], [32] constitute another
approach to move on-chain execution of smart contracts off
the chain. However, such constructions require fallback mech-
anisms and joining procedures that rely on on-chain execution.
Thus, state channels are limited to blockchains that already
support expressive smart contracts.

Execute-order-validate model. A specific variant of off-chain
execution is the execute-order-validate model that is used
in Hyperledger Fabric [5]. Fabric is a popular permissioned
blockchain system, where a contract-specific set of endorsers
execute transactions independent of the consensus process.
Executed transactions are sent to an ordering service that es-
tablishes a total order on them and assembles them into blocks
that contain the readsets and writesets (i.e., state changes) of
the contract execution. After that, blocks are broadcasted to
peers (roughly speaking, peers correspond to system partici-
pants like miners). To ensure transaction serializability, Fabric
requires a validation step in which, for each transaction, peers
sequentially check the values stored in the readset of the
transaction and check if they are still the same as the values in
the current state of their local ledger. Otherwise, the transaction
is invalidated and its state changes are not applied.

Such a validation step is necessary to ensure serializability
in Fabric. Since the endorsers execute transactions before they
are ordered, they execute them based on the latest committed
state. Namely, it is possible that two transactions, TxA and
TxB , are received by the endorsers at roughly the same time
and thus executed based on the same state. To consider a sim-
ple example, assume that the contract contains a state variable
x (x = 0 before the execution of both transactions) and both
transactions increment this value by one. Both read/writesets
now contain a read for x = 0 and a write for x = 1 in the
endorsements. After ordering TxA before TxB , for example,
we have a write x = 1 for TxB , instead of write x = 2, as
it should be when executing TxA and TxB sequentially. The
validation step solves this problem by invalidating TxB .

The execute-order-validate model is suited for new deploy-
ments of a blockchain system where the base protocol can
dictate that all peers (i.e., system participants like miners)
perform transaction validation. Our goal in this paper is to
add smart contract execution capabilities as a subsystem that
operates on top of an unmodified legacy cryptocurrency. In
this respect, the execute-order-validate model is not suitable
for such a subsystem, since if the read-/writesets validation
is only performed by the subsystem participants, then money
transfers in the subsystem are not consistent with the rules for
money transfers in the legacy cryptocurrency.

We illustrate this problem with an example. Consider again
two conflicting transactions, TxA and TxB , in the same block.
Assume that the transactions were created by a subsystem that
runs on top of unmodified Bitcoin. Now consider that before
executing these two transactions the contract has a balance of

3

1 coin, and TxB sends this coin to some other party. Given
the execute-order-validate model, TxB will be invalidated by
subsystem participants, even though it has been included in
a block. That is, from the point of view of the subsystem
participants, the contract still has a balance of 1 coin that it
can use in future transactions. However, all participants of the
legacy cryptocurrency will adhere to the Bitcoin protocol and
they do not invalidate this transaction. Thus, from their point of
view, the account associated with the contract has a balance of
0. Any transaction sent by clients of the subsystem that would
cause the balance of the contract to decrease, would thus be
rejected by these other parties, including miners, even though
they would be valid within the subsystem.

Enclaved execution. The next known approach is to outsource
contract execution into trusted execution environments (TEEs)
like SGX enclaves. Ekiden [14] is an example system that
follows this approach. The main problem with such solutions
is that if the adversary compromises the enclave where the
contract is executed, he can arbitrarily violate its integrity and,
e.g., steal all the contract-controlled funds. Recent research
on SGX side channels [11], [45], [29] and micro-architectural
attacks [13], [44] has shown that TEE compromise is a
practical threat that should be considered.

Blockchain multiparty computation. Recent research has
also explored how to run secure multiparty computation (MPC)
on blockchains. The main goal of such works is to improve
fairness of existing MPC protocols, rather than adding contract
execution to legacy blockchains, but such schemes can also be
seen as specific types of smart contracts.

In MPC, a set of parties provide private inputs and jointly
evaluate a function over them. A common challenge is that
malicious parties can stop participating once they learn the
function output and prevent other parties from learning the
output and thus violate fairness. An impossibility result from
Cleve [15] proves that no MPC protocol can be fair without
an honest majority. In recent research, it has been shown that
this fairness problem can be alleviated, to an extent, using
blockchain. Andrychowicz et al. were the first to show how to
implement fair 2-party lottery on Bitcoin [6]. This result was
extended to n-party lotteries [9], playing poker [28] and other
MPC protocols [26]. In such schemes, each party must place a
deposit on the blockchain. If a participant stops participating,
he loses his deposit (i.e., these systems create monetary incen-
tives against fairness violation but cannot completely prevent
it).

If such MPC protocols are treated as smart contracts, they
have several functional limitations. First, these solutions are
customized to very specific computations and extending the
same ideas to arbitrary business contracts and applications is
hard. Second, all contract participants and the duration of the
contract have to be known in advance which is not true for
many smart contracts in systems like Ethereum. And third,
some of these solutions require modifications to the underlying
blockchain, such as adding new instructions to the scripting
language [28].

Enclaved multiparty computation. A recent work called
FastKitten [16] combines techniques from Ekiden [14] and
blockchain-based MPC [6], [9], [28], [26] to enable contract-
like computations on top of unmodified Bitcoin. Similar to

Ekiden, FastKitten also uses an SGX enclave to execute the
smart contract. Similar to MPC schemes, all participants must
place a deposit in the contract before its execution. In addition,
the operator of the TEE has to post a deposit that equals the
sum of all user deposits. If the protocol fails (because one user
misbehaves), all parties except the misbehaving get their initial
deposit back.

From a functional point of view, FastKitten has the same
problems as MPC schemes (contracts must have fixed par-
ticipants and limited lifespan) and the contracts enabled by
FastKitten are therefore much more restricted than in Ethereum
which allows an unlimited lifespan and a dynamic participant
list. FastKitten also has security problems. One example is
an attack where multiple participants collude. For example, if
it becomes clear from an execution up to the last round that
Bob and Charlie will lose all of their deposit to Alice, the
first two can collude such that Bob stops sending messages.
While Bob will still lose his deposit, Charlie will receive his
full collateral back and Alice is cheated out of her gain. Thus,
smart contracts in FastKitten are not completely self-enforcing
under malicious behavior. Finally, FastKitten is vulnerable to
TEE compromise similar to Ekiden.

III. BITCONTRACTS OVERVIEW

In this section, we provide an overview of our solution
Bitcontracts. First, we describe our execution model and
discuss the challenges of realizing it. After that, we explain
the main ideas of Bitcontracts and define common properties
that a blockchain must provide to support it.

A. Execution and Trust Model

The starting point of our work is an off-chain execution
model in which the execution of contracts is decoupled from
the consensus process. An obvious approach is to distribute
trust among several service providers, such that one trusts a
set of service providers collectively, as is done in system like
Arbitrum [25], Fabric [5] or ACE [50]. Service providers in
such a model could be reputable companies or non-profits. In
Bitcontracts, we follow this approach as well.

However, unlike Arbitrum, where all service providers
must unanimously agree on the contract execution results, we
adopt a more flexible trust model similar to ACE and Fabric,
in which the contract creator can choose the requirements for
acceptable execution results per contract. Namely, the creator
of a contract chooses a set E that consists of n service providers
and a threshold t of required authorizations. A state transition
caused by contract call is considered valid if the transaction
committing the results is authorized by at least t members of
the executing set E . Contract participants are free to take part
in contracts only if they agree with the chosen specification,
i.e., they agree with the assumption that fewer than t members
of E are malicious. Note that, in order to ensure safety and
liveness at the same time, a majority of the service providers in
E need to be honest, even if the threshold t is lower. Otherwise
a malicious majority could sign wrong results (if t ≤ n/2) or
violate liveness (if t > n/2).

However, it is still valuable that t can be freely chosen to be
able to prioritize either safety or liveness. Such a model allows
flexibility depending on the requirements of the use case. For

4

example, if strong integrity is required, but high availability is
not crucial, one may choose a large E with t close to n = |E|.
If on the other hand, E is chosen such that all of the members
are trusted and high availability is required, one can choose a
low threshold such as t = 1. Contracts that are expected to be
active for a long period could specify conditions for replacing
service providers within the contract itself, as discussed in [50].

Our trust model modifies the typical trust assumptions of
smart contract systems slightly. In Ethereum, the specification
of a smart contract is defined by its code (cf. Appendix A).
In our system, the specification also includes a set of service
providers and the threshold. Importantly, all users decide if
they trust and agree with this specification. They can make
this decision by either performing the due diligence themselves
or by trusting other parties to perform it for them, similar to
checking the trustworthiness of contract code in Ethereum, but
they are not required to trust the contract creator. Finally, also
similar to Ethereum, they only need to trust the specification
of contracts they participate in and are not affected by the
execution of other contracts. For example, if one contract’s
executing set is compromised, other contracts remain secure.

B. Challenges

The primary technical challenge that we solve is how to
realize the above outlined execution and trust model securely
and efficiently for contract execution on legacy blockchains.
Next, we discuss why simple solutions fail to solve the
problem.

Where to store state? We start by considering the storage
of a contract’s state. The first possible option is to store
the state of each contract off-chain at the service providers.
Due to our quorum-based execution authorization, not every
service provider needs to be involved in every contract call,
and thus some service providers might not have the latest
state of the contract. Therefore, in this approach, the service
providers would need to run a consensus protocol between
them to ensure consistency of the contract’s state. This is
a costly process, adds unnecessary overhead to the service
providers, and incurs restrictions on the size of the quorum
as it needs to be more than 2

3n given n service providers.
While the consensus process could be simplified by storing the
hash of the current state on the blockchain (and thus partially
leveraging the blockchain consensus), the service providers
still need to ensure that all of them are in possession of the
latest state. If the system should be able to include multiple
transactions involving the same contract in the same block,
they still need to ensure consistency and thus coordinate to
ensure that they do not end up in diverging states.

The second option is to store the state of each contract on-
chain, i.e., publish it on the blockchain of the underlying cryp-
tocurrency. This option leverages the consensus mechanism of
the underlying cryptocurrency, instead of requiring that the
service providers need to run an expensive and complicated2

consensus protocol separately and ensures that all parties
have access to the latest state. This also allows clients to
individually verify the correctness of every execution result.
Another advantage of storing the full state on-chain is that

2Deploying consensus protocols requires thousands of lines of non-trivial
code that is difficult to check for correctness [23].

service providers themselves can remain completely stateless
and do not need communication with other service providers
or the blockchain, i.e. they only need to communicate with the
client and do not need persistent storage for contract state.

How to ensure consistency? It may seem that storing the
state on the blockchain is sufficient to ensure consistency
between the service providers and thus the integrity of the
smart contracts they execute, but this is not the case. We
illustrate this with a simple example attack.

Assume an idealized blockchain where transactions cannot
be reorganized and every created block is final. Also assume
that the contract’s issuer sets the authorization threshold to
t = 2

3n and the adversary controls 1
3n of the service providers.

The adversary triggers two different contract calls to two
distinct sets of honest service providers, sized 1

3n each. Both
sets authorize the contract call based on the current state of
the contract that is stored on the chain. The adversary then
authorizes both contract calls with the 1

3n service providers
that he controls, and thus both contract calls have the required
t = 2

3n authorizations. Then, the adversary publishes the
first execution result that updates the contract’s state and, for
example, transfer funds out of the contract. After that, the
adversary publishes the second execution result that updates
the contract’s state based on the previous stale state which
means that the results of the first contract call are reverted,
except for their side effects such as money transfers.

A simple solution to this problem would be to mandate that
the threshold t must always be sufficiently large to prevent such
attack, i.e., t > 2

3n. This simple solution has two problems.
First, it prevents deployments where low thresholds should
be used for best possible availability. And second, it would
not prevent the above outlined attacks in blockchains, where
temporary forks are possible (e.g., all legacy blockchains based
on PoW consensus).

In Fabric and ACE (which have a similar trust model to Bit-
contracts and also leverage off-chain execution), this problem
is solved in different ways. ACE uses an order-execute-commit
model and Fabric uses an execute-order-validate approach.
Both systems therefore require additional steps after ordering
the transactions. However, ordering in legacy cryptocurrencies
has side-effects, such as money transfers, as discussed in Sec-
tion II-B, and thus potential inconsistencies need to be resolved
before or during the ordering phase. One of our challenges is,
therefore, how to ensure transaction serializability both in the
subsystem (that adds contract execution capabilities) and the
legacy cryptocurrency without requiring additional steps after
ordering. In other words, our solution needs to be compatible
with an execute-order architecture.

C. Overview of Bitcontracts

Next, we explain the main ideas behind Bitcontracts, and
introduce the properties (1-4) that are required from a legacy
cryptocurrency to enable it. Figure 1 shows an overview.

Bitcontracts combines off-chain execution of contracts
with on-chain storage for contract state. This design decision
allows the service providers to be stateless, enables flexi-
ble trust models and high availability, provides transparency
towards the contract’s clients, and most importantly does

5

P2P
Network �

�
�

Miners
Clients

BP

Bitcontracts
Clients

�

�

�

Service
Providers

Existing Blockchain System

Fig. 1. Bitcontracts overview. Bitcontracts extends existing blockchain
systems without changing their protocol, i.e. existing nodes such as clients and
miners are agnostic to Bitcontracts. Bitcontracts clients interface with the
blockchain and Bitcontracts service providers. Service providers are stateless
and do not need to interact with the blockchain system.

not require a new consensus protocol since it leverages the
consensus of the underlying legacy blockchain instead. We
acknowledge that storing the contract state on the chain comes
with a cost (that we evaluate in Section IX), but argue that
these benefits combined outweigh this drawback.

In Bitcontracts, a smart contract account is a normal
blockchain account managed jointly by multiple service
providers using (1) multiparty authorization like multi-
signature transactions. The current state of each smart contract
is stored on the chain using another common feature of
blockchains, (2) arbitrary data storage.

Because the contracts’ state is recorded on the chain, the
contracts’ clients can assemble the latest contract state from
the chain at any time. For each contract call, the client that
initiates the call assembles the contract’s state and sends it
to the service providers that are registered for this contract
together with the contract’s code and call input parameters.

The service providers execute the contract call and encode
the execution results as a signed state update transaction that
they return to the client. The client completes the transaction
by combining the received signatures from t service providers
that report the same result so that the required multiparty
authorization is fulfilled and broadcast the completed trans-
action to the P2P network. The miners accept the state change
transaction if it is signed by at least t service providers who
control that contract’s account.

We note that it might seem counterintuitive to have the
client assemble and broadcast the final transaction, as he can
then choose not to broadcast it if the results are unfavorable
to him. However, in Bitcontracts this design decision does
not provide the client any advantage, since contract execution
is deterministic (see Section VIII-A for details) and therefore
the client can know the results of the contract execution before
initiating the contract call. This means that instead of creating
the contract call and then withholding the result, the client
could simply calculate the result himself and then choose not
to call the contract. The same property holds in other smart
contract systems such as Ethereum.

To prevent the attacks described in Section III-B where the
adversary obtains two valid quorums for conflicting contract
states, in Bitcontracts we require that the contract’s state used
as input in a contract call is always the latest on-chain state of
the called contract. Such enforcement is possible if the validity
of a transaction can be conditioned on the current state of the

blockchain, a property that we call (3) state dependent trans-
action validity. Such a referencing mechanism is available in
many existing cryptocurrencies, for example, in UTXO-based
cryptocurrencies, transactions reference UTXOs that must be
outputs of previous transactions which have not yet been
used as inputs in a transaction. Since transaction validity, and
therefore state dependent transaction validity, is checked by
miners, this mechanism can be leveraged to prevent attacks or
benign race conditions, where a contract call is executed based
on an old state, even if the blockchain experiences short-lived
forks and at the same time allows usage of arbitrary quorum
sizes.

This idea of binding off-chain execution results to on-
chain state validity checks that are performed by the min-
ers of the underlying legacy blockchain is a key feature of
Bitcontracts. It enables Bitcontracts to guarantee execution
integrity for contracts that are executed off-chain without it
having to implement a separate consensus protocol of its own
(see Section VII). The same idea also allows Bitcontracts to
be compatible with an execute-order architecture, in which,
similar to Hyperledger Fabric [5], contract calls are first
executed and then ordered. In contrast to Fabric which uses an
execute-order-validate approach (cf. Section II-B) this notion,
however, removes the separate validation step. Recall that in
Fabric, this validation step is needed, because the blockchain
consensus mechanism only performs ordering of transactions
without performing any checks and thus all peers need to check
for conflicts in the read-/writesets of the contracts to ensure
serializability. In Bitcontracts, such conflicts are prevented
during the mining process (ordering step), since miners check
for state-dependent transaction validity, which ensures that all
values read during the contract execution correspond to the
values from the previous state.

Finally, Bitcontracts enables contracts where a single
transaction performs multiple separate money transfers. This is
possible, when the underlying blockchain supports (4) atomic
multitransactions, i.e., transactions that atomically execute
payments from multiple sources to multiple recipients.

D. Cryptocurrency Properties

Above we introduced informally properties 1-4 that the un-
derlying cryptocurrency must provide to support Bitcontracts.
These properties are necessary to support our execution and
trust model, securely and efficiently, on unmodified legacy
blockchains. We do not claim that these properties are nec-
essary or sufficient for every contract execution system. For
example, if a different trust model with a single executing
node is chosen, fewer properties may be sufficient.

Next, we specify these four properties more precisely in the
format of interfaces. This allows us to keep our system design
in Section IV agnostic of the underlying blockchain platform.
Note that these interfaces are defined on transactions and they
can be used without direct access to the blockchain itself, if
the relevant transactions are supplied to the service providers
by the client. In Section V, we analyze how these properties
are supported in existing, widely-used cryptocurrencies.

(1) Multiparty authorization. To allow a distributed set of
service providers to perform state transitions for a contract,

6

the cryptocurrency must support a form of multiparty au-
thorization, i.e. a mechanism that allows a set of n entities
to collectively authorize a transaction with signatures from a
threshold number t of them. An example of such authorization
is multi-signature outputs in systems like Bitcoin. This ensures
that changes to the smart contract state are only committed
to the chain, if enough service providers authorized the state
transition. The threshold is set per account, i.e. if funds are
being transferred from multiple sources, each of them may
have their own threshold that needs to be met.

We abstract authorization for a transaction Tx as an in-
terface σ = sign(Tx, sk), where sk is a secret key of the
authorizing entity and a transaction Tx is valid if the threshold
condition is met for every source of transferred funds. To
verify authorization on a transaction for an account, miners
and other nodes use a predicate verify(Tx,Σ, PK, t) where
Σ = f(σ1, . . . , σt) is some function3 on a list of signatures,
PK = (pk1, . . . , pkn) is the list of public keys and t is the
threshold value associated with the account.

(2) Arbitrary data storage. The cryptocurrency must allow
storing auxiliary (non-financial) information in a transaction
in order to support stateful contracts with stateless service
providers. Storing the contract state on chain ensures that all
contract participants receive the latest state and are able to
continue interacting with the smart contract. An example for
this property is the ability to store data in Bitcoin scripts.

For a transaction Tx we abstract appending some data d to
this storage as an interface Tx.append_data(d) and reading as
d = Tx.read_data(loc, len), where loc specifies the location
and len specifies the length of the data to read.

(3) State dependent transaction validity. As the service
providers should remain stateless, the transaction validity rules
of the cryptocurrency must allow the validity of a transaction
to be conditioned on a state references in the transaction.
That is, the transaction should reference a previous transaction
to be valid if and only if that previous transaction has been
included in the chain and resulted in the currently valid state.
In Bitcoin and similar currencies, this is trivially supported
through the UTXO model, since a transaction is only valid if
all inputs are outputs of a previous transaction (i.e. included in
the chain) and have not been spent (i.e. represent the current
state). In Section V we discuss how this property is provided in
account-based systems. In addition to enabling stateless service
providers, this property prevents time-of-check to time-of-use
(TOCTOU) problems, because every new state can directly
reference the previous one and base its validity on it (see
Section VII for details).

For a transaction Tx, we abstract this condition as an
interface Tx.require_previous(id) where id is a unique
identifier for a state or previous transaction and where Tx
will only be accepted as valid if id refers to the most recent
associated state or transaction.

(4) Atomic transactions. A smart contract should be able
to receive and send funds within a smart contract call. This

3This can for example be the identity function, which would be the case in
Bitcoin multisignatures. However, this could also be some form of signature
aggregation such as BLS [10] signatures.

necessitates that atomic transactions with multiple origins and
multiple destinations must be possible, i.e. the smart contract
should be able to receive and send funds in a single contract
call. In UTXO-based cryptocurrencies this can simply be
done by creating a transaction that uses UTXOs from differ-
ent parties as inputs and creating multiple outputs. In other
cryptocurrencies, one atomic transaction may require creating
multiple transactions for which atomicity is guaranteed through
other mechanisms (see Section V). Note that rolling back a
transaction due to permissionless consensus mechanisms such
as proof-of-work does not violate transaction atomicity, since
the transaction is either rolled-back in full, or not at all.
Therefore, all UTXO-based cryptocurrencies, as well as many
others, support this property independent of their consensus
mechanism.

For a transaction Tx, we abstract this property as an inter-
face Tx.add_transfer(src, dest, val) that adds a transfer of
funds with value val from src to dest to the transaction. If a
transaction contains multiple transfers, this interface is called
multiple times. All fund transfers are then executed atomically.

IV. BITCONTRACTS SPECIFICATION

In this section, we describe the Bitcontracts system in
detail. We start with our system model, and then explain the
contract deployment and execution.

A. System Model

There are three types of entities in Bitcontracts, as shown
in Figure 1:

Existing Blockchain System. Bitcontracts extends existing
blockchain systems with smart contracts. Existing entities such
as blockchain clients and miners (or stakers in Proof-of-Stake
systems), as well as the P2P infrastructure are agnostic to
Bitcontracts and thus do not need to be modified.

Bitcontracts Clients are participants and creators of smart
contracts. They connect to the blockchain’s P2P network and to
service providers for contracts in which they are participating.
Bitcontracts clients can create smart contracts by creating a
transaction that sets an initial state and initial funds for the
contract and specifies the responsible service providers and
broadcasting this transaction to the blockchains P2P network.

Service Providers. A set of service providers called provider
set (P) that can execute smart contracts. Service providers
are stateless and do not necessarily need to connect to the
blockchain. Service providers get requests from clients to
execute a contract based on a given state, execute this contract
and send the result back to the client. Each provider creates a
keypair for receiving and sending transactions on initialization
and publishes the public key. This can be done in several ways;
a provider can publish it on the blockchain, he can make it
accessible on some publicly available website, or he can send
it to clients directly.

B. Contract Deployment

Smart contracts in our system consist of a piece of code
written in an arbitrary language, some funds and a contract
state stored on the blockchain as a key-value store, which

7

Blockchain P1 P2 P3

State
State, Txprev , Contract, Inputs

Tx, σP1 Tx, σP2 Tx, σP3

Tx,Σ, σC

1

2

3

4

5

Fig. 2. Contract call. To call a smart contract, the client first assembles the
state from the blockchain and then sends the state, the previous transaction,
and his inputs to the service providers. The service providers then execute the
contract call and send the resulting transaction as well as their signatures to
the client, who finalizes the transaction and broadcasts it.

allows for easy retrieval of the state during contract execution.
The smart contract account can be viewed as an account
managed by a quorum of service providers that can collectively
authorize transactions.

In order to deploy a smart contract, the client chooses an
executing subset E ⊆ P of an arbitrary size n and a t-out-of-
n trust model that describes which number t of the providers
out of the set E have to attest to the correctness of smart
contract execution. Note that this set is collectively trusted
for contract execution results and thus the chosen service
providers are typically known (and not anonymous) entities.
The set of service providers responsible for the execution of
the contract is part of the contract specification and is thus
specific to a contract and not to a transaction. The client then
creates a transaction Tx whose recipient is a new account
that is managed by E collectively, i.e. a subset of E of size
t can authorize transactions from this account. For example,
in UTXO based currencies, this would correspond to a t-out-
of-n multisig output. In addition to any initial funds going to
the contract account, this transaction contains a hash of the
contract code, a hash of its initial state, and the initial state
itself in its auxiliary storage. This is added to the transaction
by the client before broadcasting using the append_data
interface. The client then broadcasts the transaction and makes
the code available to any other party that should be able to
interact with the smart contract. If the contract should be
publicly available, he could even publish the contract code
in the contract creating transaction as well. Alternatively, he
can publish it on some publicly available website.

C. Contract Execution

To execute a smart contract, a client has to contact at
least t of the n providers in the contract’s executing set E to
execute the smart contract. If one of the contacted providers
does not respond, he needs to contact an additional one. A
sequence diagram for the contract call and execution is shown
in Figure 2.

1 The client first fetches the current state of the contract
from the blockchain by going through the contract’s past
transactions and assembling the state from all state changes
stored in them. This does not need to be repeated in full every

time; clients can continuously update their local state, or they
can even rely on a service that provides them with the most
recent state (which they can check using the state hash stored
in the most recent transaction), similar to current lightweight
blockchain clients.

2 To each of the contacted providers, the client then sends
the current state, the previous contract transaction Txprev,
the smart contract code, any inputs for the smart contract
execution, and any information required to send funds from
the client to the smart contract (e.g. UTXOs from the client).
Service providers can also store the code, but the design
described here allows service providers to be fully stateless.

3 Each provider Pk then proceeds as follows:

(i) The provider computes the hash of the contract code,
retrieves the hash of the contract code from Txprev using
the read_data interface and compares the two values. If
the values match, he continues, otherwise he aborts.

(ii) The provider does the same for the state, i.e. he retrieves
the state hash from Txprev, compares it to the computed
hash of the state received from the client, and aborts if
the values do not match.

(iii) Given the state, parameters, and additional inputs, the
provider executes the smart contract. This contract execu-
tion can change the state of the contract and can initiate
transfer of funds to other addresses.

(iv) The service provider creates a raw transaction Tx and
makes it dependent on the previous transaction using
Tx.require_previous(Txprev.id).

(v) The provider hashes the new state and appends the hash
of the contract code as well as the state hash to the
transaction using the append_data interface.

(vi) The provider computes the list of state changes from the
previous state to the new state, serializes this list and ap-
pends it to the transaction storage using the append_data
interface.

(vii) If the smart contract receives funds from the client or
the execution causes funds to be transferred to another
address, the service provider uses the add_transfer
interface to add the transfers to the transaction Tx.

(viii) Finally, the service provider Pk creates a signature on the
transaction as σPk

= sign(Tx), and sends the transaction
and signature back to the client.

4 The client receives the transactions Tx as well as
a signature σPk

from each provider Pk. Since the contract
execution is deterministic, each of the providers creates the
same transaction and provides a signature over it. The client
then assembles the multiparty signature Σ from all received
signatures σP1

, . . . , σPt
. If the client is sending funds to the

contract (or is providing funds to pay for fees), he also provides
his own signature σC on Tx.

5 Finally, the client broadcasts the signed transaction
(Tx,Σ, σC) and it can be included in the blockchain.

D. Contract Dependencies

For contracts calling other smart contracts, we need to
ensure that (i) the whole call (including subcalls) is executed
atomically, and (ii) that execution integrity is guaranteed given
the chosen trust model of each contract. This requires that

8

TABLE I. REQUIRED PROPERTIES SUPPORTED BY POPULAR
CRYPTOCURRENCIES. (Í = PROVIDED PROPERTY, + = PARTIALLY

PROVIDED PROPERTY, é = NOT PROVIDED PROPERTY).

Model System Storage of
Auxiliary data

Multiparty
Authorization

State dependent
Tx validity

Atomic
Transactions

UTXO

Bitcoin Í Í Í Í

Litecoin Í Í Í Í

Zcash Í Í Í Í

Dash Í Í Í Í

Cardano Í Í Í Í

Monero Í + Í Í

Account

Ethereum Í Í Í Í

Ripple Í Í Í +

Stellar Í Í é Í

EOS Í Í Í Í

state changes for all contracts are committed with a transaction
(or sequence of transactions executed atomically) signed by a
quorum of the executing set of each involved smart contracts.

In order to execute a contract call with subcalls, the
client first runs the contract call locally to determine the
set of involved contracts and then sends the state, the latest
transaction, and the code of all involved contracts to all service
providers, together with the inputs to the contract call. The
service providers then perform the same steps as listed above
in Section IV-C, checking the code and state hashes for every
involved contract and executing the full call chain. Since the
resulting transaction can only be included in the chain if it
fulfills the multisignature condition of all involved contracts,
this ensures that all state changes are only applied if all of the
quorums are reached.

E. Use of Oracles

Because of the way, Bitcontracts is built, service providers
can natively act as oracles for many use cases since the contract
code can directly connect to external websites or data feeds.
For example, if Alice and Bob set up a contract to bet on
whether it will rain on new year’s eve and they both trust
the same feed for weather data, they can write a contract
in which they both lock some funds such that: the contract
directly accesses this feed using https, checks if weather data
is available for new year’s eve, and then pays out to the winner
of the bet. This contract can then be called on new year’s day
by the winner of the bet. Since the result of accessing this feed
and checking whether it rained should be the same independent
on which honest service provider this is executed, no external
oracle is needed.

V. PROPERTY ANALYSIS

In this section we analyze popular blockchain systems
and explain how they provide the properties that Bitcontracts
needs. Table I summarizes our analysis.

A. Storage of Arbitrary Data

Some account based cryptocurrencies, such as Stellar and
Ripple, offer explicit mechanisms to store arbitrary data.
Others, such as Ethereum and EOS, support this through their
smart contract system, as arbitrary data can simply be sent as a
parameter to a contract call. In Ripple, this is supported using
a Memos field that adds data to a transaction, while Stellar
allows writing to a key value store of the account using a
Manage Data operation.

Most Bitcoin forks support specific outputs that only store
data using the OP_RETURN instruction. This allows only
a small amount of data to be stored per transaction since
at most one output using this instruction can be used per
transaction. There exist several workarounds for this that allow
storing more data per transaction with some overhead [42] for
currencies supporting Bitcoin script. We explain one of them
in Section VIII-B. In general, arbitrary data can usually be
stored in transaction fields reserved for addresses, as addresses
generally resemble a random string and have no constraints
that can be checked. For example, in Monero, to store more
than 32 bytes of data (which can be stored as payment id) in
a transaction, one has to create dummy outputs that store the
data in the field for the stealth address. This has quite a large
overhead, however, since it requires a range proof of 2kB [40]
for every 32 bytes of data.

B. Multiparty Authorization

A mechanism for multiparty authorization is often desired,
e.g. for wallets from companies, to enhance security and
therefore usually supported in cryptocurrencies. Most UTXO-
based cryptocurrencies, such as Litecoin, Zcash, and Dash, are
forks of the Bitcoin protocol and also support Bitcoin script,
which enables multisignatures. Note that “multisignature” in
this context refers to transaction authorization that requires
individual signatures from multiple parties. It does not refer to
multisignature schemes that usually require a protocol between
signers to collectively produce one single signature. Even
though Cardano is not a fork of Bitcoin, it also supports
script and allows for multisignatures. Stellar and Ripple (using
the account model) implement multisignatures differently, but
still support them, while Ethereum and EOS already support
expressive smart contracts that can and have to be used to
implement multiparty authorization.

Monero is a special case since it does not explicitly support
multisignature accounts. Instead, multiparty signatures have
to be created by splitting keys among multiple parties and
running an interactive signing protocol. In addition, they are
not well supported in software which makes them cumbersome
to create [4], [31]. While this is enough to be compatible
with our system, it requires that the service providers interact
between each other, instead of just communicating with clients.

C. State Dependent Transaction Validity

In the UTXO-model, state dependent transaction validity
is an implicit consequence of the model, as inputs to a
transaction must be unspent outputs of a previous transaction,
which makes validity of a transaction directly dependent on
the previous transaction. All UTXO-based cryptocurrencies
therefore support this property.

In account based cryptocurrencies, such policies have to be
supported explicitly. This is the case in Ripple, for example,
that provides a special mechanism that allows specifying
the hash of the previous transaction from an account in the
AccountTxnID field of a transaction. The transaction will
then only be accepted by the ledger if this value is the hash
of the latest transaction of that account. Such a mechanism is
missing in Stellar, but could easily be added the same way, to
enable support for Bitcontracts. As another possibility, state

9

dependent transaction validity can be implemented within an
existing smart contract system, as is the case with Ethereum
and EOS, by creating a smart contract that stores the most
recent state hash and only accepts state updates if the previous
state referenced in the update corresponds to the stored value.

D. Atomic Transactions

As with state dependent transaction validity, all UTXO-
based cryptocurrencies support atomic transactions as an im-
plicit consequence of the model: transactions must support
multiple inputs and outputs, since otherwise transactions could
not have variable amounts. In currencies supporting smart
contracts, such as Ethereum and EOS, this is again supported
through the smart contract system.

Stellar allows adding multiple payments to a transaction.
If the payment is from a different source than the sending
account, the respective account also needs to sign the transac-
tion. Ripple does not natively support atomic transactions with
multiple sources and destinations, but native support could
easily be added, similar to Stellar. Even without native support,
a form of atomic payments can be added on top of Ripple using
the PathJoin protocol [35]. However, to use this protocol to
ensure transaction atomicity, service providers would need to
interact with each other and would need to keep track of the
ledger state.

VI. INCENTIVES

The Bitcontracts specification, described in Section IV,
implicitly assumes that service providers will execute client
transactions. In this section, we explain how transaction execu-
tion can be incentivized and how service providers and clients
can be protected from each other. We focus on transaction
fees that have become a common way of incentivizing work
in blockchain systems, but we emphasize that service providers
could also be incentivized through other (off-chain) means
such as subscription fees similar to cloud computing services.

In addition to explicit incentives added through transaction
fees, misbehavior is also disincentivized implicitly through
loss of reputation, since clients will generally choose known,
reputable entities and not anonymous parties. Bitcontracts
provides undeniable evidence of misbehavior, such as signing
false state transitions, which would damage the service’s repu-
tation. However, explicit negative incentives, such as financial
penalties for misbehavior require enforcement through some
form of trusted party. In a legacy system without native
smart contracts, such a trusted party is not available. Negative
incentives could be enforced within a Bitcontracts contract
itself, but would not be very useful, since they would then
rely on the trust model not being violated (in which case there
is nothing to gain from misbehavior).

As shown Figure 1, Bitcontracts supports deployments
where the service providers are totally disconnected from the
blockchain. In such deployments incentives must be handled
off-chain (e.g., subscription models). When on-chain incentive
mechanisms like transaction fees are used, service providers
need to be able to check the blockchain.

Introducing fees. A straightforward application of fees to
Bitcontracts system would be as follows. At the time of

calling a Bitcontracts contract (step 2 in Section IV-C), the
client specifies a fee that he is willing to pay to the service
providers. The client includes funds to pay this fee, separately
for each service provider, to the contract call request. If the
service providers find the included transaction fees acceptable,
they execute the contract call, include the fee payment from
the clients funds in the same transaction, and return the
signed result to the client (steps 3 and 4). By signing
the Bitcontracts transaction and publishing it on the legacy
blockchain (step 5), ownership of the fees is effectively
transferred from the client to the service providers.

Such fee mechanism is simple and efficient to deploy,
as it adds no additional latency to contract call processing.
However, it has two minor drawbacks. The first drawback is
that a malicious client could simply not sign and publish the
final transaction (i.e., skip step 5) and thus cause unpaid
contract call execution for the service providers. Clients do
not gain any benefit from such misbehavior and thus rational
clients do not have an incentive to abuse service providers like
this. Similar to other DoS and resource exhaustion attacks,
service providers could defend themselves through known
mechanisms like asking clients to solve cryptographic puzzles
during at times of heavy load [20], [24], [7] or by requiring
slightly higher fees overall to compensate occasional unpaid
execution work.

The second drawback is that some service providers could
choose to “free-ride” and not execute the call, in the hope that
other service providers will complete the work and they get
still paid. This drawback could be addressed by contract cre-
ators who could select reputable entities as service providers.

On fairness. An ideal transaction fee mechanism would pro-
vide fairness between service providers and clients. The service
providers would perform the contract call execution work only
if they are guaranteed to receive the fee. The clients would
only pay if the know that service providers will execute and
sign the contract call. This problem is close to the notion of
fair exchange [38], where a seller releases a product, like an
output of some computation, to a buyer only when he is are
guaranteed to receive a matching payment.

Unfortunately, the existing fair exchange protocols are not
applicable to our setting for two main reasons. First, the
existing legacy-chain compatible fair exchange protocols like
Zero-Knowledge Contingent Payments (ZKCP) [8], [47], [12]
protect a digital “product” like a computation result, but they
do not protect the task of computation itself. Thus, if we would
adopt one of the existing ZKCP protocols, a malicious client
could still impose unpaid work on service providers. Second,
the existing fair exchange protocols usually consider a 1-to-1
setting with a single buyer, while our execution model has n
sellers (i.e., n service providers).

Because the classical notion of fair exchange is not appli-
cable to our setting, we target a slightly different goal. Our
goal is to provide execution incentives for service providers
and at the same time protect them from malicious clients (as
well as possible). More precisely, service providers should be
incentivized to execute transaction quickly, free-riding should
be discouraged, and clients should not be able to impose
execution work on service providers without a fee payment.

10

Example incentive mechanism. Next, we describe an example
incentive mechanism that achieves these goals. The client pays
the transaction fees to a t-out-of-n multisig account that is
controlled by the service providers collectively. This payment
can be done on-chain (or through a payment channel in the
case where the client interacts often with the smart contract).
The service providers then check before executing the contract
if they received the payment. If this is the case, they proceed
as usual.

After some fixed time interval (e.g., a month), the service
providers collectively create a transaction from their multisig
account that pays out a share to each service provider in
proportion to the number of contract transactions (that appear
on the chain) with a signature from the respective service
provider. Since the service provider check that they received
the payment before they execute the contract call, they are
guaranteed to be paid collectively, and since fewer than t of the
service providers can be malicious, the fees are guaranteed to
be distributed based on the fraction of contract transactions to
which the service providers contributed. This also incentivizes
fast responses from service providers, since they are more
likely to be included on chain and clearly disincentivizes free-
riding.

Such an example incentive mechanism has two minor
drawbacks. First, it increases contract call processing latency
slightly, since service providers need to wait until they have
received the payment before they execute the contract. Second,
a malicious client can still favor some service providers over
others by selectively choosing which signatures are included to
the final transaction. We consider the development of incentive
mechanisms that provide perfect fairness for one buyer of
computing work and a quorum of sellers an interesting open
problem that is beyond the scope of this paper (and potentially
of independent interest).

VII. SECURITY ANALYSIS

In this section, we analyze Bitcontracts in terms of its
safety and liveness guarantees.

Safety. The main safety or security condition that a contract ex-
ecution system like Bitcontracts needs to provide is that every
contract is executed correctly. We say that a system provides
execution correctness for a particular contract if all calls to that
contract that appear in the chain are serializable and each call
provides control-flow integrity based on the resulting state of
the call immediately preceding in the serialization of all calls.
Based on this definition, we make the following claim:

CLAIM 1. Given the specification of contract A, which
defines an executing set EA that consists of nA service
providers and quorum size tA, the following holds: If fewer
than tA service providers from E are compromised, the con-
tract provides execution correctness, i.e. serializability and
control-flow integrity.

PROOF. We consider the following cases:

1. Correct client inputs. Assuming that the contract code
and state provided by the client are correct, all honest service
providers will only sign a transaction if the contained state
transitions are correct, i.e. the new state is the correct result
of the smart contract execution, given the state they received

as input. It follows that if fewer than tA service providers are
compromised, a transaction containing false state transitions
cannot gain a quorum for contract A and thus cannot be
committed to the blockchain, i.e. we have execution integrity
based on the state provided by the client.

2. False previous state or contract provided by the client.
For this case, we assume that the client provides the correct
previous transaction Txprev . Even though we know from above
that the state transitions themselves must be correct, they are
based on a state and contract code provided by the client.
The client could therefore send a forged state as input state.
However, the previous transaction Txprev that led to this state
contains the hashes of the state and the contract. The service
providers check that the provided state and contract correspond
to these hashes and abort if this is not the case, i.e. a state
transition based on a mismatched state or contract code cannot
reach a quorum for A.

3. False or outdated previous transaction provided by the
client. The above does not take into account that the client
could also provide a forged or outdated previous transaction
Txprev . A transaction can be outdated even in the absence
of an attack, simply because two clients call the contract
at approximately the same time. However, our system needs
to ensure no state transitions based on such an outdated
state are committed to the chain to prevent race conditions
and specifically TOCTOU vulnerabilities. Before signing the
resulting transaction Tx and sending it back to the client, the
service providers condition the validity of the new transaction
Tx on Txprev , i.e. Tx will only be accepted if Txprev was
committed to the blockchain, and it was the most recent
transaction of the contract account. This ensures that even
though a transaction based on an outdated (or false) previous
transaction may reach a quorum, it cannot be committed to
the blockchain since the validity criteria, which are checked
by miners, are not fulfilled.

It follows that a transaction with a quorum of signatures
must provide control-flow integrity, directly references a single
valid previous state, and if it is accepted into the chain, is the
only such transaction referencing this state, which ensures a
unique serialization. Since a contract call that involves multiple
contracts requires a quorum for each involved contract and the
validity of the final transaction is based on the previous states
of all involved contracts, the above applies to all contract calls
independent of whether they involve other contracts or not and
independent of client behavior, i.e. even if a client misbehaves
or colludes with malicious service providers.

Finally, we note that our system does not have any security
implications on parties that are not participating in a contract,
even if said contract has a malicious quorum. This follows
directly from the fact that Bitcontracts does not change the
protocol of the underlying cryptocurrency.

Liveness. The main liveness condition that a system like
Bitcontracts should ensure is that every transaction from an
honest client that does not conflict with another transaction
(i.e. one including the same contract and based on the same
state) is executed and can be committed to the blockchain.
Based on this definition, we make the following claim:

CLAIM 2. Given a contract call T from an honest user
involving k contracts Ci (1 ≤ i ≤ k) that define executing sets

11

ECi
with quorum ti, the following holds: If the contract call

does not conflict with other contract call and an honest quorum
of size ti is reachable in ECi (for all 1 ≤ i ≤ k), liveness is
guaranteed for transaction T , i.e. T will be eventually executed
and committed.

PROOF. Since the client is honest, he eventually sends
the contract call to at least ti honest and reachable service
providers in ECi (for all 1 ≤ i ≤ k), who execute the contract
call and return the results to the client. Once the client has
received enough responses (i.e. a quorum from each contract),
he assembles and broadcasts the transaction for the underlying
cryptocurrency. Since there are no conflicting transactions, this
transaction will eventually be committed to the chain.

VIII. IMPLEMENTATION

In this section, we describe a Bitcontracts Python library
for creating and running smart contracts that can be used
with a backend implementation for arbitrary cryptocurrencies
supporting the requirements listed in Section III-D. We also
describe a Bitcontracts backend for cryptocurrencies compat-
ible with Bitcoin script.

A. Python Library

Our Python library provides a base class from which all
smart contract classes must be derived. Once deployed, the
smart contract is an object that is stored serialized on the
blockchain. When a contract is run on a service provider,
the library (after checking the code and state hashes) first re-
instantiates the contract object based on the state provided by
the client and then calls the method specified by the client
on this object with the provided inputs. Once the method
terminates, the library creates a list of state changes from the
previous state to the new state, serializes them, and stores them
in a transaction, which the service provider then signs.

The library also provides an API to smart contracts. In
our prototype, this API is limited to basic functions, such as
getting the smart contract balance, creating transfers of funds,
or calling other smart contracts, as well as decorators that
allow declaring functions as private (i.e. only callable by other
functions of this contract) or public (i.e. callable by anyone).
An example contract as well as a step-by-step description of its
execution is shown in Appendix B. Other API functionality,
e.g. some primitives such as getting the caller identity can
easily be added. Other functions supported in Ethereum, such
as retrieving the current block hash or the identity of the miner
would require support from the underlying cryptocurrency, and
cannot be added for Bitcoin.

For the execution of the smart contract, a separate execution
environment is set up. In our prototype, this is currently a
simple subprocess. However, in a production environment,
contract execution needs to be executed in a sandboxed en-
vironment, e.g. by running the code in a Docker container,
since the contract code is not trusted by the service provider.

To ensure that all contract calls can achieve a quorum of
service providers, steps should be taken to ensure deterministic
execution of the contract code, e.g. by controlling the ran-
domness source available to the sandbox and by disallowing
multi-threading.

B. Instantiation for Bitcoin-like Currencies

Transactions in UTXO-based cryptocurrencies consist of
multiple inputs and multiple outputs (that can later again
be inputs to a transaction). A chain of three Transactions
resulting from contract deployment and different calls is shown
in Figure 3. Transactions resulting from a contract execution
using Bitcontracts have the components described in the
following.

Contract Input. The contract input is an output from the
previous contract call. We describe it in more detail below. A
contract creation transaction does not have any contract inputs.

Client Inputs. Any Bitcontracts transaction can have zero or
more client inputs. These inputs are used to send funds to the
contract.

Contract output. This output holds the balance of the smart
contract and is locked by a Bitcoin script specifying a multisig
condition. We use a P2SH output with a redeem script contain-
ing an m-out-of-n-multisig condition. The parameters m and
n as well as the public keys included in it, are chosen by the
creator of the smart contract and maintained by the providers
throughout calls to it. The rules for standard transactions of
Bitcoin and related cryptocurrencies allow for n ≤ 15 in such
redeem scripts (which effectively limits the maximum size of
the execution set to |E| = 15). The redeem script also contains
the hash of the code and the hash of the current state of
the smart contract. These values are pushed to the stack and
dropped, thus no additional efforts are required to redeem the
balance output. They must still be included, s.t. the provider
can check the code and state of the smart contract, received
alongside the previous transaction against the hashes contained
in it.

State Outputs. These outputs hold the state changes of the
contract call, i.e. all variables in the state that were altered
during this execution. State changes are stored as a key-
value-mapping from variable names to their new values. Using
Bitcoin’s OP_RETURN opcode, up to 80 bytes can be stored
in an output that is marked as non-redeemable, i.e. not stored
in the UTXO set of a Bitcoin client. However, due to Bitcoins
transaction propagation rules only one OP_RETURN output per
transaction is allowed which is rather limiting.

Several workarounds to this limitation are known and
were discussed by Sward et al. [42]. Our implementation
uses multisig outputs with three fake public keys containing
our data. Bitcoin allows storage of up to three public keys
(65 bytes each) in standard multisig outputs (i.e. non-P2SH),
which allows storing 195 bytes with an overhead of 15 bytes
per output. By arranging the state outputs contiguously, data
recovery is straight forward and no additional overhead is
incurred do to specifying data locations. With a maximum
transaction size of 100KB in Bitcoin we can store up to 92KB
of state updates. Note that, while this limits the number of
named contract fields that exist at the initialization of the
contract, the state size itself is not limited, e.g. a contract using
a list or a dictionary can grow to arbitrary sizes.

Client Outputs. These outputs pay money to clients. They can
be payouts from the smart contract, or change outputs for a

12

Bob
Input
$90

Contract A
Output

$65

Contract A
State

Outputs

Contract A
State

Outputs

Bob
Change

$25

Contract Creation Transaction

Contract A
Input
$65

Charlie
Input
$40

Contract A
Output

$50

Contract A
State

Outputs

Contract A
State

Outputs

Bob
Output

$10

Alice
Output

$15

Charlie
Change

$30

Contract Call Transaction

Contract A
Input
$50

Contract B
Input
$10

Bob
Input
$25

Contract A
Output

$30

Contract A
State

Outputs

Contract A
State

Outputs

Contract B
Output

$40

Contract B
State

Outputs

Contract B
State

Outputs

Bob
Change

$15

Multi-Contract Call Transaction

Fig. 3. Contract Transactions in UTXO-based cryptocurrencies. In the transaction on the left, Bob creates a smart contract and funds it with $65, which
results in a transaction containing a contract output with the funds stored in the contract, several state outputs for persistent storage and an output returning the
change to Bob. In the second transaction, Charlie calls the smart contract and sends some funds to it. The contract execution causes the contract to pay out
money to Alice and Bob, i.e. in addition to the contract and state outputs, the transactions contains outputs for Alice and Bob, as well as a change output for
Charlie. In the transaction on the right, Bob called contract A, which then called contract B. The contract and state outputs of contract A are listed first, then
the same for contract B, and the change output to Bob is listed last.

client using an input larger than the value he intended to send
to the contract.

To create a smart contract, the client uses one or multiple
of his UTXOs as inputs to a transaction that has a contract
output with the initial contract funds, state outputs containing
the initial state and client outputs, e.g. a change output for the
client. In Figure 3 on the left, we show an example transaction,
in which Bob creates and funds a Bitcontracts contract.

To call a smart contract, the client first has to assemble the
contract state. He does that by iterating through the contract
transactions and applying the state updates from each of them.
Note, that this can even be done using a lightweight client,
i.e. the client does not need to download the full chain of
the underlying cryptocurrency. Once the state is assembled, he
calls the smart contract by contacting the service providers as
described in Section IV-C and shown in Figure 2. The service
providers perform the required checks (e.g. matching contract
and state hashes), execute the contract and then assemble a
transaction. The transaction again contains a contract output
as described above, state outputs containing the state changes
and potentially client outputs. An example is shown in Figure 3
in the middle, where Charlie sends some funds to a smart
contract, which causes a payout to Alice and Bob and the
return of some change to Charlie.

A smart contract call may include subcalls to other smart
contracts. In such a case, the client provides all required
information for all involved smart contracts to the service
provider and contacts the necessary service providers from
all executing sets (cf. Section IV-D). The service providers
execute the contract as described above and when assembling
the transaction ensure that the contract and state outputs are
ordered in the order in which the contracts appeared in the call
chain. For example, in the last transaction in Figure 3 contract
B was called by contract A, therefore the outputs for contract

A are listed first.

IX. EVALUATION

In this section, we first evaluate Bitcontracts that is run
on top of popular legacy blockchain platforms (Section IX-A).
After that, we evaluate storage and cost of popular real-world
smart contracts on top of Bitcontracts (Section IX-B).

A. Bitcontracts on Legacy Cryptocurrencies

For our first evaluation, we consider running Bitcontracts
on top of 6 popular legacy cryptocurrencies (Bitcoin, Bitcoin
Cash, Litecoin, Dash, Dogecoin, Zcash) and we compare the
costs for data changes as well as the throughput in terms of
the amount of data changed to Ethereum. Ethereum follows a
roughly similar resource management model, where transac-
tion fees depend on computation complexity and state change
storage. We also discuss separately the costs of smart contract
execution in others systems, e.g., EOS, that follow a different
fee model.

Scalability. As mentioned above, the multisig functionality of
Bitcoin and related cryptocurrencies enable execution sets up
to the size of |E| = 15 service providers.

Key management overhead. The key management overhead
for service providers is low regarding storage, computation,
and communication. Each service provider only needs to store
a single private key that he can use for all contracts for which
he is responsible. Each service provider needs to only produce
one signature for each contract execution and there is no
communication required between service providers.

Computation. The main focus of our work is contract calls
that are similar computations as ones seen today in Ethereum,
i.e. in the order of milliseconds. However, nothing limits the

13

TABLE II. BITCONTRACTS COST EVALUATION. THE TABLE SHOWS 1) TRANSACTION FEES IN POPULAR CRYPTOCURRENCIES AND 2) THE COST OF
BITCONTRACTS TRANSACTIONS PER STATE CHANGE FOR EACH CURRENCY BASED ON TRANSACTION FEE DATA FROM 2020-06-08. THE TABLE ALSO
SHOWS 3) MAXIMUM TRANSACTION SIZE FOR EACH CURRENCY AND 4) THE MAXIMUM STATE CHANGE PER TRANSACTIONS FOR BITCONTRACTS ON
EACH CURRENCY, AS WELL AS 5) THE MAXIMUM STATE-CHANGE THROUGHPUT. IN 6) THESE COSTS AND LIMITS ARE COMPARED TO THE CURRENT

ETHEREUM SYSTEM (WITHOUT BITCONTRACTS).

Bitcontracts
BTC BCH LTC DASH DOGE ZEC 6) Ethereum

Storage Cost 1) Transaction fee ($/KB) 0.73 0.005 0.060 0.008 0.000 0.068 -
2) Bitcontracts state-change cost ($/KB) 0.80 0.006 0.065 0.009 0.000 0.073 1.44 - 5.75

Max. Storage 3) Maximum tx size 100KB 100KB 100KB 100KB 100KB 2MB -
4) Bitcontracts max. state-change per tx 92KB 92KB 92KB 92KB 92KB 1.86MB 16 - 63KB

Throughput 5) Bitcontracts max. Throughput (KB/s) 1.5 49.0 6.1 12.2 15.3 12.2 1.0 - 4.2

system from running more complex contracts similar to those
supported by ACE [50], Arbitrum [25] or Yoda [17]. We do
not provide a detailed evaluation of the speed of smart contract
execution, since contract calls are simply Python program
executions and thus measuring their execution speed would not
provide any new insights and the cost for contract execution
is mainly dominated by the on-chain storage cost described
below.

To illustrate this, we compared the execution cost of quick-
sort in an Ethereum contract with the cost of executing a com-
parable Python implementation on an AWS t2.micro instance.
To sort 2048 integer elements, the Ethereum implementation
requires 6.5 million gas (close to the block gas limit), which
costs roughly USD 59 (based on the fee prices of 2020-06-
08), while on the t2.micro instance, the Python implementation
takes less than 6 milliseconds to execute, which corresponds
to an effective total execution cost of less than USD 3 · 10−7,
if we assume that this is executed on every service provider
in an executing set of maximum size 154.

Communication. The communication cost is low, since every
call only requires a query to each involved service provider
(max |E| = 15) and its response. The latency until a client
receives the response from the service provider consists of
one Internet round-trip-time plus the time required for the data
transfer, which depends on the size of the state changes. For
most contracts this would be in the order of milliseconds or a
few seconds at most for contracts with many state changes. We
do not evaluate this experimentally, as Internet communication
latency has already been studied extensively elsewhere. The
latency for transaction confirmations in blocks is the same as
the latency for other transactions in the underlying blockchain
(e.g. on average 10 minutes in Bitcoin). Note that, as is the case
with other transactions, Bitcontracts contract calls can also
be executed based on unconfirmed transactions, i.e. multiple
Bitcontracts transactions for the same contract can be included
in the same block.

Storage cost. The first interesting evaluation metric of Bit-
contracts is its storage cost. In Table II we first show for
reference the current transaction fees (next block inclusion as
of 2020-06-08) in popular blockchain platforms. After that, we
show the storage cost of Bitcontracts per KB of state changes

4Of course, this does not imply that fees will be this low in practice, since
service providers will need to be profitable and therefore fees in practice will
be determined by a market and are hard to predict, but it shows that execution
in Bitcontracts is generally cheap.

for the same blockchain platforms. As can be seen from the
table, the storage cost overhead caused by Bitcontracts is very
small.

We also compare the storage cost of Bitcontracts to
Ethereum. As can be seen from Table II, an Ethereum contract
storing 1KB of data would cost between $1.44 (if no values
are changed from zero to non-zero) and $5.75 (if all changed
values are from zero to non-zero), which does not include any
computation. Compared to this, the on-chain storage fees of
Bitcontracts are significantly smaller ($0.80 or less).

Maximum storage. The second relevant evaluation metric is
the maximum amount of data (i.e., state changes) that can
be stored per transaction. Table II shows that in Bitcoin,
Bitcoin Cash, Litecoin, Dash, and Dogecoin one can store 195
bytes per 210 byte output, and thus the maximum storage
per transaction is limited to at most 92KB, due to their
standardness rules that will not propagate transactions larger
than 100KB. In Zcash, the maximum transaction size is only
limited by the maximum block size (2MB), which allows
storing data of up to 1.86MB per transaction. We note that
these limits do not restrict the overall size of the state of a
contract, but only the number of state changes per contract
call. In addition, these limits are affected by other parts of
the transaction. For example, if a transaction has a lot of
client inputs or outputs, the limit for data storage is reduced
accordingly.

In contrast, as can be seen from from Table II, a current
Ethereum contract can only change between 16 and 63KB
of storage (depending on whether values are set from zero
to non-zero) in one transaction given the current block gas
limit. Such a transaction would completely fill a block. Using
Bitcontracts on Ethereum would allow increasing this limit.
Since Bitcontracts does not require the state transitions to
be stored in storage and only requires them to be visible in
a transaction, they could simply be sent as transaction data,
which requires less gas and thus would theoretically allow to
store up to 625KB of data per transaction. In practice this
would be slightly less, depending on the quorum size and the
resulting signature verification cost.

Throughput. Another meaningful evaluation metric for Bit-
contracts is throughput. We evaluate throughput by measuring
the amount of state-update data the system can process per sec-
ond. This throughput value depends on the block interval and
the maximum storage per block of the underlying blockchain
platform. As shown in Table II, executing smart contract

14

using Bitcontracts on top of legacy platforms that do not
support contracts natively compares favorably to Ethereum’s
throughput in terms of the possible amount of changed data.

Costs in different fee models. Some cryptocurrencies, such
as EOS, follow a different fee model. Instead of paying
for computation and state changes directly, participants in
EOS stake funds, i.e., they lock them for some amount of
time, and in return they are allowed to use a fraction of the
computational and bandwidth resources in proportion to their
staked funds. Thus, the main cost for transactions comes from
the opportunity cost of not using the staked funds. Storage
(called “RAM” in EOS) is bought (and can be traded), but is
different from Ethereum and Bitcontracts as participants do
not pay for state changes, but instead pay for owning RAM.
The cost for 1KB of storage in EOS is $0.15 (as of 2020-06-
08) which is more expensive than newly allocating storage in
Bitcontracts (except on top of Bitcoin), but changing already
allocated storage is free of charge.

B. Popular Ethereum Contracts on Bitcontracts

In our second part of the evaluation, we analyze storage
requirements and transaction costs for popular real-world smart
contracts, if they were executed in Bitcontracts. We obtained
our evaluation data set by crawling the Ethereum blockchain
for several weeks (in October/November 2020) and collected
smart contract execution data from 130k blocks, from which
we extracted transaction information for all transactions of
the most popular 100 contracts (based on transaction count).
This resulted in a data set containing 10 million contract call
transactions. For each transaction, we collected the number and
the size of the state changes, the number of involved contracts,
the number of clients receiving funds and the Ethereum gas
cost.

We then use this information to calculate the transaction
size resulting from a potential similar contract execution in
Bitcontracts and, based on this size, the resulting costs on
different chains, such as Bitcoin. The size of a contract
transaction in Bitcontracts depends on the number of involved
contracts, the sizes of their executing sets, the number of
clients receiving funds from the contract and the number and
size of the state outputs (cf. Section VIII-B), which is derived
from the number of state changes and the size of the storage
that is changed. This allows a straight forward calculation for
the size and cost of the resulting transaction.

Transaction Size. Figure 4 shows a comparison of the re-
sulting transaction sizes when executing the contract calls
in Bitcontracts with executing sets of size 5 and a quorum
size of 3. The transaction size distribution for transactions in
Bitcontracts is shown on the left next to the size distribution
for the same transactions in Ethereum.

The median transaction size in Bitcontracts is 693 bytes,
which is only roughly 3 times as large as a basic Bitcoin
transaction with one input and two outputs (226 bytes). Trans-
actions are generally larger in Bitcontracts than in Ethereum
(which has a median transaction size of 174 bytes), which was
expected, since the quorum based off-chain execution requires
additional signatures in the transactions and adds some addi-
tional overhead for each involved contract, namely the contract

Bitcontracts
Tx Size

ETH
Tx Size

101

102

103

104

siz
e

[b
yt

es
]

Bitcontracts
Tx Data Size

ETH
Tx Data Size

Fig. 4. Full transaction size (left) and transaction data size (right) comparison
between Bitcontracts and Ethereum. In Ethereum, the transaction data size
includes all transaction inputs, such as function arguments. In Bitcontracts,
the transaction data size is the size of all state outputs of the transaction. In
the box plots, the whiskers show the 2nd and 98th percentile respectively. The
orange line (coinciding with the bottom of the boxes in all but the third box)
shows the median value and the bottom and top of the boxes show the 25th
and 75th percentile, respectively.

inputs and outputs. The right side of Figure 4 compares the
transaction data size between Bitcontracts and Ethereum. In
Bitcontracts, the transaction data size includes state change
outputs. In Ethereum, the transaction data size consists of the
transaction inputs, such as function arguments. Our analysis
shows that the base cost (that is largely independent of the
executed contract) accounts for most of the transaction size and
that storing state changes on chain is not the main contributor
to the size difference. In fact, transaction data is smaller in
most transactions in Bitcontracts compared to Ethereum, with
median data sizes of 39 bytes and 68 bytes, respectively, since
inputs such as function arguments do not need to be stored in
Bitcontracts. This indicates that many contracts change only
a small amount of storage data compared to the size of their
input parameters.

Throughput. Considering only contract executions (i.e. ex-
cluding pure money transfers), based on the collected trans-
action data, Bitcontracts could support a throughput of 1.8
transactions per second (tps) if run on top of Bitcoin, 7.0 tps
on Litecoin, and 9.6 tps on top of Bitcoin Cash (the first two
with, the latter without SegWit). Ethereum, for the same set
of transaction, supports a throughput of 10.2 tps, which shows
that Bitcontracts can achieve a throughput for contract calls
on top of legacy cryptocurrencies (Litecoin and Bitcoin Cash)
in the same order of magnitude as the throughput achieved by
a platform purposefully built to support smart contracts. The
throughput of Bitcontracts on top of Bitcoin is lower, but this
is expected, since Bitcoin’s throughput is more limited even
for normal transactions with an average of 3.7 tps.

Transaction cost. Figure 5 shows the transaction costs (in
USD) for transactions in our collected set of contract calls for
the 100 most popular contracts. The plot compares the costs of
these transactions in Bitcontracts on top of Bitcoin, Litecoin,
and Bitcoin Cash with the costs of the same transactions in

15

Bitcontracts
(BTC) Tx Cost

Bitcontracts
(LTC) Tx Cost

Bitcontracts
(BCH) Tx Cost

ETH
Tx Cost

10 2

10 1

100

co
st

 [U
SD

]

Fig. 5. Transaction cost comparison between Bitcontracts and Ethereumas
box plots with the whiskers showing the 2nd and 98th percentile respectively.
The orange line (coinciding with the bottom of the boxes in all but the last
box) shows the median value and the bottom and top of the boxes show the
25th and 75th percentile, respectively.

Ethereum (based on transaction fee data from 2020-06-08).
We see that the transaction cost distribution for Bitcontracts
on Bitcoin (median cost $0.35) has a similar range as the cost
distribution of the same transactions in Ethereum (median cost
$0.51), while executing them on top of other legacy cryp-
tocurrencies, such as Litecoin (LTC) or Bitcoin Cash (BCH),
is much cheaper (median is $0.03 and $0.004, respectively).
Note, that this is the on-chain transaction cost, i.e. service
provider fees are not included. However, as discussed in
Section IX-A, computation time (and thus execution fees) is
relatively cheap and the on-chain transaction fees are likely to
be the dominant cost factor.

X. CONCLUSION

In this paper, we introduced a new system, Bitcon-
tracts, that extends legacy blockchains such as Bitcoin
with Ethereum-style smart contracts without changes to the
base protocol. Bitcontracts achieves this by executing smart
contracts in service providers with a quorum based trust
model and leveraging the consensus protocol of the under-
lying blockchain. Bitcontracts only requires the underlying
blockchain to provide four basic properties—that are supported
by most popular blockchain systems. Our implementation and
evaluation show that running smart contracts on top of legacy
blockchains is feasible and cost-effective in practice.

REFERENCES

[1] “CoinMarketCap,” 2020, https://coinmarketcap.com/.
[2] “Ripple,” 2020, https://ripple.com/.
[3] “Stellar,” 2020, https://www.stellar.org/.
[4] K. M. Alonso and KOE, “Zero to monero: Multisig chapter,”

https://github.com/UkoeHB/Monero-RCT-report/blob/master/multisig_
chapter-1-0.pdf, 2018.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in EuroSys Conference, 2018.

[6] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in IEEE Symposium on
Security and Privacy (SP), 2014.

[7] A. Back, “Hashcash-a denial of service counter-measure,” 2002, http:
//www.hashcash.org/hashcash.pdf.

[8] W. Banasik, S. Dziembowski, and D. Malinowski, “Efficient zero-
knowledge contingent payments in cryptocurrencies without scripts,” in
European Symposium on Research in Computer Security (ESORICS),
2016.

[9] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Annual Cryptology Conference (CRYPTO), 2014.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International Conference on the Theory and Application of
Cryptology, 2001.

[11] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi, “Software grand exposure: Sgx cache attacks are practical,”
in USENIX Workshop on Offensive Technologies (WOOT’17), 2017.

[12] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-
knowledge contingent payments revisited: Attacks and payments for
services,” in ACM Conference on Computer and Communications
Security (CCS), 2017.

[13] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
IEEE European Symposium on Security and Privacy (EuroS&P), 2019.

[14] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[15] R. Cleve, “Limits on the security of coin flips when half the processors
are faulty,” in ACM symposium on Theory of computing, 1986.

[16] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts on
bitcoin,” in USENIX Security Symposium, 2019.

[17] S. Das, V. J. Ribeiro, and A. Anand, “Yoda: Enabling computationally
intensive contracts on blockchains with byzantine and selfish nodes,”
in Network and Distributed System Security Symposium (NDSS), 2019.

[18] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Symposium on Self-
Stabilizing Systems, 2015.

[19] J. Dilley, A. Poelstra, J. Wilkins, M. Piekarska, B. Gorlick, and
M. Friedenbach, “Strong federations: An interoperable blockchain solu-
tion to centralized third-party risks,” arXiv preprint arXiv:1612.05491,
2016.

[20] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual International Cryptology Conference (CRYPT)), 1992.

[21] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in IEEE Symposium on Security
and Privacy (SP), 2019.

[22] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in ACM Conference on Computer and Communications
Security (CCS), 2018.

[23] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700
bft protocols,” in EuroSys, 2010.

[24] A. Juels, “Client puzzles: A cryptographic countermeasure against
connection depletion attacks,” in Networks and Distributed System
Security Symposium (NDSS), 1999.

[25] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in USENIX Security
Symposium, 2018.

[26] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party
computation using a global transaction ledger,” in Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2016.

[27] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE symposium on security and privacy (SP), 2016.

[28] R. Kumaresan, T. Moran, and I. Bentov, “How to use bitcoin to play
decentralized poker,” in ACM Conference on Computer and Communi-
cations Security (CCS), 2015.

16

https://coinmarketcap.com/
https://ripple.com/
https://www.stellar.org/
https://github.com/UkoeHB/Monero-RCT-report/blob/master/multisig_chapter-1-0.pdf
https://github.com/UkoeHB/Monero-RCT-report/blob/master/multisig_chapter-1-0.pdf
http://www.hashcash.org/hashcash.pdf
http://www.hashcash.org/hashcash.pdf

[29] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside {SGX} enclaves with branch
shadowing,” in USENIX Security Symposium, 2017.

[30] S. D. Lerner, “Rsk white paper overview,” 2015, https://docs.rsk.co/
RSK_White_Paper-Overview.pdf.

[31] J. Lyles, “A monero multisig user’s guide,” https://blog.keys.casa/a-
monero-multisig-users-guide/, 2019.

[32] P. McCorry, C. Buckland, S. Bakshi, K. Wüst, and A. Miller, “You
sank my battleship! a case study to evaluate state channels as a scaling
solution for cryptocurrencies,” in Workshop on Trusted Smart Contracts,
2019.

[33] A. Miller, I. Bentov, R. Kumaresan, C. Cordi, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
Financial Cryptography and Data Security (FC), 2019.

[34] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems (CHES), 2017.

[35] P. Moreno-Sanchez, T. Ruffing, and A. Kate, “Pathshuffle: Credit
mixing and anonymous payments for ripple,” Privacy Enhancing Tech-
nologies (PETS), no. 3, 2017.

[36] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
https://bitcoin.org/bitcoin.pdf.

[37] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016, https://lightning.network/lightning-network-
paper.pdf.

[38] I. Ray and I. Ray, “Fair exchange in e-commerce,” ACM SIGecom
Exchanges, vol. 3, no. 2, 2002.

[39] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2017.

[40] SerHack, “Mastering monero,” 2018, https://masteringmonero.com/
book/Mastering%20Monero%20First%20Edition%20by%20SerHack%
20and%20Monero%20Community.pdf.

[41] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and
K.-K. R. Choo, “Sidechain technologies in blockchain networks: An
examination and state-of-the-art review,” Journal of Network and Com-
puter Applications, vol. 149, p. 102471, 2020.

[42] A. Sward, I. Vecna, and F. Stonedahl, “Data insertion in bitcoin’s
blockchain,” Ledger, vol. 3, 2018.

[43] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[44] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-
order execution,” in USENIX Security Symposium, 2018.

[45] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Under-
standing memory side-channel hazards in sgx,” in ACM Conference on
Computer and Communications Security (CCS), 2017.

[46] Y. Wang and Q. M. Malluhi, “The limit of blockchains: Infeasibility of
a smart obama-trump contract,” Commun. ACM, vol. 62, no. 5, 2019.

[47] B. Wiki, “Zero Knowledge Contingent Payment,” https://en.bitcoin.it/
wiki/Zero_Knowledge_Contingent_Payment.

[48] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, 2014.

[49] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), 2018.

[50] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, “ACE:
Asynchronous and Concurrent Execution of Complex Smart Contracts,”
in ACM Conference on Computer and Communications Security (CCS),
2020.

APPENDIX A
BACKGROUND ON SMART CONTRACTS

Smart contracts [43] are decentralized and self-enforcing
digital contracts. A typical smart contract enables contract

participants to load money or other assets to an account that
is controlled by the contract. The contract’s code defines the
logic and the conditions based on which the contract may then
transfer the loaded money or other assets to different parties,
such as the contract’s participants.

Most blockchains, like Bitcoin, support simple scripts
that are primarily used to authorize payments. In this paper,
we do not consider such scripts expressive smart contracts.
Few blockchains, like Ethereum, provide built-in support for
Turing-complete programming languages, and thus, in prin-
ciple, enable developers to write arbitrary contracts, but in
practice Ethereum contracts are constrained by gas limits,
which are needed to keep the consensus process efficient.

Ethereum’s trust model allows users to choose which
particular contracts they decide to trust. If a user participates
in a smart contract (e.g., by loading funds to it), he implicitly
trusts and agrees with the specification of that contract, which
is defined by the contract’s code. Such trust decisions are
contract-specific, as the same user does not need trust other
contracts in the same system and is not affected by their
execution results.

Ethereum-style smart contracts cannot implement all pos-
sible contracts, as is discussed in more detail in [46]. One
example is contracts that require fairness for revealing input
values (e.g., Alice learns Bob’s secret if and only if Bob
learns Alice’ secret). Another limitation of purely digital
smart contracts (even with secret computation) is that they
cannot enforce control over physical items [49]. Despite such
limitations, Ethereum-style smart contracts are widely seen as
very useful enablers for various business applications. Thus,
the focus of this paper is on enabling Ethereum-style contracts
on legacy blockchains.

If contracts with private computation are needed, one
option is to complement Bitcontracts with secure multiparty
computation (MPC) techniques. While classical MPC sys-
tem cannot guarantee fairness without honest majority [15],
blockchain-based solutions that leverage deposits and penalties
can alleviate fairness concerns [6], [9], [28], [26]. Such privacy
protections can be implemented by the contract developer
manually or one can use automated contract compilers like
HAWK [27].

The second option is to leverage TEEs, similar to Eki-
den [14] and FastKitten [16]. The main benefit of this approach
is its ease of implementation and its efficiency, in contrast to
cryptographic primitives used in MPC protocols and systems
like HAWK. The drawback is that information leakage even
from a single TEE violates privacy.

APPENDIX B
EXAMPLE CONTRACT

An example for a simple faucet smart contract is shown
in Figure 6. The contract allows anyone to top up the faucet
with some funds or withdraw money, if funds are sufficient.
For each withdrawal, it also increments a counter that is stored
in persistent storage. The code shows how API functions for
retrieving the contract balance (Line 19) and for sending funds
(Lines 21-25) can be used.

17

https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://blog.keys.casa/a-monero-multisig-users-guide/
https://blog.keys.casa/a-monero-multisig-users-guide/
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://masteringmonero.com/book/Mastering%20Monero%20First%20Edition%20by%20SerHack%20and%20Monero%20Community.pdf
https://masteringmonero.com/book/Mastering%20Monero%20First%20Edition%20by%20SerHack%20and%20Monero%20Community.pdf
https://masteringmonero.com/book/Mastering%20Monero%20First%20Edition%20by%20SerHack%20and%20Monero%20Community.pdf
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

1 from btcsc.scexecution.base.CSmartContractBase import (
2 CSmartContractBase, public, private)
3 from ISmartContractUtility import ISmartContractUtility as

util
4
5 class Faucet(CSmartContractBase):
6
7 def __init__(self):
8 super(Faucet, self).__init__()
9 self.withdrawals = 0

10 self.topups = 0
11
12 @public
13 def fill(self, amount):
14 util.IncreaseBalance(self.current_contract, amount)
15 self.topups += 1
16
17 @public
18 def drain(self, amount, address):
19 balance = util.GetBalance(self.current_contract)
20 assert(balance >= amount)
21 util.TransferFromBalance(
22 self.current_contract,
23 amount,
24 address
25)
26 self.withdrawals += 1

Fig. 6. A simple faucet smart contract implemented in Python. The
contract allows anyone to top up the faucet with some funds or withdraw
money.

Figure 7 shows example transactions in which this contract
is deployed and executed in a UTXO-based system. Bob is
the contract creator and as such creates the contract creation
transaction. First, he chooses a set of service providers and
we assume that he chooses E = {P1, P2, P3} with a quorum
threshold of t = 2. He then creates a 2-out-of-3 multisignature
output for the public keys of these three service providers
that contains initial contract funds. This output is the contract
output and it also needs to contain the hash of the contract
code as well as the hash of the current state (i.e. the state after
running the constructor of the contract class)5. The state in
this case contains the two state variables withdrawals and
topups, which store the number of withdrawals and top-ups
of the faucet, respectively and which both have a value of zero.
The actual values of the state variables are stored in separate
outputs (in this case one output suffices), using the method
described in Section VIII-B. Finally, he creates an output that
refunds his change. He then creates and signs a transaction that
uses one of his UTXO as input and broadcasts this transaction.

At this point, the contract has been created. Now, potential
participants need to be informed about the contract code
and its contract output. This can happen privately, through a
public website, or the code could be stored in the deployment
transaction as well. Charlie now wants to use this faucet
contract to receive some money from it. He uses the contract
output to assemble the current state and sends it, together with
the contract code, the previous transaction TxA (in this case the
contract creation transaction) as well as the function he wants
to execute and it’s arguments (i.e. “Faucet.drain(5,
address_charlie)”) to P1, P2, and P3.

The service providers now hash the received contract code
and state and compare the values to the hashes referenced
in TxA

6. If the values match, each service provider executes

5In Bitcoin script, this can be done by using a pay-to-script-hash (P2SH)
output, in which the script drops the two hashes before evaluating the
multisignatures. The output stores the hash of this script, which ensures that
neither the public keys for the multisignature nor the two hashes can be
changed.

6In Bitcoin script, this is done by recreating the script from the P2SH output
and checking if the hash of this script corresponds to the script hash in the
output.

Bob
Input
$90

Contract
Output

$65

State Output
withdrawals=0

topups=0

Bob
Change

$25

TxA: Contract Creation

Contract
Input
$65

Contract
Output

$60

State Output
withdrawals=1

Charlie
Output

$5

TxB : Withdrawal Transaction

Contract
Input
$60

Bob
Input

$5

Contract
Output

$62

State
Output
topups=1

Bob
Change

$3

TxD: Top-up transaction

Contract
Input
$65

Contract
Output

$60

State Output
withdrawals=1

Dave
Output

$5

TxC : Conflicting Transaction

Fig. 7. Example Contract Execution. Bob first creates the smart contract,
followed by Charlie performing a withdrawal. At the same time, Dave also
tries to perform a withdrawal, but due to the state dependency check (linking to
the previous transaction output in this case), the transaction cannot be included
in the chain. Finally, Bob tops up the faucet with additional funds.

the transaction. The code contains an API call that transfers
money, which will cause the library to create a transaction
output for the specified address with the specified amount ($5
in this example). The function called by Charlie also updates
the withdrawals state variable. After the execution of the
code is finished, the library compares the new state to the
previous state and then creates a state output (or multiple, if
necessary) containing only the values that have changed. In
this case, withdrawals = 1. Each of the service providers
create a transaction TxB with the mentioned outputs, as well
as an updated contract output containing the current balance,
contract hash and the new state hash. The previous contract
output is used as input of this transaction. They also create a
signature on this transaction and send both to Charlie. Charlie
then finalizes the transaction by attaching the signatures from
two of the service providers to it and broadcasts it to the
network.

Assume now that Dave also wants to use this faucet at
almost the same time. He performs exactly the same steps as
Charlie and will receive a similar transaction TxC as result.
However, since TxB and TxC use the same contract output
as transaction input, they are conflicting and miners will only
accept one of them. In Figure 7, we assume that TxB will
be included in the chain. If another party now wants to use
the faucet, e.g. Bob wants to top up the funds of the faucet,
they can do so based on the state given by TxB (even before
TxB is included in a block). In the example, Bob performs
such a top-up, which results in a change in the topups state
variable and thus only this changed variable is stored in the
state output.

18

	Introduction
	Problem Statement
	Motivation
	Limitations of Previous Solutions

	Bitcontracts Overview
	Execution and Trust Model
	Challenges
	Overview of Bitcontracts
	Cryptocurrency Properties

	Bitcontracts Specification
	System Model
	Contract Deployment
	Contract Execution
	Contract Dependencies
	Use of Oracles

	Property Analysis
	Storage of Arbitrary Data
	Multiparty Authorization
	State Dependent Transaction Validity
	Atomic Transactions

	Incentives
	Security Analysis
	Implementation
	Python Library
	Instantiation for Bitcoin-like Currencies

	Evaluation
	Bitcontracts on Legacy Cryptocurrencies
	Popular Ethereum Contracts on Bitcontracts

	Conclusion
	References
	Appendix A: Background on Smart Contracts
	Appendix B: Example Contract

