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Abstract—Satellite broadband services are critical infrastruc-
tures, bringing connectivity to the most remote regions of the
globe. However, due to performance concerns, many geostation-
ary satellite broadband services are unencrypted and vulnerable
to long-range eavesdropping attacks. This paper delves into the
underlying cause of these issues, presenting the case that the
widespread use of Performance Enhancing Proxies (PEPs) for
TCP optimization has created a security/performance trade-off.
A review of previous mitigation proposals finds limited real-world
adoption due to a variety of factors ranging from misaligned
commercial incentives to the prevalence of unverified “black-box”
encryption products.

To address these shortcomings, we design and implement
a fully open-source and encrypted-by-default PEP/VPN hybrid,
called QPEP. Built around the QUIC standard, QPEP enables
individuals to encrypt satellite traffic without ISP involvement.
Additionally, we present an open and replicable Docker-based
testbed for benchmarking QPEP, and other PEP applications,
through simulation. These experiments show that QPEP enables
satellite customers to encrypt their TCP traffic with up to
72% faster page load times (PLTs) compared to traditional
VPN encryption. Even relative to other unencrypted PEPs,
QPEP offers up to 54% faster PLTs while also protecting
communications in transit. We briefly discuss how QPEP might
leverage bespoke modifications to the QUIC protocol for further
optimization. Ultimately, our experiments suggest that QPEP’s
hybrid architecture represents a promising new technique for
bringing both security and performance to satellite broadband
while avoiding costly alterations to status-quo networks.

I. INTRODUCTION

Historically, security and performance have often traded-
off in satellite broadband networks. As a result, many satellite
internet service providers (ISPs) do not offer over-the-air traffic
encryption, exposing sensitive customer data to eavesdropping
attacks. This is because techniques used to optimize TCP con-
nections in long-distance satellite links are often incompatible
with commonly used encryption techniques, such as VPNs.

Since the early 2000s, academics and satellite operators
have grappled with the challenge of offering both encrypted
and performant TCP over satellite. In Section III we highlight

notable proposals and discus why they have seen limited real-
world adoption. While some encryption systems exist, these
follow a “black-box” model and are inaccessible and costly
for smaller organizational and individual customers. Moreover,
their proprietary nature makes security and performance claims
difficult to verify and most permit ISPs to eavesdrop on traffic.

No open-source encryption tool exists for performant TCP
communications over satellite links. Although academic pro-
posals are numerous, these are often purely theoretical or
lack replicable source-code. As a result, interested researchers
must either repurpose outdated code to incorporate modern
encryption or reinvent PEPs from scratch. The combined
requirements of cryptography and low-level network program-
ming create steep barriers to entry. Moreover, the lack of stan-
dardized testing environments makes comparing approaches
difficult without privileged access to satellite infrastructure.

The end result is that satellite broadband users have no
good options. They (or their ISPs) must purchase expensive
and unvetted proprietary applications, accept the substantial
performance hit caused by general-purpose VPNs, or transmit
sensitive data in clear text over massive satellite footprints.

This paper seeks to address both the lack of encryption
options and high barriers to research in this domain. Its primary
contribution is QPEP - an open-source and encrypted-by-
default PEP. Unlike many proprietary encrypted PEPs, QPEP
is designed for individual satellite customers and conceals
traffic from both eavesdroppers and ISPs. Built around the
open QUIC transportation protocol, QPEP benefits from ro-
bustly vetted cryptographic foundations and a broad technical
community. The system is implemented in Go, an accessible
modern language, to facilitate contributions in future research.

As a secondary contribution, the paper presents an open-
source simulation testbed, built around the OpenSAND satel-
lite networking engine [1]. This all-in-one dockerized environ-
ment is tailored towards rapid and replicable benchmarking for
secure PEP applications. While it has immediate utility in our
evaluation of QPEP, it is also designed to ease future system
proposals and comparisons from others.

Within this environment, we demonstrate that QPEP
achieves its design goals. It nearly halves average page load
times compared to traditional VPNs and substantially improves
on the performance of even unencrypted PEP applications.
Additional simulations are conducted to assess QPEP’s perfor-
mance under various network conditions and in the presence of
modifications to the QUIC standard. Ultimately, we find that
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QPEP represents a promising solution for performant over-the-
air encryption in satellite networks while avoiding investment
in new infrastructure or alteration of existing protocols.

II. MOTIVATION

The prevalence of security and performance trade-offs
in modern satellite broadband networks may initially seem
unintuitive. After all, the dangers of unencrypted wireless
communications are well understood and have been robustly
mitigated in systems ranging from home wifi to cellular com-
munications. Today, the decision of a terrestrial wireless ISP to
offer unencrypted broadband services could, not unreasonably,
be attributed to ignorance or incompetence.

This is not the case for long-range satellite communi-
cations. Severe security and privacy issues arising from the
use of unencrypted broadband services from Geostationary
Earth Orbit (GEO) have been known since at least 2005 [2].
However, our own experimental studies have found that, fifteen
years later, tens of thousands of satellite customers still rely
on unencrypted GEO links [3]–[5]. Deeply sensitive data
is readily observed by eavesdroppers with access to simple
home-television equipment - affecting customers ranging from
individual home internet subscribers to massive corporations.

In the process of responsibly disclosing these vulnera-
bilities both to satellite ISPs and to their customers, our
initial advice was simply to employ proven existing encryption
techniques (e.g. IPSec). We quickly learned that this solution
was somewhat naive and overlooked significant technical and
cultural barriers unique to the satellite context.

In response to our disclosure efforts, satellite ISPs would
often espouse the opinion that encryption was a duty which
fell to individual customers. They were generally uninterested
in deploying costly network-wide security protections, or al-
ready offered them, but only as a premium service add-on
for particularly risk adverse clients (e.g. military customers).
Occasionally, they would emphasize the importance of access
to clear-text traffic headers in order to optimize network
performance - increasing customer satisfaction.

When speaking with customers, they would acknowledge
the value of encryption in the abstract, but were unwilling
to accept substantial performance reductions caused by the
use of end-to-end encryption tools such as VPNs. In some
cases, they had already attempted to deploy VPNs but ended
up removing them at the suggestion of their ISP to resolve
these performance issues. Indeed, the support pages of many
satellite ISP websites suggest the disabling of VPN software
as a remediation for slow internet services [6], [7]. The most
information-security conscious customers we contacted had
attempted to employ piecemeal application-layer protections,
such as replacing HTTP web-servers with HTTPS services.
However, we found significant gaps in these defenses such
as unencrypted DNS traffic or sensitive data from overlooked
systems (e.g. a legacy FTP server or POP3 email service).

The principal motivation of this research is to present an
approach which considers the unique technical and commercial
requirements of these stakeholders. We design and implement
a tool which empowers individual customers to encrypt the
entirety of their satellite network connection by default, while
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Fig. 1. Notional Overview of a GEO Network. A typical web request would
travel from the customer to the satellite (Step 1) before being redirected down
to the ISP’s ground-station equipment (Step 2). From there it would be routed
as normal IP traffic to the internet (Step 3). This process then occurs in reverse
traveling back from the internet to the ISP’s ground-station (Step A), up to
GEO orbit (Step B), and down to the customer’s dish (Step C). It’s worth
noting that the forward link signal (Step C) is a typically sent on a wide beam,
with footprints measuring on the order of millions of square kilometers.

maintaining performance that is on-par with, or better than,
the unencrypted services they use today. Critically, our design
requires no network changes or satellite ISP involvement.

In addition to proposing this new system, the paper delves
into many of the performance characteristics of our implemen-
tation. Our motivation in doing so is to demonstrate that our ap-
proach offers meaningful performance benefits over traditional
VPN tools. Beyond this core hypothesis, significant additional
detail is provided to facilitate replicability and comparative
benchmarking. We provide open-source implementations not
just of our tool, but also for each of the experiments run in the
paper. This is because we recognize that, while our approach
is a substantial and needed improvement, it is unlikely the
only (or best) way to secure these networks. A key secondary
motivation is thus to provide a framework and starting point
for others interested in this topic area.

III. BACKGROUND AND RELATED WORK

Understanding the security/performance trade-off requires
a closer look at TCP behavior over satellite. This section
provides an overview of our threat model, key defensive
challenges, and prior work to address them.

A. The Eavesdropping Threat Model

Our focus is on broadband provided from platforms in
geostationary earth orbit (GEO). The basic operation of GEO
broadband can be thought of as a “bent pipe” (see Figure 1).
As GEO is located more than 30,000 km away from the Earth’s
surface, a single satellite has line of sight to a vast area on the
surface (theoretically as much as 40% of the Earth’s surface,
but practically closer to 20% for broadband communications).
This has the advantage of making GEO broadband a relatively
inexpensive mechanism of providing global service. Only a
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half-dozen satellites are needed for almost complete Earth
coverage (barring some polar areas).

An eavesdropping attacker is greatly aided by these cov-
erage characteristics as emissions from GEO satellites are
not targeted towards specific users. As a result, the radio
waves reaching an attacker’s antenna could be carrying traffic
intended for an entire continent of satellite customers. Since
these are consumer-oriented networks, the equipment neces-
sary for eavesdropping on such signals is inexpensive and
widely available [3], [4], [8]. With the rise of software defined
radios, even more complex protocols are within the reach of
relatively unsophisticated attackers [4], [9].

In light of this threat, it is not intuitively clear why status
quo satellite broadband services fail to encrypt customer traffic.
The main barrier is physical. Speed of light delays over the
30,000 km hop to GEO are substantial and round-trip latency
can exceed 600 ms. Latency can be reduced with closer
satellites in low Earth orbit (LEO) but this increases costs and
complexity. While LEO offers as little as 50 ms in speed-
of-light latency, satellites only maintain line of sight for a
matter of minutes. Consistent global coverage thus requires
hundreds of satellites. Status quo LEO constellations can still
experience round-trip delays of up to 1,500 ms depending on
the route a message travels [10]. Thus, while in-development
constellations have made ambitious claims, satellite latency
will likely remain relevant for some time [11], [12].

B. TCP Performance Over Satellite

To understand how latency discourages encryption, one
must consider its impact on TCP performance. In this paper,
we focus on standard TCP implementations on the assump-
tion that forcing satellite customers to use alternatives (e.g.
TCP-Hybla) is infeasible [13]. We outline two of the most
prominent issues here but many others have been extensively
characterized in prior work [14]–[17].

1) Barriers to TCP in Satellite Networks: The first chal-
lenge to TCP performance in satellite networks arises from
the requirement that TCP data packets are responded to with
an acknowledgment (ACK) message [17]. The effect is com-
pounded by the three-way handshake which, in the best case,
takes upwards of 1,500 ms to complete over GEO. When
visiting a website with embedded images and related files,
many three-way handshakes may be required - compound-
ing delays. Although modern implementations may employ
various optimizations to bundle or reduce the total number
of ACKs, these are not tailored for satellite networks [14].
Further, in some legacy devices, ACKs may be elicited by
every packet, greatly increasing perceived latency [18], [19].

The second challenge arises from TCP congestion control
and TCP “slow-start” initialization [14]. TCP slow-start grad-
ually increases the ratio of data segments to ACKs until a
desired congestion window is reached. The time this process
takes is thus a function of round-trip times (RTT) over the
satellite link. Even once a connection has reached optimal
window size, packet loss can be misidentified as a sign of
congestion and cause the slow-start sequence to restart. While
modern satellites are more reliable than in the past, packet
loss is still common compared to terrestrial networks. As a
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result, TCP sessions are both slow to maximize their bandwidth
usage, and, once maximized, struggle to maintain that state.

These are but two factors among dozens, ranging from
specific TCP option implementations to congestion control
implications of link asymmetry [17]. Satellite network designs
create a uniquely hostile environment for TCP.

2) PEPs: The most common approach to optimizing TCP
traffic over satellite environments is the use of a class of
appliances called “Performance Enhancing Proxies” or PEPs
and loosely described in IETF RFC 3135 [20]. PEPs differ
substantially and many implementations are proprietary and
inaccessible to researchers. However, IETF RFC 3153 outlines
a few basic principles that apply to most PEPs.

There are two typical PEP deployment options - integrated
or distributed [21]. In integrated PEPs, a PEP appliance oper-
ates on a single endpoint - typically the ISP satellite gateway
between the satellite network and the internet. In distributed
PEPs, a PEP appliance operates on multiple endpoints -
typically the customer satellite modem and the ISP gateway.

In either deployment, the PEP intercepts TCP traffic and
applies optimizations in order to compensate for satellite
performance issues. Typically, PEPs do this in a manner which
is invisible to conversation endpoints so that no modifications
are required on consumer hardware. This is referred to as a
“transparent” PEP [20]. However, the concept of transparency
is somewhat misleading as, in many cases, PEP modifications
are still detectable (e.g. altered TCP sequence numbers).

Beyond this, PEPs vary quite broadly. Modifications made
to TCP packets are often proprietary and implementation-
specific. One common approach is to “split” incoming TCP
connections prior to transmission across the satellite link and
issue local ACK messages immediately for received TCP
packets [20]. This allows three-way handshakes and congestion
control to be negotiated locally before the satellite hop but
requires the PEP developer to handle errors across the split.

In distributed PEPs, this splitting approach is extended
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to create a tunnel between the individual PEP installations
(see Figure 2). A TCP packet arriving at the client-side PEP
(e.g. on the home satellite modem), is terminated locally as a
TCP connection, and the payload is then forwarded through
GEO using a modified TCP protocol (e.g. TCP-Hybla) or an
alternative [13]. At the ISP gateway, a second PEP receives this
modified packet, converts it back to normal traffic, and sends
it along a locally-managed TCP connection to the internet.

Other PEP strategies can range from modifying TCP con-
gestion control to bundling related packets into single trans-
missions. Commercial implementations often offer higher-level
features such as inspecting HTTP payloads and combining
requests for web-pages with their associated content [22]. A
substantial body of existing work on PEPs covers these opti-
mizations in detail not only for satellites, but also other latency
sensitive environments (e.g. cellular networks) [14]–[16].

3) Security Consequences: PEPs have become a vital com-
ponent of satellite broadband and customers have come to
expect the performance characteristics of PEP-accelerated net-
works. This has created unintended tension between broadband
performance and security.

As noted in RFC 3135, PEPs break the end-to-end seman-
tics of IP connections [20]. Specifically, they require that the
PEP appliance transparently modify packets - essentially acting
as a benevolent man-in-the-middle on all TCP connections.
This creates inherent compatibility issues with most commonly
used VPNs as the PEP is unable to “snoop” into the VPN
traffic flow and identify ACK messages. Even VPNs which
leverage TCP for the transport layer are not correctly accel-
erated as ACK messages within the encapsulated connection
are indistinguishable from other traffic. While most VPNs
will function over PEPs, and in the case of TCP VPNs,
observe modest improvements in initializing VPN sessions,
functional browsing performance is roughly the same as if
no PEP was deployed. The type of VPN employed may have
marginal performance effects (e.g. UDP tunnels may receive
better prioritization from the satellite ISP) but from a PEP-
compatibility perspective, any VPN which does not leak the
full TCP headers of a customer’s connection faces the same
issues. As a result, end consumers are faced with a choice
between the security of VPNs and the performance of PEPs.

C. Existing Security Approaches

In this section, we will briefly consider some of the more
consequential approaches proposed in academia and industry
to enable satellite broadband encryption at each layer of the
TCP/IP protocol stack. This analysis better characterizes how,
despite a long history of research, PEP-compatible security
remains unsolved in practice.

1) Physical and Link-Layer Approaches: Many techniques
for over-the-air encryption focus on the lower layers of the
networking stack - before TCP/IP becomes relevant. For ex-
ample, physical-layer techniques such as frequency hopping
patterns derived from cryptographic keys or direct sequence
spread spectrum (DSSS) have been suggested as a mechanism
for securing the entire satellite link [23]. Likewise the injection
of artificial noise as an alternative to key-based encryption has
been proposed [24]. These schemes tend to focus on military

systems as they often necessitate expensive modifications to
hardware that would be commercially unpalatable.

At the link layer, proposals still incur hardware costs but
costs are often more manageable and restricted to hardware-
based decapsulation. For example, the Consultative Committee
for Space Data Systems (CCSDS) has proposed Space Data
Link Security (SDLS), a protocol with built-in encryption for
telemetry commands to scientific space missions [25]. Like-
wise, the proprietary Common Scrambling Algorithm (CSA)
has long been used to restrict broadcast access to paying
satellite television subscribers using smart-cards, albeit with
notable security weaknesses [26].

One challenge for link and physical layer encryption
systems like these is the multi-user environment. As it is
rarely economically feasible to allocate each customer a unique
satellite channel, customers with the same ISP will generally
have a key which allows them to receive traffic from other
broadcast subscribers. In such systems, the customer modem
will determine which packets are relevant on the basis of
header information and drop other traffic from the multiplex
streams. An additional challenge with these systems it the
process of key distribution and revocation over the broadcast
medium.

2) Network and Transport-Layer Approaches: To provide
over-the-air encryption with per-customer keys, a number of
network-layer techniques have been proposed. In contrast with
lower level approaches, interactions with TCP PEPs must
now be considered directly. Many replicate traditional VPN
software with bespoke modifications - for example by creating
a modified IPSec with special encapsulating headers visible
to PEP appliances [27], [28]. Proprietary “satellite VPNs”
also exist which, while public information on their design
is limited, are likely similar in design [29], [30]. Beyond
concerns arising from proprietary encryption schemes, these
non-standard layers can increase operator costs by limiting
compatibility with existing networking equipment.

It makes intuitive sense to incorporate encryption within
PEP appliances themselves - straddling the network and trans-
port layers. This may be achieved by, for example, implement-
ing an encrypted protocol over the satellite hop in a distributed
PEP system. The transmitting PEP would first modify the
TCP packets, then encrypt them. The receiving PEP would
subsequently decrypt the received packets and forward them
along the internet as normal. Many real-world PEP encryption
products appear to employ this approach [31]–[33].

Most, if not all, encrypted PEPs are proprietary and not sold
direct-to-consumer, making security claims difficult to verify.
However, purported leaked manufacturer documents allude to
built-in law-enforcement/intelligence back-doors in prominent
examples [34]. Our own analysis of one satellite router with
a pre-installed proprietary PEP found numerous cryptographic
shortcomings, such as Diffie-Hellman implementations which
are susceptible to man-in-the-middle attacks and key/IV reuse
that permits replay attacks. Similar vulnerabilities have been
alluded to in prior research [35]. Generally, the costs of
adopting an encrypted PEP are undertaken by ISPs who may
not perceive such purchases as value-for-money.

3) Application-Layer Approaches: An alternative approach
would be the use of protocols which operate over the PEP-
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accelerated TCP connection. The widespread use of TLS en-
cryption for websites, for example, has the effect of encrypting
customer data over-the-air. However, this still leaks potentially
sensitive data (such as the IPs a customer visits) over the
massive radio-eavesdropping footprint of a satellite signal.
Moreover, real-world observations of modern satellite traffic
(see III-A) have found that, while customers could, in theory,
use TLS, many do not. While this decision is the customer’s,
satellite ISPs may nevertheless have a duty of care.

Another application-layer approach is tunneling traffic into
an encrypted TCP stream and issuing local ACK messages
before the data egresses from the client’s computer. This differs
from most SSL-VPNs which do not spoof the connection
endpoint. Some commercial products appear to implement this
approach [36]. However, the requirement of software installed
on the client’s computer limits compatibility with embedded
devices and creates friction.

IV. QPEP DESIGN CONSIDERATIONS

To address some of these shortcomings we have developed
QPEP, an open-source and non-proprietary tool which can
be used by both individuals and ISPs to both encrypt and
accelerate satellite TCP traffic1. At its core, QPEP follows
a distributed “snooping” PEP model similar to the methods
described in Section III-C2. The QPEP client tunnels TCP
traffic over the satellite link inside a stream that leverages
the encrypted QUIC transport protocol. Tunneled traffic is
decapsulated by a receiving QPEP server which then routes
the decapsulated traffic over the internet as if it were the client.
A high level overview of this architecture appears in Figure 3.

A. QPEP Design Objectives

QPEP’s principal objective is to protect against forward
link eavesdropping attacks without suffering the same perfor-
mance reductions are traditional VPN software. Much like end-
to-end VPN encryption, QPEP expands the threat model to

1Source code and documentation for both our QPEP implementation and our
OpenSAND-based testbed environment are available publicly (https://github.
com/ssloxford/qpep). Example python scripts used to run all of the simulation
scenarios presented in this paper are provided.

include both wireless eavesdroppers and the ISP, seeking to
avoiding leaking meta-data and routing information to service
providers. These objectives, and their contrast with status-quo
techniques, are summarized in Table I.

The fundamental security design of QPEP is deliberately
straightforward. For example, we use QUIC - a proven and
popular standard - instead of designing our own scheme for
authentication, key exchange, and session management over
the satellite link. As mentioned in Section II, our goal with
this research is to adequately resolve an urgent issue affecting
real-world networks. If a suitable combination of existing
and trusted methods can meet this need, arbitrarily complex
variations serve little purpose beyond academic diversion.

While simplicity and novelty often feel mutually exclusive,
that is not the case here. QPEP arises from the interaction of
two seemingly unrelated design factors which have not been
considered together in prior work. The first is the recognition
that PEP applications are the traditional prerogative of satellite
ISPs for cultural and commercial, rather than technical, rea-
sons; there is no underlying reason that customers could not
choose to “bring their own PEP” other than its redundancy
with the service their ISP already offers. The second is that
the TCP-tampering phase of a PEP’s operation represents an
ideal opportunity for modifying not just the performance of a
connection, but also its security properties.

Together, these factors give rise to QPEP’s unique hybrid
between customer-oriented tunneling VPNs and ISP-oriented
PEPs. This is a significant deviation from status quo ap-
proaches which treat the application archetypes as distinct.

This paper focuses on the design and evaluation of a
specific implementation of this hybrid approach. However, the
core system architecture is a contribution which is agnostic
to the encryption schemes and transport protocols employed.
Indeed, the open-source code for both QPEP and its simulation
testbed is designed to facilitate the swapping out of individual
engineering components by researchers.
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TABLE I. QPEP COMPARISON TO STATUS-QUO PEP AND SECURITY OPTIONS

Accelerated TCP
Connections

Private From
Wireless Eavesdropper

Private From
Satellite Service Provider

Intended For
Customer Deployment

Intended For
Service Provider Deployment

Open Source
Implementations

Plain
Connection No No No Yes (Default) Yes (Default) Yes (Default)

Traditional PEP
(e.g. [37]) Yes No No No Yes Yes

(Rare/Unmaintained)
Traditional VPN

(e.g. [38]) No Yes Yes Yes No Yes

Secure PEP Product
(e.g. [39]) Yes Partially

(IP Headers Leaked) No No Yes No

QPEP
(this paper) Yes Yes Yes Yes Yes Yes

B. Use of the QUIC Protocol

The principal strategy employed by QPEP to support over-
the-air security is the use of the QUIC protocol for tunneling
traffic over the satellite link. While the QUIC standard is
still evolving, it has already seen wide adoption in terrestrial
networks due to its performance and security advantages
over TCP. Several of these benefits make QUIC intuitively
promising for secure PEPs.

1) QUIC Security Benefits: QUIC is an encrypted-by-
default transport protocol. Unlike TCP, the session initializa-
tion process for QUIC incorporates a modified version of the
TLS 1.3 handshake (see Figure 4). This means QPEP’s QUIC
tunnel can readily provide both encryption for encapsulated
payloads and built-in end-point authentication. The addition
of encryption mitigates many of the basic security concerns
in status-quo satellite broadband networks and the presence
of end-point authentication avoids the aforementioned man-
in-the-middle issues with some proprietary encrypted PEPs.

Our decision to incorporate QUIC contrasts significantly
with other tunneling based PEPs. In the status quo, the dom-
inant approach, used by commercial PEPs such as Tellitec’s
“Enhanced TCP” (ETCP) product, is to implement a bespoke
network/transport-layer protocol [31]. This limits compatibility
with other network infrastructure (e.g. firewalls, switches, QoS
appliances) and thus may require direct ISP participation in
deployment. QUIC, on the other hand, is notionally a transport-
layer protocol but in practice is implemented as an application
on top of UDP. This allows for out-of-the-box compatibility
with existing networks. An additional benefit to QUIC as
opposed to, for example, TLS 1.3 secure channel tunnels, is
that ISP PEPs largely ignore UDP traffic, limiting the risk of
unexpected interaction with existing infrastructure[40].

In short, QUIC allows us to create a secure PEP which
does not require ISPs to operate any decapsulation software
on their gateway in order to ensure traffic compatibility with
the wider internet. This means individual customers can use
QPEP to secure traffic to a QPEP server on the open internet
without ISP knowledge or involvement.

This ability for customers to protect their traffic between
two arbitrary endpoints without trusting their ISP makes
QPEP’s security properties most comparable to prior satellite
VPN protocol proposals [27], [28]. However, QPEP’s design
differs from these tools which still reveal limited portions of
the TCP header to ISP PEPs for optimization (e.g. destination
IP, port numbers, and TCP flags). An ISP snooping on a cus-
tomer’s QPEP traffic would only see the IP address and UDP
port of the customer’s upstream QPEP server. All information
regarding the true TCP connections are hidden inside the

QUIC tunnel. This means QPEP can function in the presence
of other ISP-installed PEPs without any special adjustments.
From a service-provider perspective, it is no different than any
other UDP-based application. Of course, QPEP could also be
installed by ISPs on customer modems and network gateways
just like with traditional PEPs, but trust in ISPs is no longer
a design requirement.

2) QUIC Performance Benefits: Beyond these security ben-
efits, the use of QUIC offers notable performance advantages.

First, the initial QUIC connection can be negotiated in a
single round-trip, substantially shorter than the TCP three-way
handshake. When compared with alternative encrypted tunnel
schemes - such as TLS-based VPNs - QUIC offers a substantial
reduction in round-trip transfers (see Figure 4). Indeed, for
previously known QUIC servers, it is possible for a client to
begin transmitting data from the very first packet. While the
TLS session initialization process is particularly ill-suited to
satellite environments, few tunneling approaches can initialize
secure channels with comparable RTT requirements to QUIC.
For example, Internet Key Exchange (IKE) initialization com-
monly used in IPSec VPNs will generally require three or more
round-trips depending on configuration and version.

Additionally, unlike TCP, QUIC does not require that all
packets in a stream be processed in a particular order -
removing head-of-line blocking issues and permitting heavy
multiplexing. This allows QPEP to encapsulate multiple TCP
flows inside a single QUIC session, reducing the number of
session-initialization round-trips.

Like TCP, QUIC has built-in support for the re-
transmission of lost and corrupted packets. This obviates
intuitive concerns relating to UDP usage over low-reliability
satellite links. Moreover, some draft proposals suggest the ad-
dition of built in forward error correction (FEC). These efforts
have largely stalled due to minimal terrestrial performance
gains [41]. However, satellite environments may represent a
context for reviving research on QUIC-FEC.

3) QUIC Satellite Performance: As QUIC is a relatively
recent protocol, its use in satellite environments has not been
subject to much research. What does exist is largely incon-
clusive. Some preliminary assessments have found that QUIC
facilitates a 100% increase in satellite broadband page load
times compared to PEP-accelerated TCP [42]. However, others
suggest that QUIC performs better, measuring up to a 50%
decrease page load times [43]. Preliminary IETF discussions
have lead to a number of proposed (but unimplemented)
techniques for optimizing QUIC over satellite [44].

Relevant research has focused on real-world connections
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to HTTP2 web-servers which support the QUIC protocol. In
these cases, researchers only control the client-side QUIC
configuration. However, under QPEP’s distributed model, it
may be possible optimize both server and client QUIC imple-
mentations for the satellite link. Much as many modern PEPs
use modified TCP implementations, QPEP’s architecture lends
itself naturally to bespoke optimization of QUIC parameters
relating to FEC, ACK decimation and congestion control.

V. QPEP IMPLEMENTATION

Reaping the theoretical benefits of QUIC as a transport
alternative for satellite TCP connections raises several impor-
tant engineering considerations. In this section, we focus on
the specific implementation and architecture of QPEP, how
it merges properties of standard VPN applications and TCP
PEPs, and some of the challenges in doing so.

A. System Architecture

QPEP is implemented according to a distributed PEP
application architecture in order to ensure compatibility with
all web services rather than only those with native QUIC
support. This distributed design allows QPEP to operate trans-
parently, converting TCP conversations into QUIC streams
over the satellite hop and then back into TCP conversations
terrestrially. The benefit is that no special software or con-
figuration is required on individual customer devices. QPEP-
encrypted traffic appears identical to normal TCP traffic. This
differentiates it from application-layer commercial PEPs and
ensures compatibility with IOT systems.

The practical implication of this architecture is that a
QPEP deployment consists of two independent appliances (see
Figure 3): a QPEP client on the customer side of the satellite
link and a QPEP server on the internet side.

The client application can be installed as software directly
on a customer’s device. However, it is also designed to operate
transparently if placed along the network path between a
customer’s device and the satellite modem. For example, an
enterprise user or satellite ISP might install a QPEP client on
a router within a local area network in order to encrypt and
optimize internet-bound traffic from all connected devices.

The server application is similarly flexible. It can be
installed by the satellite ISP on their gateway, like a traditional
PEP. However, it can also be installed anywhere else on
the internet, with encrypted QPEP traffic traversing the ISP
gateway en-route to a cloud server or other egress point, as
with a traditional VPN.

When the QPEP client launches, it opens a QUIC tunnel
with an upstream QPEP server. Unlike in normal QUIC
services, where idle sessions are short-lived, QPEP sets the
timeout for this tunnel to a relatively long period of time
(5 minutes of link inactivity). QPEP does this because QUIC
session initialization requires a full round-trip over the satellite
link, so by re-using recently established QUIC tunnels, QPEP
can save round-trips over creating a new QUIC tunnel for each
connection.

Each TCP connection which is managed by QPEP is
assigned to its own unique QUIC stream within this QUIC

tunnel. This allows QPEP to multiplex concurrent TCP con-
nections and avoid creating redundant session initialization
handshakes over the satellite link. As discussed Section V-B,
this also allows for better congestion control as losses in each
stream can be handled independently.

QPEP does not naively convert every incoming TCP packet
to a QUIC packet. If it did so, we would expert performance
akin to that of a traditional VPN. This is because the TCP
three-way handshake would still occur over the latent satellite
hop. Instead, QPEP must selectively terminate incoming TCP
connections, drop spurious acknowledgements, and send only
meaningful data across the satellite. This requires both the
QPEP server and QPEP client to internally maintain state
regarding each TCP connection.

When the QPEP client receives a TCP SYN packet, it
immediately initiates a three-way handshake across the cus-
tomer LAN - effectively “spoofing” the upstream destination
TCP server. Upon finishing this handshake and receiving a
TCP packet with payload data, it opens a new stream inside
the QUIC tunnel session it established with the QPEP server
at initialization. The client then strips away the TCP header
information and encapsulates the payload data into a QUIC
packet. A simple “QPEP header” consisting of a TCP four-
tuple (<src ip, src port, dst ip, dst port>) is prepended to
this packet. The client maintains a local state dictionary which
maps the QUIC stream, this “QPEP header,” and the associated
TCP socket.

When the QPEP server receives an incoming QUIC pay-
load, it checks its own state dictionary for any sessions asso-
ciated with the received QPEP packet header. If no such entry
is present, it opens a fresh TCP connection to the upstream
TCP server on the basis of the received QPEP header and
completes a three-way handshake across the internet - effec-
tively “spoofing” the customer’s device. It then updates its state
dictionary to map this TCP session with the appropriate QPEP
header and QUIC stream. From then on, each packet which the
server receives in this QUIC stream will be converted into a
TCP payload and then transmitted across the associated TCP
socket to its destination. This same process happens in reverse
for each response which comes from the internet, with the
client extracting payloads sent by the server across the QUIC
stream and then routing them to the appropriate TCP socket
and onwards to the customer’s device.

B. Error Handling and Session Management

The main challenge with this protocol splitting approach
is correctly propagating errors which occur over one of
the three network segments (Customer ↔ QPEP (client);
QPEP (client) ↔ QPEP (server); QPEP (server) ↔ Internet)
to the others.

Over the satellite link, session management and conges-
tion control is implemented within the QUIC session. This
involves a modified version of the popular CUBIC congestion
control algorithm for responding to losses which occur over
the satellite hop. Congestion control is applied on a per-
stream basis, preventing any individually troublesome stream
from impacting the performance of other streams in the
QPEP (client) ↔ QPEP (server) session. While our imple-
mentation uses CUBIC for this purpose, only modest engi-
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Fig. 4. Simplified Comparison of QUIC and VPN Initialization

neering effort would be required to replace it with any other
QUIC-compatible algorithm. Adopting existing delay-tolerant
algorithms (such as TCP-Hybla) to the QPEP architecture may
thus represent one avenue for future research.

Over the terrestrial links, this process is handed down to
the host’s TCP stack. QPEP’s “spoofed” endpoints resolve con-
nection issues terrestrially just as any other TCP application.
By design, this makes QPEP functionally transparent to users
and ensures compatibility with upstream network appliances,
such as firewalls or traditional VPN software.

The more difficult case is for errors which occur in one
link and have implications for the others. For example, if a
TCP connection on the QPEP (server) ↔ Internet link fails,
the error state of that TCP socket must be propagated up
from the host’s TCP/IP stack to the QPEP server application.
The QPEP server will then issue a message to the QPEP
client across the QPEP (client) ↔ QPEP (server) segment
designating the associated QUIC stream for closure. Upon
receiving this message, the QPEP client will remove the
stream from its session mapping dictionary and terminate the
appropriate TCP connection on the Customer↔ QPEP (client)
network. Finally, both the server and client will close the
corresponding QUIC stream.

C. Limitations

In the implementation evaluated in this paper, QPEP only
modifies TCP/IP connections. This is because our objective
is to evaluate a secure alternative to traditionally unencrypted
PEP appliances, which also focus exclusively on TCP connec-
tions. Only minor engineering modifications would be required
to tunnel other protocols into the QUIC stream, such as UDP
and ICMP. However, it is worth noting that we expect QPEP
to have only marginal performance impacts on such protocols
as they do not incur the same latency penalties as TCP over
the satellite hop. Nevertheless, doing so may be desirable for
end-users as it would bring over-the-air encryption by default
to DNS queries and other non-TCP traffic.

It is also worth noting that we have not implemented
QUIC’s optional zero-round trip (0-RTT) session initialization

handshake. While being able to further reduce the number of
costly satellite round trips is an attractive prospect, prior work
on QUIC’s 0-RTT raises some security concerns with respect
to replay attacks [45]. The potential harms of replay attacks are
especially acute in the wide-footprint and high-latency context
of satellite broadband. Indeed, a satellite eavesdropper may
have closer physical proximity to a given QPEP server than
the satellite ISP’s gateway, which could allow them to even
deliver “replay” messages faster than legitimate ones. Given
that QPEP relies on long-lived QUIC sessions, the benefits
of 0-RTT are likely marginal at best. This is because a QUIC
handshake is only required for the very first connection a QPEP
client makes, with subsequent streams re-using that session.
Nevertheless, consideration of 0-RTT initialization dynamics
may offer a route for some further optimization in future work.

D. Availability

An open-source reference implementation of QPEP, written
in Go, is available in conjunction with this paper. Go was
selected to increase accessibility without substantial perfor-
mance sacrifices. To the best of our knowledge, only two non-
proprietary PEPs exist [37], [46]. Both are implemented in
C/C++, lack encryption capabilities, and have received only
minimal development attention over the past several years.
Other notable academic PEPs are either not publicly available
or restricted to particular simulation tools [27], [47].

The QUIC implementation used by QPEP is based on
the widely used quic-go library which roughly tracks the
IETF QUIC proposal [48]. As discussed in Section VII-E,
minor optional modifications to the QUIC implementation can
be made to optimize performance in the satellite networking
environment. Future work might also consider the suitability
of other QUIC implementations such as Chromium’s [49].

VI. SECURE PEP TESTBED

One challenge in developing and evaluating PEPs has been
creating replicable simulations of system performance. While
systems can be tested on live satellite networks, understanding
performance under adverse conditions (e.g. poor reception
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quality or network congestion) or creating experiments which
others can verify often requires some degree of simulation.
Simulating satellite IP networks involves more than the simple
injection of artificial latency, which can result in misleading
and inaccurate results [50].

The OpenSAND engine, previously Platine, is a long-
standing satellite network simulation environment for more
faithfully replicating satellite broadband [1]. The engine sup-
ports built in attenuation and modulation emulation, replicating
conditions which can have significant implications for TCP
performance. OpenSAND emulates satellite networks down to
the link layer, simulating low-level protocol noise mitigations
and creating realistic traffic routing behaviors.

However, the OpenSAND environment is somewhat dif-
ficult to configure - requiring multiple devices and precise
network conditions. This has been noted in prior work as a
barrier to its use, despite its relatively high degree of accuracy
when validated against real-world networks [50].

In the process of assessing QPEP’s performance, we have
developed a simple dockerized deployment of the OpenSAND
engine specifically tailored towards replicable PEP bench-
marking. Our testbed models a basic GEO satellite network
consisting of a single gateway and satellite terminal (akin to
the networks shown in Figure 1 and Figure 3). This testbed
is open-source and publicly available in the QPEP source
repository (see Footnote 1). Its intention is to simplify the
process for future researchers interested in making related
contributions towards secure PEP development.

The testbed’s gateway container is linked through the
simulation’s host machine to the broader internet, allowing a
testbed user to open a web-browser and visit real websites as
if they were using the simulated satellite link. We also connect
the gateway container to a simulated LAN environment with a
workstation containing several network benchmarking tools. A
similar LAN environment is connected to the satellite terminal,
replicating a satellite customer’s devices.

On the satellite container, we include packet capture tools
for real-time monitoring of simulated over-the-air transmis-
sions. This allows for immediate verification that secure PEPs
are not leaking sensitive data in clear-text.

Finally, pre-configured installations of QPEP, OpenVPN,
and PEPsal are installed for both the gateway and satellite
terminal networks. A set of example python scripts are pro-
vided to orchestrate the environment and run the experiments
presented in this paper. These scripts are designed as modular
benchmarks which can also be adapted to future secure PEP
proposals to facilitate direct and replicable comparisons with
QPEP in future work.

VII. QPEP EVALUATION

In this section, we present an evaluation of the QPEP
approach and its impact on the performance of TCP-based
traffic within our testbed environment.2

2In this paper, QPEP is evaluated only through simulation. While this
has benefits for reproducability, we originally intended to supplement these
experiments with validation in a real-world VSAT network. Unfortunately,
due to restrictions during the global coronavirus pandemic, this has not been
possible. When real-world benchmarks are available, they will be added to
QPEP’s public source code repository (see Footnote 1).

No comparable encrypted satellite PEP is publicly avail-
able. As such, we selected PEPsal, one of the only open-
source unencrypted PEPs, and OpenVPN, a popular VPN
product without specific satellite optimizations, to provide
some context to measurements made [37], [38]. Future work
including commercial and proprietary PEPs might be of merit,
although these are not readily available to researchers. It is
worth noting that the particular VPN product (e.g. OpenVPN
vs. PPTP vs. IPSec) is unlikely to have meaningful impact on
performance benchmarks insomuch as all hide the true TCP
headers of the customer’s connection from ISP PEPs.

A. Experimental Setup

First, we consider preliminary results under ideal Open-
SAND network conditions. Next, we present QPEP with
various adverse network situations, assessing its performance
in the presence of high rates of packet loss and under variable
delay conditions such as those in LEO constellations. Finally,
we briefly consider how performance modifications to the
QUIC protocol itself may impact QPEP’s behavior.

Unless otherwise noted, the OpenSAND network is con-
figured to use the DVB-S2 protocol with GSE encapsulation
for forward-link communications and DVB-RCS2 with RLE
encapsulation for the return link. The clear-sky SNR is set
to 20 dB and Adaptive Coding and Modulation (ACM) is
used at the physical layer to provide quasi error free (QEF)
communications at this SNR level. A constant speed-of-light
delay of 125 ms is used from both the satellite terminal and the
satellite gateway to the satellite (resulting in a 500 ms RTT).
The forward-link carrier frequency is allocated 50.0 MHz
of bandwidth with a roll-off factor of 0.25 and the return-
link is allocated approximately 7.4 MHz of bandwidth. These
bandwidth values are well within the simulation capabilities
of the machines used to run the scenarios, reducing the
risk of artificial network caps due to hardware limitations.
While simulations were run on multiple hosts for efficiency
reasons, comparisons made within a given experiment (e.g. all
measurements shown in a single figure) were conducted on the
same physical host.

Our configuration is intended to represent the characteris-
tics of a typical GEO satellite broadband network. We also
briefly touch on an alternative LEO network configuration in
Section VII-C, which demonstrates the performance of QPEP
in a situation where latency is variable, depending on the
geographic location of the end user and the corresponding
satellites and ground stations. The testbed supports arbitrary
delay and bandwidth models which may be useful in future
work considering more esoteric network designs, such as those
involving space-to-space routing or polar orbits.

Simulations of QPEP are configured with a QPEP server
sitting local to the satellite gateway network and listening
for incoming QUIC tunnel connections. The QPEP client is
hosted on the satellite terminal and listens transparently into
all incoming TCP connections. The QPEP server is configured
to accept up to 40,000 concurrent streams from a single host
- substantially higher than quic-go’s default of 100. This is to
enable compatibility with concurrent download benchmarks.

OpenVPN simulations are deployed similarly to QPEP,
with an OpenVPN client connected to the satellite terminal
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Fig. 5. Goodput Comparison by Iperf Transfer Size. The shaded zones
represent standard deviation across 100 simulation runs at each file size. Note
that QPEP performs well for small transfers and matches the performance
of the unencrypted distributed PEP for larger transfers. Meanwhile, the
traditional VPN, integrated PEP, and unencrypted satellite connection all
perform relatively poorly throughout.

and an OpenVPN server connected to the satellite gateway.
OpenVPN is configured to leverage a UDP tunnel as this is
expected to perform better in the satellite environment.

PEPsal is evaluated under two different configurations -
a distributed installation and an integrated installation. Eval-
uations of distributed PEPsal are implemented with a PEPsal
endpoint transparently listening to all incoming TCP traffic
on both the satellite gateway and the satellite terminal. In
integrated PEPsal, a PEPsal endpoint listens to incoming TCP
traffic on the satellite terminal but no endpoint is installed on
the satellite gateway.

Diagrams summarizing these configurations can be found
in Appendix A.

B. Baseline Performance

An initial comparative assessment of goodput can be
made through the use of Iperf which attempts to provide
consistent performance evaluations of network speed. For
these benchmarks, an Iperf server is hosted on the satellite
gateway network and is used to transfer data to an Iperf client
connected to the satellite terminal. For each tool, one-hundred
iterations of Iperf are run at data transfer sizes ranging from
0.5 to 10 MB in 250 KB intervals. Varying the volume of
data transferred provides insights into the extent to which
results are influenced by session initialization time. We would
expect smaller transfers to demonstrate larger susceptibility to
latent TCP handshakes as a proportion of total transfer time
while larger transfers should be more heavily influenced by
congestion control and total available bandwidth. The results
of these experiments are summarized in Figure 5.

We see that QPEP is capable of making significantly
greater use of bandwidth for small to moderate-sized down-
loads than any of the evaluated alternatives, even, surprisingly,
the unencrypted PEPs. This make sense as QPEP is able to
send data along with the stream initialization packets, allowing
very small transfers to be completed in a single round-trip. As
shown in Figure 5 this has a large effect on the measured

goodput for small transfers, but diminishes at larger transfer
sizes until QPEP approaches the performance of unencrypted
distributed PEPs.

Integrated PEPsal offers little advantage here as it is
constrained by head-of-line blocking over the satellite hop
and the majority of download traffic originates on the un-
optimized route from the gateway to the user. Distributed
PEPsal performs much better as it is able to optimize both
directions of the satellite conversation. However, it lacks
QPEP’s ability to encapsulate concurrent streams and to make
use of the first few handshake packets for data delivery.
Finally, as expected, OpenVPN performs much worse than
QPEP, essentially matching, or slightly underperforming, an
un-optimized satellite link.

This benchmark, while meaningful, is somewhat mislead-
ing. Iperf provides one important measure of goodput but
the scenario it evaluates is not representative of real-world
behavior. Specifically, opening a connection to a port, ramping
it up to maximum speed, and then maintaining that speed for
many file transfers is not how most web services operate. PEPs
were explicitly invented to optimize web-browsing and visits
to text and image-based services. Even if QPEP were well
suited to encrypting certain types of file transfers, its adoption
would likely hinge on its performance for web-browsing tasks.

Fig. 6. ECDF Comparison of PLTs over Alexa Top 20. Note that QPEP
shows significantly faster PLTs than traditional VPNs and marginally better
PLTs compared to unencrypted PEPs. Each line represents 2,000 simulations
with a connection timeout set to three minutes.

A more realistic sense can be found through the evaluation
of the time it takes to visit actual websites. Unlike IPerf, web-
browsing consists of the transfer of many small files (e.g.
embedded images or style-sheets) over multiple TCP sessions.
Often, these files can be hosted on a variety of servers. This
makes web traffic more sensitive to latency effects.

Experimentally measuring page load times (PLTs) is an
imprecise art. For our simulations, we used the open-source
tool Browsertime [51]. Browsertime reports PLT as the number
of elapsed milliseconds between the “navigationStart” and the
“load” event of the browser’s navigation timing API (as defined
in [52]). This roughly translates to the amount of time between
a user hitting the enter key in the browser’s navigation bar
and the moment when all page resources, including the DOM,
images, and stylesheets, are loaded.
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To conduct these experiments, we connected our simulated
satellite gateway to a real terrestrial broadband network. This
naturally induces measurement variability depending on net-
work conditions at measurement time. To reduce this variabil-
ity, we conducted 100 connections with each tool to each of
the top 20 distinct domains listed by Alexa Internet Inc [53].
Between each visit, the browser (a headless version of Firefox)
and the DNS cache were reset. Any page loads which took
more than 3 minutes were terminated as timeouts. The results
of these PLT measurements are summarized by means of
an Empirical Cumulative Distribution Function (ECDF) in
Figure 6.

This page load time comparison shows that QPEP is able
to encrypt realistic web browsing traffic without undermining
the performance users have come to expect from status quo
unencrypted PEPs. QPEP’s median page load time (PLT)
across the Alexa Top 20 is 13.77 seconds. This is roughly 54%
faster than distributed PEPsal’s 30.16 seconds and integrated
PEPsal’s 30.5 seconds. It makes sense that both integrated
and distributed PEPsal perform similarly here as PLTs are
dominated by large numbers of client-initiated TCP hand-
shakes for various web resources. In terms of mean PLTs,
which are more heavily influenced by “worst-case” long-
running connections, QPEP still significantly outperforms the
traditional insecure PEP, with a mean PLT of approximately
25.80 seconds compared to distributed PEPsal’s 37.61 second
average and integrated PEPsal’s 40.70 second average.

The most important benchmark comparison, however, is
between QPEP and the status quo options for end-to-end web
traffic encryption. In this case, we find that QPEP more than
halves median PLTs when compared to OpenVPN’s encryp-
tion, achieving 72% faster page loads than an OpenVPN-
encapsulated connection’s 49.42 second median PLT. In terms
of mean PLTs, QPEP still roughly halves OpenVPN’s mean
PLT of 50.01 seconds. As expected, we further observe that
OpenVPN roughly matches, or slightly under-performs, a basic
unencrypted and unoptimized satellite link.

The relative disadvantage of using a traditional VPN for
over-the-air encryption in GEO broadband is clear when con-
sidering this PLT metric. QPEP is functionally the same from
a security perspective (eavesdroppers cannot interpret inter-
cepted traffic), but significantly more performant by design.
The surprising additional outcome that QPEP achieves signifi-
cantly lower PLTs than established and architecturally similar
insecure PEP appliances suggests that QUIC is particularly
well-suited for the satellite tunneling use-case.

C. Performance Under Adverse Conditions

While these basic evaluations present a compelling case
for the use of QPEP in a typical GEO environment, satellite
networks can exhibit many atypical characteristics. Packet loss,
rain-fade, and orbit altitudes can all have significant perfor-
mance implications. As such, we have elected to evaluate the
relative performance of QPEP under some of these conditions.

Intuitively, packet loss and rain fade conditions are signif-
icant threats to encrypted tunneling PEPs like QPEP. Loss of
critical packets related to the key exchange process or session
initialization could impose heavy additional round-trip costs
not observed in clear-sky conditions. In a tunneling PEP, severe

packet loss can even cause the tunnel between the PEP client
and server to timeout or otherwise break. However, at mild loss
levels, PEPs are expected to improve network performance by
mitigating the impact of TCP congestion-control restarts as
discussed in Section III-B.

Given these requirements, a series of simulations were
run to assess QPEP’s performance under adverse network
conditions. For these experiments, losses are expressed in the
form of “Packet Loss Rates” (PLR) between the satellite and
the customer’s satellite terminal. This represents the probability
that any given DVB-S encapsulated packet is irrecoverably cor-
rupted in transmission. Measuring “typical” PLRs in satellite
networks is a deceptively complex task as definitions of both
“packet” and “loss” are closely tied to the specific process by
which IP transmissions are framed and fragmented by satellite
ISP equipment [54]. A common worst-case upper bound often
referenced in satellite broadband standards is 1× 10−3, but
real world conditions run the gamut from “quasi error free”
conditions (where nearly all packet errors are corrected by the
DVB-S link layer) to rates upwards of 1× 10−2 [55]–[57].

Satellite networks leverage a variety of techniques to
mitigate packet losses. For example, DVB-S forward error
correction (FEC) can resolve modest bit errors at the link layer,
resulting in error-free IP-layer transmissions. Many modern
networks now implement adaptive modulation and coding
(ACM) schemes at the physical layer, allowing the network to
intelligently trade-off bandwidth in favor of reliability under
adverse conditions. In our experiments, these network specific
particulars are abstracted away to IP packet loss rates, which
allows for direct focus on the final performance implications
of a problematic link. However, future work may benefit
from considering other dimensions of satellite link resilience,
especially bandwidth variations. That said, it is not obvious
that these lower-layer noise responses, to the extent that they
manifest in the same ultimate PLR, would have significant
impact on the relative performance of the tools evaluated in
our simulations.

In these adverse condition simulations, we first measured
IPerf goodput at 28 PLR levels distributed logarithmically
from 1× 10−9 (packet loss is very rare) to 1 (all packets
are lost). At each of these levels, 100 IPerf simulations were
conducted to transfer a file measuring 2MB in size. Our results
are summarized in Figure 7.

As expected, we find that QPEP suffers at higher rates
of packet loss. This makes sense as QUIC was not designed
with lossy links in mind and, in particular, the loss of key
cryptographic handshake packets during initialization can im-
pose substantial RTT penalties. That said, QPEP outperforms
distributed PEPsal at modest levels of packet loss and would
be well suited to networks with strong signal-to-noise ratio
(SNR) or physical-layer mitigations against packet loss. Gen-
erally though, this initial Iperf metric, suggests that QUIC’s
cubic congestion control mechanism is not as robust to PLR
as PEPsal’s TCP-Hybla based approach. Future work which
adapts TCP-Hybla to the QUIC protocol may prove one avenue
to maintain QPEP’s performance edge under such conditions.

It is worth noting that, regardless of PLR, QPEP consis-
tently meets or exceeds the performance of OpenVPN as an
encryption tool. This suggests that, from the perspective of a
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Fig. 7. IPerf Performance in Lossy Environments. The shaded intervals
represent a standard deviation in measurements across 100 simulation runs
for each PLR. Note that QPEP performance degrades rapidly in the presence
of high PLRs, although it always meets or exceeds the performance of the
only other encrypted tool (OpenVPN).

Fig. 8. Mean PLT of NASA.gov Homepage at Increasing PLRs. Lines which
are lower and to the right demonstrate better PLTs at higher PLRs. Note
that QPEP performs better here than in the IPerf case. This makes sense as
connections are relatively short-lived and some errors may be resolved by the
browser (e.g. by re-issuing failed requests).

security-conscious user, QPEP is net-beneficial compared to
traditional VPN encryption.

Of course, as mentioned in Section VII-B, this Iperf
benchmark only tells part of the performance story. In many
cases, the short-lived data connections of web-browsing are
likely more resilient to packet loss. To assess the impact of
attenuation on page load times, a series of simulations were
run measuring the average PLT of the NASA.gov homepage
over fifty visits at each PLR interval (Figure 8).

Here, QPEP performs better, meeting or exceeding the
performance of distributed PEPsal and substantially exceeding
the performance of OpenVPN-based encryption throughout.
This suggests that the goodput issues QPEP encounters at high
PLRs may not necessarily translate to meaningful performance
reduction for real web-browsing traffic, as QPEP’s ability to
rapidly deliver small images and text files over the latent
satellite connection may counteract more error-prone delivery

of larger transmissions.

In short, this preliminary look at packet loss effects sug-
gests that QPEP is a better alternative than status quo VPN
encryption under adverse conditions and performs reasonably
well compared to insecure PEPs at low to moderate PLRs.
However, our findings suggest that future work optimizing
QUIC’s response to packet loss could offer significant im-
provements, especially for file transfer operations.

D. Performance in LEO

While this paper has focused on GEO networks and per-
formance under constant speed-of-light delays, some proposed
“next-generation” satellite networks focus on the use of low
earth orbit (LEO) to reduce transmission latency. While GEO
broadband is likely to remain relevant for the foreseeable
future due to its wide coverage and heavy industry adoption,
it is worth considering QPEP’s performance in future LEO
systems as well. Unlike in GEO, latency from LEO can vary
substantially due to the shifting relative locations of satellites
and the geographic position of the customer. Additionally, as
LEO is much closer to the Earth’s surface (approximately
2,000 km), speed of light latency effects are reduced.

To emulate a LEO system, we implement an OpenSAND
simulation model which replicates observed delay character-
istics from a satellite terminal in the Atlantic Ocean connect-
ing through the Iridium LEO constellation to a gateway in
London [58]. In this particular network, one-way delay varies
from as low as 25 ms to as high as 140 ms, depending on
the time of transmission and the route a packet must take
through the constellation. The same PLT benchmark from
section VII-B was repeated in this environment. The results
of these experiments can be found in Figure 9.

Fig. 9. ECDF of Alexa Top 20 PLTs in Iridium Simulation. As expected,
QPEP offers very little benefit in this lower-latency environment. However, it
also imposes smaller overheads than traditional unencrypted PEPs.

As expected, the performance benefits of PEPs are much
less pronounced in LEO networks and VPNs represent a more
viable encryption option. QPEP still generally outperforms
OpenVPN in this context, with a median PLT of 8.3 seconds
compared to OpenVPN’s 14.2 seconds. However, this is coun-
teracted by the fact that all three PEPs seem to struggle with
more complex/slow-loading pages where the added overhead
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of connection splitting is not always worth the benefits. It
is worth noting, however, that relative to both PEPsal archi-
tectures, QPEP does appear to impose less overhead costs.
Taken together, these measurements suggest that QPEP would
be an adequate mechanism for providing encryption in LEO
constellations but, unlike in GEO networks, the performance
gains over more established VPN options are, at best, marginal.

E. QUIC Optimizations

One of the principal theoretical advantages of a distributed
PEP configuration is the ability to adopt non-standard and
environmentally tailored protocols over the satellite hop. In
this section, we consider a demonstrative example as to how
such optimizations might be identified and incorporated into
QPEP.

One common strategy for improving the performance of
TCP over satellite links is ACK decimation - the process of
combining many ACK messages into a single transmission
at regular intervals. Unlike TCP, the QUIC protocol is not
ACK-clocked which diminishes the impact of ACK decimation
on goodput [59]. Nevertheless, QUIC leverages ACKs for
loss detection and QUIC ACK messages are relatively large
compared to in TCP contexts. This means that excessive ac-
knowledgments can potentially congest asymmetric links [60].

We conducted a set of initial experiments to determine
if QUIC ACK decimation ratios had any impact on QPEP’s
measured goodput. In the default QUIC implementation, this
ratio is set to 2 ACK eliciting packets per ACK for the first
100 packets, and 10:1 thereafter. Due to long satellite RTT’s
however, we observed in practice that the vast majority of
ACKs were triggered by the QUIC implementation’s default
25 ms ACK timeout window rather than decimation. In order
to measure the effect of decimation in isolation, this timeout
window was increased substantially to 8,000 ms and ACK
decimation was set to begin after the 4th packet over the QUIC
link. As a result, these experiments are not directly comparable
to those which appear elsewhere in the paper. We further
selected the IPerf benchmark as, based on Section VII-C, it is
more sensitive to packet loss effects that are directly relevant
to ACK decimation.

In these experiments, 100 IPerf benchmarks were con-
ducted for 5 Mb transfers at each of 30 decimation ratios.
These ranged from 1:1 to 30:1. Additionally, we conducted
the evaluations at three different PLRs (error-free, 1× 10−6,
and 1× 10−4). The results are summarized in Figure 10.

We observe a few relevant trends in these results. The
first is that extremely low ACK decimation rations (e.g.
1:2) perform poorly. This makes sense as large portions of
bandwidth are tied up with ACK messages at these levels.
Higher ratios offer some benefit, with the default ratio of
10:1 roughly doubling goodput compared to “worst-case” 1:1
ratio. However, the benefit of ACK decimation is more limited
and less consistent in lossier environments, as denoted by the
relatively small goodput increase and high variance observed
in our experiments. Finally, we observe that at a certain point,
additional decimation has little to no effect. This may be the
result of timeouts again gaining dominance. We found that, in
practice, increasing the minimum ACK timeout much beyond
the value used in our experiments (8 seconds), led to link

Fig. 10. IPerf Goodput vs ACK Decimation Ratio

instability. Specifically, unrecognized packet losses caused the
IPerf client to perceive its connection to the server broken,
causing it to terminate prematurely.

The high variance of these preliminary experimental results
makes it difficult to definitively pinpoint an optimal ACK dec-
imation ratio. However, one clear takeaway is that increasing
the minimum ACK timeout period from 25 ms allows for
better exploitation of the QUIC’s ACK decimation feature in
the presence of high-latency networks. We observed a roughly
25% increase in mean clear-sky goodput (from 19.25 Mbps
to 25 Mbs) as a result of doing so, even when the ACK
decimation ratio itself remained at its default of 10:1. Finding
an ideal ACK decimation radio for the satellite use-case, and
potentially setting it dynamically in response to noise and
traffic characteristics, represents a possible avenue for further
performance tuning in future work.

The ACK decimation ratio is but one of many QUIC
protocol constants which may be tuned to have a meaningful
impact on proxy performance. Changes in congestion window
parameters, congestion control algorithms, session timeouts,
and multiplexing limits may all also represent avenues for
further tuning. The search space for such an optimization
problem is enormous and exceeds the remit of this paper -
especially given that default QUIC implementations already
offer substantial security and performance benefits over the
status quo. Nevertheless, the approach presented through this
case study demonstrates how the testbed environment and
benchmarks we developed for evaluating QPEP might be
leveraged more broadly for protocol performance research.

VIII. FUTURE WORK

The QPEP implementation presented here is a proof-of-
concept and productive use would benefit from additional
features. In Section V-C we outline a few intuitive starting
points, such as support for non-TCP protocols and the imple-
mentation of 0-RTT session initialization which is robust to
replay attacks. Beyond 0-RTT, other QUIC feature proposals,
such as forward error correction or alternative congestion
control protocols to CUBIC, may provide routes for additional
performance gains.
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Under our threat model, ISPs are considered completely
untrusted. This means that QPEP conceals the nature of
customer traffic from ISP Quality of Service optimizations.
Adding additional header layers which communicate QoS rel-
evant metadata to ISPs, while preserving privacy, may further
facilitate ISP-level integration of QPEP into customer routers.

As mentioned in Section II, the principal objective of
this research was to develop an encryption tool which could
be used to protect TCP traffic by default in satellite net-
works without meaningful reductions in performance. Even
default QUIC implementations meet or exceed this baseline
requirement without any modification. However, future work
which considers the significant but surmountable engineering
challenge of optimizing the performance of a QUIC tunnel
over satellite represents a logical next step.

Beyond the design of secure PEPs, the testbed presented
here may be useful for more general investigations of QUIC
performance over satellite. Thus, although unlikely in near-
term SATCOMs environments, if TCP ends up being phased
out in favor of QUIC or if “TLS-everywhere” transitions from
aspiration to reality, our contributions may be of enduring use
for general performance research.

IX. CONCLUSION

In this research, we have challenged the historical as-
sumption that security and performance must trade off in
high-latency satellite networks. The result of this assumption
has been that tens of thousands of satellite customers, from
individuals to corporations, continue leak sensitive data to
potential wireless eavesdroppers in the status quo. By delving
into the underlying causes of inadequate encryption from GEO,
we isolated key physical and commercial dynamics which have
prevented the adoption of terrestrial encryption tools to the
SATCOM domain.

We have presented a new approach to encrypting TCP
satellite communications over-the-air through the use of QPEP
- a PEP/VPN hybrid which leverages the open QUIC protocol
standard to provide an encrypted UDP tunnel for the satellite
hop. QPEP is evaluated through replicable simulations in an
open-source benchmarking test suite we developed. These
tests allow for direct comparisons between PEP and satellite
encryption techniques and for targeted adjustments to various
physical conditions.

Through these simulations, we find that QPEP is able
to provide satellite users with over-the-air encryption while
reducing page load times (PLTs) by more than 70% compared
to status-quo VPNs. Moreover, we find that the use of QPEP is
unlikely to result in TCP performance reductions for users who
already employ insecure PEP products. Indeed, under certain
network conditions, we found that QPEP may offer up to 50%
performance improvement over such tools while also offering
significant security benefits. We present the case that future
work might expect to further bolster these gains and provide
demonstrative case studies of two underlying QUIC protocol
implementation characteristics as a starting point.

QPEP is the first open source PEP with support for the
encryption of arbitrary TCP traffic. Moreover, unlike many
commercial offerings, QPEP is fully independent, allowing

individuals to run their own QPEP servers without sharing
sensitive metadata with ISPs or convincing their ISPs to
implement costly modifications to their existing network in-
frastructure. This offers an actionable near-term solution for
customers interested in protecting their privacy. In the longer-
term, QPEP’s architecture is also suited to ISP deployment on
modem equipment, allowing it to serve as a drop-in replace-
ment for proprietary TCP PEPs. QPEP is entirely software-
based and compatible with existing networking equipment and
protocols. This means the practical costs for a customer im-
plementing QPEP are on the same scale as any with any other
open-source VPN. That is to say, the main implementation
costs are those of renting a cloud host to run a QPEP server
and paying for the desired amount of bandwidth to connect
that server to the internet. This contrasts substantially with
many existing PEP implementations which are implemented
as physical “black-box” devices along the network path.

As the next generation of satellite broadband launches, en-
suring the privacy of TCP communications without sacrificing
performance is more important than ever. The QPEP proof-of-
concept presented here demonstrates how careful consideration
of the unique physical dynamics of outer space can leverage
open and verifiable standards to meet this need.
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J. Biskup and J. López, Eds., ser. Lecture Notes in
Computer Science, Berlin, Heidelberg: Springer, 2007,
pp. 469–484, ISBN: 978-3-540-74835-9. DOI: 10.1007/
978-3-540-74835-9 31.

[36] Ground Control, IG-VPN: Using Applicaiton Layer
Technology to Overcome the Impact of Satellite Cir-
cuit Latency on VPN Performance, https : / / www .
groundcontrol.com/IG-VPN Intro.pdf, 2003.

[37] D. Lacamera and S. Ammirata, PEPsal: A TCP Per-
formance Enhancing Proxy for Satellite Links, https :
//github.com/danielinux/pepsal, Sep. 2016.

[38] OpenVPN Inc., OpenVPN, https://openvpn.net/, 2020.

15



[39] Newtec, TL100 TelliNet V2.6 Tellitec Product Family,
https://www.newtec.eu/frontend/files/leaflet/nop1800-
nop1805- acceleration- and- compression- software.pdf,
2009.

[40] S. Chen, S. Jero, M. Jagielski, A. Boldyreva, and C.
Nita-Rotaru, “Secure Communication Channel Estab-
lishment: TLS 1.3 (over TCP Fast Open) vs. QUIC,”
en, in Computer Security – ESORICS 2019, K. Sako,
S. Schneider, and P. Y. A. Ryan, Eds., ser. Lecture Notes
in Computer Science, Cham: Springer International Pub-
lishing, 2019, pp. 404–426, ISBN: 978-3-030-29959-0.
DOI: 10.1007/978-3-030-29959-0 20.

[41] I. Swett, QUIC FEC v1 - Google Groups, https://groups.
google . com / a / chromium . org / forum /\# !topic / proto -
quic/Z5qKkk2XZe0, Message Board, Feb. 2016.

[42] L. Thomas, E. Dubois, N. Kuhn, and E. Lochin, “Google
QUIC performance over a public SATCOM access,” en,
International Journal of Satellite Communications and
Networking, vol. 37, no. 6, pp. 601–611, 2019, ISSN:
1542-0981. DOI: 10.1002/sat.1301.

[43] J. P. Rula, J. Newman, F. E. Bustamante, A. M. Kakhki,
and D. Choffnes, “Mile high wifi: A first look at in-flight
internet connectivity,” in Proceedings of the 2018 World
Wide Web Conference, International World Wide Web
Conferences Steering Committee, 2018, pp. 1449–1458,
ISBN: 1-4503-5639-7.

[44] N. Kuhn, J. Border, and E. Stephan, QUIC for SATCOM,
https://www.potaroo.net/ietf/idref/draft-kuhn-quic-4-
sat/, Nov. 2019.

[45] M. Fischlin and F. Günther, “Replay Attacks on Zero
Round-Trip Time: The Case of the TLS 1.3 Handshake
Candidates,” in 2017 IEEE European Symposium on
Security and Privacy (EuroS P), Apr. 2017, pp. 60–75.
DOI: 10.1109/EuroSP.2017.18.

[46] G. Delannoy, TCPeP, https : / / github . com /
GregoireDelannoy/TCPeP, May 2013.

[47] D. Velenis, D. Kalogeras, and B. Maglaris, “SaTPEP: A
TCP Performance Enhancing Proxy for Satellite Links,”
en, in NETWORKING 2002: Networking Technologies,
Services, and Protocols; Performance of Computer and
Communication Networks; Mobile and Wireless Com-
munications, E. Gregori, M. Conti, A. T. Campbell, G.
Omidyar, and M. Zukerman, Eds., ser. Lecture Notes in
Computer Science, Berlin, Heidelberg: Springer, 2002,
pp. 1233–1238, ISBN: 978-3-540-47906-2. DOI: 10 .
1007/3-540-47906-6 113.

[48] L. Clemente, Quic-go, https : / / github . com / lucas -
clemente/quic-go, Aug. 2019.

[49] Google, QUIC, a multiplexed stream transport over
UDP - The Chromium Projects, https://www.chromium.
org/quic, 2020.

[50] A. Auger, E. Lochin, and N. Kuhn, “Making Trustable
Satellite Experiments: An Application to a VoIP Sce-
nario,” en, in IEEE 89th Vehicular Technology Confer-
ence: IEEE VTC2019-Spring, https://doi.org/10.1109/
VTCSpring.2019.8746404, 2019, pp. 1–5.

[51] SitespeedIO, Browsertime, sitespeed.io, https://github.
com/sitespeedio/browsertime, Dec. 2019.

[52] Mozilla.org, PerformanceTiming.navigationStart, en,
https : / / developer . mozilla . org / en - US / docs / Web /
API / PerformanceTiming / navigationStart, Documenta-
tion, Sep. 219.

[53] Alexa, The Top500 Sites on the Web, https://www.alexa.
com/topsites, Jan. 2020.

[54] U. Speidel, Simulating satellite Internet traffic to a
small island Internet provider, en-US, https://isif.asia/
simulating- satellite- internet- traffic- to-a- small- island-
internet-provider/, Jan. 2017.

[55] ETSI, “ETSI TR 102 768: Digital Video Broadcasting
(DVB); Interaction channel for Satellite Distribution
Systems; Guidelines for the use of EN 301 790 in
mobile scenarios,” Tech. Rep. ETSI TR 102 768, 2009,
https : / /www.etsi .org /deliver /etsi tr /102700 102799/
102768/01.01.01 60/tr 102768v010101p.pdf.

[56] ——, “ETSI TR 102 376-1 Digital Video Broadcasting
(DVB); Implementation guidelines for the second gen-
eration system for Broadcasting, Interactive Services,
News Gathering and other broadband satellite appli-
cations; Part 1: DVB-S2,” Technical Report ETSI TR
102 376-2, 2015, https : / / www . etsi . org / deliver /
etsi tr / 102300 102399 / 10237601 / 01 . 02 . 01 60 /
tr 10237601v010201p.pdf.

[57] ITU, “ITU-T Y.1541 Network performance objectives
for IP-based services,” Y-Series Recommendation, Dec.
2011, https://www.itu.int/rec/T-REC-Y.1541/en.

[58] A. Boubaker, OpenSAND Example of Delay Variations,
https://wiki.net4sat.org/, Jun. 2019.

[59] A. Custura, T. Jones, and G. Fairhurst, “Rethinking
ACKs at the Transport Layer,” in 2020 IFIP Networking
Conference (Networking), Jun. 2020, pp. 731–736.

[60] T. Jones, A. Custura, and G. Fairhurst, “Changing the
Default QUIC ACK Policy,” en, IETF Informational
Draft Memo, Sep. 2020, https://tools.ietf.org/html/draft-
fairhurst-quic-ack-scaling-03.

16



X. APPENDIX A - TESTBED NETWORK CONFIGURATIONS

For clarity, we have provided a number of network con-
figuration diagrams to detail the testbed configuration used
for each of the five scenarios commonly referenced in our
benchmark comparisons. Further technical details can be found
in the QPEP source repository.

Fig. 11. Testbed Configurations
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