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Abstract—The FIDO protocol suite aims at allowing users to
log in to remote services with a local and trusted authenticator.
With FIDO, relying services do not need to store user-chosen
secrets or their hashes, which eliminates a major attack surface
for e-business. Given its increasing popularity, it is imperative to
formally analyze whether the security promises of FIDO hold. In
this paper, we present a comprehensive and formal verification of
the FIDO UAF protocol by formalizing its security assumptions
and goals and modeling the protocol under different scenarios in
ProVerif. Our analysis identifies the minimal security assumptions
required for each of the security goals of FIDO UAF to hold.
We confirm previously manually discovered vulnerabilities in
an automated way and disclose several new attacks. Guided
by the formal verification results we also discovered 2 practical
attacks on 2 popular Android FIDO apps, which we responsibly
disclosed to the vendors. In addition, we offer several concrete
recommendations to fix the identified problems and weaknesses
in the protocol.

I. INTRODUCTION

Fast IDentity Online (FIDO) has gained significant pop-
ularity in recent years as a public-key cryptography based
authentication framework that enables users to login remote
online services and websites by authenticating themselves to
local trusted authenticators, such as a fingerprint scanner on
a smartphone. With FIDO, relying web services do not need
to store user-chosen secrets or their hashes, which eliminates
a major attack surface for e-business [26], [27], [55]. At
the time of writing, more than 250 companies have become
members of the FIDO alliance [5], and more than 703 certified
FIDO products are in the market [15]. Android 7.0+ is now
also FIDO2 certified out of the box, and Microsoft Windows
has been supporting the FIDO2 standard since October 2018,
which gives billions of users the ability to leverage built-
in authenticators for passwordless access to websites and
applications [2].

The original FIDO protocol suite consists of two sets
of specifications: Universal Authentication Framework (UAF)
and Universal Second Factor (U2F). UAF allows users to reg-
ister their accounts with the relying party through a trusted au-
thenticator and replaces the traditional password login scheme.
U2F allows users to add a second-factor local authenticator
to enhance the security of their accounts. FIDO2 was offi-
cially launched in 2018 with the addition of Web Authentica-
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tion specification (WebAuthn) [52] and Client-to-Authenticator
Protocol (CTAP) [3]. WebAuthn supports online services to
use FIDO through a standardized web API, whereas CTAP
supports external devices to work with browsers supporting
WebAuthn.

Given the increasing popularity of FIDO, it is imperative
to analyze if its security promises hold. Some flaws of FIDO
have already been identified using manual analysis [29], [36],
[42], [43], [47]. Even though these ad hoc methods can help
discover some vulnerabilities, they lack a formal foundation
and are not capable of systematically verifying the properties
of FIDO.

Also, there have been several attempts to formally verify
FIDO [38], [48]. However, they have many limitations: i) none
of them presented a formalization of the security assumptions
and goals from the FIDO specifications, which led to an
inaccurate, if not incorrect, modeling of the protocol and
security properties; ii) they focused on the U2F protocol,
which has a simpler attack model than the UAF protocol
does. This is because multiple vulnerable entities in the UAF
are consolidated into one trusted physical device in the U2F;
iii) their oversimplified modeling of the protocol failed in
discovering more vulnerabilities.

In fact, formally verifying the security properties of the
UAF protocol is challenging: i) many security assumptions and
security goals are implicit and buried in over 500 pages of En-
glish specifications across 19 documents. The formal extraction
of them requires considerable analysis and interpretation of
the specifications; ii) the attack model is complicated because
many entities in the protocol can be compromised in real-
world settings. A comprehensive verification should consider
all possible scenarios; iii) the UAF protocol is complex with
many steps and optional steps, which should also be considered
in verification.

To systematically evaluate the security of UAF, we tackle
aforementioned challenges and resort to formal methods,
which have been used in verifying the security of real-world
protocols, such as Needham-Schroeder [44], TLS [20]-[22],
5G authentication [18], IKE [30], Diffie-Hellman [1], [49],
ISO/IEC 9798-2 [57], LMAP [37], vTPM migration [28],
3PAKE [54], e-voting [32], E-Health [33], USB Type-C [50],
etc. The contributions of this paper are summarized as follows:

1) We provide a formalization of UAF’s security assump-
tions and goals by extracting and formally interpreting them
from the specifications. We consider all sorts of properties,
including authentication, non-repudiation, confidentiality, and
privacy;

2) We provide a faithful and formal model of the UAF pro-
tocol, which is a pragmatic balance of a detailed representation



that can lead to the discovery of many vulnerabilities and an
abstraction that is amenable to formal verification tools;

3) We carry out an automatic verification in the symbolic
model using ProVerif [23], [24]. We open-source our verifica-
tion tool and code UAF Verif!;

4) We present the verification results by confirming previ-
ously found vulnerabilities and disclosing new attacks. Also,
we present the minimal assumptions for UAF to meet each
security property;

5) Guided by the analysis results, we perform 2 attacks on
2 popular Android UAF apps, which represent two types of
vulnerabilities. We responsibly disclosed them to the vendors,
resulting in 1 vulnerability ID (CNNVD-202005-1219);

6) We offer several concrete and explicit suggestions to fix
the identified problems in the protocol and specifications.

The rest of the paper is organized as follows. Section II
introduces the UAF architecture and protocol. Section III
presents our interpretation and formal model of UAF’s security
assumptions and goals. In Section IV, we explain the basic
principle of ProVerif and our modeling choices. We present the
security analysis results of the UAF protocol using ProVerif in
Section V and summarize the defects of the UAF protocol.
Besides, we discuss some possible attacks for the UAF proto-
col and give some recommendations. We introduce the related
works in Section VI. Section VII concludes the paper.

II. OVERVIEW OF THE UAF PROTOCOL

The UAF protocol has two major operations, namely
authenticator registration and authentication. At a high level,
the UAF protocol works as follows: a user wishes to log in
to remote services using a device that has a certified UAF
authenticator, e.g., fingerprint sensor. The authenticator has a
trusted attestation key (either RSA or ECDSA). The user logs
in to a relying party, such as a banking website, using her
original credentials, e.g., text-based password. The authenti-
cator records her fingerprint, generates an authentication key
for this website, signs the public part of the new key with the
attestation key, and sends it to the website. The website links
the user’s online profile with the authentication key if it is
valid. As a result, the trust between the relying party and the
authenticator is established and the procedure of authenticator
registration is completed. In subsequent login attempts (the
authentication procedure), the user only needs to prove her
identity to the local authenticator, upon the success of which
the website and the authenticator will run a challenge-response
protocol with the authentication key.

Table I describes the acronyms used in this paper. Sec-
tion II-A presents the overall architecture and entities of UAF.
Some of the steps and exchanged messages of the protocol
differ based on the type of authenticator in use. In Section II-B
and II-C, we illustrate the protocol using 1st-factor bound au-
thenticators [7]. Section II-D explains the protocol operations
under different types of authenticators and use cases.

A. Architecture

As shown in Figure 1, we abstract 5 major entities and
4 communication channels in the Universal Authentication
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Fig. 1. UAF architecture

Framework:

1) an authenticator, which has an internal matcher for user
verifications, stores a model identifier, an attestation key, and
a symmetric key (AAID, skar, kw ). The authenticator gener-
ates asymmetric authentication keys (skay, pkay) [8]. There
are 4 types of authenticators, 1st-factor bound authenticator
(1B), 2nd-factor bound authenticator (2B), 1st-factor roaming
authenticator (1R), and 2nd-factor roaming authenticator (2R).
They differ in generating and using h, KeyID and ak, which
we explain in Section II-D;

2) the Authenticator Specific Module (ASM) is an authen-
ticator abstraction layer that provides a uniform API for the
upper layer. When ASM is launched for the first time, it
generates a secret (tok) [9];

3) a UAF Client (UC) is a system service or application that
implements the client-side logic of the UAF protocol. A UAF
Client is identified by a CallerID, which ASM can retrieve
from the operating system. For example, on Android, CallerID
is the hash of the UAF Client’s APK signing certificate;

4) a User Agent (UA) is a user application identified by
a URI named FacetID. When the user agent is a browser,
FacetID is the web origin of the web page triggering the UAF
operation, e.g., https://login.example.com/. When
the user agent is an app on Android, FacetID is the hash of
the user agent’s APK signing certificate;

5) a Relying Party (RP) consists of a web server and a UAF
server. The UAF server ensures that only trusted authenticators
can be registered, manages the association of authenticators to
user accounts, and evaluates user authentications.

The UAF specifications require TLS communication be-
tween a UA and an RP. Other software entities communicate
via inter-process communication (IPC) methods or hardware
and software communication.

B. Authenticator Registration

Figure 2 depicts the message flows of the UAF authenti-
cator registration operation using a 1B authenticator.

Upon the success of the original authentication method,
e.g., text-based password, RP generates a registration request
message (UName, AppID, SData, Chlg) and sends it to UC.
UName identifies the user, while AppID is a URL that points
to a list of trusted user agents. Chlg is a random challenge
value, and SData is a session identifier created by the Relying
Party.

After receiving the request message from RP, UC retrieves
the trusted user agent list from AppID and verifies if FacetID
is on the list [4]. UC stores the session ID SData as xSData
and computes TSLData using the TLS channel information to



Acronym  Full name Description

RP Relying Party The server-side, which contains a web server and a UAF server.

UA User Agent A user application that supports the UAF protocol.

uc UAF Client A system service or application that implements the client-side logic of the UAF protocol.

ASM Authenticator Specific Module An authenticator abstraction layer that provides a uniform API for the upper layer.

UName Username A human-readable string identifying a user’s account at a Relying Party.

AppID Application Identifier A URL pointing to the trusted facets.

FacetID Application Facet Identifier A platform-specific identifier (URI) for an application facet to indicate how an application is implemented on
various platforms (such as Web applications, Android applications or IOS applications).

SData Server Data A session identifier created by the Relying Party.

Chlg Server Challenge A random value that is provided by the FIDO UAF Server in the UAF protocol requests.

Tr Transaction Text Text to be confirmed in the case of transaction confirmation.

TLSData Channel Binding A channel binding allows applications to establish that the two end-points of a secure channel at one network
layer are the same as at a higher layer by binding authentication to the higher layer to the channel at the
lower layer.

AAID Authenticator Attestation Identifier =~ A unique identifier assigned to a model, class or batch of FIDO UAF Authenticators that all share the same
characteristics

CNTR Signature counter A monotonically increasing counter maintained by the Authenticator. It is increased on every use of the
Authentication private key. FIDO UAF Server uses this value to detect cloned authenticators.

tok ASMToken A randomly generated secret when the ASM is launched the first time and the ASM will maintain this secret
until the ASM is uninstalled.

ak Key handle access token An access control mechanism for protecting an authenticator’s FIDO UAF credentials from unauthorized use.
It is created by the ASM by mixing various sources of information.

fe Final Challenge The final challenge for the Challenge-Response mechanism.

h KeyHandle A key container created by a FIDO UAF Authenticator, containing an authentication private key and
(optionally) other data (such as Username).

KeyID Key Identifier An opaque identifier for an authentication key registered by an authenticator with a FIDO UAF Server.

skar Attestation Private Key The private asymmetric key used for FIDO UAF Authenticator attestation.

pkar Attestation Public Key The public asymmetric key used for FIDO UAF Authenticator attestation.

skav Authentication Private Key User authentication private key generated by FIDO UAF Authenticator.

pkav Authentication Public Key User authentication public key generated by FIDO UAF Authenticator.

kw Wrapping Key A symmetric key to wrap the data inside the authenticator

TABLE 1.

prevent the TLS MIMT attack [39]. Then, UC sends UName
and the final challenge parameters fcp = (ApplD, FacetID,
Chlg, TLSData) to ASM.

ASM computes the final challenge fc = hash (fcp) and a
token ak = hash (AppID || tok || CallerID) , where || denotes
concatenation. ak is a token under the KHAccessToken mech-
anism, which is an access control mechanism for protecting
an authenticator’s FIDO UAF credentials from unauthorized
use [9]. The authenticator uses ak in the procedure of authen-
tication to verify ASM. Then, ASM sends (UName, AppID,
ak, fc) to the authenticator.

The authenticator updates the token ak = hash (ak ||
AppID) . Then, the authenticator triggers its built-in matcher,
e.g., fingerprint sensor, to locally verifies the user’s identity.
Then, an authentication key pair (skay, pkay) for this user
account is generated. The authenticator generates a random
KeyIlD as the key identifier. The authenticator computes a
key handle h = Ey, (skay, ak, UName, KeylD), where
E,, is the symmetric encryption. After that, the authenticator
generates a random signature counter C NT'R 4, which should
be synchronized with RP. CNTR can be used by RP to detect
cloned authenticators. Finally, the authenticator computes the
signature S = signgy,,. (AAID, fc, KeyID, CNTR 4, pkav),
where sign is a sign function, and sends (AAID, fc, KeyID,
CNTRa, pkau, S) to ASM, ASM stores CallerID, AppID,
h, KeyID and sends the messages to UC. UC forwards the
message, xSData and fcp to RP.

To verify RP is in the same session with UA and UC,
RP compares = fc = hash (AppID || Chlg || TLSData) with
the received fc and compares SData with xSData. Next,
it verifies fcp.AppID, fcp.Chlg and fcp. TLSData correspond
to those stored in RP, and checks if fcp.FacetID is in the
trusted FacetIDs list. Then, RP verifies the signature S with

ACRONYMS AND DESCRIPTIONS.

the attestation public key (pkar) of this authenticator. If the
signature matches, RP stores CNT R4, pkay, KeylD, AAID
and completes this registration.

C. Authentication

Figure 3 depicts the message flows of the authentication
operation using a 1B authenticator to step-up authentication,
which can also be extended to the transaction confirmation
operation. The transaction confirmation offers support for
prompting a user to confirm a specific transaction with a secure
display device. In Figure 3, the transaction confirmation related
operations are marked with a ‘[]’.

In authentication and transaction confirmation, RP sends an
authentication request message (AppID, KeyID, SData, Chlg,
[Tr]) to UC. Then UC computes fcp = (ApplD, Facet, Chlig,
TLSData), and sends (fcp, KeyID, [Tr]) to ASM.

Once ASM receives the message, it computes the final
challenge fc = hash (fcp) and the token ak = hash (AppID
|| tok || CallerID) , after which it locates h by KeyID and sends
(ak, fc, AppID, h, [Tr]) to the authenticator.

Upon receiving the message, the authenticator updates the
token ak = hash (ak || AppID) and triggers its built-in
matcher to verifies the user’s identity. Then, the authenticator
computes (skay, rak, xUName, KeyID) = Dy, (h), where
Dy, 1s the decryption function. Next, the authenticator checks
if xak matches ak to make sure it is the trusted ASM. If
the check passes, the authenticator displays the transaction
text Tr on the secure display for the user to confirm. Then,
it computes hTr = hash(Tr) and increases CNTR4 to
xCNTR4. A random value n is generated to protect the
authenticator from the replay attack. Finally, the authenticator
computes the signature S = sign (AAID, n, fc, [hTr],

skau



AAID, skar, kw Tok, CallerID FacetID UName, AppID, pkar

Authenticator ASM UAF Client Relying Party

login by the original authentication method

new random SData
new random Chlg

UName, AppID, SData, Chlg UName, AppID, SData, Chlg

zSData < SData

get trusted FacetIDs list from ApplD
check if FacetID in the facet list
get TLSData from TLS channel

fep < (AppID, FacetID, Chlg, TLSData)

UName, fcp

fe < hash(fep)
ak < hash(AppID || Tok || CallerID)

UName, AppID, ak, fc

ak < hash(ak || AppID)

verify the user

new (skav, pkav)

generate random KeylD

h 4 Epy, (skau, ak, UName, KeyID)

new sign counter CNT Ry

(AAID, fe,KeyID,CNTR4, pkav)
AAID, fe, KeyID, h

CNTRa, pkav, S, Certar

S + sign

skar

store CallerID, AppID, h, KeylD
AAID, fe, KeyID

xSData, AAID, fe, KeyID

CNTRa, pkav, S, Certar

Fig. 2. Registration of the Authenticator

KeyID, tCNTR,) and sends (AAID, n, fe, [hTr], KeylID,
2CNTR4, S) to UC, which sends the message, xSData and
fep to RP.

RP locates pk gy of this user by (UName, AAID’, KeyID).
It compares SData and xSData to make sure it is the same ses-
sion. Next, it it verifies fcp.AppID, fcp.Chlg and fep.TLSData
correspond to those stored in RP, and checks if fep.FacetID
is in the trusted FacetIDs list. Then, it compares AAID’
with AAID to ensure that the message comes from the same
authenticator registered with RP. Then RP computes zfc
= hash (AppID || Chlg || TLSData) and compares it with
fc to make sure the response is right. Then it compares hTr
with hash(7Tr) and verifies the signature S. Finally, RP checks
whether tCNT R 4 increases compared to C NT Rg, if not, the
sync failed. If all the checks pass, RP updates CNT Rg with
xCNTR, and finishes the authentication process.

D. Protocol Operations Under Different Authenticators and
Use Cases

In FIDO, bound authenticators (1B and 2B) are embedded
into a user’s device, e.g., a built-in fingerprint sensor. Roaming

xSData, AAID, fc, KeyID
CNTRua, pkav, S, fep, Certar

CNTRA, pkav, S, fep, Certar

get TLSData from TLS channel

afc < hash(AppID || Chlg || TLSData)
check:

zSData == SData

zfc == fe

fep. AppID == AppID

fep. TLSData == TLSData

fep.Chlg == Chlg

if fep.FacetID is in the trusted FacetIDs list

CheckSign,; . (S, (AAID, fe,KeyID,CNTRa,pkav))
if right then:

CNTRs < CNTRA

store pkay, KeylD, AAID, CNTRg

il i

authenticators (1R and 2R) are not bound to any device, e.g.,
a USB dongle with a built-in capacitive touch device. Users
can use roaming authenticators with any number of devices.
The Ist-factor authenticators (1B and 1R) normally operate
as the first factor to authenticate users, while the 2nd-factor
authenticator can operate in multi-factor authentication.

Also, there are two use cases when it comes to an au-
thenticator executing the sign command. One case is that
there is no user session (no cookies, a clear machine). In
this case, RP communicates with UA for the first time and
does not know who the user is and cannot provide KeylD
associated with the user. In this paper, we call this case login
authentication. The other case is called step-up authentication,
where there is already a user session in which the user is
unauthenticated or nominally authenticated. RP knows who
the user is and provides KeyID associated with the user. For
example, transaction confirmation can only happen when there
is a user session.

The UAF protocol under different types of authenticators
and use cases differ in some steps and messages [8]. Table
II summarizes the differences: i) only 1st-factor authenticators
(1B and 1R) can be used in login authentication cases; ii) 2R



UName, AppID, AAID’
AAID, kw, CNTR4 Tok, CallerID, h FacetID KeyID, pkay, CNTRs

Authenticator ASM UAF Client User Agent Relying Party

initiate authentication

[
new random SData
new random Chlg
[get Tr]

AppID, KeyID, SData, Chig, [Tr] |« -PPID: KeyID, SData, Chig, [Tr]

get trust facet list from AppID
check if FacetID in the list

get TLSData from TLS channel
zSData «+ SData

fep < (AppID, FacetID, Chlg, TLSData)

fep, KeyID, [Tr]

fe < hash(fep)
ak < hash(AppID || Tok || CallerID)
locate h by KeylD

ak, fe, AppID, h, [Tr]

ak < hash(ak || AppID)

verify the user

(skav, wak, zUName, KeyID) < Dy, (h)
Check:

zak == ak
If right then:

[display and let the user verify the 77|

[hTr < hash(Tr)]

2CNTRy <~ CNTRs +1

new random n

S < signg,, (AAID,n, fe, [WTr], KeyID,xCNTR 4)

AAID, n, fe, [hTr]

KeylD, tCNTR4, S

AAID, n, fe, [hTr]
KeyID, :CNTR4, S

wSData, AAID, n, fe, [hTr]
KeyID, :CNTR4, fep, S

wSData, AAID, n, fe, [hTr]
KeyID, :CNTR 4, fep, S

get TLSData from TLS channel
locate pkay by (UName, AAID’, KeyID)

zfc < hash(AppID || Chlg || TLSData)
Check:

zSData == SData

zfe == fe

fep. AppID == AppID

fep. TLSData == TLSData

fep.Chlg == Chlg

if fep.FacetID is in the trusted FacetIDs list

AAID == AAID’

2CNTR4 == CNTRs + 1

[hTr == hash(Tr)]

CheckSign,., (S, (AAID, fc, [0WTv], KeyID,2CNTR4))
If right then:

CNTRs <+ 2CNTR,
- -

Fig. 3. Authentication operation: the operations framed by ‘[]’ are needed only in the transaction confirmation operations.

Authenticator | Authenticator Registration [ Authentication
random KeyID . .
1B h = Epyy (skav, ak, UName, KeyID) — ASM fogin: R does not provice FenlD
ak = hash (AppID || tok || CallerID) step-up: provides fey
random KeylD
2B h = Egy, (skauv, ak, KeyID) — ASM step-up: RP provides KeyID
ak = hash (AppID || tok || CallerID)
random KeylD . . . )
IR h = Ekyy, (skauv, ak, UName, KeyID) — Authenticator log{n. RP _d(l)f; not PQOYKI? IES'ID
ak — hash (ApplD) step-up: RP provides Key.
KeylD = h
2R h = Epy, (skau, ak) — RP step-up: RP provides KeylD
ak = hash (AppID)

TABLE II. PROTOCOL DIFFERENCES UNDER DIFFERENT TYPES OF AUTHENTICATORS AND USE CASES.

authenticators use h as KeyID, whereas other authenticators for bound authenticators, ASM generates ak with AppID, tok
generate a random KeylD; iii) since bound authenticators do and CallerID. For roaming authenticators, ak only contains
not have internal storage, they store A in ASM. 1R authen-  AppID; vii) in the authentication process, RP provides KeylD
ticators have internal storage and store h inside themselves. only for step-up authentication cases.

The protocol requires 2R authenticators to store h at RP; iv)

if KeyID is generated randomly, it is stored in h; v) if it is a

1st-factor authenticator (1B and 1R), h contains UName; vi)



III. THREAT MODEL AND SECURITY GOALS

The UAF specifications list their security assumptions in
Section 6 of the security reference [6], and provide the allowed
cryptography list [11], the allowed operating environment
list [12], the authenticator metadata requirements [13], the
authenticator security requirements [14] in respective docu-
ments. However, the security assumptions are very strong and
impractical, and many real-world deployments do not strictly
follow them. To provide a more comprehensive analysis, we
strive to analyze under the security assumptions that cover
more realistic scenarios.

Because automation in the extraction and formalization
of security assumptions and goals from lengthy and am-
biguous natural language documents is still very challenging,
we manually extract the security goals of the UAF from
several documents and translate the informal descriptions of
the security goals into precise and formal expressions, which
would be the precondition for the formal analysis. We use
our experience to make choices in what to model and how to
model to achieve a balance between analysis feasibility and
model accuracy [6]-[9].

A. Assumptions and Threat Model

1) Assumptions on Cryptographic Algorithms: We assume
the cryptographic algorithms are secure, which means without
knowing the correct keys, the adversary can never forge
signatures or decrypt messages.

2) Assumptions on Channels and Entities: UAF uses four
channels, as shown in Figure 1. The communications among
Authenticator, ASM, UC, and UA use interprocess communi-
cation (IPC) channels or hardware and software communica-
tion channels. The communications between UA and RP use a
network channel, which is protected by the TLS. We assume
that i) the attacker cannot eavesdrop, intercept, or manipulate
the communications on an established channel between legit-
imate entities; but ii) an attacker can install malicious entities
to initiate and accept communication requests. For example, a
user may be tricked into installing a malicious UC downloaded
from the internet, which could communicate with legitimate
UA or ASM. We verify if the security properties of UAF hold
when there are different malicious entities.

In addition, applications are subject to known software
attacks and may be controlled by attackers (e.g., hook, root),
so we verify if the security properties of UAF hold when each
of the entities is compromised. We also consider malicious
or compromised authenticators because i) in some real-world
deployments, the authenticator is implemented as software;
ii) hardware-based authenticators are subject to side-channel
attacks [40], [41].

3) Assumptions on Data Protections: We assume the fol-
lowing data fields are public, and the attacker has access to
all of them: FacetID, CallerID, AAID, AppID, UName, pk s,
pkay. We verify if the security properties of UAF hold when
the following data is compromised or leaked: kyy, tok, CNTR,
h, SkAT, SkAU.

4) Assumptions on Authenticators: We assume the authen-
ticator always authenticates users correctly, RP authenticating
the authenticator is equivalent to RP authenticating the user.

Because a large number of authenticators may share the same
AAID and sk for privacy preserving [10], we assume the
attacker has an authenticator with the same sk 47 and AAID as
the user’s, with which the attacker can calculate the signature
and pass the authentication of RP.

B. Formalization of UAF’s Security Goals
The formal expressions are indicated in purple text.

1) Authentication Properties: To precisely formalize the
authentication properties, we resort to Lowe’s taxonomy of
authentication properties [45], which can be directly modeled
in formal methods and widely used in previous research [18].
Lowe’s taxonomy specifies multiple levels of authentication,
from A’s point of view, between an initiator A and a responder
B: i) aliveness: whenever A completes a run of the protocol,
the aliveness property ensures that B has previously been
running the protocol, but not necessarily with A; ii) weak
agreement: whenever A completes a run of the protocol, the
weak agreement property ensures that B has previously been
running the protocol with A, but not necessarily with the
same data; iii) non-injective agreement on data items ds:
whenever A completes a run of the protocol, the non-injective
agreement property ensures that B has previously been running
the protocol with A. Besides, A and B agreed on the data
values in ds. However, the property cannot guarantee that
there is a one-to-one relationship between the runs of A and
the runs of B; iv) injective agreement on data items ds:
whenever A completes a run of the protocol, the injective
agreement property ensures that B has previously been running
the protocol with A. Besides, A and B agreed on the data
values in ds, and each such run of A corresponds to a unique
run of B. This prevents replay attacks.

The authentication goals are extracted from Section 4 of
the security reference [6]. The overall goal of the UAF is SG-1.

SG-1 Strong User Authentication: Authenticate (i.e.
recognize) a user and/or a device to a Relying Party with
high (cryptographic) strength.

After a successful authentication process, RP (identified by
ApplD) shall authenticate a user account (identified by UName)
with a unique registered authentication key pair (identified by
KeyID) generated by a registered authenticator (identified by
AAID). Formally, RP must obtain non-injective agreement on
UName, AAID, KeyID, AppID with the authenticator after the
authentication process.

The authentication goals are also complemented by SG-10,
SG-11, SG-12, and SG-13.

SG-10 DoS Resistance: Be resilient to Denial of Ser-
vice Attacks. L.e. prevent attackers from inserting invalid
registration information for a legitimate user for the next
login phase. Afterward, the legitimate user will not be
able to login successfully anymore.

SG-11 Forgery Resistance: Be resilient to Forgery
Attacks (Impersonation Attacks). I.e. prevent attackers
from attempting to modify intercepted communications




to masquerade as the legitimate user and log into the
system.

SG-12 Parallel Session Resistance: Be resilient to par-
allel Session Attacks. Without knowing a user’s authen-
tication credential, an attacker can masquerade as the
legitimate user by creating a valid authentication message
out of some eavesdropped communication between the
user and the server.

SG-13 Forwarding Resistance: Be resilient to Forward-
ing and Replay Attacks. Having intercepted previous
communications, an attacker can impersonate the legal
user to authenticate to the system. The attacker can replay
or forward the intercepted messages.

To prevent DoS attacks, the protocol must ensure that
invalid information will not affect the user’s authentication,
which means the attacker cannot pass the authentication of
RP by any means, thus making CNTR of RP and CNTR of
the authenticator out of sync. Therefore, the protocol must
ensure that every successful authentication of RP is associated
with the legitimate user’s verification. The Forgery Resistance,
Parallel Session Resistance and Forwarding Resistance require
the protocol to prevent impersonation attacks by replaying,
constructing, or manipulating previous messages. Formally,
RP must obtain injective agreement on UName, AAID, KeyID,
AppID with the authenticator after the authentication process.

SG-5 Verifier Leak Resilience: Be resilient to leaks from
other relying parties. L.e., nothing that a verifier could
possibly leak can help an attacker impersonate the user
to another relying party.

SG-6 Authenticator Leak Resilience: Be resilient to
leaks from other FIDO Authenticators. I.e., nothing that
a particular FIDO Authenticator could possibly leak can
help an attacker to impersonate any other user to any
relying party

We formalize them to: after the authentication process, RP
must obtain injective agreement on UName, AAID, KeyID,
AppID with the authenticator when another RP leaks the same
user’s pkay, UName, AAID, KeyID, CNTR or when another
authenticator leaks the same user’s skay, UName, AAID,
CNTR, KeylD.

Note that after a successful authentication for the user, it
is the UA but not the user who has been authorized, if the
correct user is verified but the malicious UA is authorized, the
protocol is still not secure, so after the authentication process,
RP must obtain injective agreement on UName, AAID with UA
when another RP leaks the same user’s pk a7, UName, AAID,
KeyID, CNTR and when another authenticator leaks the same
user’s skay, UName, AAID, CNTR, KeylD.

In the registration process, the security reference only
presents the following goal.

SG-7 User Consent: Notify the user before a relationship
to a new relying party is being established (requiring
explicit consent).

This goal indicates that the registration request must have
been initiated by the legitimate user. We assume that the legit-
imate UA that initiated the registration request can represent
the consent of the user, so RP must obtain injective agreement
on UName, AppID with UA after the registration process.

However, even the registration process has been consented
by the user, we cannot guarantee that it is the user’s authen-
ticator who has been registered. So the registration should
additionally imply that RP must obtain injective agreement on
UName, AAID, KeyID, AppID, pkay with the authenticator
after the registration process.

In a transaction confirmation process, any tampering of the
transaction message during its route to the end device display
and back should be detected and the user cannot deny the
transaction message, which FIDO presents in SG-14.

SG-14 Transaction Non-Repudiation: Provide strong
cryptographic non-repudiation for secure transactions.

Formally, RP must obtain injective agreement on 7r with
the authenticator after the transaction confirmation process.

2) Confidentiality Properties: The confidentiality of skar,
skay and ky is required in Section 4.1 of the security
reference [6]. Formally, the cryptographic key skar, skau
and Ky should remain secret in the presence of the active
attacker during the registration and the authentication process.

KHAccessToken (ak) is an access control mechanism for
protecting an authenticator’s UAF credentials from unautho-
rized use. Once ak is leaked, the attacker will have the
ability to impersonate ASM and call the authenticator. ASM
is required to maintain the secrecy of ak in Section 6.1 [9].
Formally, ak should remain secret in the presence of the active
attacker during the registration and the authentication process.

3) Privacy Properties: The UAF protocol should ensure
that the private data related to the user cannot be compromised.
Otherwise, the attacker can identify a user or trace a user’s
behavior.

First, Tr is sensitive data, so it must remain secret in the
transaction confirmation process. Otherwise, the attacker can
count transactions and track user behaviors. So, 7r should
remain secret in the presence of the active attacker during the
transaction confirmation process.

Similarly, CNTR must remain secret. Or, the number of
successful authentications is known to the attacker, and the at-
tacker can track user behaviors. So CNTR should remain secret
in the presence of the active attacker during the registration and
the authentication process.

The higher requirement for privacy is unlinkability, which
is stated by:

SG-4 unlinkability: Protect the protocol conversation
such that any two Relying Parties cannot link the con-
versation to one user.

The main purpose of this goal is to mitigate the potential for
collusion amongst RPs. Generally, we disregard the linkability
due to the irresistible external factors (same UName, same
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IP address, etc.). So the UAF should provide unlinkability
between different RPs.

IV. MODELING UAF PROTOCOL IN PROVERIF

In this section, we briefly introduce the formal verification
tool ProVerif and explain how security properties can be
modeled in ProVerif in general. Then, we present the modeling
of security goals and protocol operations. For some of the
attack models that are not integrated with ProVerif, we present
the tricks we used to implement them. We believe other formal
verification tools, such as Tamarin [46], AVISPA [16], can also
be used to model and verify UAF. We choose ProVerif due to
its popularity and ease of use.

A. Overview of ProVerif

ProVerif is an automatic symbolic protocol verifier, which
can verify various security properties of protocols, includ-
ing confidentiality, authentication, and observational equiv-
alence [23]. Comparing with other verification tools, such
as AVISPA [16], CL-AtSe [51], OFMC [19], Tamarin [46],
FDR [44], Scyther [31], SATMC [17], Cryptyc [35],
TAA4SP [25], Maude-NPA [34], ProVerif not only solves the
problem of state explosion but also supports unbounded ses-
sions. Although ProVerif does not support algebraic operations,
such as power operation and XOR operation, it can still be
used to verify the UAF protocol since the protocol does not
use such operations.

ProVerif verifies in an extension of the applied 7-calculus
with cryptography. Based on first-order logic resolution rules
on Horn clauses [53], it determines whether the desired secu-
rity properties are met. If a property is violated, it can construct
an attack at both the Horn clause level and the 7-calculus level.

In m-calculus, messages are described as terms,
and a term is constructed by constructors. For
example, we can define senc(M,K) as a symmetric
encryption of the message M under the key K, where
senc (bitstring, key) is a constructor. The
corresponding destructor sdec (bitstring, key) is
defined as follows to formally represent the decryption of the
ciphertext with the same key K:

fun senc (bitstring,key):bitstring.
reduc forall m: bitstring, k:key;
= m.

sdec (senc (m, k) , k)

B. Formalizing Security Goals in ProVerif

ProVerif can prove reachability properties, correspondence
assertions, and equivalence properties.

Confidentiality is a reachability property. ProVerif checks
all possible protocol executions and all possible attacker behav-
iors to infer which terms are available to the attacker. Using the
following query statements, ProVerif tests the confidentiality
of the term M and the confidentiality of the bound name or
variable x.

query attacker (M) .
query secret x.
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Authentication properties can be verified via the Cor-
respondence assertions. Correspondence assertions are used
to capture the relationships between events. If the specified
events can be executed in the correct order and they have the
same arguments, the related properties can be guaranteed. For
example, if entity A executes an event el (A terminates the
protocol with B) with the argument x (B’s identity) and there is
an entity B that has executed an event e2 (B started a session
of the protocol with A) with the same argument z, from A’s
point of view, B has finished a non-injective agreement with
A on data x. We can use the following query to check the
non-injective agreement on data x:

query x:1ID;

event (el (x)) ==> event (e2(x)).

Unlinkability is an equivalence property, which could be
verified using observational equivalence [23]. If the attacker
cannot distinguish a process P from a process ), P and Q)
are observational equivalent P =~ () where the processes P
and @) have the same structure and differ only in the choice
of terms. In ProVerif, the equivalence is written by a single
“biprocess”, which encodes both P and (). Such a biprocess
uses the construct diff [M,M’ ] to represent the terms that
differ between P and ) (keyword choice is a synonym for
diff), where P uses the first component of the choice M,
while ) uses the second one M’ . For example, if P and () are
protocols that have the same structure but only differ in the
parameter a (P for a; and @ for as), then the equivalence of
P and @ can be expressed by: P(a;) = P(az). The processes
can be expressed as follows, and ProVerif verifies whether they
are equivalent.

free a:bitstring.
free b:bitstring.
let P_and_Q(M:bitstring) = ..... (« de

cesses x)

the pro
process
'P_and_Q(choicela,b])

Challenge. Modeling the unlinkability goal in the UAF is
difficult because ProVerif could only verify the observational
equivalence from the perspective of the attacker. But the
unlinkability requirement in UAF is from the perspective of
RP. To model this situation, we need to make sure the attacker
knows what RP knows. However, in our model, the attacker
can participate in the protocol as malicious entities, and can
actively manipulate the session data to break the security goals,
where RP never does. So we model the unlinkability in the
following way: i) when analyzing the unlinkability, we assume
there are no malicious entities in the protocol run; ii) we
assume the channel between RP and UA is public, which
allows the attacker to have the same knowledge as RP; iii)
we assume the attacker is a passive attacker who could only
listen to the communication channel between RP and UA.

C. ProVerif Models of the UAF

We modeled different types of authenticators and applica-
tion scenarios in ProVerif, which takes 900 lines of ProVerif
code. Then we analyzed whether the UAF protocol meets the
security goals in different scenarios using different security
assumptions and process combinations. We discuss the chal-
lenges we overcame:
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1) Modeling Malicious Entity Scenarios: ProVerif models
two types of channels, the Public channel and the Private
channel. The public channel is assumed to be completely
controlled by the attacker who has the “Dolev-Yao” capa-
bilities, while the data on the private channel is excluded
from the attacker’s knowledge. Unfortunately, none of these
channels can be directly used to model the malicious entities
scenarios where the communication between honest entities is
assumed secure but the attacker can act as a malicious entity
to communicate with some of the entities.

To this end, we used a modeling trick and verified its
correctness with the developers of ProVerif. We define two
entity processes A and A’ (both of them communicate with
process B) running in parallel, where A communicates via a
private channel while A’ communicates via a public channel.
The attacker can control the public channel, so he/she can act
as a malicious B and communicate with A’. When removing
the process A’ , there is no malicious B in the environment.

This model becomes more complex in UAF because it
contains more than two entities. Take ASM as an example, it
communicates with two entities, UC and the authenticator. We
define a process macro ASM, which contains two arguments
of type channel MC and MA, where MC for communicating
with UC and MA for communicating with the authenticator, as
defined below:

O % N U R W N =
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11
12
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let ASM(MC:channel, MA:channel) = (...)

By controlling the type of MA and MC, different scenarios
can be modeled. The following statements represent that
from ASM’s point of view, the system has no malicious
authenticator and UC since there is only an ASM that uses
private channel MC and MA to communicate. Note that channels
defined in the process by “new” are private.

free c:channel
process
new MC:channel;
new MA:channel;
ASM(MC, MA) | UC(MC)

[public].

| Authenticator (MA)

The following statements represent a system that has ma-
licious authenticators since there is an ASM that uses public
channel ¢ to communicate with the authenticator.

free c:channel
process
new MC:channel;
new MA:channel;
ASM(MC, MA) | ASM(MC, c)
Authenticator (MA)

[public].

| ucmMc) |

This trick requires two processes (only differ in channels)
to run in parallel. However, ProVerif 2.00 does not allow the
same event to execute several times in the same branch in
verifying event correspondence, which raises the difficulty for
ProVerif to verify such scenarios.

To solve this challenge, we used an ‘if’ statement to force
the process macro that contains the test events to only present

once in a branch. As the following code shows, we run two
ASM processes in parallel with different channel parameters to
make sure only one of them is on a certain branch. The main
process receives branch information on the public channel ¢
and lets the attacker choose between the two branches. We
confirmed the correctness of this trick with the developers of
ProVerif, who also fixed the problem in ProVerif 2.01.

free c:channel [public].
process
'
new MA:channel;
new MC:channel;
Authenticator (MA) |
(
in(c,branch:bool);
if branch = True then
ASM (MC, MA)
else
ASM(MC, c)

2) Modeling Unlinkability Scenarios: Modeling the UAF
operations for unlinkability analysis is challenging. We explic-
itly model the scenario in which two RPs might authenticate
the same user or different users.

First, we consider two RPs run in parallel with different
AppID. Then, we define a System macro, which represents
protocol runs that an RP authenticates or registers a user. By
controlling the arguments of the System, we specify which
RP is running. For example, System (AppID1, ...) means
RP with AppID] is running, while System (AppID2, ...)
means a different RP with AppID2 is running. Last, we specify
two Systems to run. One of them represents an RP that
authenticates a user, whereas the other represents another RP
that authenticates the same user or authenticates another user.

Different users use different devices, so their authenticators
have different &y, and their ASMs have different tok. Whether
the two RPs authenticate the same user, sk 4y and KeyID in the
system is different because the authenticator always generates
anew sky and KeylID for each account during the registration
process. Since different users may use authenticators with the
same AAID, we do not consider the differences of AAID.
Similarly, in different user devices, CallerID and FacetID
could be the same, so we do not consider either. We do not
consider the impact of UName of the unlinkability.

process

system (AppID, AAID, skAU, KeyID, kW, tok, UName,
FacetID, CallerID) |

system (AppID2, AAID, choice[skAU,skAU2], choice]l
KeyID,KeyID2], choicel[kW,kW2], choice[tok,
tok2], UName, FacetID, CallerID)

V. SECURITY ANALYSIS

In this section, we present the formal verification results of
the UAF protocol. We identify the minimal security assump-
tions required for each of the security goals in Section III-B




to hold. The formal verification identifies the design flaws
in the UAF, but not specific implementation vulnerabilities
in different apps. The root causes of these flaws include
that FIDO UAF supports different deployment settings but
gives impractical and ambiguous security assumptions for such
settings.

The results are analyzed from 417,792 automatically gen-
erated cases considering different authenticator types, scenar-
ios, and assumptions. It took 80 hours to analyze all cases
on a computer with Intel(R) Core(TM) i7-3770 CPU and
16GB RAM. Section V-A describes the method for automat-
ically identifying minimal security assumptions. Section V-B
presents the result overview. Section V-C presents some at-
tacks. Section V-D describes our recommendations.

A. Automatically Identifying Minimal Security Assumptions

To automatically identify minimal security assumptions, we
developed a tool UAFVerif to generate cases corresponding
to different scenarios for ProVerif to perform analysis on.
UAF Verif is implemented in 680 lines of Python code. The
high-level idea is to define a variable security assumption
set A, where A = () represents no security assumption.
UAF Verif adds security assumptions {a1, ..., a,} into A and
triggers ProVerif to analyze if the protocol satisfies the security
properties under these security assumptions. It starts with
verifying a single security assumption, then all combinations of
2 assumptions, and so on. When the state of a security property
changes from unmet to met, the minimal security requirement
is recorded.

B. Result Overview

Reg. [ Type [ 1B | 2B [IR] 2R
kw v
skart

C. [Shav | hw —MA [ V | Fw
ak —tokA—A[M] | X
CNTR —C[M]A=MT[A]

A. Basic —C[UIA-M[C]A-A[M]

TABLE III. MINIMAL ASSUMPTIONS REQUIRED FOR THE UAF

REGISTRATION PROCESS TO ACHIEVE CONFIDENTIALITY PROPERTIES AND
AUTHENTICATION PROPERTIES.

Table IIT and IV present the minimal assumptions required
for UAF to achieve the confidentiality properties and authenti-
cation properties. ‘Reg.’ means the registration process, ‘Auth.’
means the authentication process. ‘C.” means the confidential-
ity properties. ‘A.” means the authentication properties. ‘Basic’
represents the authentication goals we explain in Section I1I-B,
‘Non-R’ represents the transaction non-repudiation goal. We
present security assumptions in symbols: ‘A’ denotes AND,
whereas ‘\/’ denotes OR. A, M, C, U represent Authenticator,
ASM, UC, UA, respectively. ‘=’ before a data field represents
the field is not compromised. ‘=" before ‘X [Y]” represents that
the system does not exist malicious X that can communicate
with Y. For example, ‘- M[A]” means that there is no mali-
cious ASM that can communicate with the authenticator, while
‘=M [C]" means that there is no malicious ASM in the system
that can communicate with UC. ‘/’ means the protocol meets
the security goal under all conditions. ‘X’ means the protocol
cannot meet the security goal nonetheless. ‘—’ means we do
not consider this property.
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1) Confidentiality Properties: As Table III shows, the
protocol does not disclose ky or skar in the registration
process because they do not leave the authenticator. However,
h, which is encrypted by ky and contains sk4p, will leave
the authenticator (except for 1R authenticator, which stores h
inside its internal storage). Therefore, if ky is compromised,
the attacker can decrypt h and get skqy. For 1B and 2B
authenticators, h is only sent from the authenticator to ASM.
So as long as there is no malicious ASM, the attacker cannot
obtain sk,p. Confidentiality of sk4y holds when using 1R
authenticators since it never leaves the authenticator. 2R au-
thenticators take h as KeyID and send it to RPs, therefore, the
protocol should guarantee that kyy will not be compromised.
As Table IV shows in the authentication process, for 1B and 2B
authenticators, if kyy is secure, the attacker cannot decrypt h to
get skay. If ky is compromised, the attacker cannot obtain
h from ASM assuming no malicious authenticators. For 1R
authenticators, since i does not leave the authenticator, as long
as the authenticator is not compromised, sk 4y is secure. For
2R authenticators, since h will be sent from RP, the minimal
assumption is to keep the confidentiality of kyy .

To maintain the confidentiality of ak in 1B and 2B authen-
ticators, tok cannot be compromised and there should not be
a malicious authenticator. If the attacker gets tok, he/she can
compute ak = hash (AppID || tok || CallerID). Whether it
is the registration process or authentication process, ak needs
to be sent to the authenticator by ASM. If there is a malicious
authenticator, the attacker can get the message, which contains
ak, from ASM. When using 1R and 2R authenticators, ak’s
confidentiality cannot be satisfied nonetheless, because ak only
contains AppID, which is public and known by the attacker.
Therefore, the KHAccessToken mechanism is futile. We will
discuss attacks on this issue in Section V-C and provide a fix
in Section V-D2.

To maintain the confidentiality of CNTR in the registra-
tion process, the deployment of the protocol must satisfy
—C[M] and —M]JA]. Otherwise, the malicious entity can
initiate a registration process to get CNTR generated by the
authenticator. In the authentication process, for 1B and 2B
authenticators, to maintain the confidentiality of CNTR, the
protocol must satisfy —ky, and —A[M], or satisfy —M|[A].
Since ASM has access control over UC’s CallerID, UC checks
FacetID of the UA, so malicious UCs and UAs cannot start the
legitimate authenticator. So when there is no malicious ASM,
the confidentiality of CNTR holds. Besides, ASM needs to send
h to start the authenticator in 1B and 2B authenticators. If there
is no malicious authenticator and Ky is not compromised, the
attacker cannot get h, even there is a malicious ASM, the
attacker cannot provide h and start the legitimate authenticator,
the confidentiality of CNTR holds. For 1R and 2R authentica-
tors, ASM does not verify UC’s CallerID. A malicious UC
can call ASM and get CNTR from the authenticator. So the
deployment of the protocol should ensure there is no malicious
UC and there is no malicious ASM.

Any malicious UC, ASM, or authenticator can get 7r from
the caller. This is because 7r is sent from RP to the authen-
ticator, UA does not verify UC, UC does not verify ASM,
and ASM does not verify authenticator in the authentication
process.



1B 2B 1R 2R
Auth. Type } login [ step-up % step-up % login [ step-up % step-up
SkAU "kJW ‘\A[]\/[] ‘\kW ‘!A[I\/I] \/ ‘\kW
c ak —tok A= A[M] —tok A A[M] X X
: CNTR (mkw A=A[M])V-MA] (mkw A=A[M])V-M[A] —C[MJA-MTA] —CTMJA—MTA]
I . -C[UIA -C[UIA _ -CTUIA -CTUIA
- M[CIAN-A[M] - M[CIA-A[M] - M[C]A-A[M] “M[C|AN—A[M]
A Basic —A[M]V-MI[A] V4 —C[M]A-M[A] V4 V4
- | NonR - v v - v v
TABLE IV. MINIMAL ASSUMPTIONS REQUIRED FOR THE UAF AUTHENTICATION PROCESS TO ACHIEVE CONFIDENTIALITY PROPERTIES AND

AUTHENTICATION PROPERTIES.

2) Authentication Properties: As shown in Table III, to
achieve the authentication goals in registration, the minimal
assumption is —~C[U] and —=M|[C] and —A[M]. The results
show that whether sk is compromised has little influence
on the authentication goals because the attacker has an au-
thenticator with the same sk4r to register. Therefore, skar
can only guarantee that the authenticator registered in RP must
be legitimate, but cannot guarantee the authentication goals of
the registration process. To achieve the authentication goals in
the registration process, the protocol should guarantee that it is
the user’s authenticator that is bound to his/her account but not
the attacker’s authenticator, which requires ~C[U] and - M|[C]
and —~A[M]. ProVerif generated an attack when one of them
is not satisfied, which we will discuss in Section V-C. The
root cause of this issue is because there is no access control
mechanism from UA to UC, from UC to ASM, or from ASM
to the authenticator in the registration process. For example,
a UA may send the UAF request to any UC installed on the
user’s devices, including a malicious one.

The confidentiality of skay, kw, tok, and CNTR is
crucial for authentication properties in the authentication pro-
cess. ky protects sk4y. When the attacker get Ky, he/she
can decrypt h and get skay. When tok is compromised,
the attacker can construct ak and use a malicious ASM to
start the authenticator. The confidentiality of sk and CNTR
ensures the authentication and non-repudiation goals. As long
as one of them does not leak, the attacker cannot undermine
authentication properties. For simplicity, these results are not
shown in Table IV.

During the authentication process, the minimal assump-
tions vary under different types of authenticators and use
cases. The protocol satisfies the authentication goals in step-
up authentication phases since it is based on a successful
login authentication. In the login case, for 1B authenticators,
the protocol must satisfy —A[M] or —M[A]. Otherwise, the
attacker can get ak by a malicious authenticator and pass the
KHAccessToken mechanism to start the authenticator. For 1R
authenticators, ASM does not verify CallerID of UC, so the
minimal assumptions additionally require —~C[M]. Besides, for
IR authenticators, the attacker knows ak, which means he/she
can pass the KHAccessToken mechanism anytime. Therefore,
to guarantee the authentication goals, the protocol must satisfy
—M[A], and the minimal assumption comes into ~C[M] and
- M][A].

In addition, the results show the protocol holds non-
repudiation on Tr as long as kyw, skay, tok are not com-
promised.

The results show that the protocol can prevent attacks
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from malicious RP and UA because UC verifies FacetID. For
example, when UA is a browser and the user visits a phishing
site, the FacetID, which is the malicious web origin, will not
pass the verification of UC. If UA is an application, only when
UA is compromised or the user uses a malicious UA, it would
visit a malicious RP. In this situation, FacetID, which is the
identifier of the malicious UA, is not in the trusted user agent
list retrieved from ApplID.

3) Unlinkability Property: The verification results show
that the protocol can satisfy unlinkability in both the registra-
tion process and the authentication process. In the registration
process, it is because different users can register using the
authenticators with the same AAID and sk r. RPs cannot
confirm that the two registrations are conducted by the same
user through AAID or pkar, nor can they confirm that the
two registrations are conducted by different people according
to AAID or pkar.

Regardless of whether two accounts registered on two
RPs are from the same user, the authenticator has generated
different sksy and KeyID during the registration process, so
the two RPs cannot distinguish whether the verified accounts
are from the same user based on pkay or KeyID. In fact,
the information that RP can obtain during an authentication
process includes UName, AAID, CallerID, FacetlD, KeylD,
CNTR. AAID cannot be used to distinguish two users since a
large number of authenticators share the same AAID. CallerID
and FacetID are identifiers related to the applications and the
platforms, which cannot be used to identify the user either.
RPs cannot collude and use CNTRs to find out the accounts
of the same user since CNTRs are independent. So none of
the fields helps RPs to distinguish whether the accounts come
from the same user, the protocol holds the unlinkability in the
authentication process.

C. Attacks

Guided by the analysis results presented in V-B, we dis-
cover 4 types of attacks: i) authenticator rebinding attack, in
which the attacker binds his/her authenticator to the victim’s
account; ii) parallel session attack, in which the attacker imper-
sonates the victim by using the victim’s authenticator to sign
requests; iii) privacy disclosure attack, in which the victim’s 7Tr
and CNTR will be leaked; iv) denial of service attack, in which
the attacker can invalidate the victim’s legitimate authenticator.

1) Authenticator Rebinding Attack: When the deployment
of the protocol does not meet the assumptions =C[U], =M [C]
or ~A[M], the injective agreement on UName, AAID, KeyID,
AppID between RP and the authenticator in the registration



process cannot be satisfied, rebinding attacks can be per-
formed. To do so, the attacker needs to convince the user
to install a malicious UC, ASM, or authenticator into his/her
device.

The attack has the following steps: i) the victim uses
UA to log in to RP in the traditional way and initiate the
UAF registration; ii) UA sends the registration request to the
malicious UC. Or, UC sends the request to the malicious ASM.
Or, ASM sends the request to the malicious authenticator; iii)
the malicious UC redirects the request to the attacker’s device;
iv) the attacker uses his/her authenticator to continue the UAF
operations with the redirected request; v) the attacker sends
the response message to the malicious UC on the victim’s
device and forwards it to RP via UA; vi) the attacker completes
the UAF registration on behalf of the victim and successfully
rebinds the victim’s identity to the attacker’s authenticator. As
a result, the attacker can bypass the authentication of RP and
impersonate the victim.

To verify the feasibility of this attack on real-world apps,
we compiled a dataset of 1,856 payment-related Android
applications and identified 42 that use the UAF protocol. These
apps can be divided into two categories depending on the
authenticator type. 8 out of the 42 apps have a hardware-based
authenticator, e.g., China Mobile Pay, whereas the other 34 use
a software-based authenticator, e.g., Jingdong Finance.

We successfully carried out authenticator rebinding attacks
on China Mobile Pay and Jingdong Finance. The other 40
apps may also be vulnerable to these attacks. We chose China
Mobile Pay and Jingdong Finance because of their popularity.
As of October 2020, China Mobile Pay has 214,424,508
downloads in total, and Jingdong Finance has 1,043,164,317
downloads in total. In March 2020, China Mobile Pay has
monthly active users of 3,838,000 and Jingdong Finance has
monthly active users of 23,116,000.

We reported the vulnerability of China Mobile Pay to the
China National Vulnerability Database of Information Security
(CNNVD) on May 25, 2020, resulting in a medium-risk
vulnerability ID (CNNVD-202005-1219) on July 31, 2020. We
disclosed the vulnerability on Jingdong Finance to JD Security
Response Center on December 12, 2018, who replied on De-
cember 19, 2018, stating they would ignore the vulnerability.

China Mobile Pay (package name: com.cmcc.hebao,
version: 7.6.70, MD5: 384c99ecd3ac0ea0f805959da2b76608)
in Android deploys the UAF protocol by calling a third-
party UC and uses the hardware authenticator. However, the
application (UA) does not authenticate the entity it calls,
which means it may call any UC, including a malicious one
(lacking the assumption of ~C[U]). Therefore, once the user
selects the malicious UC to call, the attacker can carry out the
authenticator rebinding attack.

Similar attacks can be performed when the attacker com-
promises UA, UC, ASM, or authenticator, but this requires
higher capabilities of the attacker. The mis-binding attack [36]
is similar to the authenticator rebinding attack, except that
the former requires the attacker to corrupt UC and ASM.
Cloned authenticator attack [47] needs the attacker to evade the
security mechanism of the environment of the authenticator,
get information of the user’s authenticator, and deploy a
malicious cloned authenticator. We performed the attack on
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Jingdong Finance (package name: com. jd. jrapp, version:
5.0.1, MD5: d56a8c05ab61194251b00b873fa3d4c4) by hook-
ing the ASM and redirected messages to the attacker’s device.

2) Parallel Session Attack: Parallel session attacks can
be performed during the authentication process when the
deployment of the protocol does not satisfy the assumptions
—A[M] or =M]A] for the 1B login case, or does not satisfy
the assumptions —~C[M] and =M [A] for the IR login case. In
other words, to carry out the attack in the 1B login case, there
should be a malicious authenticator and a malicious ASM on
the victim’s device, whereas to perform the attack in the 1R
login case there should be a malicious UC or a malicious ASM
on the victim’s device. A similar attack was proposed [36],
which requires the compromise of the legitimate UC and ASM,
which is harder to pull off.

For 1B authenticators, the attack can be carried out in
2 steps. In step 1, i) the victim tries to log in to RP; ii)
the legitimate ASM forwards the request, which contains ak
and h, to the malicious authenticator. Since the malicious
authenticator does not have sk y and CNTR, it cannot
generate a valid authentication response. In step 2: i) the victim
tries to log in to RP again; ii) the attacker sends a login
request to RP with the victim’s account at the same time and
gets Chlg; iii) the malicious ASM sends the request message
with the valid ak, h and the attacker’s Chlg to the legitimate
authenticator; iv) unbeknownst to the victim, the victim verifies
the fingerprint, and the authenticator signs the message and
generates the authentication response.

Similarly, for 1R authenticators, the attack can be car-
ried out in 2 steps. In step 1, the attacker computes ak =
hash (AppID) . In step 2: i) the victim tries to log in to RP;
ii) the attacker sends a login request to RP with the victim’s
account at the same time and gets Chlg; iii) the malicious
ASM sends the request message with the valid ak and the
attacker’s Chlg to the legitimate authenticator, or the malicious
UC sends the request message with the attacker’s Chlg to
the legitimate ASM; v) unbeknownst to the victim, the victim
verifies the fingerprint, and the authenticator signs the message
and generates the authentication response.

3) Privacy Disclosure Attack: When the deployment of the
protocol does not satisfy the assumptions =C[U] or =C[M],
some of the user’s personal data will be leaked. Assuming
there is a malicious UC and using the 1B authenticator: i)
the victim tries to log in to RP or make a transaction with
RP; ii) the malicious UC receives authentication request; iii)
the attacker can confirm whether the victim is logging in or
making a transaction depending on whether 7r is included in
the request.

For 1R and 2R authenticators, ASM does not verify UC’s
CallerID: 1) the victim tries to log in to RP or make a transac-
tion with RP; ii) the malicious UC receives the authentication
request, which may contain Tr; iii) the malicious UC sends the
authentication request to the legitimate ASM, and the legiti-
mate authenticator signs and performs other operations; iv) the
malicious UC gets the authenticator response, which contains
CNTR, signature, etc.; v) malicious UC forwards authentication
response, the authentication succeeds. The attacker can use
CNTR to compute how many times the victim tries to log in
or make transactions. The attacker can also use the signature



for chosen-ciphertext attacks.

4) Denial of Service Attack: The attacker can carry out
a DoS attack when the deployment of the protocol does not
satisfy the assumptions =C[U] or =M [C] or = A[M]. For all
4 types of authenticators, if there is a malicious UC, ASM,
or authenticator, the attacker can discard the authentication
request and the user cannot finish the authentication.

For 1R and 2R authenticators, if there is a malicious
UC or ASM, the attacker can use the following steps to
permanently disable the authenticator by making CNTR of the
legitimate authenticator out of sync with RP: i) the victim
tries to log in to RP or make a transaction with RP; ii)
the malicious UC receives the authentication request from
legitimate UA, forwards the request to the authenticator via
ASM, and the authenticator signs. The authenticator’s CNTR
increments accordingly; iii) when the authentication response
is returned to the malicious UC, it intercepts the request and
sends a fail message to UA; iv) RP gets a failure, so CNTR does
not increment; v) the attacker can repeat this attack multiple
times to cause CNTR out of sync. Note that the UAF protocol
does not have a CNTR synchronization mechanism.

D. Recommendations

We present several concrete recommendations to enhance
the security of the UAF protocol.

1) Explicit Requirements: The security goals given by the
security reference are informal and fragmentary: i) SG-1 is
ambiguous in which no clear definition of ‘strong authenti-
cation’ is provided; ii) except SG-1, all other authentication
properties were presented in the format of resilience to some
known attacks or vulnerabilities, which do not evolve as
new attacks are discovered; iii) only the user consent goal
is explicitly presented for the registration process, which has
several implicit goals as we discussed in Section III-B.

We recommend presenting security requirements and goals
in a more explicit and active way in the specifications. For
example, the specifications can use formal expressions to
describe the security properties as shown in Section III-B.
The analysis results show that the registration process is more
vulnerable to attack, so the specifications should improve the
description of authentication properties for the registration
process.

2) Modify the KHAccessToken Mechanism: The analysis
results show that the KHAccessToken mechanism is futile
to prevent the malicious ASMs: i) the confidentiality of ak
cannot be held when using 1R and 2R authenticators; ii) the
confidentiality of ak cannot be held when there is a malicious
authenticator. The authenticator’s trust on ASM is based on
the Trust On First Use (TOFU) concept [10], which means it
assumes there is no malicious ASM in the registration process
but there can be malicious ASMs in the authentication process.
However, it is equally difficult for the attacker to trick the
victim into installing a malicious ASM in the registration
process or the authentication process. So this mechanism is
futile to prevent malicious ASMs. Furthermore, even if ASM
is trusted in the registration process, the attacker can still get ak
from ASM by receiving authentication requests with malicious
authenticators.
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We give the following recommendations: i) there should
be requirements for mechanisms to guarantee the security of
the running environment of ASM and the authenticator. And,
vendors must ensure the deployment of the protocol satisfies
—A[M] and =M 4], e.g., running ASM and the authenticator
in a trusted execution environment; ii) the KHAccessToken
mechanism for 1R and 2R authenticators should be improved
to prevent malicious ASM from communicating with the
authenticator. For example, same as bound authenticators, ak
should include tok. To this end, the authenticator can maintain
a trusted list of ASMs; iii) there should be a mechanism for
the authenticator to authenticate ASM. For example, in 1B and
2B authenticators, vendors can provide a shared key in both
ASM and the authenticator, so the communication between
ASM and the authenticator can be encrypted.

3) Authenticating UC at ASM: If the deployment of the
protocol does not satisfy ~C[M], some security properties will
not hold. Although Section 6.2 of ASM specification states
that ASM must implement the access control of CallerID [9],
it does not specify how to verify CallerID and leave the
implementation of the security mechanisms to the vendors. We
emphasize the importance of this issue and suggest to have a
standard ASM access control mechanism for CallerID in the
specification. For example, ASM can maintain a trusted Cal-
lerID list. Only UCs with a valid CallerID can communicate
with ASM.

4) Authenticating UC at UA: The protocol does not require
UA to authenticate UC. As a result, UA or the user may invoke
a malicious UC installed on the device. We recommend the
specifications to require UA to authenticate UC. For example,
UA can use the same mechanism as ASM does to authenticate
UC.

VI. RELATED WORK

Hu et al. manually abstracted the UAF protocol and
presented 3 attacks, including mis-binding attack, parallel
session attack, and multi-user attack [36]. Leoutsarakos man-
ually found 15 defects of the UAF protocol, which were not
formally verified [42]. Panos et al. presented a manual and
informal analysis of the UAF protocol with several discovered
vulnerabilities and attacks [47]. Loutfi et al. gave a set of trust
requirements of the FIDO UAF protocol which included the
trust requirements in FIDO consortium, in service providers, in
a hardware manufacturer, in a local device computing platform,
and in the end-user [43]. Zhang et al. presented an attack on
FIDO transaction confirmation and proposed a secure display
mechanism for mobile devices [56].

Jacomme et al. found that the U2F protocol can guarantee
authentication in many threat scenarios, such as with phishing
sites, but cannot achieve authentication goals in the presence
of malware in the user environment [38]. Although the paper
analyzed different scenarios, no formal model was given.
Meanwhile, the model description of the U2F protocol was
simple, and it did not consider different security assumptions
and optional protocol operations. Chang et al. found that
the U2F protocol could leak two fixed keys (attestation key
and device secret key) through a side-channel attack. They
recommended a modification of the U2F protocol to minimize
the effect of this attack and presented a new variant of the U2F



protocol to provide a stronger security guarantee. Similarly,
they introduced how to perform side-channel attacks on the
UAF protocol [29]. Pereira et al. formally analyzed the authen-
tication properties of the U2F protocol [48]. They analyzed two
types of U2F clients with and without AppID verification and
found that the U2F protocol could not satisfy authentication
without AppID verification. However, the protocol model was
oversimplified.

Different from previous work, we provide a faithful for-
malization of the UAF protocol and use the formal method to
analyze the UAF protocol.

VII. CONCLUSION

In this paper, we formally analyzed the UAF protocol. We
formalized the security assumptions and goals of the protocol,
provided a formal model of the protocol, and used ProVerif
to analyze the protocol under different scenarios. Our analysis
identified the minimal security assumptions required for each
of the security goals of the UAF protocol. By summarizing
and analyzing the results given by ProVerif, we presented
the defects of the protocol and illustrated some attacks. We
also confirmed previously discovered vulnerabilities in an
automated way and disclosed several new attacks. Also, we
offered several concrete recommendations to fix the identified
problems and weaknesses in the protocol.
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