
PHOENIX: Device-Centric Cellular Network
Protocol Monitoring using Runtime Verification

Mitziu Echeverria∗, Zeeshan Ahmed∗, Bincheng Wang∗, M. Fareed Arif∗, Syed Rafiul Hussain†, Omar Chowdhury∗
∗The University of Iowa, †Pennsylvania State University

Email: ∗{mitziu-echeverria, zeeshan-ahmed, bincheng-wang, muhammad-arif, omar-chowdhury}@uiowa.edu,
†{hussain1}@psu.edu

Abstract—End-user-devices in the current cellular ecosystem
are prone to many different vulnerabilities across different
generations and protocol layers. Fixing these vulnerabilities
retrospectively can be expensive, challenging, or just infeasible.
A pragmatic approach for dealing with such a diverse set of
vulnerabilities would be to identify attack attempts at runtime on
the device side, and thwart them with mitigating and corrective
actions. Towards this goal, in the paper we propose a general
and extendable approach called PHOENIX for identifying n-
day cellular network control-plane vulnerabilities as well as
dangerous practices of network operators from the device vantage
point. PHOENIX monitors the device-side cellular network traffic
for performing signature-based unexpected behavior detection
through lightweight runtime verification techniques. Signatures
in PHOENIX can be manually-crafted by a cellular network
security expert or can be automatically synthesized using an
optional component of PHOENIX, which reduces the signature
synthesis problem to the language learning from the informant
problem. Based on the corrective actions that are available to
PHOENIX when an undesired behavior is detected, different in-
stantiations of PHOENIX are possible: a full-fledged defense when
deployed inside a baseband processor; a user warning system
when deployed as a mobile application; a probe for identifying
attacks in the wild. One such instantiation of PHOENIX was able
to identify all 15 representative n-day vulnerabilities and unsafe
practices of 4G LTE networks considered in our evaluation with
a high packet processing speed (∼68000 packets/second) while
inducing only a moderate amount of energy overhead (∼4mW).

I. INTRODUCTION

Along with global-scale communication, cellular networks
facilitate a wide range of critical applications and services
including earthquake and tsunami warning system (ETWS),
telemedicine, and smart-grid electricity distribution. Unfortu-
nately, cellular networks, including the most recent generation,
have been often plagued with debilitating attacks due to design
weaknesses [29], [30], [31], [11] and deployment slip-ups
[52], [36], [26], [42]. Implications of these attacks range
from intercepting and eavesdropping messages, tracking users’
locations, and disrupting cellular services, which in turn may
severely affect the security and privacy of both individual users

and primary operations of a nation’s critical infrastructures. To
make matters worse, vulnerabilities discovered in this ecosys-
tem take a long time to generate and distribute patches as they
not only require collaboration between different stakeholders
(e.g., standards body, network operator, baseband processor
manufacturer) but also incur high operational costs. To make
matters worse, different patches could potentially lead to
unforeseen errors if their integration is not accounted for.

In addition to it, although a majority of the existing work
focus on discovering new attacks through analysis of the
control-plane protocol specification or deployment [29], [30],
[52], [36], [11], [31], [26], [42], only a handful of efforts have
focused on proposing defense mechanisms or any apparatus
to detect attack occurrences [20], [39], [44], [55], [32]. Un-
fortunately, these proposed mechanisms are far from being
widely adopted since they suffer from one of the following
limitations: (i) Requires modifications to an already deployed
cellular network protocol [32] which require network operator
cooperation; (ii) Focuses on identifying particular attacks and
hence are not easily extensible [20], [39], [44], [55]; and (iii)
Fails to handle realistic scenarios (e.g., roaming) [32].

A pragmatic approach for protecting users and their devices
from such a wide-variety of vulnerabilities and dubious prac-
tices of the operators (referred to as undesired behavior1 at
the abstract in this paper) is to deploy a device-centric defense.
Such a defense, similar to an intrusion prevention system in
principle, will monitor the network traffic at runtime to identify
undesired behavior and then take different corrective actions
to possibly thwart it (e.g., dropping a packet). In this paper, we
focus on the core problem of developing a general, lightweight,
and extendable mechanism PHOENIX that can empower cel-
lular devices to detect various undesired behavior. To limit
the scope of the paper, we focus on monitoring the control-
plane traffic for undesired behavior, although PHOENIX is
generalizable to data-plane traffic. Monitoring control-plane
traffic is vital as flaws in control-plane procedures, such as
registration and mutual authentication, are entry points for
most attacks in both control- and data-plane procedures.

1 In our context, not all undesired behavior are necessarily exploitable
attacks. We also call some not-necessarily-malicious behavior (e.g., the use
of null encryption by real network operators) undesired behavior if they can
be detrimental to a user’s privacy and security. In our exposition, we use
attack, vulnerability, and undesired behavior, interchangeably.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24390
www.ndss-symposium.org

https://dx.doi.org/10.14722/ndss.2021.24390

PHOENIX’s undesired behavior detection approach can in-
duce different instantiations depending on the corrective ac-
tions that are available to it. When deployed inside a baseband
processor, PHOENIX can be used as a full-fledged device-
centric defense, akin to the pragmatic approach discussed
above, that intercepts each message before getting processed
by the message handler and take corrective actions (e.g.,
drop the message, terminate the session) when it identifies
the message as part of an attack sequence. Alternatively, if
PHOENIX is deployed as a mobile application that can obtain
a copy of the protocol message from the baseband processor,
then one can envision building a warning system, which
notifies device owners when it detects that a protocol packet
is part of an undesired behavior. Finally, PHOENIX can be
deployed and distributed as part of cellular network probes or
honeypots that log protocol sessions with undesired behavior.
Approach. In this paper, we follow a behavioral signature-
based attack (or, generally undesired behavior) detection ap-
proach. It is enabled by the observation that a substantial
number of cellular network undesired behavior, which is de-
tectable from the device’s point-of-view, often can be viewed
as protocol state-machine bugs. Signatures of such undesired
behavior can be constructed by considering the relative tempo-
ral ordering of events (e.g., receiving an unprotected message
after mutual authentication).

Based on this above insight, we design a lightweight,
generic, and in-device runtime undesired behavior detection
system dubbed PHOENIX for cellular devices. In its core,
PHOENIX’s detection has two main components: (1) a pre-
populated signature database for undesired behavior; (2) a
monitoring component that efficiently monitors the device’s
cellular network traffic for those behavioral signatures and
takes corresponding corrective measures based on its deploy-
ment (e.g., drop a message, log a message, warn the user).
Such a detection system is highly efficient and deployable
as it neither induces any extra communication overhead nor
calls for any changes in the cellular protocol. PHOENIX works
with only a local view of the network, yet is effective without
provider-side support in identifying a wide array of undesired
behavioral signatures.

For capturing behavioral signatures, we consider the fol-
lowing three different signature representations that induce
different tradeoffs in terms of space and runtime overhead,
explainability, and detection accuracy: (1) Deterministic Finite
Automata (DFA); (2) Mealy machine (MM) [41]; (3) propo-
sitional, past linear temporal (PLTL) [48] formulas. Cellular
network security experts can add behavioral signatures in these
representations to PHOENIX’s database. In case an expert is
not familiar with one of the above signature representations,
they can get help/confirmation from an optional automatic
signature synthesis component we propose. We show that for
all the above representations the automatic signature synthesis
problem can be viewed as an instance of the language learning
from the informant problem. For DFA and MM represen-
tations, we rely on existing automata learning algorithms,
whereas for PLTL, we propose a new algorithm, an extension

of prior work [43]. For runtime monitoring of these signature
representations in PHOENIX, we use standard algorithms [27].

We consider two different instantiations for PHOENIX. First,
we implemented PHOENIX as an Android application and
instantiated with the following monitors: DFA-based, MM-
based, and PLTL-based. In PHOENIX app, for capturing in-
device cellular traffic, we enhanced the MobileInsight Android
[38] application to efficiently parse messages and invoke the
relevant monitors. Second, we implemented PHOENIX inside
srsUE, distributed as part of the open-source protocol stack
srsLTE [25], powered by the PLTL-based monitor—the most
efficient in our evaluation, to mimic PHOENIX’s deployment
inside the baseband processor.

We evaluated PHOENIX’s Android app instantiation based
on both testbed generated and real-world network traffic in
3 COTS devices. In our evaluation with 15 existing cellular
network attacks for 4G LTE, we observed that in general all
of the approaches were able to identify the existing attacks
with a high degree of success. Among the different monitors,
however, DFA on average produced a higher number of
false positives (21.5%) and false negatives (17.1%) whereas
MM and PLTL turn out to be more reliable; producing a
significantly less number of false positives (∼0.03%) and false
negatives (∼0.01%). In addition, we observed that all monitors
can handle a high number of control-plane packets (i.e., 3.5K-
369K packets/second). We measured the power consumption
induced by different monitors and observed that on average,
they all consume a moderate amount of energy (∼2-6 mW).
Interestingly, we discover that PHOENIX, when powered by
the PLTL-based monitor, produces no false warnings on real
networks and in fact, it helped us discover unsafe network op-
erator practices in three major U.S. cellular network providers.
Finally, we evaluated PHOENIX instantiation as part of srsUE
[25] with testbed generated traffic and observed that it only
incurs a small memory overhead (i.e., 159.25 KB).

Contributions. In summary, the paper makes the following
contributions:

• We design an in-device, behavioral-signature based cel-
lular network control-plane undesired behavior detection
system called PHOENIX. We explore the design space
of developing such a vulnerability detection system and
consider different trade-offs.

• We implement PHOENIX as an Android app, which
during our evaluation with 3 COTS cellular devices in our
testbed has been found to be effective in identifying 15
existing 4G LTE attacks while incurring a small overhead.

• We implement PHOENIX by extending srsUE [25]—
mimicking a full-fledged defense, and show its effective-
ness at preventing attacks.

• We finally show how one could automatically synthesize
behavioral signatures PHOENIX expects by posing it as a
learning from an informant problem [21] and solve it with
different techniques from automata learning and syntax-
guided synthesis.

2

eNodeB

UE
EPC

Internet

Tracking Area

Fig. 1: 4G LTE Network Architecture.

II. PRELIMINARIES

In this section, we briefly overview the background material
necessary to understand our technical discussions.

LTE Architecture. The LTE network ecosystem can be
broken down into 3 main components (See Figure 1): User
Equipment (UE), Evolved Packet Core (EPC) and the Radio
Access Network (E-UTRAN). The UE is a cellular device
equipped with a SIM card. Each SIM card contains a unique
and permanent identifier known as the International Mobile
Subscriber Identity (IMSI). Also, each device comes with
a unique and device-specific identifier called International
Mobile Equipment Entity (IMEI). As both the IMSI and IMEI
are unique and permanent, their exposure can be detrimental
to a user’s privacy and security. In LTE, the coverage area
of a network can be broken down into hexagon cells where
each cell is powered by a base station (eNodeB). The network
created by the base stations powering up the coverage area and
the UE is referred to as E-UTRAN. The Evolved Packet Core
(EPC) is the core network providing service to users. The EPC
can be seen as an amalgamation of services running together
and continuously communicating with one another.

LTE Protocols. The LTE network protocol consists of
multiple layers, however, this paper focuses only on the
Network Layer. This layer consists of 3 protocols: NAS
(Non-access Stratum), RRC (Radio Resource Control), and
IP (Internal Protocol). In this paper, we only explore NAS
and RRC. The NAS protocol is the logical channel between
the UE and the EPC. This protocol is in charge of highly
critical procedures such as the attach procedure which provides
mutual authentication between the EPC and the UE. The RRC
protocol can be seen as the backbone of multiple protocols,
including NAS. In addition, RRC is the main channel between
the UE and the eNodeB.

Past-Time Propositional Linear Temporal Logic (PLTL).
PLTL extends propositional logic with past temporal operators
and allows a succinct representation of the temporal ordering
of events. Therefore, we use it as one of our vulnerability sig-
nature representation. Here, we only provide a brief overview
of PLTL but the detailed presentation can be found elsewhere
[40]. The syntax of PLTL is defined inductively below where
Φ,Ψ (possibly, with subscripts) are meta-variables denoting
well-formed PLTL formulas.

Φ,Ψ ::= > | ⊥ | p | ◦1 Φ1 | Φ1 ◦2 Ψ1

In the above presentation, > and ⊥ refer to Boolean constants
true and false, respectively. The propositional variable p is

drawn from the set of a fixed alphabet A (i.e., a set of proposi-
tions). PLTL supports unary operators ◦1 ∈ {¬,,,}, as
well as binary operators ◦2 ∈ {∧,∨, S }. The Boolean logical
operators include ¬ (not), ∨ (disjunction), and ∧ (conjunction)
and the temporal operators include (yesterday), (once),
 (historically), and S (since). We will now discuss the
semantics of PLTL.

The Boolean logic operators in PLTL have their usual
definition as in propositional logic. We fix an alphabet A (i.e.,
a set of propositions) for the PLTL formulas and consider
it in the rest of the paper. The semantics of PLTL is given
with respect to a Kripke structure. In a Kripke structure [37],
a trace σ is a finite sequence of states (σ0, . . . , σn−1) that
maps propositions p in A to Boolean values at each step
i ∈ [0, n − 1]2 (i.e., σi(p) ∈ B). Although, the standard
PLTL semantics are defined over (infinite) traces, we are only
required to reason about finite traces.

Intuitively, Φ (read, Yesterday Φ) holds in the current
state if and only if the current state is not the initial state
and Φ held in the previous state. ΦS Ψ holds true currently
if and only if Ψ held in any previous state (inclusive) and
Φ held in all successive states including the current one. The
rest of temporal operators (read, true once in the past) and
 (read, always true in the past) can be defined through the
following equivalences: Φ ≡ (>S Φ);Φ ≡ ¬((¬Φ)).
For a more detailed explanation of the PLTL semantics, please
refer to the full version of this work [24].

III. OVERVIEW OF PHOENIX

In this section, we discuss the scope, threat model, chal-
lenges, and requirements of a PHOENIX like system. We con-
clude by presenting two concrete instantiations of PHOENIX,
namely, as a warning system and a full-fledged defense.

A. Undesired Behavior and Scope

In our presentation, we define an undesired behav-
ior/vulnerability broadly to include inherent protocol flaws at
the design-level, an exploitable implementation vulnerability
of the baseband processor, an exploitable misconfiguration or
deployment choice of a network operator, and unsafe security
practices by a baseband manufacturer and network operator.
For instance, not using encryption for protecting traffic is
considered a vulnerability in our presentation. Even though
null encryption is permitted by the specification on the NAS
layer [1], we argue that this is an unsafe practice since
subsequent NAS traffic (e.g., SMS over NAS [36], [29]) would
be exposed in plaintext.

In this paper, we focus on the undesired behavior of the
4G LTE control-plane protocols, i.e., protocols running in
the NAS and RRC layers [29], [30], [52], [36], [11], [31],
[26], [42]. Among these attacks, we focus on attacks that are
detectable from the device’s perspective and can be viewed as
undesired outcomes of protocols’ state-machines. One distinct
advantage of a device-centric attack detection mechanism is

2We write i ∈ [0, n− 1] to denote 0 ≤ i ≤ n− 1.

3

that certain attacks necessarily cannot be observed by the
network operators, which is observable only from the device
vantage point. Examples of such attacks include ones that
require an adversary setting up a fake base station that lures
the victim device and then launch an attack [29], [36], [30].
Attacks that target other network components or employ adver-
sary’s passive sniffing capabilities are out of scope as they are
not detectable through in-device traffic monitoring [30], [51],
[35]. In addition, the current instantiations of PHOENIX do
not support attacks that require reasoning about quantitative
aspects (e.g., the number of certain messages received in a
time window) of the protocol (e.g., ToRPEDO attack [30]).
An exhaustive list of PHOENIX supported and unsupported
attacks can be found elsewhere [24].

B. Threat Model

We consider an adversary with the following capabilities:
(1) He has access to malicious cellular devices with legitimate
credentials; (2) He can setup a rouge base station, cloning pa-
rameters of a legitimate one, provides a higher signal strength
than legitimate base stations within the vicinity. (3) He can
setup a base station which acts as a relay between the device
and legitimate base station, enabling him to drop, replay,
and inject messages at will while respecting cryptographic
assumptions; (4) For targeted attacks, we assume the attacker
has access to the victim’s soft identity such as phone number
and social network profile. We assume that the device in which
PHOENIX runs is not compromised.

C. Example: A Privacy Attack on Radio Link Failure (RLF)
Report

In cellular networks, there is essentially no authentication
mechanism between a device and the base station during
the connection initiation with the core network. The device
trusts the base station emitting the highest signal strength and
establishes an unsafe connection with it using unprotected
RRC layer messages. The base station acts as the trusted
intermediary to facilitate communication between the device
and core network. Once the device and core network mutually
authenticate each other, they setup a security context making
all the following control-plane messages to be encrypted and
integrity protected. One such control-plane message is the
rlfReport which contains neighboring base stations’ signal
strengths (and, optionally the device’s GPS coordinates). This
is used to identify potential failures and aids when identifying
coverage problems.

A privacy attack against this RLF report message [52]
proceeds by luring a cellular device to connect to a rogue
base station, which exploits the lack of authentication of
initial broadcast messages as well as the unprotected RRC
connection setup in the bootstrapping phase. Before setting up
the security context (with protected securityModeCommand
and securityModeComplete messages) at the RRC layer, the
rogue base station sends an unprotected ueInformationRequest
message to the device. This triggers the device to respond
with a rlfReport message (if it posses one) in the clear.

Attack
Signature

Synthesizer

Attack
Signatures

Base
stationCore Network

Protocol
Messages

Optional

Security Expert

NAS

RRC

PHOENIX

Attack
Signature
Database

PHOENIX
State

NAS Handler
and Sender

RRC Handler
and Sender

Modem empowered by PHOENIX

Fig. 2: The envisioned architecture of PHOENIX inside a
baseband processor.

Since the RLF report includes signal strength measurements
of neighboring cells (and optionally GPS coordinates), the
attacker can use that information to triangulate the victim’s
location.

D. Challenges

Realizing the vision of PHOENIX has the following chal-
lenges. (C-1) An attack detection mechanism like PHOENIX
has to be lightweight, otherwise substantial overhead can im-
pede adoption due to negatively impacting the user’s Quality-
of-service (QoS). (C-2) The system must be able to operate in
a standalone fashion without requiring assistance from network
operators. (C-3) The system must be attack- and protocol-
agnostic, and amenable to extension to new attacks discovered
after its deployment and future protocol versions (e.g., 5G).
(C-4) The detection accuracy of the system must be high (i.e.,
low false positives and negatives). If the system incurs a large
number of false positives, then in its instantiation as part of
the baseband processor, can create interoperability issue. In
the same vein, false positives in PHOENIX’s instantiation as a
warning system can overwhelm the user, making her ignore
the raised warnings. A large number of false negatives, on
the other hand, makes the system prone to vulnerabilities. (C-
5) The attack detection system should detect the attack as
soon as it is feasible when the malicious session is underway.
As an example, let us consider the above attack on RLF
report. If a detection system identifies the attack only after
the device has already sent the rlfReport message in the clear
to the adversary then the attack has happened and this reduces
the impact of a detection system like PHOENIX. An effective
detection mechanism will identify the attack as soon as the
device receives the unprotected ueInformationRequest before
security context establishment in which case it can thwart the
attack.

E. PHOENIX Architecture

We now discuss the architecture of PHOENIX in two set-
tings: (1) when it is deployed inside a baseband processor as
a full-fledged defense (see Figure 2); (2) when it is deployed
as an Android application and serves as a warning system (see
Figure 3).

4

Attack
Signature

Synthesizer

Attack
Signatures

Base
stationCore Network

Protocol
Messages

Optional

Security Expert

Attack
Signature
Database

PHOENIX App

Cellular
Modem

PHOENIX
State

Fig. 3: The envisioned architecture of PHOENIX as an Android
app.

PHOENIX Components. In its purest form (Figure 2),
PHOENIX has two main components, namely, Attack Signature
Database and Monitor.

Attack Signature Database. PHOENIX expects a pre-
populated attack signature database containing the signatures
of attacks it is tasked to detect. An example attack signature
for the privacy attack on RLF report above is: receiving the
unprotected ueInformationRequest message before security
context establishment in a session. Note that, a signature that
requires the device to send a rlfReport message before security
context establishment is ineffective as it detects the attack only
after it has occurred. Signatures can be generated by cellular
network security experts, possibly in collaboration with an
optional PHOENIX component that can automatically generate
candidate signatures from benign and attack traces.

Monitor. The monitor component analyzes the decoded
messages and payloads (potentially, received from the message
extractor component discussed below in case of Android
app deployment), and matches them with its pre-populated
undesired behavioral signature database. In case a behavioral
signature is identified, the action of monitor component de-
pends on the deployment scenario. For its baseband processor
deployment, the monitor communicates the violation informa-
tion to a corrective action module who can either terminate
the session or drop the particular message depending on the
signature. In its Android app deployment, it identifies which
vulnerabilities have occurred and returns this information to
the user along with possible remedies, if any exists.

For its instantiation as an Android app, PHOENIX requires
an additional component called message extractor. It gathers
information about incoming/outgoing traffic (e.g., decoding
a protocol message) between the baseband processor and
network. This collected information (e.g., message type, pay-
load) is then fed into the monitor component for vulnerability
detection. Note that, in the baseband deployment, PHOENIX
does not require this component as the baseband processor

inherently decodes and interprets the messages.
Workflow of PHOENIX. The workflow of PHOENIX de-
ployed as an Android app is given below. The baseband
deployment does not require step (1) of the workflow.

(1) The message extractor intercepts an incoming/outgoing
protocol message and decodes it. (2) Pre-defined predicates
over this message (and, its payload) are then calculated and
sent to the monitor. (3) The monitor then classifies the
ongoing trace as either benign or vulnerable (with label).
(4) If PHOENIX identifies a vulnerability, it either drops the
message/terminates the connection when implemented inside a
baseband processor, or alerts the user of the undesired behavior
with possible remedies when deployed as an Android app.

IV. VULNERABILITY SIGNATURES AND MONITORS

In this section, we discuss the possible vulnerability signa-
ture representations and their monitors that we consider.

A. Insight on Vulnerability Signatures

After analyzing existing control-plane attacks on 4G LTE
[29], [30], [52], [36], [11], [31], [26], [42], we observed that
a substantial amount of these attacks have very specific be-
havioral signatures when considering protocol messages, their
payloads, and predicates over them. Precisely, considering the
relative ordering of events often are sufficient to synthesize a
discernible and precise vulnerability signature. For instance,
in the running example described in Section III-C, not seeing
both the securityModeCommand and securityModeComplete
messages prior to the rlfReport being exposed, can serve as a
confident indicator for such vulnerability.

B. Vulnerability Signature Representations

To precisely capture the behavioral signatures of cellular
network vulnerabilities, we consider regular languages and
PLTL as two possible representations. These formalisms are
chosen due to their effectiveness in capturing relative temporal
ordering of events as well as being efficiently monitorable
at real-time. In addition, there is one more representational
question we have to address: Does one keep per-vulnerability‘
signatures or one giant signature capturing all of the consid-
ered vulnerabilities? These design choices induce the follow-
ing signature representations.

Signatures as Regular Languages. In this scheme, let us
consider U to be all finite protocol execution traces. Let us
denote all the finite protocol executions in which a given
vulnerability v occurs as a regular language L. Then the
behavioral vulnerability signature we consider is the language
L∗ = U − L which is the complement of L and accepts all
finite protocol execution traces where v does not happen. This
signifies that L∗ will only reject traces in which v happens.
For representing L∗, we consider the protocol message types,
their payloads, and predicates over them as the alphabet. For
a given vulnerability whose behavioral signature is denoted
by L∗, we represent its signature as a deterministic finite
automata (DFA). For the case of having one giant signature for
all vulnerabilities, we use a Mealy Machine whose outputs in

5

the transitions indicates whether a certain execution is benign
(labeled with output benign) or vulnerable in which case the
output label identifies the vulnerability.

Signatures as PLTL formulas. PLTL has been shown to
be a natural candidate for succinctly representing the temporal
ordering of events of the past. We use message types, their
payloads, and predicates over them as propositions of the
logic. In this scheme, we keep one behavioral signature as
a PLTL formula for each vulnerability that rejects only those
finite traces in which the vulnerability in question occurs. We
do not keep a giant PLTL formula for all vulnerabilities as it
would not allow us to identify the particular vulnerability that
occurs, impairing us to provide vulnerability-specific remedies
and severity.

C. Vulnerability Monitors

We now discuss how we monitor vulnerability signatures
based on their representations.
Monitoring Regular Language Signatures. For monitoring
a signature represented as a DFA, we need to store the DFA
along with the current state in the memory. When a new packet
and its associated information arrives to the monitor, we try to
take a transition in DFA. If the transition lands us on a non-
accepting state that means a vulnerability has been observed
in which case we raise an alarm and provide vulnerability-
specific information (e.g., name of the vulnerability, severity,
and remedies). In case of a benign scenario, we just take
the transition and update the current state. The monitoring
with respect to a Mealy Machine is very similar with the one
difference is that the output label of the transition indicates
whether a vulnerability has been observed, and if so which
particular vulnerability was observed.
Monitoring PLTL Signatures. For monitoring PLTL formu-
las, we consider a standard dynamic programming (DP) based
approach from the literature of runtime verification [23], [12],
[13], [16], [17], [50]. In this approach, to monitor a PLTL
formula Φ, the monitor requires one bit of information for each
sub-formula of Φ. This bit signifies whether the associated
formula holds true in the current state. If the truth value bit of
Φ is true in the current state, then there is no vulnerability. For
a given PLTL formula Φ, let us assume that JΦKi represents
the truth value bit of formula Φ at position i of the trace.
Adhering to the PLTL semantics, the DP algorithm constructs
JΦKi from JΦK(i−1) and the current state σi in the following
way. Note that, we just need to store JΦK(i−1) to calculate
JΦK(i). The current state σi in our presentation is a total map
which maps each propositional variable in the alphabet A to
either true or false.

JpKi = σi(p)

J¬ΦKi = ¬JΦKi

JΦ ∧ΨKi = JΦKi ∧ JΨKi

JΦKi = i > 0 ∧ JΦK(i−1)

JΦS ΨKi = JΨKi ∨ (JΦS ΨK(i−1) ∧ JΦKi)

V. AUTOMATED VULNERABILITY SIGNATURE SYNTHESIS

We now discuss the design of the optional PHOENIX com-
ponent called signature synthesizer.

A. Potential Application of the Signature Synthesizer

For using the PHOENIX system, we want to emphasize it is
not mandatory to have the signature synthesizer component;
a cellular network security expert will suffice for generating
signatures. Despite that, an automatic signature synthesizer can
be useful to the expert in the following three scenarios.

First, when a cellular network security expert knows the
root cause of an attack but does not know how to represent it
one of the forms, then it can use the signature synthesizer to
generate a candidate signature. DFA and MM signatures can
be particularly complex. A more detailed presentation can be
found elsewhere [24]. Second, when an expert neither knows
the root cause of a newly discovered attack nor knows the
signature representation, the signature synthesizer, especially
the PLTL synthesizer because of its ability to generate succinct
signatures, can be particularly helpful for not only identifying
the root cause but also to synthesize the signature in the
appropriate representation. Finally, the runtime and space
overheads of monitors, especially the PLTL-based monitor,
are proportional to the length of the signature. As the PLTL
signature synthesizer is guaranteed to generate the minimum
length signature, it induces an efficient monitor. We envision
a more collaborative process between the automatic signature
synthesizer and a human expert; instead of completely bypass-
ing the expert and only using the synthesizer in a standalone
fashion. In this envisioned process, the human expert asks
the synthesizer to generate multiple candidate signatures and
then chooses the one she finds more appropriate. Such a
collaborative interaction reliefs the human expert to be also
an expert of formal logic like PLTL.

B. The Problem of Signature Synthesis

The signature synthesis problem is an instance of the
language learning from the informant problem [21]. In this
problem, for a fixed alphabet A, an informed learning sample
(i.e., training dataset) D is given which comprises of two
disjoint sets of strings P and N , such that P ∩ N = ∅.
The aim is to learn an observationally consistent language
L that accepts all strings in P and rejects all strings in N .
In our setting, without the loss of generality, for a given
vulnerability v the set N are vulnerable execution traces in
which v happens and the set P are (benign) traces in which v
does not happen. Then the learned observationally consistent
language L represents the vulnerability signature for v.

C. Regular Language Signature Synthesis

The observationally consistent language L is considered
to be regular and we used variations of the RPNI (Regular
Positive and Negative Inference) algorithm [45] to learn both
DFA and Mealy machine based vulnerability signatures. The
complexity time of RPNI is the following: O(l · |Σ| · k4),
where l is the total number of states in the negative traces,

6

|Σ| is the total size of the alphabet, and k is the number of
unique prefixes [45]. Below we discuss how to prepare P and
N that are required inputs to the RPNI algorithm.
DFA Signature Synthesis. For a given vulnerability v, we
are given two sets of traces Σ+ (i.e., v does not happen in
these traces) and Σ− (i.e., v happens in these traces) such that
Σ+ ∩ Σ− = ∅. For each positive trace σ+ ∈ Σ+, we add σ+
and all its prefixes to P . We set N = Σ−. We then invoke the
RPNI [45] algorithm for obtaining a DFA signature for v.
Mealy Machine Signature Synthesis. We are given a set
of vulnerabilities V. For each such vulnerability vi ∈ V , we
are given two sets of traces Σi

+ (i.e., vi does not happen in
these traces) and Σi

− (i.e., vi happens in these traces) such that
Σi

+∩Σi
− = ∅. For each positive trace σ+ ∈ Σ+, we add σ+ to

P and assign the output label benign. We add each negative
trace σ− ∈ Σ− to N with output label vulnerabilityi

and then invoke the RPNI algorithm for obtaining a combined
Mealy machine signature for all vulnerabilities in V.

D. PLTL Signature Synthesis

A PLTL formula represents the observationally consistent
language L that constitutes a vulnerability signature. For
synthesizing PLTL signatures, we propose a syntax-guided
synthesis algorithm that extends Neider and Gavran [43] to
learn PLTL formulas using only finite length traces. The
proposed algorithm reduces the signature synthesis problem
to a Boolean satisfaction problem (SAT) and then solve it
using an off-the-shelf SAT solver. In this setting, any satisfiable
assignment (or, a model) of that SAT problem instance is used
to derive observationally consistent PLTL signature. We aim
to learn minimal consistent signatures as they can capture a
concise vulnerability behavior even from a smaller training
dataset and are also intellectually manageable (readable). This
feature is inherent to this algorithm in contrast to other
representations (i.e., DFA and Mealy machine). Precisely, a
formula Φ is minimally consistent with D if and only if Φ
is consistent with D and for every other PLTL formula Ψ
such that |Ψ| < |Φ|, Ψ is inconsistent. Here | · | is a function
that takes a PLTL formula as input and returns the number
of its sub-formulas. Also, this algorithm can provide different
candidate signatures for a given sample D by enumerating
different models of the SAT problem. Thus, it provides the
user with more flexibility to select the most desirable signature
among the suggested candidates.
Algorithm. For a given training dataset D and alphabet A
(i.e., a set of propositional variables), our learning algorithm
(Algorithm 1) iterates over the depth of the PLTL formula
abstract syntax tree (AST) in ascending order. For a given
depth of the formula AST `, the algorithm has two main steps:
¶ Generate all possible PLTL formulas whose AST depth is
exactly `; · Check whether one of the generated formulas is
consistent with D. Although logically the algorithm has two
steps, one can use a SAT solver to perform both searches
simultaneously. The advantage of such an approach is that
the constraints capturing the restrictions in step · can rule

Algorithm 1 PLTL Syntax-Guided Synthesis Algorithm
Input: Training dataset D = (P,N) and alphabet A
Output: Minimally consistent signature Φ` of size ` ∈ N

1: `← 1
2: while ` ≤ ∆ do //∆ is a constant threshold
3: ϕ` ← encode(D, `)
4: m← SAT(ϕ`)
5: if m 6= ∅ then
6: Φ` ← decode(m)
7: return Φ`

8: else
9: `← `+ 1

out formulas from search at step ¶. We now, at a high-level,
describe how both steps are encoded as a SAT formula.

The first set of constraints are regarding the syntax of
the PLTL formula. These constraints are conjunctions of the
following: (1) constraints for generating all ASTs of depth
`; (2) constraints for assigning labels (i.e., propositions and
operators) to the AST nodes. Example constraints in the label
assignment include operators cannot be assigned to leaf nodes,
and binary operators can only be assigned to nodes having two
children. These constraints are required to be strong enough to
ensure that only syntactically well-formed PLTL formulas are
considered [18]. Based on PLTL semantics, the second set of
constraints capture that the synthesized formula should satisfy
all traces in P while rejecting all traces in N .

The encode function in the algorithm, given the AST depth
` and the training dataset D, generates a propositional formula
ϕ` that capture these constraints. The algorithm then uses an
off-the-shelf SAT solver to search for a model of ϕ`. If a model
m is found, it is decoded to obtain an PLTL formula Φ` that
represents the consistent vulnerability signature. If no model
is found, the algorithm increments the bound size (i.e., `) and
the search procedure continues until a satisfying assignment
is found or the bound threshold is exceeded (i.e., ` > ∆).

VI. IMPLEMENTATION OF PHOENIX

We instantiate PHOENIX in two settings: a full-fledged
defense as part of the baseband processor and also as an
Android app serving as warning system. To study the overhead
of PHOENIX when running inside a baseband processor, we
implement PHOENIX by modifying srsUE distributed as part
of srsLTE open-source protocol stack [25]. To analyze the
effectiveness of PHOENIX as a warning system, we implement
the message extractor and the monitor in an Android applica-
tion on different devices. The optional signature synthesizer
component of PHOENIX is developed as a standalone program.

A. PHOENIX Implementation With srsUE

To simulate PHOENIX’s integration into the baseband pro-
cessor, we extend srsUE [25] so that it can detect an undesired
behavior. As a baseband processor (similarly, srsUE) parses
a message, PHOENIX does not need to parse messages and
instead need to focus on the monitor component. For this

7

instantiation, we used the PLTL-based monitor because it
is the most effective monitor instantiation according to our
evaluation in Section VIII.

PLTL monitor. In order to achieve a highly efficient
implementation, both when considering memory and compu-
tational overhead, we leverage the work by Rosu et al. [50]
to synthesize dynamic programming algorithm-based PLTL
monitors in C++. The runtime and memory requirements of
these monitors are constant with respect to the signature size.

Monitor integration. Depending on the information re-
quired to evaluate a signature, the monitors are integrated in
either the RRC or NAS namespace files, which are responsible
for the handling (and sending) messages of each layer. In each
such message handling/sending function, prior to processing
or sending a message, the entry point of PHOENIX is invoked
with the label of the new event. In order to empower PHOENIX
to drop messages or close the connection altogether, PHOENIX
returns a boolean value representing whether or not at least
one signature was violated, in order to let the function either
proceed with the handling (or sending) process or drop the
connection to prevent a vulnerability.

B. PHOENIX Implementation as an Android App

When implemented as an Android app, we instantiated
PHOENIX with DFA-, MM-, and PLTL-based monitors. We
now discuss the major component implementations.

Message Extractor. The message extractor first reads events
from the baseband processor. For efficiently parsing protocol
packets, we modified MobileInsight [38] application’s traffic
dissector to efficiently capture NAS and RRC layers’ traffic.
We then apply any required propositions and forward the mes-
sage to the monitor. Note that since we modified MobileInsight
to implement the message extractor, PHOENIX requires root
privileges to function. These types of apps require root access
since normal applications do not have access to the virtual
device where the modem information is exposed [38].

Monitor Component. Since MobileInsight is written with
Python and compiled into an Android App using Python for
Android [5], we implement our monitors in the same fashion.
We now discuss the implementation details of the monitors
for each of the attack signature representations.

DFA. For an attack signature, our DFA-based monitor stores
the set of transitions, list of accepting states, current state,
and the alphabet in memory. The transition relation in our
implementation is just a dictionary lookup. A transition to a
non-accepting state is considered an attack.

MM. Mealy machine-based monitor is similar to the one for
DFA with one exception. Since Mealy-machine does not have
any accepting and non-accepting states, the output symbol of
the transition indicates which particular attack has occurred.

PLTL. We implemented the dynamic programming algo-
rithm [50] for monitoring PLTL formulas in Python. Our
implementation stores a single bit for each sub-formulas truth
value and uses bitwise operations to identify the truth values.

C. Signature Synthesizer

The implementation details of the optional signature syn-
thesizer component is as follows.

DFA. For learning DFA signatures, we use the RPNI passive
automata learning algorithm implemented in LearnLib [49].
We provide the attack traces as well as non-attack traces and
all their prefixes as input. We also include empty string (ε) as
part of the positive sample because without it the initial state
of the synthesized DFA is marked as non-accepting.

Mealy Machine. Similar to DFA, we invoke the RPNI al-
gorithm of LearnLib [49] to serve as the signature synthesizer
for Mealy Machine. Each message in the trace is also mapped
with its corresponding output (i.e., benign or vulnerabilityi).
Note that, since Mealy Machine is a monitoring mechanism
capable of detecting multiple attacks at the same time, the
training set contains all the traces for that corresponding layer.

PLTL. To instantiate our PLTL signature synthesizer, we
implement the algorithm in Section V-D. Our implementation
uses PySMT, a Python-based solver-agnostic library built on
top of SMT-LIB [10]. By leveraging our PLTL signature
synthesizer’s capability of generating different candidate sig-
natures, we create 5 candidate signatures for each attack with
80% of the training data. We then evaluate the candidate
signatures on the remaining 20% of training data to pick the
best one. In case of a tie, we choose the smallest signature.

VII. EVALUATION CRITERIA AND SETUP

In this section, we discuss the evaluation criteria, experi-
mental setup, and trace generation for our evaluation.

A. Evaluation Criteria

Research Questions. We first aim to address the following
research question for PHOENIX’s signature synthesizer:

QS1. How effective are the synthesized signatures?
QS2. How scalable are the signature synthesizers?
QS3. Does training set size impact the quality of signatures?

We next focus on evaluating the monitor component, when
considering the warning system implementation, by answering
to the following research questions:

QWS1. How many messages/second can a monitor classify?
QWS2. What is the energy consumption overhead for a

monitor?
QWS3. What type, and how many, warnings do the different

monitors produce when PHOENIX is deployed on real
cellular networks?

We then evaluate the monitor component, when considering
the baseband implementation, by answering the following
research questions:

QBB1. What is the memory overhead induced by PHOENIX?
QBB2. What is the computational overhead induced by

PHOENIX?

8

B. Experiment Setup

In this subsection, we provide details on the experimental
setup for both components.
Signature Synthesizer Evaluation Infrastructure. We per-
form all the signature synthesizer evaluation on a 4.5GHz Intel
i7-7700K CPU running Ubuntu 16.04 on 16GB of RAM. We
set a time out of 3,600 seconds for these experiments.
PHOENIX Baseband Implementation. We perform the base-
band implementation experiments by implementing PHOENIX
into srsUE as described in Section VI-A on a 4.5 GHz Intel
i7-7700K CPU running Ubuntu 16.04 on 16GB of RAM
connected to a USRP board [9].

Note that we do not measure the power consumption in this
instantiation as any meaningful measurement would require
additional appropriate hardware. Additionally, the baseband
implementation experiments do not leverage a stress test as
it is not clear how to achieve this with srsUE [25].
Sample Sizes. We consider different sizes of traces (50, 100,
250, 500, 1250, and 2500) in our evaluation. In each trace,
50% are positive and the rest are negative. To generate these
traces, we used the procedure mentioned in SectionVII-C.
Training and Testing Separation. To measure the effective-
ness of the signatures, we create disjoint testing and training
sets for each attack, containing 1000 benign and 1000 mali-
cious traces using the procedure mentioned in Section VII-C.
Monitor Evaluation Testbed. We perform all the monitor
experiments on three different COTS Android devices (see Ta-
ble I for devices’ details). Also, following the prior work [51],
[29], [36] we set up a similar 4G LTE testbed (consisting of
eNodeB and EPC) using srsLTE [25] and USRP B210 [9]
connected to Intel Core i7 machines running Ubuntu 16.04
with 16 GB of memory.
Effectiveness Evaluation. To evaluate effectiveness of the
signatures, we implement PHOENIX to its entirety and replay
benign and malicious traces through srsLTE [25].
Efficiency Evaluation. To evaluate efficiency through a stress
test, we develop an application that serves as an in-device
network simulator by replaying the logs within the device. We
use this setup because software-defined radios have inherent
limitations on transmission bandwidth. Therefore, a high-
volume of packets within a short time-interval cannot be
injected to the device for stress testing, which is important
for realizing our monitors’ efficiency in real networks.
Set of Attacks. We consider 15 attacks (Table II) for our
evaluation. The reason for considering these 15 attacks are
twofold: (1) These attacks can serve as representatives of most
of the known vulnerabilities in 4G LTE control-plane layers;
and (2) They have at least one of the following characteristics:
(a) violation of temporal ordering of events; (b) triggered by
rogue eNodeB or Mobility Management Entity (MME) at RRC
or NAS layers.

C. Trace Generation for Evaluation

We now discuss how we generate traces for evaluating
PHOENIX’s monitor and optional signature synthesizer com-
ponents. We use the following approach to generate a large

Phone Model CPU Operating System
Pixel 3 Qualcomm Snapdragon 845 [6] Android 9
Nexus 6P Qualcomm Snapdragon 810 [7] Android 8.0.0
Nexus 6 Qualcomm Snapdragon 805 [8] Android 5.1.1

TABLE I: Specifications of devices used for evaluation.

Initial RRC Connection
messages

Variation before
skipping SMC

Variation after skipping
SMC ueInformationRequest

Initial RRC Connection
messages

Variation before
skipping SMC ueInformationRequest

Initial RRC Connection
messages ueInformationRequest

Initial RRC Connection
messages

Variation after skipping
SMC ueInformationRequest

Variant 1

Variant 2

Variant 3

Variant 4

Fig. 4: β-undesired-behavior-session variants where β=privacy
attack on the RLF report. The red arrow points to the location
in a benign session where both securityModeCommand and
securityModeComplete would have appeared.

number of traces containing undesired behavior to evaluate
scalability of the synthesizers. Also, a different set of traces
generated with this approach is used to evaluate the effective-
ness of PHOENIX’s monitor.

1) Sessions, Traces, and Variants: We now introduce the
concepts of a session, trace, and variants of an attack session
used later. A session, which can be logically viewed as a se-
quence of protocol messages, starts off with the device sending
a connection initiation request (e.g., rrcConnectionRequest,
attachRequest) and contains all messages (including the cur-
rent connection initiation request message) until the next
connection initiation request is sent. Note that, we do not
say that a session ends with a termination request to facilitate
sessions which end abruptly. A trace is just a sequence of
sessions. We call a session β-undesired-behavior-session if
the undesired behavior β occurs in that session. For a canonical
β-undesired-behavior session s (obtained from the original
source of the undesired behavior discovery), we call another
β-undesired-behavior-session ŝ a variant of s, only if s 6= ŝ.

Example 1 (β-undesired-behavior-session variants): For this
example, we consider β=the privacy attack on the RLF report
[52]. In its canonical form, this attack happens in a session
when a device responds with the RLF report message in
plaintext due to an unprotected ueInformationRequest mes-
sage sent by the adversary before establishing a security
context (i.e., before receiving securityModeCommand and
sending securityModeComplete). 4 example variants of this
β-undesired-behavior-session is shown in Figure 4. These
different variations differ in what messages were sent before
and after to the exclusion of the securityModeCommand and
securityModeComplete messages. Variant 1, the canonical
session, does not introduce any messages before or after
skipping the Security Mode procedure and just sends the un-
protected ueInformationRequest message to induce the device
to respond with an unprotected RLF report message. Variant

9

MobileInsight
Database

Randomly pick
M sessions

Pick all attack
variants for attack A

Randomly
replace benign

sessions

Randomly pick
M sessions

srsLTE attack
session

database

Fig. 5: Trace Generation procedure.

2 introduces a variation prior to the skipping of the Security
Mode procedure (e.g., sending an identity request message).
Variant 3 introduces a variation after the skipping of the
Security Mode procedure, possibly by inquiring about the UEs
capabilities through the ueCapabilityEnquiry message, before
the plaintext ueInformationRequest is sent by the adversary.
Variant 4 combines both Variants 2 and 3.

2) Benign Trace Dataset: To obtain benign traces, we use
the MobileInsight [38] crowd-sourced database. This database
consists of log files captured by the MobileInsight app and
shared from users across the world; covering numerous de-
vices, networks, and countries. We decide to use this data
rather than locally captured benign traces to take into con-
sideration other devices and networks, which we do not have
access to. We argue that this gives a better representation as
to how well the signatures would generalize in the real world
trace, possibly containing benign network failures.

From this dataset, we are able to obtain 1,892 NAS layer
traces which contain over 52K messages, and as for RRC, we
collect 2,045 RRC layer traces consisting of 1.5M messages.
This large discrepancy in the number of messages captured per
layer can be attributed to the fact that NAS traffic only serves
as the communication between the UE and MME, while RRC
is responsible for the communication between the UE and the
eNodeB and serves as the backbone for NAS and other layers
of the LTE protocol stack.

Benign trace generation. We use the collected MobileIn-
sight traces as seed traces and decompose them into individual
sessions. In addition to the message types in a session, we also
capture relevant predicates from the data (e.g., whether the
identity request message warranted IMSI, IMEI, or GUTI).
After this step, suppose we have a total of S number of
sessions. If we want to generate n benign traces of length M ,
then we will continue the following process n times. At each
step, we will randomly pick M benign sessions out of total S
sessions and concatenate them to create a new benign trace.
The process is shown on the left of the dotted vertical line
in Figure 5. After this process, we will obtain trace skeletons
comprising of individual message types and relevant predi-
cates. We then manually convert these trace skeletons to actual

replayable benign traces by choosing standard-compliant field
values feasible in the testbed while respecting the different
predicates. As an example, if the benign trace skeleton in a
session contained identity request with IMEI predicate, then
we will create a concrete packet reflecting that choice.

3) Generating Malicious Traces: A massive challenge with
evaluating the effectiveness of PHOENIX is the fact that no pre-
existing repository of vulnerable traces exists. To overcome
this, we propose the generation of possibly malicious traces as
shown in Figure 5. The trace generation has the following four
steps. (¶) The process starts with the manual implementation
of all the attacks (and, their β-undesired-behavior-session
variants) as listed in Table II. For doing so, following the prior
work [36], [52], [30], [29], [47], [42] we changed srsENB and
srsEPC libraries in srsLTE [25] to set up the rogue base station.
To collect the traces from the UE’s perspective, we utilize
SCAT [28]. (·) Once we have collected the concrete traces,
we create skeletons of these traces akin to to the benign trace
generation process (i.e., capturing message types and relevant
predicates). After this process, for each attack, suppose we
have K skeletons for β-undesired-behavior-session variants.
(¸) Suppose we want to generate n possibly malicious traces
of length M for a given attack. We will execute the following
step n times. At each step, we will first generate a benign trace
skeleton bt of length M using the procedure discussed above.
Then, we randomly choose as attack variants out of K (i.e.,
1 ≤ as < min(M,K)) and randomly replace as of the benign
sessions of bt with the as attack sessions to generate a possibly
malicious trace skeleton (see Figure 5). (¹) For generating a
concrete replayable malicious trace from a trace skeleton is a
manual process and attack-specific. Converting malicious trace
skeletons to concrete traces require adding standard-compliant
field values while respecting the captured predicates.
Discussion. Note that, all variants generated by the above
process do not necessarily entail an exploitable attack. This
is not a limitation because the monitor has to be oblivious to
whether a device is susceptible to an attack or not, and instead
should raise a warning irrespectively whenever it detects an
attack attempt. Taking the privacy attack on the RLF report as
an example, the monitor should raise a warning whenever it
receives an unprotected ueInformationRequest message before
a security context is established without waiting for the device
to respond with an RLF report. For our evaluation, malicious
traces that do not induce an attack are acceptable as long as
the trace contains an attack attempt. All variants can be found
on the following webpage [3].

VIII. EVALUATION RESULTS OF PHOENIX

In this section, we discuss the evaluation results for both
the signature synthesizer and monitor components. In order
to evaluate PHOENIX as both a warning system and defense
mechanism, we evaluate these two different implementations
separately. Due to space constraints, we report the results for
5 attacks here and the rest can be found in the Appendix. A
more detailed evaluation of PHOENIX can be found in the full
version of this work [24].

10

Attack Paper Layer # of Variations Implication
AKA Bypass [36] 18 Eavesdropping
Measurement Report [52] 26 Location Tracking
RLF Report [52] 21 Location Tracking
IMSI Cracking [30] 2 Information Leak
Paging with IMSI [30] 2 Information Leak
Attach Reject [52] # 4 Denial of Service
Authentication Failure [29] # 25 Denial of Service
EMM Information [47] # 32 Spoofing
IMEI Catching [1] # 2 Information Leak
IMSI Catching [1] # 2 Information Leak
Malformed Identity Request [42] # 2 Information Leak
Null Encryption [1] # 49 Eavesdropping
Numb Attack [29] # 2 Denial of Service
Service Reject [52] # 14 Denial of Service
TAU Reject [52] # 6 Denial of Service

TABLE II: All attacks considered, total number of derived
variants and their implication. (= RRC, #= NAS)

Attack Monitor Precision Recall F1

AKA Bypass
PLTL 1 1 1
DFA 1 0.95 0.97
MM 1 1 1

IMSI Cracking
PLTL 1 1 1
DFA 1 1 1
MM 0.67 1 0.80

Measurement Report
PLTL 1 1 1
DFA 0.95 0.83 0.89
MM 1 1 1

Numb Attack
PLTL 1 1 1
DFA 1 1 1
MM 1 1 1

RLF Report
PLTL 1 1 1
DFA 0.83 0.64 0.72
MM 1 1 1

TABLE III: Effectiveness results for all monitors with maxi-
mum data each monitor can consume (MM stands for Mealy
Machine). Note that all scores are in the range 0 to 1.

A. Signature Synthesizer Evaluation

We evaluate our signature synthesizers based on the research
questions discussed in Section VII-A.
Effectiveness of generated signatures (QS1). For evaluating
the effectiveness of the synthesized signatures, we replay
the set of testing traces to a device running PHOENIX in
our testbed (set up with srsLTE [25] and USRP [9]), and
measure precision, recall, and F1 score for identifying those
vulnerability signatures at runtime.

Table III presents the precision, recall and F1 score achieved
by our signature synthesizers for identifying different attacks at
runtime. The signatures used in this experiment were generated
with 2, 500 traces for DFA and Mealy Machine, and up
1, 250 for PLTL due to the synthesizer timing out. The figure
demonstrates that all of the approaches were able to identify
the existing attacks with a high degree of success. Among
the different synthesizers, DFA, however, produced a higher
number of false positives (21.5%) and false negatives (17.1%)
on average whereas Mealy Machine and PLTL turn out to be
more reliable; producing a significantly less number of false
positives (∼0.03%) and false negatives (∼0.01%).

The perfect F1 score for PLTL across different attacks
can be attributed to the fact that these control-plane attacks
have a highly discernible signature, which can be seen
as the temporal property which all variants of the attacks

violate. For instance, the signature synthesized for the RLF
Report Attack [52] is the following: ueInformationRequest⇒
(¬rrcConnectionRequestS securityModeComplete). Since
this signature precisely describes the behavior of the attack,
regardless of the variant, it enables PHOENIX to detect the
attack with a perfect F1 score.

Another interesting result shown in Table III is that Mealy
Machine based monitor outperforms the DFA based one in
the majority of the cases. This is because DFA learns only
on up to 2,500 traces for an individual attack whereas Mealy
Machine learns from all the attack traces (2,500 * 15) and
therefore has more information to learn from.
Scalability (QS2). We primarily consider signature learning
time as an effective and indirect indicator to the scalability
of the corresponding signature synthesizer. The lower the
learning time, the higher the scalability. That signifies that
scalability time is inversely proportional to the signature
learning time. Therefore, to evaluate the scalability of the three
proposed signature synthesizers (DFA, MM, and PLTL), we
vary the sample size of the training sets to 50, 100, 250, 500,
1250, and 2500, and measure the learning time required by
a synthesizer for each of the attacks. Figure 6 presents the
results of this evaluation in which the Y-axis is seconds in the
logarithmic scale and the X-axis is the training dataset size.

Figure 6 shows that our PLTL signature synthesizer takes
considerably more time to synthesize a signature as compared
to DFA and MM synthesizers. This large discrepancy can be
attributed to the fact that the PLTL synthesizer is a search
based algorithm. The search space grows very quickly as the
depth of the abstract syntaxt tree (AST) increases. On the other
hand, RPNI [45] proves to scale quite well because RPNI
is a polynomial time algorithm while SAT is NP-Complete.
For instance, training the AKA Bypass [36] attack with PLTL
synthesizer takes a significantly higher amount of time than
others. Though PLTL synthesizer for AKA Bypass attack
quickly times out, the same synthesizer does not time out for
other attacks, such as the Numb Attack [29] until it reaches
1250 traces. This is due to the much deeper AST for AKA
Bypass PLTL signature than that for the Numb Attack.
Impact of training set size on signature quality (QS3). Since
real-life cellular attack traces are difficult to obtain, we aim at
evaluating whether or not more training data generate a higher
quality signature. We consider a high quality signature as one
that achieves a perfect F1 score. In other words, F1 score and
signature quality are proportional to each other. To evaluate
this, we vary the size of the training datasets and measure the
synthesizers’ effectiveness at detecting the attacks.

Figure 7 shows that all three signature synthesizers achieve
high F1 score when training on 500 traces, with the exception
of AKA Bypass for DFA, which goes down as more training
data is given. As the RPNI learning process is highly depen-
dent on the exact set of input traces, this discrepancy can be
attributed to the variability of the input traces. Note that, our
PLTL signature synthesizer achieves a perfect F1 score across
all attacks, regardless of the training dataset size, because of
its usage of exhaustive search to learn a precise but highly

11

0 500 1,000 1,500 2,000

10−2

10−1

100

101

102

103

Training Dataset Size

Tr
ai

ni
ng

Ti
m

e
(s

ec
on

ds
in

lo
g

sc
al

e)

Numb Attack / PLTL Numb Attack / DFA
IMSI Cracking Attack (4G) / PLTL IMSI Cracking Attack (4G) / DFA
AKA Bypass Attack / PLTL AKA Bypass Attack / DFA
NAS Layer Attacks / Mealy Machine RRC Layer Attacks / Mealy Machine

Fig. 6: Time to learn DFA, PLTL and Mealy Machine.

0 500 1,000 1,500 2,000 2,500

0.8

0.85

0.9

0.95

1

Training Dataset Size

F1
sc

or
e

Numb Attack / PLTL Numb Attack / DFA Numb Attack / MM
AKA Bypass / PLTL AKA Bypass / DFA AKA Bypass / MM

Fig. 7: Training size and effectiveness comparison.

generalizable signature.
Since the PLTL synthesizer is able to produce a highly

generalizable signature regardless of the training dataset in
the previous experiment, we decide to analyze this further by
discovering the minimum attack traces required to generate a
high quality signature. We consider a high quality signature
is one that achieves a perfect F1 score. To perform this
experiment, we fix the benign traces to 25 and vary the number
of attack traces from 1 to 25. The results can be found in Table
IV. These results show that the PLTL synthesizer can rapidly
produce a high quality signature. Both the RLF Report and
Measurement Report privacy attacks prove to require a larger
number of attack traces. This can be attributed to the fact
that these signatures are more complex than others, with the
exception of the AKA Bypass attack, however, more variants
exist.

These results show that the PLTL synthesizer can rapidly
produce a high quality signature. Another observation that is
obvious is the fact that Measurement Report and RLF Report
require more attack traces than others. This can be attributed
to a couple of reasons. The first reason behind this result, is
that these two attacks require a larger search space since the

Attack Minimum Attack Trace # of Variations
AKA Bypass 3 2

IMSI Cracking 1 1
Measurement Report 11 5

RLF Report 8 2
Numb Attack 3 2

TABLE IV: Minimum attack traces (and variations), required
to generate a high quality signature (Perfect F1 score) using
PLTL synthesizer.

alphabet is bigger than the others. The second reason is that
these attacks are more complex than others, with the exception
of the AKA Bypass attack which can be seen as a stepping
stone for both. In addition, these results can also attributed
to the fact that our PLTL synthesizer blindly searches for
solutions instead of using the given traces to narrow down
the search space.
Signature Synthesizer Evaluation Conclusion. The PLTL
synthesizer proved to not scale as well as RPNI [45] based
approaches, however, it proved to quickly generated highly
generalizable signature. In fact, such a signature generation
with a minimal number of traces is critical since generating
attack traces is a challenging task for cellular networks.
Therefore, we conclude that the PLTL synthesizer outperforms
the RPNI [45] approaches.

B. Monitor Evaluation (Warning System)

In this subsection, we answer the research questions driving
the evaluation of three different monitoring approaches (i.e.,
PLTL, DFA, and Mealy Machine) when considering a warning
system instantiation.
Efficiency (QWS1). One of the key factors in identifying the
best monitor instantiation is the number of messages each
monitor can process per second. For this, we perform a stress
test by mimicking the modem through the replaying of real
traces captured from MobileInsight’s database [38] without
any delay between subsequent messages. We measure how
long each monitor takes to process and check for the presence
of an attack by consulting its entire signature database. Table
V summarizes the processing speed (messages/second) of
different devices for different monitoring approaches running
in two different layers

As shown in Table V, across all three devices, Mealy
Machine can process multiple orders of magnitude higher mes-
sages per second than the other two monitoring approaches.
This can be attributed to the fact that Mealy Machine keeps
only a single internal state per layer, as compared to 10 internal
states for NAS and 5 for RRC. Moreover, Mealy Machine
relies on a single dictionary lookup to decide on the transition
and whether to flag a trace as an attack. Similar to Mealy
Machine, DFA can also process messages at a much faster
rate than PLTL. This is because the DFA also relies on a
simple dictionary lookup similar to Mealy Machine for a single
signature. On the other hand, PLTL requires the evaluation of
logical and temporal operators to classify the incoming traces
which is a more expensive operation.

12

To put our results in perspective, we compare it with real
traces. We compute the mean, median, standard deviation,
and maximum number of messages of real NAS and RRC
traces obtained from the MobileInsight database [38]. We
observe that on average, there were 0.02 messages per sec-
ond for NAS traffic (median=0.011, standard deviation=0.069,
maximum=0.8), and 0.2 messages per second (median=0.122,
standard deviation=0.273, maximum=2.76) for RRC traffic.

In summary, our slowest monitor (i.e., PLTL) can handle
substantially more message per second than the NAS and RRC
traffic we observed in real traces.

Layer Monitor Device Avg. SD

RRC

DFA
Pixel 3 5.2 ∗ 104 1.6 ∗ 105
Nexus 6P 2.1 ∗ 104 7.4 ∗ 104
Nexus 6 8.3 ∗ 103 8.6 ∗ 103

PLTL
Pixel 3 7.3 ∗ 103 5.6 ∗ 104
Nexus 6P 3.6 ∗ 103 1.3 ∗ 104
Nexus 6 6.6 ∗ 102 5.8 ∗ 101

MM
Pixel 3 3.9 ∗ 105 7.9 ∗ 105
Nexus 6P 1.3 ∗ 105 3.6 ∗ 105
Nexus 6 3.4 ∗ 104 1.4 ∗ 104

NAS

DFA
Pixel 3 3.4 ∗ 104 2.2 ∗ 105
Nexus 6P 1.5 ∗ 104 1.1 ∗ 105
Nexus 6 4.5 ∗ 103 4.2 ∗ 103

PLTL
Pixel 3 3.8 ∗ 103 6.3 ∗ 104
Nexus 6P 1.8 ∗ 103 2.2 ∗ 104
Nexus 6 6.1 ∗ 102 1.5 ∗ 103

MM
Pixel 3 3.7 ∗ 105 7.2 ∗ 105
Nexus 6P 1.4 ∗ 105 3.7 ∗ 105
Nexus 6 3.4 ∗ 104 2.0 ∗ 104

TABLE V: Measurement of how many messages per second
can each monitor classify on different devices and layers.

Energy Consumption (QWS2). To understand the energy
consumption induced by each monitor component, we measure
the battery consumption induced by PHOENIX. We perform
this experiment by connecting the Nexus 6 to a Monsoon
Meter [2]. The Nexus 6, unlike the other two devices, has
a removable back which makes it easier to connect to the
power meter. In this experiment, the traffic is simulated to
avoid the noise induced by the cellular connection. In addition
to the radio, we switch off the screen, Bluetooth, and Wi-Fi.
We then invoke each monitor with 10k messages to evaluate
the average power consumption. Figure 8 presents the average
power consumption by three different monitors along with the
case when no monitor is active. The results match the trend
with that of synthesizers’ effectiveness, except for the fact that
Mealy Machine consumed slightly more electricity than PLTL
and DFA, respectively. This discrepancy could be attributed
to the fact that even though we disabled many power hungry
components of the Android system, we have no control as
to what other applications in the device are doing. Overall
though, all monitors add negligible overhead.
Real World Evaluation (QWS3). Vulnerability detection
systems must balance false warnings with effectiveness. If
the user is bombarded with false warnings, the user would
disable the system in order to prevent continuously erroneous
warnings. In light of this, we aim to uncover how many
warnings each different monitor produces and the type of

DFA PLTL Mealy
Machine

No Monitor

15

20

25

30

35

40

45

Monitor Type

M
a
in

A
v
g.

P
ow

er
(m

W
)

1

Fig. 8: Power consumption on simulator in milliwatts (mW).

Monitor
Carrier US-1 US-2 US-3 US-4

DFA 67 77 47 47
PLTL 0 1X 1X 1X
MM 0 0 0 0

TABLE VI: Number of warnings triggered by different moni-
tor implementations in real networks (X= Real Warnings, 7=
False Warnings).

them. To carry out this experiment, we deploy PHOENIX
on two Pixel 3 devices running on four major U.S. cellular
network carriers on two different geographical areas. In this
experiment, we run PHOENIX for approximately 12 hours
and use the Pixel 3 as our daily devices, which includes
driving approximately 10 miles. The results are shown in
Table VI. As expected by previous results, DFA proves to be
inadequate and produces a larger amount of false warnings.
We inspect each warning and uncover that the DFA signature
does not take into consideration the behavior seen by these
real networks. On the other hand, Mealy Machine produces
no false warnings and therefore would not bombard the user
with these. Notably, PLTL produces one warning on three
different providers, specifically the warning that is triggered
when the EMM Information message is sent in plaintext. After
manual inspection, we discover that these in fact are not false
warnings, but misconfigurations by these three providers.
Evaluation Summary of Warning System Instantiation.
Mealy Machine proved to be highly efficient, however, all
three monitors were able to parse a significantly high number
of messages per second to not induce any delay at runtime.
We then measured power consumption and discovered that all
three monitors are highly efficient by imposing a negligible
overhead. We then carried out a real world evaluation of
PHOENIX by deploying it on cellular devices with real SIM
cards and uncover that PLTL and Mealy Machine produce no
false warnings, and in fact, PLTL uncovers real misconfigura-
tions in three of the major U.S. cellular network carriers. In
summary, PLTL proved to be the monitor component that best
satisfies the core requirements.

13

370500 371000 371500 372000

0.0

0.05

0.1

0.15

0.2

Maximum Resident Size

D
en

si
ty

of
Pr

ob
ab

ili
ty

PHOENIX
Vanilla

Fig. 9: Probability density function for the maximum resident
size (kilobytes) for PHOENIX implementation in srsUE and
vanilla srsUE[25].

C. Monitor Evaluation (Defense Mechanism)

Understanding the requirements of PHOENIX when imple-
mented in the baseband is crucial in order to understand its
deployability. Due to this, this subsection answers the research
questions driving the evaluation of the baseband instantiation
of PHOENIX. We perform these experiments on the baseband
implementation as discussed in Section VI-A. Due to the fact
that PLTL is the monitor that performed the best as shown
previously (in Section VIII-B), we focus on the PLTL monitor.
Memory overhead in baseband (QBB1). Low memory
overhead is critical in order for a defense mechanism to be
feasible. To analyze this overhead, we measure the memory
using the time Linux command capable of extracting the max-
imum resident set size. We then compare the implementation
of PHOENIX in srUE (dubbed srsUEPHOENIX) and the
vanilla version of srsUE (dubbed srsUEvanilla). To perform
this experiment, we connect the srsUE implementations 100
times to the eNodeB and EPC by running the corresponding
components of srsLTE [25] on a secondary machine.

Figure 9 shows the distribution of both srsUE implementa-
tions. The distribution is similar in both implementations. The
mean difference is only 159.25 KB. To put this result in per-
spective, srsUEvanilla on average consumes approximately
370MB, therefore, PHOENIX induces only a mere 0.04%
overhead. Overall, we demonstrate that memory overhead of
PHOENIX is not a major concern in its baseband instantiation.
Computational overhead in baseband (QBB2). Another key
point that must be analyzed is the computational overhead
imposed by PHOENIX in a baseband implementation. This is
because any substantial delay imposed by PHOENIX could af-
fect the quality of service and result in a disruption of service.
In this experiment, we run the baseband implementation of
PHOENIX running all the monitors and measuring the time it
takes for all monitors to run sequentially by measuring the
system time in microseconds with the getrusage c++ func-
tion. We carried out this experiment connecting the modified
version of srsUE 100 times to an eNodeB and EPC running

on a secondary machine. On average, calling all 15 monitors
sequentially added an overhead of 5.43 microseconds, with a
standard deviation of 10.8. Overall, this experiment verifies
that the overhead induced by PHOENIX is negligible, and
would unlikely to induce any QoS or service disruption issues.
Evaluation Summary of Baseband Implementation. We
evaluated the overhead induced by the baseband implemen-
tation of PHOENIX in srsUE to serve as a proxy to understand
the real world requirements. PHOENIX showed to require
minimal memory (159.25 kbytes) and computational overhead
(5.4 microseconds) which shows that PHOENIX could be
deployed in a real baseband implementation.

IX. DISCUSSION

We now discuss different salient aspects of PHOENIX. A
more in-depth discussion can be found in the full version [24].
Android and Qualcomm chipsets. Our current implemen-
tation of PHOENIX supports Qualcomm baseband processors
running on Android. We focus on Android not only because it
is the most popular mobile OS but also it allows one to expose
the cellular interface in the debug mode with root access.
We envision that OSes can expose the modem information
by requesting the permission from the user similar to how
other high privilege permissions can be granted to user level
applications. Additionally, in the future we aim to extend this
for other OSes and baseband processors [28].
False positives and the quality of signatures. The quality
of synthesized signatures used in the empirical evaluation of
this paper heavily relies on the diversity of malicious traces
used during training. Having very similar malicious traces in
training will likely induce the synthesizer to come up with a
non-generalized behavioral signature that will only be effective
in detecting undesired behavior similar to the ones observed in
the malicious training traces and possibly, a few of its variants.
Such a non-generalized signature, however, is unlikely to
capture other diverse variants of the undesired behavior in
question that are not present in the malicious training traces.
This is because the synthesized signatures only guarantee
observationally consistency, that is, the synthesized signatures
will not make any mistakes in correctly classifying the sample
traces given to it during training. Not having diverse malicious
traces during synthesis can thus induce a signature that incurs
false positives. In addition to this situation, false positives can
also be incurred due to having only coarse-grained information
on the training traces (i.e., lacking fine-grained information).

Let us consider the downgrade attack through fabricated
attachReject message as an example [52]. In this attack, the
adversary establishes a malicious base station which emits a
higher signal strength and then lures the victim device into
connecting to the malicious base station. Then, the adversary
during the mutual authentication of the attach procedure injects
a fabricated attachReject message, resulting in the device to
downgrade to an insecure protocol version (e.g., moving from
4G LTE to 3G). Just by observing the temporal ordering of
events, without taking into consideration the migration of the

14

device from 4G LTE to 3G, the best possible signature a syn-
thesizer can come up with is the existence of the attachReject
message. Such a signature may induce false positives because
attachReject messages can be sent by the network in benign
situations.

In our experiments, due to random selection of benign
sessions from real-life traces and attachReject messages being
rare, none of the benign traces during training had any
attachReject messages, whereas all the negative traces at least
had one. As a result, the synthesizer rightfully came up with a
signature saying an existence of the attachReject message is
an attack, especially because this is the smallest signature that
is observationally consistent. Due to our session-level trace
generation approach discussed before, we did not have faithful
information about the downgrade of the protocol version. Even
if we had that precise information as part of the training traces,
the synthesizer will give us a precise signature according to
which the monitor will identify the attack only when the
connection downgrade has already happened instead of before
protocol version downgrade happens. We argue that a proactive
monitor, which notifies the user as soon as an attachReject
message has occurred instead of waiting for a downgrade, is
more effective in protecting the user even at the cost of a few
false positives. Since attachReject messages are indeed rare
in practice, corroborated by the MobileInsight traffic, such a
trade-off is a reasonable choice.

X. RELATED WORK

Runtime Monitors. Extensive work has been done in
developing efficient runtime monitors using different types of
logic [12], [13], [14], [15], [16], [17], [22], [50], [53], [19].
However, all but [53], [19] attempt to create a deployable sys-
tem which tries to apply runtime monitoring to web protocols.
In contrast, PHOENIX aims to be a deployable system, similar
to [53], [19], however, we apply runtime monitoring to 4G
LTE cellular networks. In addition, we apply three different
runtime monitor approaches while [53], [19] only rely on
automata based approaches. PHOENIX not only serves as the
runtime monitor but also provide the learning component to
generate signatures, including PLTL formulas.

Anomaly Detection in Cellular Devices. Some work has
been done to detect anomalies in cellular networks within
the cellular device, precisely to discover the presence of fake
base stations proposed by Dabrowski et al. [20]. In addition,
multiple apps have attempted to enable the detection of fake
base stations using an application, but unfortunately do not
generalize well [46]. In contrast to these attempts at anomaly
detection, PHOENIX looks for specific patterns of message
flow to detect specific attacks and provide a possible remedy.

Modification of Protocol. Another approach researchers
have leveraged to provide a defense mechanism is the modifi-
cation of the protocol, such as in [34], [4], [33], [54], [32]. Out
of these works, only [32] provides a wide array of coverage
while the others mainly focus on the IMSI catching attack. In
contrast to other work, PHOENIX is the first warning system
for cellular networks that provides the device more intelligence

about other components of the network by only relying on
message flows.

XI. CONCLUSION

In this paper, we develop PHOENIX, a general approach
which can efficiently monitor a device’s cellular network traffic
and identify the presence of attacks. We achieve this by
instantiating two different implementations of PHOENIX: a
runtime monitor within an Android application, allowing the
cellular device to reason about malicious message flow and
alert the user; A modified version of srsUE [25] powered
by a runtime monitor allowing it to detect vulnerabilities and
prevent potential undesired behavior.

Overall we observe that our best approach with PLTL can
correctly identify all the 15 n-day 4G LTE attacks and unsafe
practices used in the evaluation section with a high packet
processing speed (∼68000 packets/second), while inducing a
moderate energy (∼4mW) and negligible memory overhead
(0.04%) on the device.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable sug-
gestions. This work was funded by DARPA contract no.
D19AP00039. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessar-
ily representing DARPA’s official policies or endorsements.

REFERENCES

[1] 3GPP. Non-Access-Stratum (NAS) protocol for Evolved Packet System
(EPS); Stage 3 Specification 3GPP TS 24.301 version 12.8.0 Release
12., [Online]. Available: http://www.3gpp.org/dynareport/24301.htm.

[2] Monsoon Power Meter, https://wwww.msoon.com/LabEquipment/
PowerMonitor/.

[3] Phoenix, https://phoenixlte.github.io/.
[4] Protecting IMSI and User Privacy in 5G Networks, www.ericsson.com/

res/docs/2016/protecting-imsi-and-user-privacy-in-5g-networks.pdf.
[5] python-for-android, https://python-for-android.readthedocs.io/en/latest/.
[6] Qualcomm Snapdragon 845 Mobile Platform,

https://www.qualcomm.com/media/documents/files/
snapdragon-845-mobile-platform-product-brief.pdf.

[7] Qualcomm Snapdragon 845 Mobile Platform, https://www.qualcomm.
com/system/files/document/files/snapdragon product brief 810 0.pdf.

[8] Qualcomm Snapdragon 845 Mobile Platform, https://www.qualcomm.
com/media/documents/files/snapdragon-805-processor-product-brief.
pdf.

[9] USRP B210, https://www.ettus.com/product/details/UB210-KIT.
[10] C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version

2.0,” in Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, England), vol. 13, 2010, p. 14.

[11] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
“A formal analysis of 5g authentication,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. New York, NY, USA: ACM, 2018, pp. 1383–1396.
[Online]. Available: http://doi.acm.org/10.1145/3243734.3243846

[12] D. Basin, F. Klaedtke, and S. Müller, “Monitoring security policies
with metric first-order temporal logic,” in Proceedings of the 15th ACM
symposium on Access control models and technologies, 2010, pp. 23–34.

[13] ——, “Policy monitoring in first-order temporal logic,” in International
Conference on Computer Aided Verification. Springer, 2010, pp. 1–18.

[14] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann, “Runtime monitoring
of metric first-order temporal properties,” in IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer
Science. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[15] D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu, “Monitoring metric
first-order temporal properties,” Journal of the ACM (JACM), vol. 62,
no. 2, pp. 1–45, 2015.

15

[16] D. A. Basin, F. Klaedtke, and E. Zalinescu, “The MonPoly monitoring
tool.” RV-CuBES, vol. 3, pp. 19–28, 2017.

[17] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for ltl
and tltl,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 4, pp. 1–64, 2011.

[18] M. Benedetti and A. Cimatti, “Bounded model checking for past ltl,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2003, pp. 18–33.

[19] S. Calzavara, R. Focardi, M. Maffei, C. Schneidewind, M. Squarcina,
and M. Tempesta, “WPSE: Fortifying web protocols via browser-side
security monitoring,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1493–1510.

[20] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and E. Weippl, “Imsi-
catch me if you can: Imsi-catcher-catchers,” in Proceedings of the 30th
Annual Computer Security Applications Conference, ser. ACSAC ’14,
2014, pp. 246–255.

[21] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[22] X. Du, Y. Liu, and A. Tiu, “Trace-length independent runtime monitoring
of quantitative policies in ltl,” in International Symposium on Formal
Methods. Springer, 2015, pp. 231–247.

[23] M. dAmorim and G. Roşu, “Efficient monitoring of ω-languages,” in
International Conference on Computer Aided Verification. Springer,
2005, pp. 364–378.

[24] M. Echeverria, Z. Ahmed, B. Wang, M. F. Arif, S. R. Hussain, and
O. Chowdhury, “Phoenix: Device-centric cellular network protocol mon-
itoring using runtime verification,” in axXiv preprint arXiv:2101.00328,
2021.

[25] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: an open-source platform for lte
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization. ACM, 2016, pp. 25–32.

[26] L. H., “LTE redirection: Forcing targeted lte cellphone into unsafe
networks,” in Hack in the Box Security Conference (HITBSec-Conf),
2016.

[27] K. Havelund and G. Roşu, “Efficient monitoring of safety properties,”
International Journal on Software Tools for Technology Transfer, vol. 6,
no. 2, pp. 158–173, 2004.

[28] B. Hong, S. Park, H. Kim, D. Kim, H. Hong, H. Choi, J.-P. Seifert, S.-J.
Lee, and Y. Kim, “Peeking over the cellular walled gardens-a method
for closed network diagnosis,” IEEE Transactions on Mobile Computing,
vol. 17, no. 10, pp. 2366–2380, 2018.

[29] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspector:
A systematic approach for adversarial testing of 4g lte,” in 25th Annual
Network and Distributed System Security Symposium, NDSS, San Diego,
CA, USA, February 18-21, 2018.

[30] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino,
“Privacy attacks to the 4g and 5g cellular paging protocols using side
channel information,” in 26th Annual Network and Distributed System
Security Symposium, NDSS, San Diego, CA, USA, February 24-27, 2019,
2019.

[31] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, N. Li, and
E. Bertino, “5GReasoner: A property-directed security and privacy
analysis framework for 5g cellular network protocol,” in Proceedings of
the 26th ACM SIGSAC Conference of Computer and Communications
Security. ACM, 2019.

[32] S. R. Hussain, M. Echeverria, A. Singla, O. Chowdhury, and E. Bertino,
“Insecure connection bootstrapping in cellular networks: the root of all
evil,” in Proceedings of the 12th Conference on Security and Privacy in
Wireless and Mobile Networks. ACM, 2019, pp. 1–11.

[33] M. S. A. Khan and C. J. Mitchell, “Trashing imsi catchers in mobile
networks,” in Proceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2017, pp. 207–218.

[34] M. Khan and V. Niemi, “Concealing imsi in 5g network using identity
based encryption,” in axXiv preprint arXiv:1708.01868, 2017.

[35] B. Kim, S. Bae, and Y. Kim, “Guti reallocation demystified: Cellular
location tracking with changing temporary identifier,” in 25th Annual
Network and Distributed System Security Symposium, NDSS, San Diego,
CA, USA, February 18-21, 2018.

[36] H. Kim, J. Lee, L. Eunkyu, and Y. Kim, “Touching the Untouchables:
Dynamic Security Analysis of the LTE Control Plane,” in Proceedings
of the IEEE Symposium on Security & Privacy (SP). IEEE, May 2019.

[37] S. Kripke, “Semantical Considerations on Modal Logic,” Acta Phil.
Fennica, vol. 16, pp. 83–94, 1963.

[38] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang, “Mobileinsight:
Extracting and analyzing cellular network information on smartphones,”
in Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’16. New York, NY, USA:
ACM, 2016, pp. 202–215.

[39] Z. Li, W. Wang, C. Wilson, J. Chen, Q. Chen, T. Jung, L. Zhang, K. Liu,
X. Li, and Y. Liu, “Fbs-radar: Uncovering fake base stations at scale
in the wild,” in 24th Annual Network and Distributed System Security
Symposium, NDSS, San Diego, CA, USA, 2017.

[40] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in
Workshop on Logic of Programs. Springer, 1985, pp. 196–218.

[41] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell
System Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

[42] B. Michau and C. Devine, “How to not break lte crypto,” in ANSSI
Symposium sur la sécurité des technologies de linformation et des
communications (SSTIC), 2016.

[43] D. Neider and I. Gavran, “Learning linear temporal properties,” in 2018
Formal Methods in Computer Aided Design (FMCAD). IEEE, 2018,
pp. 1–10.

[44] K. Nohl, “Mobile self-defense.” [Online]. Avail-
able: https://events.ccc.de/congress/2014/Fahrplan/system/attachments/
2493/original/Mobile Self Defense-Karsten Nohl-31C3-v1.pdf

[45] J. Oncina and P. Garcia, “Inferring regular languages in polynomial
updated time,” in Pattern recognition and image analysis: selected
papers from the IVth Spanish Symposium. World Scientific, 1992, pp.
49–61.

[46] S. Park, A. Shaik, R. Borgaonkar, A. Martin, and J.-P. Seifert, “White-
stingray: Evaluating IMSI catchers detection applications,” in 11th
USENIX Workshop on Offensive Technologies (WOOT ’17). Vancouver,
BC: USENIX Association, 2017. [Online]. Available: https://www.
usenix.org/conference/woot17/workshop-program/presentation/park

[47] S. Park, A. Shaik, R. Borgaonkar, and J.-P. Seifert, “White rabbit in
mobile: Effect of unsecured clock source in smartphones,” in Proceed-
ings of the 6th Workshop on Security and Privacy in Smartphones and
Mobile Devices. ACM, 2016, pp. 13–21.

[48] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 1977, pp. 46–
57.

[49] H. Raffelt, B. Steffen, and T. Berg, “Learnlib: A library for automata
learning and experimentation,” in Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, 2005, pp.
62–71.

[50] G. Rosu and K. Havelund, “Synthesizing dynamic programming algo-
rithms from linear temporal logic formulae,” 2001.

[51] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Breaking LTE on
layer two,” in IEEE Symposium on Security & Privacy (SP). IEEE,
May 2019.

[52] A. Shaik, J. Seifert, R. Borgaonkar, N. Asokan, and V. Niemi, “Practical
attacks against privacy and availability in 4g/lte mobile communication
systems,” in 23nd Annual Network and Distributed System Security
Symposium, NDSS, San Diego, CA, USA, February 21-24, 2016.

[53] B. Soewito, L. Vespa, A. Mahajan, N. Weng, and H. Wang, “Self-
addressable memory-based fsm: a scalable intrusion detection engine,”
IEEE network, vol. 23, no. 1, pp. 14–21, 2009.

[54] F. van den Broek, R. Verdult, and J. de Ruiter, “Defeating imsi catchers,”
in Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. ACM, 2015, pp. 340–351.

[55] Z. Zhuang, X. Ji, T. Zhang, J. Zhang, W. Xu, Z. Li, and Y. Liu,
“Fbsleuth: Fake base station forensics via radio frequency fingerprint-
ing,” in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, ser. ASIACCS ’18, 2018, pp. 261–272.

APPENDIX A
EVALUATION

16

Attack name Dataset Size DFA
Training Time

PLTL
Training Time

DFA
States

DFA
Transitions

DFA Alphabet
Size

PLTL
Propositions

PLTL
Operators

NAS

Attach Reject

50 0.05 21.44 7 80 17 1 1
100 0.67 49.7 2 33 17 1 1
250 0.67 137.25 18 140 17 1 1
500 0.67 389.94 22 286 19 1 1
1250 1 TIMEOUT 4 60 18 N/A N/A
2500 0.5 TIMEOUT 2 35 18 N/A N/A

Authentication Failure

50 0.29 14.07 3 36 17 1 1
100 0.6 43.77 5 64 17 1 1
250 0.43 114.26 9 101 17 1 1
500 0.375 379.76 17 184 18 1 1
1250 0.5 1677.92 5 62 18 1 1
2500 0.38 TIMEOUT 4 58 18 N/A N/A

EMM Information

50 0.17 26.62 10 104 18 1 1
100 0.5 50.25 4 53 18 1 1
250 0.2 463.9 3 47 18 1 1
500 0.375 1372.09 11 120 18 1 1
1250 0.375 TIMEOUT 2 35 19 N/A N/A
2500 0.6 TIMEOUT 5 64 18 N/A N/A

IMEI Catching

50 0.5 22.42 12 106 20 1 1
100 0.3 46.78 5 81 19 1 1
250 0.33 142.52 4 69 19 1 1
500 0.3 370.02 4 65 20 1 1
1250 0.8 TIMEOUT 6 99 19 N/A N/A
2500 0.3 TIMEOUT 3 46 19 N/A N/A

IMSI Catching

50 0.15 26.61 5 64 20 1 1
100 0.27 58.55 5 80 19 1 1
250 0.25 149.23 14 166 20 1 1
500 0.5 329.04 7 107 20 1 1
1250 0.6 TIMEOUT 3 49 20 N/A N/A
2500 0.38 TIMEOUT 2 36 19 N/A N/A

Malformed Identity Request

50 0.33 21.94 8 101 20 1 1
100 0.23 51.89 18 191 20 1 1
250 0.5 190.94 12 146 21 1 1
500 0.23 370.37 9 116 21 1 1
1250 0.33 TIMEOUT 4 69 21 N/A N/A
2500 0.43 TIMEOUT 4 66 20 N/A N/A

Null Encryption

50 0.38 18.29 4 53 20 1 1
100 0.6 47.22 4 54 20 1 1
250 0.6 161.44 12 158 21 1 1
500 0.3 385.91 13 150 21 1 1
1250 0.43 TIMEOUT 10 119 21 N/A N/A
2500 0.5 TIMEOUT 5 87 21 N/A N/A

Numb Attack

50 0.43 57.05 4 44 18 2 2
100 0.2 144.87 4 39 18 2 2
250 0.2 359.68 3 31 19 2 2
500 0.27 558.54 3 35 19 2 2
1250 0.17 TIMEOUT 6 75 20 N/A N/A
2500 0.23 TIMEOUT 3 33 20 N/A N/A

Service Reject

50 0.21 33.93 7 100 18 1 1
100 0.33 82.2 2 34 18 1 1
250 0.23 153.34 5 71 18 1 1
500 0.33 1110.77 25 279 18 1 1
1250 0.67 TIMEOUT 2 35 18 N/A N/A
2500 0.6 TIMEOUT 2 35 18 N/A N/A

TAU Reject

50 0.43 21.97 2 35 19 1 1
100 0.43 55.51 9 118 19 1 1
250 0.375 156.81 2 37 19 1 1
500 0.43 348.59 2 36 19 1 1
1250 0.33 TIMEOUT 15 187 19 N/A N/A
2500 0.3 TIMEOUT 6 66 19 N/A N/A

RRC

AKA Bypass

50 0.3 2782.81 10 98 19 3 3
100 0.2 TIMEOUT 15 166 22 N/A N/A
250 0.8 TIMEOUT 38 519 22 N/A N/A
500 0.3 TIMEOUT 28 323 22 N/A N/A
1250 0.33 TIMEOUT 76 886 22 N/A N/A
2500 0.6 TIMEOUT 118 1447 22 N/A N/A

IMSI Cracking (4G)

50 0.56 216.51 5 92 23 2 2
100 0.33 661.59 17 245 28 2 2
250 1 1428.2 4 82 24 2 2
500 0.67 TIMEOUT 3 80 32 N/A N/A
1250 0.33 TIMEOUT 7 156 33 N/A N/A
2500 0.67 TIMEOUT 4 100 33 N/A N/A

Measurement Report

20 0.71 TIMEOUT* 14 202 23 3 3
50 0.38 TIMEOUT 13 182 21 N/A N/A
100 0.3 TIMEOUT 6 89 23 N/A N/A
250 0.33 TIMEOUT 43 537 27 N/A N/A
500 0.25 TIMEOUT 53 712 27 N/A N/A
1250 0.33 TIMEOUT 122 1646 27 N/A N/A
2500 0.22 TIMEOUT 161 2184 27 N/A N/A

Paging with IMSI

50 0.25 57.31 8 135 23 1 1
100 0.25 51.66 3 65 24 1 1
250 0.15 146.74 29 487 24 1 1
500 0.12 517.27 2 46 24 1 1
1250 0.25 TIMEOUT 3 73 27 N/A N/A
2500 0.18 TIMEOUT 111 1835 27 N/A N/A

RLF Report

50 0.25 1538.16 15 188 22 4 3
100 0.18 TIMEOUT 19 229 22 N/A N/A
250 0.38 TIMEOUT 31 429 22 N/A N/A
500 0.25 TIMEOUT 50 744 22 N/A N/A
1250 0.14 TIMEOUT 97 1416 22 N/A N/A
2500 0.08 TIMEOUT 117 1633 22 N/A N/A

TABLE VII: Training time in seconds and size of the synthesized DFA and PLTL signatures. (* = PLTL synthesizer generated
at least one signature but less than five before timing out.)

17

Attack Experiment Size DFA Precision DFA Recall DFA F1 PLTL Precision PLTL Recall PLTL F1 MM Precision MM Recall MM F1
NAS

Attach Reject

50 0.35 0.799 0.487 1 1 1 1 0.979 0.989
100 1 1 1 1 1 1 1 1 1
250 0.874 0.931 0.902 1 1 1 1 0.988 0.994
500 0.855 0.808 0.831 N/A N/A N/A 1 1 1
1250 0.697 0.674 0.685 N/A N/A N/A 1 1 1
2500 1 1 1 N/A N/A N/A 1 0.767 0.868

Authentication Failure

50 0.983 0.77 0.864 1 1 1 1 1 1
100 0.943 0.891 0.916 1 1 1 1 0.996 0.998
250 0.751 0.962 0.844 1 1 1 1 1 1
500 0.72 0.824 0.768 N/A N/A N/A 1 1 1
1250 0.671 0.997 0.802 N/A N/A N/A 1 1 1
2500 0.914 1 0.955 N/A N/A N/A 1 1 1

EMM Information

50 0.242 0.949 0.386 1 1 1 1 1 1
100 0.624 0.85 0.72 1 1 1 1 1 1
250 0.278 1 0.435 1 1 1 1 1 1
500 0.353 0.989 0.52 N/A N/A N/A 1 1 1
1250 1 1 1 N/A N/A N/A 1 1 1
2500 0.81 0.998 0.894 N/A N/A N/A 1 1 1

IMEI Catching

50 0.821 0.688 0.749 1 1 1 1 1 1
100 0.965 0.659 0.783 1 1 1 1 1 1
250 0.999 0.972 0.985 1 1 1 1 1 1
500 0.999 0.972 0.985 N/A N/A N/A 1 1 1
1250 0.632 0.635 0.633 N/A N/A N/A 1 1 1
2500 0.5 0.7 0.583 N/A N/A N/A 1 1 1

IMSI Catching

50 0.538 0.876 0.667 1 1 1 1 1 1
100 0.653 0.985 0.785 1 1 1 1 1 1
250 0.942 0.943 0.942 1 1 1 1 1 1
500 0.981 0.966 0.973 N/A N/A N/A 1 0.999 0.999
1250 0.977 1 0.988 N/A N/A N/A 1 1 1
2500 1 1 1 N/A N/A N/A 1 0.997 0.998

Malformed Identity Request

50 0.739 0.502 0.598 1 1 1 1 1 1
100 0.805 0.504 0.62 1 1 1 1 1 1
250 0.746 0.702 0.723 1 1 1 1 1 1
500 0.97 0.662 0.787 N/A N/A N/A 1 1 1
1250 0.978 0.5 0.662 N/A N/A N/A 1 1 1
2500 0.417 0.466 0.44 N/A N/A N/A 1 1 1

Null Encryption

50 0.524 0.868 0.653 1 1 1 1 1 1
100 0.437 0.944 0.597 1 1 1 1 0.967 0.983
250 0.822 0.965 0.888 1 1 1 1 1 1
500 0.528 0.967 0.683 N/A N/A N/A 1 1 1
1250 0.467 0.89 0.613 N/A N/A N/A 1 1 1
2500 0.709 0.989 0.826 N/A N/A N/A 1 1 1

Numb Attack

50 0.817 1 0.899 1 1 1 0.997 1 0.999
100 0.98 1 0.99 1 1 1 0.968 0.981 0.975
250 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 0.98 0.987 0.984
1250 0.989 1 0.994 N/A N/A N/A 1 1 1
2500 1 1 1 N/A N/A N/A 1 1 1

Service Reject

50 0.704 0.721 0.712 N/A N/A N/A 1 0.944 0.971
100 1 1 1 1 1 1 1 1 1
250 0.976 0.84 0.903 1 1 1 1 1 1
500 0.765 0.857 0.808 N/A N/A N/A 1 0.975 0.987
1250 1 1 1 N/A N/A N/A 1 1 1
2500 1 1 1 N/A N/A N/A 1 0.902 0.948

TAU Reject

50 1 0.877 0.934 1 1 1 1 1 1
100 0.627 0.951 0.756 1 1 1 1 1 1
250 1 0.902 0.948 1 1 1 1 1 1
500 1 1 1 N/A N/A N/A 1 1 1
1250 0.98 0.67 0.796 N/A N/A N/A 1 1 1
2500 1 0.902 0.948 N/A N/A N/A 1 1 1

RRC

AKA Bypass

50 0.984 0.809 0.888 1 1 1 0.899 0.93 0.914
100 0.781 0.824 0.802 N/A N/A N/A 0.965 0.975 0.97
250 0.817 0.812 0.814 N/A N/A N/A 0.989 0.996 0.993
500 1 0.977 0.988 N/A N/A N/A 0.995 0.997 0.996
1250 1 0.908 0.952 N/A N/A N/A 0.993 0.988 0.99
2500 1 0.95 0.974 N/A N/A N/A 1 1 1

IMSI Cracking

50 1 1 1 1 1 1 0.92 0.994 0.956
100 1 1 1 1 1 1 0.736 1 0.848
250 1 0.5 0.667 1 1 1 0.682 1 0.811
500 1 1 1 N/A N/A N/A 0.66 0.998 0.795
1250 1 1 1 N/A N/A N/A 0.708 1 0.829
2500 1 1 1 N/A N/A N/A 0.671 1 0.803

Measurement Report

20 0.434 0.456 0.445 1 1 1 N/A N/A N/A
50 0.687 0.565 0.62 N/A N/A N/A 0.878 0.864 0.871

100 0.998 1 0.792 N/A N/A N/A 0.948 0.937 0.943
250 0.87 0.689 0.769 N/A N/A N/A 0.984 0.964 0.974
500 0.84 0.759 0.887 N/A N/A N/A 0.989 0.985 0.987
1250 0.854 0.739 0.445 N/A N/A N/A 0.993 0.976 0.984
2500 0.948 0.834 0.62 N/A N/A N/A 1 1 1

RLF Report

50 0.826 0.632 0.716 1 1 1 0.932 0.816 0.87
100 0.268 0.519 0.353 N/A N/A N/A 0.94 0.896 0.918
250 0.515 0.518 0.516 N/A N/A N/A 0.989 0.957 0.973
500 0.55 0.545 0.547 N/A N/A N/A 0.996 0.956 0.976
1250 0.511 0.515 0.513 N/A N/A N/A 0.995 0.966 0.98
2500 0.829 0.639 0.722 N/A N/A N/A 1 1 1

Paging with IMSI

50 50 0.634 0.918 1 1 1 1 0.998 0.999
100 100 0.653 1 1 1 1 1 1 1
250 250 0.591 0.963 1 1 1 1 1 1
500 500 0.653 1 1 1 1 1 0.998 0.999
1250 1250 0.653 1 N/A N/A N/A 1 1 1
2500 2500 0.632 0.571 N/A N/A N/A 1 1 1

TABLE VIII: Effectiveness evaluation for all the synthesized signatures across all attacks. Where each row indicates the
effectiveness on that specific attack, when trained on their respective training dataset with the size specified in the second
(Size) column. Do note that Mealy Machine is also trained with other attacks at the same time.

18

