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Abstract—We introduce screen gleaning, a TEMPEST attack
in which the screen of a mobile device is read without a visual
line of sight, revealing sensitive information displayed on the
phone screen. The screen gleaning attack uses an antenna and
a software-defined radio (SDR) to pick up the electromagnetic
signal that the device sends to the screen to display, e.g., a message
with a security code. This special equipment makes it possible to
recreate the signal as a gray-scale image, which we refer to as
an emage. Here, we show that it can be used to read a security
code. The screen gleaning attack is challenging because it is often
impossible for a human viewer to interpret the emage directly. We
show that this challenge can be addressed with machine learning,
specifically, a deep learning classifier. Screen gleaning will become
increasingly serious as SDRs and deep learning continue to
rapidly advance. In this paper, we demonstrate the security code
attack and we propose a testbed that provides a standard setup
in which screen gleaning could be tested with different attacker
models. Finally, we analyze the dimensions of screen gleaning
attacker models and discuss possible countermeasures with the
potential to address them.

I. INTRODUCTION

Most of our daily business relies on the devices we carry on
us. A great deal of sensitive information is exchanged through
these devices, and the security and privacy of our data is
constantly at stake. Even the task of authenticating ourselves
(or our data) has been shifted to our phones, where two-factor
authentication, a common approach, requires successfully pre-
senting two or more pieces of evidence to confirm our identity.

To protect our data, mobile devices typically use secret
(cryptographic) keys that are not accessible from the outside.
Getting a hold of the key allows a hacker to steal our data.
The majority of real-world attacks on security implementations
on small devices today use side-channel analysis (SCA), i.e.,
they measure and process physical quantities, like the power
consumption or electromagnetic emanations of a chip, or
reaction time of a process. Moreover, thanks to computing
power becoming ever cheaper nowadays, modern adversaries
have started using state-of-the-art machine and deep learning
algorithms for SCA. Securing (embedded) systems against
SCA remains a great challenge.

In certain cases, the security implementation is not the tar-
get of an attack. Instead, the target is the sensitive information
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displayed on the screen. For example, here, we can think of
secret security codes sent from banks or credit card companies,
giving secure access to a user who is the only one able to read
the code. SCA can take advantage of the fact that information
is exposed in this way in order to mount an attack. Since
we can expect adversaries will always target the weakest link,
such attacks are more feasible than cryptographic attacks i.e.
cryptanalysis.

In this paper, we investigate the problem of sensitive
information on mobile phone screens. Until now, the study
of side-channel analysis attacks that aim to recover the screen
content of a mobile phone has focused on visible-spectrum
signals. This focus is consistent with people’s general belief
that protecting information on their mobile phone screen means
hiding it from the line of sight of a person or a camera.
However, SCA can go beyond visible-spectrum information
displayed on the screen. In this paper, we present a low-cost
SCA attack that can recover information displayed on a mobile
device’s screen by capturing the electromagnetic signal sent to
the phone screen. Our work introduces an attack, which we call
screen gleaning, that uses an antenna and a basic software-
defined radio (SDR). Our attack demonstrates the security
threat posed by emanations leaking from mobile devices. We
release an implementation of our attacks that allows for further
testing and extension.

The side-channel analysis that we consider in this work is
a type of TEMPEST technique. TEMPEST techniques exploit
vulnerabilities of communication and other types of emana-
tions from electrical equipment that contain sensitive data [55].
From our experiments with a simple TEMPEST setup using
an SDR receiver, we were able to successfully capture the
phone screen content without a visible-spectrum line of sight.
The signal recovered from the screen can be visualized as a
gray-scale image, which we refer to as an emage. A challenge
faced by our attack is that the emage is often not interpretable,
meaning that it cannot be read by way of human eyesight.
We propose a machine learning-based approach capable of
processing an emage that is not interpretable to the human
eye in order to recover secret information, such as a security
code in two-factor authentication.

This simple attack story illustrates the potential danger of
our attack:

Alice keeps her mobile phone on a stack of magazines
on top of her desk. She lays the phone face down because
she receives security codes and she believes that blocking the
visual line of sight to the phone screen will keep the codes
secure. Eve has access to Alice’s desk and has hidden an

Code available at: https://github.com/cescalab/screen_gleaning



antenna under the top magazine. The antenna can read the
security code via electromagnetic emanations of the phone.

In sum, this paper makes five contributions:

e We present a novel side-channel technique called screen
gleaning, an attack that can be used to recover information
such as a security code communicated by text message.
The attack does not require a visual line of sight nor the
readability of the signal by a human. In fact, the signal we
observe is, in most cases, not interpretable to the human
eye, so the information in the leakage is not obvious.

e We show that this kind of challenge can be tackled using
machine learning, and specifically, using a deep learning
classifier we are able to attain very high accuracy (of close
to 90%) when guessing the digits of a security code.

e We quantitatively demonstrate that our attack is effective
for three representative phone models under various envi-
ronmental conditions. In particular, our attack is applica-
ble in the context of cross-device, through-magazine, and
noisy environments.

e We define and validate a new testbed applicable for
further research on screen gleaning. The testbed includes
a parameterized attacker model, which will guide future
research to systematically explore and exploit the threat
of screen gleaning.

e Finally, we propose and discuss possible countermeasures
against screen gleaning attacks on mobile devices.

The remainder of this paper is organized as follows: In
Section II, we discuss related work. Section III describes the
attacker model. In Section IV, we describe our measurement
and machine learning setup. In Section V, we explain the
experiments we conducted together with the results. Section VI
introduces a testbed. Section VII discusses the results of the
paper and describes different countermeasures. Section VIII
discusses different formulations of the screen gleaning prob-
lem. Finally, Section IX concludes the paper.

II. RELATED WORK
A. Side-Channel Attacks

A security attack exploiting unintentional physical leakage
is called a side-channel attack. For example, an adversary
might be able to monitor the power consumed by a device
while it performs secret key operations [41], [43]. Other
sources of side-channel information, such as electromagnetic
emanations from a chip [2], [25], [58] and timings for different
operations performed [42], were also shown to be exploitable
(for an overview see [52]).

Side-channel attacks pose a real threat to the security of
mobile and embedded devices and since their invention many
countermeasures have been proposed. The goal of counter-
measures is to remove the dependence between the (secret)
data and the side channel such as power consumed during the
computation. An extensive study of the power side channel
from mobile devices was presented in [64]. One approach for
countermeasures aims to break the link between the actual data
processed by the device and the data on which the computation
is performed. Such a countermeasure is usually called masking
and is exploiting the principle of secret sharing [18]. A second
approach aims at breaking the link between the data computed

by the device and the power consumed by the computations.
This approach is called hiding, and one way to achieve it is by
flattening the power consumption of a device by, for example,
using special logic styles that are more robust against SCA
attacks such as WDDL [60].

SCA attacks belong to the most serious threats to embedded
crypto devices and often target the secret (cryptographic) key
in a device that keeps personal data and communications
secure [11], [26] or even white-box implementations [13].
There are many examples of SCA attacks in the real-world
such as [9], [23], [57] and more recent ones [20], [37], [56].

TEMPEST is another side-channel technique that has been
known for decades. TEMPEST refers to spying on computer
systems through leaking emanations, including unintentional
radio or electrical signals, sounds, and vibrations [47]. For
example, through TEMPEST, one could easily detect a user’s
keystrokes using the motion sensor inside smartphones or
recover the content from a computer or other screens remotely.
In 1985 van Eck published the first unclassified analysis of
the feasibility and security risks of emanations from computer
monitors. Previously, such monitoring was believed to be
a highly sophisticated attack available only to governments.
However, van Eck successfully eavesdropped on a real system,
at a range of hundreds of meters, by measuring electromagnetic
emanations using just $15 worth of equipment plus a CRT
television set [62]. Later, Kuhn performed a comprehensive
study on a range of flat-screen monitors and eavesdropping
devices [45]-[47]. Other side channels can also convey the
screen’s content in the frequency range of the visible spectrum
[6], [8], [46], [63] or through acoustic channel [27] but can
sometimes even require an expensive telescope.

More recently, Backes et al. [6], [8] improved TEMPEST
further and argue that the requirement on a direct line of
sight is not necessary as they exploit reflections between the
target screen and the observer. Xu et al. [63] broadened the
scope of the attacks by relaxing the previous requirements
and showing that breaches of privacy are possible even when
the adversary is “around a corner”. A new technique is
presented for reconstructing the text typed on a mobile device,
including password recovery via analysis of finger motions
over the keyboard and language model. The main distinction
from the works by Backes et al. is that they use “repeated”
reflections, i.e., reflections of reflections in nearby objects,
but always originating from the surface of a person’s eyeball.
Nevertheless, all those papers use direct or indirect reflections
from the screen, which makes their research line very different
from ours. More specifically, those papers focus on recovering
text and images from the screen while being typed and being
captured by a camera from an eyeball, which implies rather
special assumptions on the setup and attacker model.

Hayashi et al. performed a comprehensive evaluation of
electromagnetic emanations from a chip including countermea-
sures [31]-[34]. However, their focus is on recovering secret
information from “inside” such as cryptographic keys and not
the screen content.

As a follow-up, the work of Kinugawa et al. [40] demon-
strates that it is possible to amplify the electromagnetic leakage
with cheap hardware modification added on potentially any
device and spread the attack to a broader distance. They



demonstrate that this additional circuitry, a so-called intercep-
tor, enlarges the amount of leakage and even forces leakage in
devices that do not suffer potential electromagnetic leakage.

Goller and Sigl proposed to use standard radio equipment
when performing side-channel attacks on smartphones [29].
They also aimed their attack at cryptographic operations inside
the chip as they demonstrate the ability to distinguish between
squaring and multiplications. This observation could lead to
the full RSA key recovery, assuming that the modular ex-
ponentiation is implemented with a basic square-and-multiply
algorithm. Their setup used an Android phone to collect elec-
tromagnetic leakages from (albeit they modified the hardware,
which makes their attacker’s model different).

There exist many papers considering finger movements on
the screen or other traces from typing on a smartphone. For
example, Cai et al. developed an Android application called
TouchLogger, which extracts features from device orientation
data to infer keystrokes [16]. Aviv et al. used the embedded
accelerometer sensor to learn user tapping and gesturing to un-
lock smartphones [5]. In another work, they introduce smudge
attacks as a method that relies on detecting the oily smudges
left behind by the user’s fingers when operating the device
using simple cameras and image processing software [4].

As another two examples of recent work, we also mention
the papers of Genkin et al. [27], [28]. In [28], the authors use
various side channels like power and electromagnetic radiation
to extract cryptographic keys, i.e., RSA and ElGamal keys
from laptops, but do not discuss the possibility to perform the
attacks on a phone. On the other hand, in [27] the authors
show how to extract the screen content by using the acoustic
side channel. They demonstrate how the sound can be picked
up by microphones from webcams or screens and transmitted
during a video conference call or archived recordings. It can
also be recorded by a smartphone or other device with a mi-
crophone placed in the screen proximity. These two examples
are different from our work because they use either another
kind of emanation or have different attack goals (or both).

Other work using acoustic side channels is from Berger et.
al [12], which demonstrated a dictionary attack using keyboard
acoustic emanations. Backes et al. [7] investigated acoustic
side channel on printers, and Asonov and Agrawal [3] used
the sound emanated by different keys to recover information
typed on a keyboard.

In sum, the uniqueness of our contribution is a side-channel
analysis attack that exploits the electromagnetic emanations
of the display cable from a mobile phone. These emanations
are less accessible and may be substantially weaker than
the signals analyzed in more traditional TEMPEST technique
attacks. To the best of our knowledge, the most recent work,
which bears superficially similarity to ours, is [49]. This work
applied deep learning to recognition on TEMPEST signals,
but does so with the goal of automation and enhancement.
In other words, [49] targeted a captured signal in which the
content is clearly interpretable to the human eye (cf. Figure 2
in [49]). In our work, machine learning is used for the purpose
of identification. We face the challenge of an uninterpretable
emage derived from a mobile phone.

B. Deep Learning and Side-channel Analysis

Several side-channel analysis techniques are based on pro-
filing a physical device and are commonly known as femplate
attacks and refer to the first such attack presented by Chari
etal. [19]. Profiling attacks estimate a power profile of a
cryptographic device for each possible secret key from their
resulting power traces (also known as the training phase)
and predicting the corresponding key of an unknown trace.
From this very similar approach to machine learning, several
methods have been inspired by machine learning and neural
networks [15], [17], [38], [51]. These methods have raised
much attention as they provide more powerful attacks than
the state-of-the-art. In our work, we will discuss the usability
of deep learning, specifically Convolutional Neural Networks
(CNNSs) [44], [48], for classifying the emages that are recon-
structed from the screen content.

Image classification is the task of predicting a class for a
given image according to its content. In the context of machine
learning, it can be automated by modeling a transformation
from an image to its corresponding class. Early research [30],
[50], [61] tackled this problem via a two-step process: man-
ually extracting features from the images and then training a
discriminative model for classification.

Deep learning algorithms, such as CNNs [44], [48], au-
tomatically learn image features simultaneously with learning
the classification by making use of a large number of filters
in an end-to-end manner. Deep learning has lead to break-
through success in general image classification. Large-scale
training and diverse data augmentation techniques make an
important contribution. In particular, it has been demonstrated
that deep learning can achieve superhuman performance in
specific domains where the discriminative visual patterns are
hard to distinguish by the human eye, e.g., image forensics
and steganalysis [10], [65], [66]. In our work, since the emage
content is hardly recognizable to the human eye, we use CNNs
to capture the subtle differences between various classes, rather
than relying on human-interpretable features.

III. ATTACKER MODEL

The attacker’s goal is to recover the information (e.g.,
security code, password, or message) displayed on the target
display. We start from the general attack story presented in the
introduction: an antenna is planted that can read a security code
from a mobile phone screen without a visible-spectrum line of
sight. This story is the basis for the attacker model, which is
illustrated in Figure 1 and characterized in detail in Table I. In
this section, we provide an explanation of the attacker model
and its motivation.

Our attacker model makes the following assumptions:

e The set of symbols displayed on the phone is finite and
known (i.e., digits 0-9). This assumption holds true of any
information expressed as alphanumeric characters.

e The attacker has access to a profiling device sufficiently
similar to the target device, which is used to collect
training data for the machine learning classifier.

e The context for the attack is a side-channel analysis setup
for a passive adversary, featuring an antenna that has been
positioned to collect electromagnetic emanations and an
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Fig. 1: Screen gleaning attack. The target emits electro-
magnetic side-band intercepted by an antenna connected to
a software-defined radio (SDR). The leaked information is
collected and reconstructed as a gray-scale image (emage).
From emage, the 6-digit security code is cropped and fed into
a CNN classifier for recognition.

SDR device for signal processing. The antenna picks up
the signal from close range.

e During the attack, the attacker can collect electromagnetic
traces from the target device representing the image
displayed on the screen. The traces are analyzed for the
appearance and identification of the pincode.

We now explain the attack in more detail. The device under
attack (Figure 1 upper left) is assumed to be a standard device
(e.g. a phone) and comply with the standards imposed by
EMC regulations laws. The attacker can only rely on unin-
tentional electromagnetic leakage of the device under attack
to reconstruct the image displayed on the victim’s screen.
The leaked electromagnetic signal is characterized by several
physical properties of the screen (e.g., resolution, refresh rate)
and by the technology used for the image rendering (e.g., CRT,
TFT-LCD). The work of Marinov [54] led to the development
of a software toolkit (Figure 1 upper middle) capable of
reconstructing the image from emanations of a video monitor.
This tool, TempestSDR, is publicly available [53] and used as
a starting block of our work.

It is important to understand that the challenges involved
with the capture and interpretation of electromagnetic emana-
tions from the display cable of a mobile phone are different
from those with other devices considered in conventional
TEMPEST studies. Given the advance in video display tech-
nology, modern screens now use less energy and their circuitry
is getting smaller. The resulting electromagnetic coupling is
lowered and the carrying frequency of the electromagnetic
emanation is increased. Additionally, basic design compliance
to guarantee the electromagnetic compatibility of the products
helps to reduce unintentional leakages. These factors make
the exploitation of this signal more complex and degrade the

Dimension Description
Message A six digit security code; each content digit
& can be 0-9 with equal probability.
The standard size, position, and font with
which a security code appears as a push
Message message during a conventional authentication
appearance procedure. Plain background and standard
brightness are used.
Attack Close field antenna and standard SDR; we
hardware assume immediate proximity of the antenna.
We assume full access to the profiling device
. for the purpose of collecting training data; We
DeVlC? can display an image on the device. We have
profiling sufficient time to collect data from several
sessions. (2-3 hours.)
About 24 hours on a standard laptop, or 1 hour
C ional % 2 laptop with a GPU for training. For
omputationa recovery, once the emage has been captured, a
resources

matter of seconds.

TABLE I: Five-dimensional attacker model: Specifications of
the attacker model used in our security code attack

intercepted signal of electromagnetic emanation of cables.

For completeness, we discuss the future implications of
the choices made in our setup. Here, we choose to work in
close range and use a near-field magnetic probe. We note that
in the future, additional effort can be invested in order to
design the antenna that takes into account the electromagnetic
properties of the leaking device. A broad description of these
characteristics and how to select a matching antenna to the
electromagnetic leakage is discussed in [45]. We assume that
better antennas will relax the constraints of our attacker model
in the future. Some relevant work about designing antennas for
a better electromagnetic setup was done in [59].

We next turn to discuss the “profiling stage” of the attack in
more detail. As previously mentioned, if an emage has a low
signal-to-noise ratio (SNR), it is impossible for the attacker
to read the emage with the naked eye. In this case, in order
to interpret the image and recover the screen content, the
attacker must use machine learning to analyze and interpret
the emage. To realize the machine learning classifier, it is
necessary to train it on examples of the signal of the antenna,
which is the “profiling” part of our attack. The attacker uses the
profiling device to display specific images with known content
and captures the emages that correspond to these emages.
The collected emages are labeled with the image content and
constitutes the training data set.

Once the model is trained, the attacker will be able to
record emages from the device under attack to derive the secret
information displayed. The process is illustrated in Figure 1.
The success of the attack is measured as the classification
accuracy, which quantifies the ability of the classifier to recover
the six-digit security code.

In our experiments, we first set up our attack using the same
device at the profiling device and the target device. Considering
the same target for profiling and attack phases allows us to
understand the danger of the attack under best-case conditions
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Fig. 2: Measurement setup. (A) near-field probe, (B) targeted
phone displaying a security code, (C) power amplifier, and (D)
the software-defined radio.

for training data collection. Later, we extend the attack to using
two different devices. We consider a device of the same make
and model to collect data, and also the situation in which the
profiling device is another phone altogether.

We close this section by explicitly summarizing the differ-
ence between our attack model and those previously studied
in the literature. Because of the specific challenges of mobile
phones discussed above, the types of attacks that are successful
are not the same as the attacks previously discussed in the
literature for other devices. While the TEMPEST technique has
been known for decades, there have been no demonstrations of
it on mobile devices. The attack model for mobile phones until
now has assumed the exploitation of reflections of a visible-
spectrum signal, which means that the information is supposed
to be visually accessible to humans [6], [8]. Other attack setups
exploiting electromagnetic side-band have the goal to do key
recovery from cryptographic implementations running on the
phone [29]. Our work is different as it shows for the first
time the threat of TEMPEST on a range of mobile phones for
a (machine learning-assisted) adversary that can extract the
screen content that could appear incomprehensible to humans.

In Section VI, we will provide additional discussion of the
attacker model, describing how future work can build on and
extend it. We emphasize that the attack that we present in this
section is important because it reveals the danger in anticipa-
tion of the development of more sophisticated attackers.

IV. ATTACK SETUP
A. Measurement Setup

1) Target: A TEMPEST attack can potentially be per-
formed on any communication device, whether mechanical or
electrical, as long as the signal involved for the communication
can be intercepted by a third party using unconventional
means. It is non-trivial to define such a means, and also the
cause of the communication leakage, because this leak has not
been designed. Leaks have been shown in the literature to be
of several forms linked to the physically inherent properties of
the communication signal.

Our work focuses on electronic personal mobile devices
leaking an analogue video signal as electromagnetic emana-
tion. The signal leaks from the ribbon cable that connects the
graphical computing unit to the screen. Note that the attack we

studied here would be blocked in the case that video encoding
is applied to the video signal. The vulnerability of encoded
signals needs to be investigated in future work.

The cable, which conveys the electric information, acts
as an undesired antenna and transmits the video signal in
the electromagnetic spectrum in the surrounding area. An
impedance mismatch between the cable and socket on both the
motherboard and the display can enhance the ribbon cable’s
leakage. The difference of impedance is possibly caused by a
dimension mismatch between the socket and the ribbon cable.
The connecting cable is often designed to be smaller than the
socket to avoid possible interference between neighboring con-
nectors. Since each manufacturer is free to use a different offset
for these cables, different phones radiate with varying signal
strengths. Future research should prove the hypothesis that
different phones have different signal strengths radiated, by
means of quantifying the radiated signal. According to [54], the
frequency of the leaked signal is dependent on several screen
properties and can be estimated at a specific frequency (and
its harmonics) with the following relation: f, = x; X y; X fr,
where x; and ¥, are respectively height and with of the screen
in pixels and f,. is the screen refresh rate in Hertz (Hz).

The principal target in the experiment section is an Apple
iPhone 6s with an IPS LCD screen of size 1334 x 750 pixels.
We also present results using different targets to prove the
portability of the attack. The different targets used are listed
in Table II with the center frequency of the strongest video
signal leakage, the SNR of the leakage as well as relevant
information about the targets (screen size, technology and
Operating System version). The SNR is computed at the center
frequency of the signal with a bandwidth of 50 MHz and a
resolution of 25 kHz.

2) Equipment: Figure 2 shows an overview of the setup
with the elements labeled as follows. The antenna we use is
a passive Langer RF-R 400 magnetic probe (A). The target
is an iPhone 6s (B). The signal from the probe is amplified
with a Minicircuits ZKL-2 amplifier (C) and digitized with
a Software-Defined Radio (SDR), an Ettus X310 (D) with a
UBX-160 daughter-board. The signal acquired by the SDR is
then interpreted with TempestSDR [53], an open-source tool
capable of reconstructing an image from the display by the
obtained sequence of electromagnetic leakages [54].

3) Positioning and Parameters: We use SCA equipment to
show a proof of concept of this attack because the parameters
and positioning settings are close in the two contexts. Nonethe-
less, using more specialized equipment for TEMPEST attacks
may achieve better results. The magnetic probe is placed on
top of the target, at a close distance (< lcm). The best position
and distance of the probe from the target is manually optimized
to observe the best possible signal to noise ratio (SNR).

TempestSDR has a number of parameters to configure the
SDR and to recover the image from the signal. The SDR has
the following parameters: center frequency, bandwidth, and
sampling rate. The bandwidth and sampling rate are fixed to
12.5 MHz and 25 M samples per second respectively. The SDR
captures a bandwidth of 12.5 MHz around the adjustable center
frequency. We adjust the center frequency to determine the
best SNR. The parameters to recover an image from a signal
are: height and width in pixels and refresh rate in frames per



Phone \ Leakage Center Frequency ¥ SNR  Screen Technology 0oS

iPhone 6s 295 MHz 33.4dB IPS LCD I0S 10.2.1
iPhone 6-A 105 MHz 25.0dB IPS LCD I0S 12.4.8
iPhone 6-B 105 MHz 26.8dB IPS LCD I0S 12.4.8
iPhone 6-C 105 MHz 24.9dB IPS LCD I0S 12.4.8
Honor 6X 465 MHz 36.6dB IPS LCD Android 7.0
Samsung Galaxy A3 295 MHz 25.9dB AMOLED Android 5.0

TABLE II: Screen specification of the targets

creen
Synchronize

emage
acquisition

@

Bank Application
01234
56789

Fig. 3: Automation workflow

second. There are also sliders to adjust the gain and low pass
filter of the SDR. The values for the width and the height do
not necessarily correspond to the dimensions of the screen as
more pixels may be transmitted than those that are displayed.
The selected refresh rate should be the closest possible to the
actual refresh rate and can be configured with high precision
in the software. The parameters require high precision and
differ among devices, they should be determined following the
description in [54, Section 4.2].

4) Automation: The TempestSDR software contains a built-
in function to store a processed frame. The image captured
from the reconstruction of the frame is called the emage. For
timing efficiency and reliability of the capturing process, we
use an automated approach to emage acquisition. Specifically,
we set up an application that synchronizes the selection of an
image in the image bank, displays it on the screen and saves the
emage (see Figure 3). This application consists of a Javascript
server and a simple website. Additionally, a small modification
to the TempestSDR software was made to automatically save
images and communicate with the server. The TempestSDR
sends a signal to the server to display an image from the image
bank. The server communicates this to the webpage loaded on
the phone and the webpage reports back when the image is
changed. The TempestSDR captures a parametrizable number
of emages and asks for a new image.

B. Machine Learning Setup

Here, we describe the collecting process of emage data
sets used to train our security code classifier. Given an emage
from the device under attack, the classifier can produce a
prediction of the message, which contains a six-digit security
code, displayed on the smartphone screen.

It is important to note that the attacks we investigate here

Apple
Your Apple ID Vet

Fig. 4: Screen display used to collect digits from a multi-crop
grid for training our classifier (left) and from an automated
text message containing a security code for testing (right).

can be formulated within a discrimination scenario. This means
that the goal of the attack is to discriminate between a set
of messages about which the attacker has full information.
For example, in the security code scenario, the attacker knows
that the security code consists of six places and the symbol
in each of those places is a digit from 0-9. It is important
to contrast the discrimination scenario with a reconstruction
scenario. The scenarios differ in the amount of information
about the content of the screen available to the attacker. It
is also possible to formulate screen gleaning attacks within a
reconstruction scenario. Here, the goal is to recover the content
of the screen exactly as displayed on the screen without using
any prior knowledge of what content might be displayed. The
reconstruction problem will be discussed further as an outlook
onto future work in Section VIIL

1) Data Collection: To train a classifier, the attacker needs
to collect training data from the same distribution as the
practical data shown on the target device or from similar types
of data from other devices. Practically, collecting security code
data directly from text messages needs a large amount of
annotation effort, since people have to inspect each message
and crop the code one by one. Considering such inconvenience,
we propose to generate images depicting different numbers
(0-9) over the whole image, and collect data using a multi-
crop approach. Specifically, each single image is split into
40 x 40 = 1600 cells of digits, as shown in Figure 4 (left).
Accordingly, after each trial of emage generation, we can get
1600 emages of different digits. We crop the instances with
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Fig. 5: Train/test splits specified in the case of multi-crop grid,
where the training set is gradually enlarged by including more
sessions, and the test set is fixed with two sessions.
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Fig. 6: CNN architecture used in our security code attack.

a certain human inspection to guarantee the data quality. We
conduct multiple sessions of emage generation to alleviate the
influence of distribution shift, which is validated effective as
in Section V-B.

2) CNN Architecture and Model Training: For the model
architecture, we adopt the simple LeNet [48], which was
initially proposed for handwritten digit recognition. We slightly
adapt the LeNet to fit our input emage size of 31 x 21 (for
Honor 6X the input size is 45 x 21, and for iPhone 6 is 31 x 20).
The details of the architecture is shown in Figure 6. The
PyTorch is used for our implementation and the experiments
are run on a workstation with a 16-core CPU and a GTX1080Ti
GPU. In all cases, 80% of multi-crop grid data are used for
training, 10% for validation and 10% for testing. Each round of
training can be finished within one hour when using the Adam
optimizer [39] with a learning rate of 0.001. We conduct the
training over 100 epochs with a batch size of 256, and select
the optimal model based on the validation accuracy.

V. EXPERIMENTS

In this section, we first conduct experiments on iPhone 6s
to analyze the properties of our attack on the basic single-
device scenario. Specifically, we look into the dimensions that
can potentially impact the classification performance, such as
size and heterogeneity of the training data (Section V-B), for
further analyzing the attacker’s capability in various attack
settings.

Then, we test our attack using more phones (iPhone 6-A,
iPhone 6-B, and Honor 6X) to validate the effectiveness of

] 8 8 0 | 4

2 5 8 5 8 5 2 | 6 6 3

Fig. 7: Examples of cropped 6-digit security code. Ground
truth labels are shown above each strip, with the underline
highlighting the wrong prediction of digits by our classifier.

our attack in more challenging scenarios, such as cross-device
attack, magazine occlusion, and interference from environmen-
tal signal noise. The specifications of different phones can be
found in Table II, and the detailed data collection settings are
shown in Table III.

A. Security Code Attack

In our practical security code attack, we use an Apple
iPhone 6s as the target device. We collect 10 sessions of grid
data, each of which contains 32000 emage examples. Through
human inspection, we drop one session due to an obvious data
quality issue. For inter-session evaluation on the grid data, 2
of the remaining 9 valid sessions are fixed as the test set for all
the experiments, where session 8 represents a well-positioned
antenna scenario and session 9 is for badly-positioned antenna
scenario. The training set is gradually enlarged by adding
more of the remaining sessions. Specifically, we try four
sizes of training set, which respectively consist of 1, 3, 5
and 7 sessions, denoted as Training 1, Training 2, Training
3 and Training 4, as illustrated in Figure 5. Each resulting
digit emage will be fed as input to train our CNN classifier,
following the principles in Section V-B.

We simulate 200 text messages, each of which contains a
6-digit security code, making sure they look very close to the
real case, as shown in Figure 4 (right). In this case, each emage
of the security code, with a size of 126 x 31, (see Figure 7 for
some examples) is evenly divided into six.

The best overall accuracy (89.8% in Table IV) with respect
to all 200 x 6 = 1200 individual digits is achieved when using
all of the 7 training sessions (more details about the impact
of training data amount will be discussed in Section V-B). As
can be seen in Table IV, the accuracy differs for different
digits, with the highest (99.1%) achieved for digit 4, and
lowest (75.8%) for digit 3. Figure 7 shows some examples for
the security code along with the ground truth and prediction
results. It demonstrates that our approach can correctly predict
the digits with high accuracy although the digits are hardly
recognizable to the human eye.

In practice, attackers may have various query budgets for
fully uncovering the security code (with all the 6 digits being
correct). So, in Table V, we present the accuracy results when
four security code digits or more can be correctly predicted
by our classifier. It can be observed that, with one attempt, the
attacker can fully recognize the security code at 50% of the
cases. The probability of recognizing four or more digits can



Data

Displayed Content

Train/Val/Test
Single-device Test
Cross-device Test
Magazine Test
Noise Test

Multi-Crop Grid Data
Security Code Data
Security Code Data
Security Code Data
Security Code Data

‘ iPhone 6s iPhone 6-A iPhone 6-B Honor 6X
10 5 N/A 5
2 2 N/A 2
N/A N/A 1 N/A
1 1 N/A 1
1 1 N/A 1

TABLE III: The list of collected data sessions for different phones in the security code attack. Multi-crop grid data represents
the data collected in the case of multi-crop, and security code data represents the simulated text message with the security code.

Digits

0

1

2

3

4

5

6

7

8

9

All

86.8

974 758 99.1

974 95.1

93.1

82.5

86.1

Acc. (%) | 87.2

89.8

TABLE IV: Accuracy with respect to different digits (0-9) and overall accuracy in our security code attack.

. . . . . Digit

\ 6 digits > 5 digits > 4 digits 0 01 2 3 49% 6 7 8 o

Acc. (%) ‘ 505 895 99.0 0 m 2.0 2.3 33 2.0 1.6 2.0 6.5 3.0 3.7
1 0.2 m& 0.8 0.0 0.1 0.2 0.8 0.2 0.3 80

. . . . 2 0.4 0.1 0.2 0.2 0.2 0.2 2.6 0.8 1.7

TABLE V: Accuracy of predicting partial security code cor-
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Fig. 8: Inter-session accuracy (grid data) of our security code
attack for different training sets with gradually increased size.
The two bars for each training set represent two different test
sessions (session 8 and 9).

reach 99%, showing that our approach can present a serious
threat in practice.

B. Data Analysis on Grid Data

We first consider the scenario where the attacker can train
the classifier on data sampled from the same distribution as
the attacked security code. This can be regarded as the best-
case scenario, although almost impossible in most practical
cases. Specifically, we achieve an accuracy of 86.5% within
the session used in Training 1.

Inter-session evaluation represents a more realistic attack
scenario, where the training data from the same session of
the target is not accessible, but the attacker can simulate
similar data using the same settings. Figure 8 shows the inter-
session accuracy of the four classifiers trained on different

Fig. 9: Confusion matrix of the inter-session accuracy (grid
data) in our security code task. Results are from the classifier
trained on Training 4 and tested on session 8.

training sets: training 1, 2, 3 and 4. It can be observed that
the accuracy improves as we increase the number of training
sessions. We can also observe that inter-session accuracy with
only one training session is lower than the multi-crop grid case.
However, using more training data with multiple sessions could
alleviate this issue, leading to a high accuracy of 90.9% for
Training 4 (with seven training sessions). This validates our
assumption that incorporating heterogeneous sessions could
help alleviate the impact of the random noise introduced to
the emage generation. One detailed classification result with
respect to different classes are shown in the confusion matrix
in Figure 9. We also notice that there is a difference between
the prediction performance between two test sessions, which
might be explained by their different data quality.

C. Experiments on Other Phones

In this section, we conduct experiments on different phones
to further validate the general effectiveness of our security code
recognition on different devices. We show the potential of the
recognition in more challenging and realistic scenarios, includ-
ing cross-device attack, antenna occlusion by a magazine, and
interference from the signal noise generated by surrounding
phones (cf. Figure 10). The cross-device attack consists of
training the recognition algorithm on the data from one device
and testing the model on data from another unit of the same
model. Specifically, we use two iPhone 6, namely, iPhone 6-A



Ace. (%) Test  Single-device-1 Single-device-2 Magazine With Noise iPhone 6-B
cc. (o (Grid) (Security code) (Security code) (Security code) (Security code) (Security code)
70 pages 200 pages
iPhone 6-A 73.42 41.42 47.08 14.38 - 63.29 61.54
Honor 6X 94.38 74.00 74.00 - 65.79 64.25 -

TABLE VI: Inter-session classification of our security code attack for different phones and different test settings. Grid means the
multi-crop grid test data is used, and Security Code means the simulated text message test data is used. The training set stays
the same in all test settings for each device. Single-device-1 and Single-device-2 refer to two different test sessions.

Fig. 10: Pictures of the Magazine setting (left), with the phone
in between the magazine pages and the probe on top, and the
With Noise setting (right).

and iPhone 6-B, and make sure that they have the same version
of the iOS system, and not refurbished. Five sessions of data
are collected for training the recognition model on iPhone 6-A,
and two test sessions of security code data are collected for
testing. Additionally, we collect a session of testing data with
the antenna occluded by a magazine, another test session from
iPhone 6-B and a test session with background noise. The mea-
surement setups for occluding the antenna and simulating the
background noise are shown respectively in Figure 10. Each of
the above four testing sessions contains 200 different security
codes and for each code, we repeat the frame twice for a more
stable recognition. Our attack can also work on a refurbished
iPhone (iPhone 6-C, see Table II), but no quantitative results
are reported in order to maintain fair comparison.

Table VI summarizes our experimental results under dif-
ferent test settings corresponding to the data descriptions in
Table III, i.e., Multi-crop, Single-device, Magazine, Noise,
and Cross-device. As can be seen, our model achieves high
accuracy for the original multi-crop data. For other settings,
as expected, the performance drops due to the generalization
gap but still being effective enough in most cases. Specifically,
the high cross-device accuracy suggests the effectiveness of our
attack in a more realistic scenario, where the device used for
collecting the training data is not necessarily the target device.
The results on an Android phone, Honor 6X, with four sessions
of training data, verify that the effectiveness of our attack is not
limited to the specific phone type, iPhone. we can also observe
that the single-device and cross-device sessions of the security
code yield different prediction performance, which might be
explained by their different data quality, as also reported for
iPhone 6s (cf. Section V-A).

Fig. 11: Top: An emage and its predicted activation map by
the pre-trained model on iPhone 6s. Warmer color represents
higher prediction confidence. Bottom: Activation responses in
the row of the text message

For the magazine setting, the accuracy drop can be ex-
plained by the signal strength of the antenna. The magnetic
probe can be considered as a magnetic dipole, for which it
holds that the power density is dependent on a factor 5, for
which r is the distance between the probe and the origin of
radiation [36]. Therefore, placing the magnetic probe a little
bit further away from the origin of radiation, already has some
significant consequences on the quality of the received signal.
Specifically, we find the performance of iPhone 6-A drops
dramatically with 70 pages, but for Honor 6X, the performance
is better maintained even with a thicker magazine of 200 pages
because of its higher leakage of signals. The high single-
device accuracy (74% for both) also confirms this higher signal
leakage of this Honor 6X phone than iPhone 6.

We also find that our attack can work on the OLED screen
by conducting a preliminary exploration of Samsung Galaxy
A3 (2015). However, since this phone is disassembled, we do
not go further for quantitative details.

D. Discussion

In practice, the localization of security code patterns in
either time or space dimensions is crucial. Here we discuss
how a simple sliding window technique can tackle both. When
monitoring the target phone in real-time, we can also integrate
our recognition model with a simple sliding window operation
to identify the key frame(s) that are most likely to contain
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Fig. 12: Images (top row) and their corresponding emages (bottom row) of letter C displayed at 11 different scales. It can be
seen that the scales span from uninterpretable to the human eye to easily interpretable.

a text message of the security code. Specifically, we set the
height of the sliding window as the height of each digit, and
the width as the total width of 6 digits. The horizontal and
vertical strides are equal to the height and width of each digit.

As shown in Figure 11, the message area is activated much
more than the plain area, indicating that our recognition model
can be used to identify the most likely frame(s). Furthermore,
within the specific row of the text message, the highest acti-
vation responses are concentrated on the security code region.
This suggests that the textual background will not interfere in
our security code recognition. It is also worth noting that, in
practice, the attacker could also leverage off-the-shelf language
models or visual detection models. Such models would provide
a straightforward way to boost the localization performance.
We also mention that in our experiments, we use a maximum
contrast between the background and the text. Reducing the
contrast leads to a less easily readable screen for the human
eye, but does not necessarily result in an emage that is more
difficult to interpret. Exploratory experiments confirmed that
our choice of background represents a challenging setting,
and that, if the attacker is lucky, the contrast between the
background and the message on the display of the phone might
actually make the attack easier.

VI. TESTBED

So far, we have introduced the screen gleaning attack and
shown its effectiveness in recovering a security code displayed
as a push message on the screen of a mobile phone. The attack
was carried out with technology representative of the current
state of the art. However, with time, we expect the quality of
the antenna and SDR to improve. Also, additional training data
and algorithmic advances will increase the accuracy of the deep
learning classifier. These advances mean that screen gleaning
attacks can be expected to become increasingly dangerous,
and future work will be necessary to understand them and
develop countermeasures. To support this future work, we
have developed a testbed that enables the systematic test of
screen gleaning attacks under incrementally more challenging
attacker models. In this section, we describe the testbed, which
has also been released so that can be directly used by the
scientific community. The testbed consists of two parts, first, a
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definition of a set of images and a set of scales, and, second,
a specification of the attacker model, in terms of the model
dimensions and the parameterization of the dimensions. We
also report the results of experiments validating the testbed.

A. Testbed Images

We base our testbed on the eye chart used by eye doctors to
test vision acuity [14], and for this reason, we call it the eye
chart testbed. Most people are familiar with the experience
of a vision test. The eye chart measures someone’s vision
by determining the minimum level of detail that the person’s
eyes can distinguish at a given distance. Likewise, our testbed
uses eye chart letters to determine the minimum level of
visual detail that a screen gleaning attack can recover given a
particular attack setup.

The testbed is deployed by first specifying an attacker
model and creating an attack setup based on that model. Then,
different scales are tested until it is possible to determine at
which scale the identity of the letter can no longer be recovered
by the attack.

The testbed defines 11 different scales. For the largest scale
(20x), the size of the letter is the maximum size that can be
fit on the screen, with still leaving 10% of the letter width as
margins on the side. For the smallest scale, the letter appears
with a width of 1/20 of the largest scale. The relative sizes of
the testbed scales are illustrated on the top line of Figure 12,
using the letter C as an example. The font is the Sloan font
used for eye charts. We used the Creative Commons licensed
version, which is available on Github.2 The full letter set in
the testbed release is C, D, E, F, L, N, O, P, T, Z. The full set
of letters is tested as each scale.

The letters in an eye chart are chosen so that all the letters
in the set are equally easy to read. This ensures that for each
scale, the ability of the person to read the letters is related
to the scale, and not to the specific letters. By choosing to
use eye chart letters, we extend this property to our test set.
Different eye charts use different fonts and different letter

Zhttps://github.com/denispelli/Eye- Chart- Fonts/blob/mastet/README.md



Dimension Description

The symbol set (e.g., 0-9, a-z) must be
defined. If the symbols are not all
equiprobable, the prior probability of each
symbol must be defined.

Message

Any constraints that will be imposed on the
scale of the message or on font types must be
defined. Assumptions about the pattern of the
background and the brightness of the screen
must be defined.

Message
appearance

The antenna and the SDR must be specified.
Any assumptions on the position of the
antenna must be defined (positions range from
touching the phone, to under the table, to
across the room).

Attack
hardware

The conditions on device access must be
defined (attacker has access to the device to be
attacked, to devices of an identical model, to
devices of the same make). The ability of the
attacker to cause a certain image to appear on
the accessible devices must be defined, along
with the amount of time that the attacker can
count on having access. After the number and
nature of devices at the attackers disposal is
defined, the number and length of the sessions
that the attacker can record on each device
must also be specified.

Device
profiling

Define the amount of time and computational
resources available for training, and also for
the attack itself (i.e., after the model is trained
recovering the message from the emage).

Computational
resources

TABLE VII: Five-dimensional attacker model: Parameter set-
tings to specify when designing an attacker model for testing
with the testbed.

sets. We choose our testbed based on the fact that this set
is currently in widespread use.

It is natural to wonder why we use the limited set of
characters used in an eye chart instead of using a larger set
of alphanumeric characters. The answer is that the testbed
is designed to detect the ability of an attack to discriminate
and recover visual detail. Using eye-chart characters means
that the results of the testbed reflect the discernability and
interpretability of other forms of visual information as well,
for example, symbols or images displayed on the phone screen,
and not just text.

Figure 12 depicts emages that were captured with the setup
described in Section IV. It can be seen that they move from
being uninterpretable to the human eye on the left to inter-
pretable on the right. This property of the testbed has the goal
of ensuring that the testbed can measure interpretability with
other attack setups. We are especially interested in supporting
the investigation of attack setups where the signal might be
very weak, for example, as the antenna is moved further from
the phone. For a very weak signal, the larger letters will
become uninterpretable to the human eye. This will allow
researchers to quantify the effectiveness of a machine-learning
attack under the conditions of a weak signal. If researchers
adopt the same standard testbed, the measurements made can
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be more easily compared in a fair manner.

Again, it is important to note that although our testbed
consists of letters, it does not specifically assess the ability of
an attack to recover written text consisting of letters. Instead,
it assesses the ability of the attack to recover a message that
has a certain level of visual detail. Just like the eye chart tests
general visual acuity, and not just reading, our testbed tests
the acuity of a particular attack to recover information in the
visual form displayed on the phone screen, and not just letters.

B. Parameterization of the Attacker Model

Here, we describe the parameterized attacker model. It
contains five dimensions, message, message appearance, attack
hardware, device profiling, and computational resources. Each
of these dimensions has several parameters. In order to have
a fully specified attack mode, specifications must be made for
each of the parameters. The parameters can be considered to
correspond to the values of design decisions. The five dimen-
sional model along with the parameters for each dimension are
described in Table VII. Note that in the security code attack
we present in Section III, we use the same five dimensions in
the attacker model (Table I).

This parameterized attacker model forms the basis for the
attack setup. It has two purposes. First, it ensures that when
the testbed is being applied, the attacker model that is being
assumed is fully described, i.e., no detail is left out. Second, it
allows researchers to systematically make the attack stronger.
The attack strength can be increased by increasing the values
of any or all the parameters. In this way, the attacker model
guides researchers in discovering increasingly strong attacks.
The dimensions of the attacker model can be also used to guide
the development of countermeasures.

C. Validating the Eye Chart Testbed

In this section, we validate the eye chart testbed with
the demonstration of an attack. The attack uses the same
Attack hardware and Computational resources as the Security
Code attack demonstrated in Section III. The Message and the
Message appearance are derived from the eye chart testbed.
The Device Profiling is also the same, and the specifics of
data collection are explained in the next section.

1) Data Collection: We collect a total of 12 sessions,
among which two sessions (sessions 1 and 2) have 50 samples
for each of 11 classes of letters at each of 10 scales, and the
rest 10 sessions have 15 per class per scale. For inter-session
evaluation, we use sessions 11 and 12 as testing sets for all the
experiments. Session 1 plus 2 are used as the initial training
set, and are gradually enlarged by including two more sessions
each time, resulting in five different training sets with increased
size, denoted as Training 1, 2, 3, 4 and 5, as illustrated in
Figure 13. Training 5 has the most data with 24200 samples.

2) Experiments: Similar to the security code attack, we use
the following partitions: 80% training, 10% validation and 10%
testing. We use the ResNet-18 model [35] as our classification
model, and we train on five training sets individually until
convergence. Figure 14 shows that including more training ses-
sions generally lead to performance improvement in the inter-
session case. For the second session, we notice an accuracy
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Fig. 13: Train/test splits specified in the inter-session case of
our eye chart letter classification task, where the training set
is gradually enlarged by including more sessions, and the test
set is fixed with two sessions.
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Fig. 14: Inter-session accuracy in our eye chart letter classifi-
cation task. The two bars for each training set represent two
different test sessions.

drop when including more data from Training 2 to Training 3,
which can also be explained by the fact that the data quality
of different sessions of data could impact the performance.

Figure 15 shows the confusion matrix of the classification
accuracy with respect to different classes. We can observe
that accuracy differs for different letters. Table VIII shows
the results at 11 different scales. We could observe that the
accuracy of the letters at moderate scales (e.g, 7, 8 and 9)
is comparatively higher than the others. Without surprise, the
smallest scale has the lowest accuracy. However, what we
found also interesting is that accuracy with respect to scale
1 is also low. We suspect that it is because of the receptive
field of the model we chose. More detailed results per class
per scale can be found in Figure 16.

VII. COUNTERMEASURES

In our setup, the target device has no extra protection
beyond the common design features of commercial devices.
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Fig. 15: Confusion matrix of the classification in our eye chart
letter task.
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Fig. 16: Classification results of our eye chart letter task with
respect to different classes and scales.

As a step towards improving the protection of the device, we
discuss possible countermeasures that could possibly mitigate
the danger of a potential screen gleaning attack.

A. Hardware-Based Approaches

Screen gleaning attacks would be made difficult by using
a shielding technique. Shielding a cable consists of wrapping
the center core of the cable that transmits an electric signal by
a common conductive layer. The shield acts as a Faraday cage
inside the cable, blocking electromagnetic waves. The resulting
electromagnetic leakage is lowered, decreasing the SNR of the
signal. Several standard cables (e.g., coaxial cable, twisted pair
cable) are shielded to reduce its electromagnetic perturbations
and emanations. However, this technique comes at an extra
cost and increases the cable dimension. For this reason, flexible
flat cables inside small electronics with a display often lack a
protective shield, and it is not trivial to add one.

A metallic protective case would also act as a shield
for electromagnetic radiation, preventing attacks that measure
the signal emitted from the back of the phone, but every
telecommunication signal would also be perturbed.

B. Communication-Based Approaches

Another countermeasure against screen gleaning, similar
to the method used for pay-TV, could be to encrypt the signal
between the graphical unit and the screen. The core idea is
to share a cryptographic key between the two entities and
encode the video stream using a cipher. As a result, the
leaked information by the transmitted signal will become more
difficult to interpret by the attacker, who does not have the



Scale | 1 1.2 1.5 2

2.5

3 4 5 7 10 20

Acc. (%) | 66.7 487 82.0 873

86.7 82.0

88.7 893 973 987 460

TABLE VIII: Accuracy with respect to 11 different scales in our eye chart letter classification task.

key. This solution comes at a cost. Although some stream
ciphers could meet requirements for throughput and latency,
both the screen and the graphical unit would need extra logic
for encryption and decryption of the cipher and implement a
key establishment protocol to create a shared key when paired
together. Moreover, this countermeasure would be ineffective
against an attack targeting the screen itself during the rendering
(although this is a different attack, see [27]).

C. Graphics-Based Approaches

M. G. Kuhn in [47] introduces a cheap and efficient coun-
termeasure against electromagnetic TEMPEST that consists of
a special font where the transmitted signal has been filtered to
reduce the strength of the top peaks of its Fourier transform.
The resulting font appears visually quite blurry for a high-
resolution representation rendered on the screen but makes the
side-channel silent.

Another method that can be used as a countermeasure is
obfuscation. This obfuscation can either be introduced into the
background of the image using confusing patterns and colors
behind the text or by using a font with visually difficult to
differentiate letters. However, obfuscation is often ineffective
against distinguishing methods based on machine learning and
may introduce difficulties for humans to read the original
image from the screen.

VIII. FROM TEXT TO IMAGE

Here we return to the discussion of different formulations
of the screen gleaning problem. As we stated earlier, in the
discrimination scenario, the attacker knows a finite set of
messages that are possible and attempts to determine which
one actually occurred on the phone screen. The security code
recovery attack belongs to the discrimination scenario.

As the work on screen gleaning moves forward, it is
interesting to look at problems beyond recovering messages
built from symbol sets, such as security codes and written
words, but also at images. Screen gleaning of images can be
addressed within the reconstruction scenario, mentioned above.
In this scenario, the attacker has no prior knowledge of the
screen contents and attempts to reconstruct the screen exactly
as it appears to the human eye. The following is an example
of the reconstruction scenario: If the screen was displaying a
photo of a person, the goal of the attack would be to recover
that photo completely. Complete recovery requires that the
features of the person in the photo are clear, as needed for a
human viewer to identify the person, but also that the recovered
photo looks exactly like the original one including details of
the background and the lighting and coloring of the photo.

Screen gleaning of images can also be addressed within
a more general classification scenario than the discrimination
scenario. The discrimination scenario is a type of classification
scenario in which the attacker has access to information about
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the complete set of possible messages. There exists another
classification scenario, which we call the generalization sce-
nario, in which the attacker only has some information about
the possible content of the screen. Pornography detection is
an example of a problem that needs to be addressed in the
generalization scenario. We discuss it in more detail here
because of its societal relevance, cf. the issue of people looking
at porn on their devices on an airplane [21], [22].

For pornography detection, the attack goal is to determine
whether or not a phone display pornography without a direct
line of sight to the phone. Here, we assume, it is not possible
for the attacker to have complete information in advance about
all possible images displayed on the phone. Even if it is possi-
ble to access a complete database of all pornographic images, it
is not possible to know which non-pornographic images will be
displayed. To mount a screen gleaning attack in this case, we
must collect representative training data of the different types
of phones we expect, similarly to the discrimination case, and
different levels of favorability for antenna positioning. We also,
however, must collect representative data of all the different
types of pornographic and non-pornographic images that could
be relevant to the problem. The data collection task is clearly
not trivial. However, this type of scenario is clearly important,
so we recommend that future work on screen gleaning focuses
not only on discrimination scenarios (as with the security
codes) but also on more general classification scenarios (as
with pornography detection).

We have based our proposed testbed on a test used for
visual acuity, and not specifically for reading. We have made
sure that our testbed is not limited to letters and numbers,
since we hope that, moving forward, the testbed will be useful
for testing screen gleaning in classification scenarios involving
generalization and reconstruction. However, assessing the true
capacity of our testbed will require validation tests in addition
to those carried out here.

IX. CONCLUSION AND OUTLOOK

In this paper, we have introduced screen gleaning, a new
TEMPEST attack that uses an antenna and software-defined
radio (SDR) to capture an electromagnetic side channel, i.e.,
emanations leaking from a mobile phone. We demonstrate the
effectiveness of the new attack on three different phones with
an example of the recovery of a security code sent in a text
message by using machine learning techniques, as the message
is not comprehensible to the human eye.

In addition, we propose a testbed that provides a standard
setup in which screen gleaning can be tested further with
different attacker models. Finally, we provide ideas for possible
countermeasures for the screen gleaning threat and discuss
their potential.

Future work will involve testing increasingly sophisticated
attacker models that can be built by extending the five dimen-



sions of the parameterized model that we propose as part of our
testbed framework. As already mentioned, such an extension
will involve moving to more sophisticated attack hardware,
as hardware continues to develop. We have already identified
special electromagnetic near-field scanners [1], which are
basically arrays of loop antennas that allow the attacker to
identify the ‘hot spot’ of the device. The attacker is then able
to aim the antenna at this particular spot. These near-field
scanners also identify all resonating frequencies within a band
of 15 kHz to 80 GHz. These frequencies could then be used for
the design of antennas that extend the setup such that attacks
on greater distance can be performed.

Further, we will consider a wider range of other devices,
including other screens from devices like tablets, laptops and
smart displays (such as Google Nest Hub). For example, the
work of Enev et al. [24] suggests that our conclusion should
remain valid for most of the screens, including TV screens.

Finally, we are interested in moving from discrimination
scenarios to generalization scenarios, and finally to reconstruc-
tion scenarios. In other words, content that the attack recovers
from the phone will become increasingly unpredictable, and
increasingly challenging. The testbed we presented here has
the potential to be further developed to also cover the full
range of possible scenarios.
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