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Abstract—A common problem in machine learning-based
malware detection is that training data may contain noisy labels
and it is challenging to make the training data noise-free at a large
scale. To address this problem, we propose a generic framework
to reduce the noise level of training data for the training of
any machine learning-based Android malware detection. Our
framework makes use of all intermediate states of two identical
deep learning classification models during their training with
a given noisy training dataset and generate a noise-detection
feature vector for each input sample. Our framework then
applies a set of outlier detection algorithms on all noise-detection
feature vectors to reduce the noise level of the given training
data before feeding it to any machine learning based Android
malware detection approach. In our experiments with three
different Android malware detection approaches, our framework
can detect significant portions of wrong labels in different training
datasets at different noise ratios, and improve the performance
of Android malware detection approaches.

I. INTRODUCTION

Machine learning-based Android malware detection has
been a major research focus in recent years. Both model
training and evaluation rely on a set of sample apps and
their associated labels (i.e., benignware and malware). The
sample apps and their labels can be either collected from
malware detection websites such as VirusTotal [7] or manually
examined and labeled by malware detection experts [50], [51],
[10].

However, the current approach to labelling sample apps is
not perfect due to a couple of reasons. First, the labels provided
by malware detection websites are not always reliable [23]. To
verify this, we randomly chose 50,000 APPs on VirusTotal,
and downloaded their scanning reports twice in 2016.7 and
2018.7, respectively. Among them, over 10% of the samples
(5310/50000) are given different labels in the two reports. On
the other hand, manually labelling is often costly and time-
consuming, and it is difficult to scale up to massive datasets.

The label noises in app datasets may distort Android
malware detection in two main aspects.

• According to F. A. Breve. et al. [11], the noises in
sample labels worsen the performance of malware

detection models trained with them, making them less
effective in real-world cases.

• The noisy labels used for model testing and veri-
fication misjudge the real performances of existing
malware detection solutions. In the case study sections
of various research papers on malware detection (e.g.,
[48], [33], [50]), many false positive/negative cases
are reported in fact due to mislabeled samples.

The noisy label problem is intrinsic in malware detection
and challenging to deal with. The situation is worse due
to ever-growing sizes of datasets that are used in machine-
learning based malware detection. It remains challenging to
work with noisy datasets, so as to improve both training of
malware detection models and their evaluations. However, this
problem has not been rigorously addressed, especially in the
malware detection community.

Standard benchmark datasets have been built and widely
used in certain other machine-learning fields such as image
processing and natural language processing, where the qual-
ity of data labels can be verified by average human users
through user studies or crowdsourcing. However, it is highly
challenging for domain experts in malware detection (not to
mention average human users) to ensure the correctness of all
data labels in a massive dataset because the techniques for
composing malware are highly complicated and constantly e-
volving. This is one of the reasons that no universal benchmark
dataset has been built for Android malware detection, making
it difficult for the comparison across many malware detection
approaches as they were evaluated on different datasets of
unknown qualities.

Towards addressing the problem of malware detection with
noisy datasets, we propose Differential Training, a novel noisy
label detection framework for machine learning based Android
malware detection. We make a meaningful assumption that the
whole set of apps is noisy (i.e., no individual apps’ labels
are known 100% correct), but a majority of sample apps
are correctly labeled. Differential Training can improve the
performance of any machine learning based Android malware
detection approaches by reducing label noises in their datasets.

In particular, Differential Training makes use of the inter-
mediate states of deep learning classification models during
training for noisy label detection. According to Schein, etc.
in [36], the intermediate states of a classification model,
represented by variances of sample losses, can be used as
an effective measurement on the samples’ uncertainty so as
to help identify those that are not predicted properly within
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the current model. In other research (e.g., [37], [22]), such
samples are paid extra attention in training so as to accelerate
the learning of models.

A fundamental assumption in the previous research men-
tioned above is that all samples’ labels are correct. Therefore,
the mismatching between desired labels and predicted labels
in training is attributed to immature model training. In the case
of noisy labels being present, the wrong labels also contribute
to the mismatching between desired labels and predicted labels
during model training.

Differential Training relies on a new heuristic, which we
call differential training heuristic, to reduce label noises in
a given set of sample apps. The heuristic differentiates be-
tween correctly labeled samples and wrongly labeled samples
according to their loss values in training two deep learning
classification models of the same model architecture, where
one model is trained with the entire dataset, and the other is
trained with a randomly down-sampled subset of the given
dataset. A sample’s label is considered to be “wrong” and
thus revised/flipped if its loss values appear to be outliers in
comparison to other samples’ loss values.

This heuristic is based on an observation that correctly
labeled samples tend to behave consistently in training the
two classification models, while the wrongly labeled samples
tend to behave differently, and thus can be detected and
revised. Differential Training applies this heuristic iteratively
until a convergency condition is satisfied. After this, any
machine learning based malware detection approach can be
trained with the set of all sample apps and their revised
labels. Rigorous experiments on various datasets and malware
detection approaches show that differential training is clearly
effective in noisy reduction and performance improvement for
machine learning based malware detection.

The main contributions of this paper are summarized
below:

• We develop a new generic framework, Differen-
tial Training, to reduce label noises for large-scale
Android malware detection. Differential Training em-
ploys a novel approach to detecting noisy labels in
multiple iterations according to the intermediate states
of two deep learning classification models of identical
architecture, one of which is trained on the whole
training set of apps, and the other is trained on a
randomly down-sampled set of apps. A new heuristic
is proposed to distinguish between wrongly-labeled
apps and correctly-labeled apps based on an outlier
detection on their loss values, which are taken from the
intermediate states of the two classification models.

• Differential Training enjoys high practicality because
it is generic, automated, and independent to correctly-
labeled datasets. Differential Training is generic as it
can work with any machine learning based malware
detection approach for reducing label noises of its
dataset and improving its training and performance
evaluation. Differential Training is fully automated
in the label noise reduction process which requires
neither domain knowledge nor manual inspection. In
addition, Differential Training can operate on noisily-
labeled datasets only. It does not rely on any extra

datasets whose labels are all correct like other noise-
tolerance classification approaches such as Mentor-
Net [22] and distilled-based learning model [26].

• The effectiveness of Differential Training is evalu-
ated with three different Android malware detection
approaches, including SDAC [47], Drebin [10], and
DeepRefiner [49], as well as three different datasets,
whose sizes are 69k, 129k, and 110k, respectively.
Applying to these datasets, Differential Training can
reduce the size of wrongly-labeled samples to 12.6%,
17.4%, and 35.3% of its original size, respectively.
Consequently, Differential Training improve the per-
formance of each malware detection approach con-
siderably after noisy reduction is conducted to their
training datasets where the noise level is about 10%.
In terms of F-score measured with ground-truth data,
SDAC is improved from 89.04% to 97.19% (upper
bound 97.71%), Drebin from 73.20% to 84.40% (up-
per bound 93.34%), and DeepRefiner from 91.37%
to 93.41% (upper bound 93.59%). The improved
performance is relatively close to their upper bound
97.71% for SDAC, 93.34% for Drebin, and 93.59%
for DeepRefiner which are trained with all correctly-
labeled datasets. A similar trend is also observed at
various noise levels.

• Differential Training also outperforms the state-of-the-
art noise-tolerant classification solutions, Co-Teaching
and Decoupling, which are designed for training ro-
bust deep neural networks with noisy labels [20],
[27]. Differential Training detects significantly more
wrongly-labeled samples than both Co-Teaching and
Decoupling.

II. PRELIMINARIES

A. Machine Learning Based Android Malware Detection

We aim to reduce label noises for machine learning based
Android malware detection that relies on a binary classification
model to predict the label, which is either benign or malicious,
for each given Android app. A machine learning based Android
malware detection model is trained by a set of labeled Android
apps (i.e., training set) in two main steps, where the first step
transforms each Android app into a numerical feature vector,
and the second step trains the model classifier using the apps’
numeric feature vectors and their corresponding labels. After
training, the model’s performance can be evaluated using a
set of labeled apps (i.e., testing set), based on the differences
between their predicted labels and given labels.

B. Training Noise Detection Models

In the process of noisy label detection, Differential Training
keeps training two identical deep learning classification mod-
els, which we call noise detection models. Each of these noise
detection model is trained to classify any given sample app to
be either malware or benignware. The training of each noise
detection model consists of multiple epochs. In each epoch,
each sample and its associated label are taken from a training
dataset and fed into the model through two successive phases:
forward propagation and backward propagation.
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In the forward propagation phase, the feature vector of a
given sample is taken as input to the noise detection model. A
loss function is used to calculate a loss value for the sample
according to the input vector and the parameters the noise
detection model. Then, a predicted label is generated for the
sample and compared to the given label of the sample.

In the back propagation phase, the gradient of the loss
function with respect to each parameter in the noise detection
model is calculated. Each parameter is then updated according
to the gradient and the loss value in an optimal manner so as
to minimize the average loss value in the next epoch Since the
model parameters are adjusted in the whole training process,
the average loss value for the samples in the whole training
dataset is optimized to decrease from the first epoch to the
last. The number of epochs is determined by a convergency
condition under which the average loss value in the last epoch
is considered to be good enough.

C. Underlying Assumption

The underlying assumption made by Differential Training
is that the majority of sample apps in the dataset are correctly
labeled; however, it is unknown whether the label of any
specific sample is correct or not. Note that it is meaningful to
assume that more than 50% of the sample apps are correctly
labeled since if it is not the case (i.e., the quality of dataset
is even lower than random labelling), a flipping of each and
every label would make this assumption valid.

Differential Training does not rely on any set of individual
apps whose labels are 100% correct, which is different from
other noise-tolerance classification approaches such as Mentor-
Net [22] and distilled-based learning model [26]. It requires
no manually checking on any sample apps in Differential
Training, which is fully automatic in reducing label noises for
Android malware detection.

III. DIFFERENTIAL TRAINING HEURISTIC

Differential Training trains two deep learning classification
models of identical architecture iteratively for noisy label
detection. We call these two models noise detection models,
which can be any deep learning classification models to
classify apps to be either benign or malicious according to
the apps’ feature vectors. The whole process of Differential
Training consists of multiple iterations. In each iteration two
different models are trained where the first model is trained
with the whole set of available training apps (and their labels),
while the other is trained with a randomly down-sampled
subset of the whole set. For convenience, we refer to the whole
set of apps as WS, and the down-sampled subset as DS. We
also refer to the first noise detection model as WS model, and
the other as DS model.

In each iteration, Differential Training relies on a new
heuristic, named differential training heuristic to reduce label
noises in DS. The heuristic states that the training behaviors
of correctly labeled samples across the two models are sta-
tistically different from those of the wrongly labeled samples
across the two models, where the training behavior of a sample
across the two models is described by the concatenation of the
loss values produced for the sample in all epochs of the two
models. Given the assumption that a majority of sample apps

are correctly labeled, the wrongly labeled apps in DS can be
detected statistically using an outlier detection on the training
behaviors of all apps in DS.

Experimental observation. The heuristic is enlightened
by our observation in the following experiments. When we
observe a single model, either WS model or DS model, the
differences in training behaviors between correctly-labeled
samples and wrongly-labeled samples are not too significant;
however, when we combine training behaviors across the two
models, the differences between the two types of samples
become more apparent.

In the experiments of showing our observation, Differential
Training is applied to a set of sample apps that are randomly
collected from a public Android app sharing project [8]. To
guarantee the correctness of the samples’ labels, we further
check their scanning results from VirusTotal, and remove all
(which is equivalent to around 10%) of the samples whose
scanning results ever changed since August 2016. We use
50,000 samples to build the WS set, and choose 10% of them
randomly as “noises” whose labels are manually flipped.

The architecture of the WS model and the DS model is
chosen to be Multi-Layer Perceptron consisting of an input
layer, two hidden layers, and a softmax layer, where the first
hidden layer consists of 500 nodes, and the second layer
consists of 1000 nodes. The training of the WS model and the
DS model implements the learning rate decay and the early
stopping API, and sets all hyper parameters to their default as
provided in TensorFlow [5].

First, we choose 3,000 samples randomly from WS to form
DS. Then we use WS to train the WS model, and use DS to
train the DS model. For each sample in DS, we use αw and
ωw to record its loss value in the first epoch and the last epoch,
respectively, during the training of the WS model; and further
use αd and ωd to denote its loss value in the first epoch and the
last epoch, respectively, during the training of the DS model.

Figure 1 illustrates the distributions and their fitting curves
of correctly-labeled samples and wrongly-labeled samples
w.r.t. three variables, including (αw/ωw)/(αd/ωd) in Figure 1
(a), (αw/ωw) in Figure 1 (b), and (αd/ωd) in Figure 1 (c).
The bars in the figure indicate the number of samples at
certain value of the corresponding variable, while the curves
illustrate the kernel density estimation of the corresponding
variable, which is a non-parametric estimation of the variable’s
probability density function.

Figure 1 shows that the differences between the correctly-
labeled samples and the wrongly-labeled samples are more
apparent in terms of their distributions measured from the loss
values in training both the WS model and the DS model as
shown in Figure 1 (a), than in training the WS model alone
as shown in Figure 1 (b), and in training the DS model alone
as shown in Figure 1 (c).

The distribution differences shown in Figure 1 between the
correctly-labeled samples and the wrongly-labeled samples can
be measured in Wasserstein distance [6], which quantifies the
minimum “cost” of turning one distribution to another. A larger
Wasserstein distance represents more significant difference
between two distributions. Table I measures the Wasserstein
distances between the distributions that are given in Figure 1. It
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Fig. 1: Distributions of Correctly-Labeled Samples and Wrongly-Labeled Samples

TABLE I: Wasserstein Distance between Distributions of
Correctly-Labeled and Wrongly-Labeled Samples

Model(s) Used Wasserstein Distance
WS model 0.00295
DS model 0.01047

Both WS model and DS model 0.04387

TABLE II: Wasserstein Distance between Distributions of
Correctly-Labeled and Wrongly-Labeled Samples with Differ-
ent DS

Size of DS Wasserstein Distance
3000 0.04387
6000 0.03401
9000 0.03334

12000 0.01965
15000 0.02703

suggests to distinguish between correctly-labeled samples and
wrongly-labeled samples according to the loss values collected
in training both the WS model and the DS model.

The size of DS is an important factor in differentiating the
distributions between correctly-labeled samples and wrongly-
labeled samples. Figure 2 and Table II show that using smaller
DS yields greater difference; it is thus desirable to choose DS
as small as possible in Differential Training.

On the other hand, DS should be large enough to converge
the training of the DS model [15]. Therefore, we have two
criteria for choosing the size of DS: (1) DS should be as small
as possible to distinguish between correctly-labeled samples
and wrongly-labeled samples, and (2) DS should be large
enough for converging the training of the DS model. In our
experiments, we use a grid search to choose the size of DS
based on these two criteria.

Explanation on the differences of loss values. The dif-
ferential training heuristic is also enlightened by the following
theorem proved by S. Arora et al. in a recent research [9] on the
differences of loss values between correctly-labeled samples
and randomly-labeled samples during model training:

In a two-layer MLP model using ReLU activation and
trained by gradient descent, when there are infinite nodes in
hidden layers and the model is fully trained, the following
equation holds:

‖y − u (k) ‖2 =

√√√√ n∑
i=1

(1− ηλi)2k(vᵀ
i y)

2 ± ε

where y = (y1, y2 . . . yn) denotes all the labels of the n
samples, u (k) denotes all the n predictions in the kth epoch,
and thus ‖y − u (k) ‖2 refers to the L2-norm distance between
the predicted labels and the true labels. Moreover, η refers
to the learning rate. vi refers to the orthonormal eigenvector
of sample i and λi refers to its corresponding eigenvalue
decomposed from the gram matrix H of the model, while the
gram matrix H is decided by the two-layer ReLU model in
the kth epoch as defined in [46], [43], [16]. ε is a very small
value that can be ignored.

The equation shows that under the ideal condition, the
component of (‖y − u (k) ‖2)

2 for sample i in epochs 1 to k
is a geometric sequence which starts at (vᵀ

i y)
2 and decreases

at ratio (1− ηλi)2.

Furthermore, in section 4 of paper [9], it is proven that
the samples with true labels have better alignment with larger
eigenvalues than the samples with random labels (or wrong
labels). In each epoch of model training, the square of L2-
norm distance (‖y − u (k) ‖2)

2 thus demonstrates larger
decreasing ratios (1− ηλi)2 for correctly-labeled samples than
for wrongly-labeled samples.

Since the square of L2-norm distance (‖y − u (k) ‖2)
2 is

exactly the same as the L2 loss function between the actual
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Fig. 2: Distributions of Correctly-Labeled Samples and Wrongly-Labeled Samples with Different Sizes of DS

Fig. 3: Structure of Differential Training

labels y and the predicted labels u (k), this theorem implies
that during the training of DS/WS model, the decreasing rates
of the loss values of correctly-labeled samples are larger than
(and thus different from) those of wrongly-labeled samples in
each epoch.

IV. DIFFERENTIAL TRAINING FRAMEWORK

Differential Training processes a noisy dataset in
three phases: “pre-processing,” “noisy label detection,” and
“malware detection with revised labels.” The structure of
Differential Training is shown in Figure 3.

A. Phase I: Pre-processing

In the first phase, a machine learning based malware
detection approach is selected, and the raw app files from the
dataset of the approach are transformed into numeric feature
vectors through a “Feature Vector Generation” module which
should be specified by the malware detection approach. The
output of the phase I is the whole training set WS which

consists of the transformed feature vectors and their associated
labels.

B. Phase II: Noisy Label Detection

The second phase “Noisy Label Detection” of Differential
Training consists of multiple iterations, in each of which the
noises in the training set are reduced until a stopping criterion
is met. Each iteration is illustrated in Figure 4, which consists
of four steps, including “Dataset Downsampling”, “Training of
WS and DS Models”, “Loss Vector Generation” and “Outlier
Detection”.

1) Dataset Downsampling: In the first step “dataset down-
sampling”, Differential Training randomly downsamples the
whole training set WS to a smaller dataset, named “down-
sampled set,” or DS for short. The size of DS is selected
according to the two criteria described in the differential
training heuristic.

2) Training of WS and DS Models: After DS is generated,
two noise detection models, “WS model” and “DS model,”
are trained on WS and DS datasets, respectively. The two
noise detection models can be any deep learning classification
models having the same network architecture for classifying
apps to be either malicious or benign according to their
feature vectors. Depending on the selection of app features,
various deep learning classification models (e.g., Multi-Layer
Perceptron, Recurrent Neural Network, and Convolutional
Neural Network) may be selected to be noise detection models.
Differential Training uses the noise detection models to extract
the loss values for each input app during training; any deep
learning classification model can be used as a noise detection
model as long as it outputs a loss value for each input app in
each epoch during its training process.

In our experiments conducted in this paper, we choose the
noise detection models to be Multi-Layer Perceptron (MLP)
that consists of two hidden layers, where the first hidden
layer consists of 500 nodes and the second hidden layer 1000
nodes, and followed by a softmax layer as output. We use the
TensorFlow toolkit [5] to train the two models, where all the
parameters are set to their default values in the toolkit.

3) Loss Vector Generation: In the third step, the loss values
of each app in DS are collected from the two noise detection
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Fig. 4: Structure of a Single Iteration in Noisy Label Detection

models during their trainings. The loss values collected from
each model are arranged into a sequence in the order of training
epochs. Then the two sequences are concatenated to form a
“loss vector” for each app in DS.

4) Outlier Detection: In this step, a set of outlier detection
algorithms are applied to the loss vectors of all the apps in
DS. For each app whose loss vector is detected as an outlier,
its label is considered to be “wrong”, and thus flipped with a
probability. Several points on the outlier detection are clarified
below:

• Most outlier detection algorithms require a “contain-
ment rate” parameter as their input. This parameter
works as a threshold in identifying outliers. In Differ-
ential training, this parameter is set to the current ratio
of wrongly-labeled samples in WS. This noise ratio is
estimated using the method proposed by Goldberg-
er [19]. In particular, the noise ratio is estimated to
be (1− aWS), where aWS is the accuracy of the WS
model in 5-fold cross-validation on WS.

• To avoid any bias of a single outlier detection algorith-
m, we use 13 different outlier detection algorithms and
apply a majority voting to get the final result of outlier-
s. Table III shows the outlier detection algorithms used
in Differential Training, where the first 12 algorithms
are taken from a public toolkit named “PyOD” [3],
while the last algorithm “EllipticEnvelope” is taken
from the toolkit “sklearn” [4].

• Another parameter named dropout ratio is introduced
in this step. After each outlier is detected according
to the majority voting, the label of the corresponding
sample is revised/flipped with a probability equal to
the dropout ratio. The dropout ratio is used to reduce
the impact caused by any accidental error from either
outlier detection or noise rate estimation. The use of
this dropout ratio is inspired by the random dropout
mechanism in neural networks training [40], and the
ratio is set to 0.5 in our experiments.

TABLE III: List of Outlier Detection Algorithms used in
Differential Training

Angle-based Outlier Detector (ABOD)
Auto Encoder

Clustering Based Local Outlier Factor (CBLOF)
Histogram-based Outlier Detection (HBOS)

IsolationForest Outlier Detector (I-forest)
k-Nearest Neighbors Detector (kNN)

Local Outlier Factor (LOF)
Outlier Detection with Minimum Covariance Determinant (MCD)
Single-Objective Generative Adversarial Active Learning (So-gaal)

One-class SVM detector
Stochastic Outlier Selection (SOS)

Principal Component Analysis Outlier Detector (PCA)
EllipticEnvelope

5) Stopping Criterion: To stop the iterations in training
the WS model and the DS model, we use a stop criterion
that is similar to the early stopping adopted in neural network
training. The iterations stop once the fluctuation of the es-
timated noise ratios in the last several iterations turns to be
smaller than a certain threshold. In experiments, we enforce
the stopping criterion through the API earlystop_callback()
from the TensorFlow toolkit, where all parameters are set to
their default values.

C. Phase III: Malware Detection with Revised Labels

Once the iterations stop, the apps and their associated
labels in the whole set WS are ready for Android malware
detection. The original Android malware detection approach
can be trained using these apps’ feature vectors (which were
extracted in phase I) and their labels (which were revised in
phase II). In the experiments below, we use ground-truth data
to evaluate the performance of Differential Training with three
different Android malware detection approaches, including
SDAC [47], Drebin [10], and DeepRefiner [49].

We measure the performances of Differential Training
using the following metrics: (i) The number and the percentage
of wrong labels in the training set being reduced by Differ-
ential Training. (ii) The F-scores of the malware detection
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approach when it is applied to the noisy training set, the noise-
reduced training set processed by Differential Training, and the
“ground-truth” training set. The differences between these F-
scores1 show that how much improvement in the performance
of the malware detection approach is made due to Differential
Training, and how close is the improved performance to the
upper bound.

In evaluating Differential Training with a malware
detection approach, we partition its “ground-truth” dataset into
two parts: 80% of them are used as the training set, and the
other 20% are used as testing/validation set. Given a noise ratio
0 ≤ rnoise ≤ 0.5, we randomly select each app in the training
set with probability rnoise ∗ 100%, and flip the labels of the
selected apps to generate a noisily-labeled dataset. The default
value of the noise ratio is set to 10%, which is similar to the
ratio which we observed from VirusTotal during a period of
three years. After Differential Training revises the labels in
the training set, we refer it as the processed dataset. While we
train a malware detection approach using either ground-truth
dataset, noisy dataset, or processed dataset, we always evaluate
its performance using a “ground-truth” testing dataset.

Without confusion, we also call the framework Differential
Training by excluding phase III if the objective is to detect or
reduce noisy labels in a dataset without testing the malware
detection approach.

V. DIFFERENTIAL TRAINING WITH SDAC

A. Introduction of SDAC

SDAC is an Android malware detection approach that
uses “semantic distance based API clusters” to make malware
detection robust to the evolution of Android APIs. It measures
the contribution of an API to malware detection by its API
context, which refers to its neighbourhood APIs in the API
graphs derived from training apps. In the training process,
all APIs are transformed into numeric vectors according to
their API contexts, and the numeric vectors are clustered
into 1,000 API clusters. Then, each app is converted to a
1,000-dimensional binary vector depending on whether or not
the app includes any API in each API cluster. A supporting
vector machine (SVM) is trained using those binary vectors
that are derived from all training apps and their associated
labels. In the testing phase, if new APIs are employed by
any app, their contributions to malware detection can still be
measured by associating their API vectors to the closest API
clusters. Therefore, an app can always be converted to a 1,000-
dimensional binary vector for malware detection in the testing
phase even if it employs any new APIs that never appeared in
the training phase.

B. SDAC Dataset

The dataset used by SDAC was collected from an open
public Android application collection project [8], which
consists of 70,811 apps. This dataset was collected in June
2018 after filtering out 10.62% of the apps whose labels
changed by VirusTotal between July 2016 and July 2018. For

1A F-score is the harmonic mean between precision and recall, where
precision measures the percentage of true malware among the detected
malware, while recall measures the percentage of true malware being detected.

TABLE IV: The Evaluation of Differential Training with
SDAC

Android Malware Detection Approach SDAC

# Samples in the Whole Dataset 69,933
# Benignware # Malware 35,437 34,496

# Samples in Noisy Training Set 56,650
# of Noises added 5,614 (9.91%)

# detected TP # detected FP 5,246 343
# of Remained Noises in Processed Dataset 711 (1.26%)

F-score with Correctly-laballed Dataset 97.71%
F-score with Noisily-laballed Dataset 89.04%

F-score with Processed Dataset 97.19%

these apps, we further downloaded their scanning results from
VirusTotal in June 2019 and removed 878 (i.e., 1.24%) apps
whose labels changed between July 2018 and June 2019 to
reduce potential wrong labels as much as possible. Finally, the
dataset of SDAC we use consists of 69,933 app samples whose
labels are relatively stable over three years; we thus consider
these stable labels as “ground-truth” as no other dataset of
better quality is available so far. In this dataset, 35,437 are
labeled benign, and 34,496 are labeled malicious.

C. Performance of Differential Training with SDAC

Table IV summarizes SDAC dataset and SDAC perfor-
mances, which are measured on the correctly-labeled dataset,
the nosily-labeled dataset, and the noise-reduced training set
processed by Differential Training. Overall, Differential Train-
ing revise 5,246 labels correctly, revise 343 labels wrongly. The
percentage of noise labels thus reduces from 9.91% to 1.26%
in the nosily-labeled dataset due to the process of Differential
Training.

More details are given in Figure 5 which shows the number
of labels that are revised correctly by Differential Training
(i.e., true positives), and the number of labels that are revised
wrongly (i.e., false positives) in each iteration. It also shows
the accuracy of the revised labels (i.e., the percentage of
the revised labels that are correct) in each iteration. When
Differential Training converges, the accuracy of the revised
labels reaches close to 99%.

The F-score of SDAC improves from 89.04% to 97.19%
after noise reduction on the training set, and this improved F-
score is very close to its upper bound 97.71% (see Table IV).
These results show that Differential Training can greatly reduce
the number of wrong labels in the training set, and improve
the performance of Android Malware detection approach due
to the use of noise-reduced training set in training.

D. Runtime Performance of Differential Training with SDAC

The total time cost of Differential Training with SDAC
in this experiment is about 55.34 hours. In detail, Differential
Training performs 58 iterations; each iteration takes about 57.3
mins on average, which includes 50.6 mins spent on training
the WS model, and less than 4 mins spent on training the DS
model. The rest of time in each iteration is used for performing
outlier detection and noise ratio estimation.
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Fig. 5: Noise Reduction on SDAC Dataset

VI. DIFFERENTIAL TRAINING WITH DREBIN

A. Introduction of Drebin

Drebin [10] is a lightweight Android malware detection
solution published in 2014 based on static analysis. Drebin
extracts the following features from each app: hardware com-
ponents, required missions, App components, filtered intents
from Android manifest files, critical API calls, actually used
permissions, human-defined suspicious API calls, and network
address strings from disassembled codes. Drebin converts each
app into a feature vector of 545,433 dimensions. It relies on
a linear support vector machine (SVM) classifier for malware
detection, and uses its linear weights for identifying the fea-
tures that make significant contributions to malware detection.

Compared to SDAC that was published recently in 2020,
Drebin is more classic which has been cited frequently in
malware detection research since 2014. In addition to evaluate
the effectiveness of Differential Training on SDAC, we also
test it on the classic Drebin with relatively old dataset.

B. Drebin Dataset

Drebin was evaluated on a dataset collected by 2014,
which was composed of 5,560 “malware samples” and 123,453
“benign apps.” The Drebin dataset has been frequently used in
malware research since its publication. We checked the dataset
in June 2019 using VirusTotal to guarantee the ground-truth
of the dataset. In detail, we found no contradictory labels in
the dataset except that some apps were too old to receive any
report. Compared to the SDAC dataset where malware takes up
49.3% of all apps, the Drebin dataset is highly imbalanced as
malware samples account for 4.3% of all apps. This is another
reason that we choose Drebin so that we can test Differential
Training on a highly imbalanced dataset.

C. Performance of Differential Training with Drebin

Figure 6 shows the performance of Differential Training
in each iteration, where the red bars and green bars are
measures of true positives and false positives, respectively. In
total, 9,121 noisy labels are detected and revised correctly by

TABLE V: The Evaluation of Differential Training with Drebin

Android Malware Detection Approach Drebin

# Samples in the Whole Dataset 129013
# Benignware # Malware 123,453 5,560

# Samples in Noisy Training Set 103,210
# of Noises added 10,009 (9.70%)

# detected TP # detected FP 9,121 605
# of Remained Noises in Processed Dataset 1805 (1.75%)

F-score with Correctly-laballed Dataset 93.34%
F-score with Noisily-laballed Dataset 73.20%

F-score with Processed Dataset 84.40%

Differential Training, and 605 labels are detected and revised
mistakenly. The accuracy of Differential Training for label
revisions converges close to 98%.

Table V shows that Drebin’s performance improves from
73.20% to 84.40% in F-score if it is trained on the processed
dataset, for which Differential Training reduces the percentage
of noise labels from 9.70% to 1.75%. Compared to the original
F-score, the improved F-score is closer to its upper bound
93.34% which is achieved by Drebin trained with the correctly-
labeled training set.

D. Runtime Performance of Differential Training with Drebin

The total time cost of Differential Training with Drebin in
this experiment is about 62.52 hours, which converges in 68
iterations. Each iteration takes 55.2 minutes on average while
the training of the WS model takes 52.0 mins and the training
of the DS model takes 2.8 mins.

VII. DIFFERENTIAL TRAINING WITH DEEPREFINER

A. Introduction of DeepRefiner

DeepRefiner [49] is a Android malware detection approach
that connects two deep learning models in sequential. The first
model is a Multi-Layer Perceptron model which can detect
“most significant” malware samples efficiently based on XML
files in app APK packages. The second model is a long short-
term memory model which detects “more advanced” malware
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Fig. 6: Noise Reduction on Drebin Dataset

TABLE VI: The Evaluation of Differential Training with
DeepRefiner

Android Malware Detection Approach DeepRefiner

# Samples in the Whole Dataset 110,440
# Benignware # Malware 47,525 62,915

# Samples in Noisy Training Set 88352
# of Noises added 8,835 (10.00%)

# detected TP # detected FP 7,497 2,230
# of Remained Noises in Processed Dataset 3,118 (3.53%)

F-score with Correctly-laballed Dataset 93.59%
F-score with Noisily-laballed Dataset 91.37%

F-score with Processed Dataset 93.41%

samples from those apps for which the first model cannot
provide reliable classification results. The second model relies
on checking the semantic structures of Android bytecodes in
malware detection.

According to [49], the first model of DeepRefiner can
be used alone and it achieves 87.3% accuracy in malware
detection on a dataset of 110,440 apps. We choose this model
to evaluate how Differential Training performs if the malware
detection approach is not extremely accurate but very efficient.

B. DeepRefiner Dataset

The original DeepRefiner dataset consists of a set of benign
applications that were collected from Google Play as well as
a set of malicious apps that were collected from VirusShare
and MassVet in 2015 to 2016. We then downloaded their
scanning reports from VirusTotal in June 2019 and removed
all the samples with different labels. The remaining dataset
contains of 62,915 malicious applications and 47,525 benign
applications that were collected in 2016.

C. Performance of Differential Training with DeepRefiner

Figure 7 shows that after being processed by Differential
Training, the percentage of samples with correct labels in
the DeepRefeiner dataset increases from 90% to 96%, while

Table VI further shows that 7,497 wrong labels are revised
correctly, while 2,230 correct labels are revised mistakenly.

In total, Differential Training reduces 64.7% of the wrong
labels and increases the F-score of DeepRefiner from 91.37%
to 93.41%, which is only 0.18% lower than the F-score of
DeepRefiner trained with the correctly-labeled dataset.

D. Runtime Performance of Differential Training with Deep-
Refiner

In the Differential Training with DeepRefiner, the total time
cost is about 102.12 hours, which includes 77 iterations. The
time cost for each iteration is about 79.6 minutes on average,
including 70.0 minutes for training the WS model and 7.9
minutes for training the DS model.

VIII. THE IMPACT OF NOISE RATIO TO NOISE
REDUCTION

Differential Training is effective in reducing label noises
on three different datasets at noise ratio 10% as shown in the
previous sections. In this section, we further investigate the
impact of noise ratio to noise reduction. For this purpose, we
produce datasets at 5%, 10%, 15%, 20%, 30%, and 45% noise
ratios, and apply Differential Training on such datasets with
different Android malware detection approaches.

Note that 45% noise ratio is close to the upper bound of
noise ratio (i.e., 50%)2, indicating a data quality that is close
to random labelling.

Table VII shows the noise reduction results of Differential
Training on SDAC dataset at various noise ratios. In these
experiments, the percentage of wrong labels being reduced
by Differential Training ranges from 79.73% to 89.04% as
the noise ratio changes from 5% to 30%, indicating that
the effectiveness of Differential Training is stable in these
experiments. When the noise ratio in dataset is set to 45%,
which is close to the upper bound (i.e., noise ratio for random
labelling), Differential Training reduces 68.09% of wrong

2If the noise ratio is greater than 50%, a flipping of each and every label
would turn the noise ratio below 50%.
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Fig. 7: Noise Reduction on DeepRefiner Dataset

TABLE VII: Noise Reduction on SDAC Dataset at Different Noise Ratios

Noise Ratio 5% 10% 15% 20% 30% 45%

# of Training Set 56,550 56,550 56,550 56,550 56,550 56,550
# of Wrongly-labeled Samples 2,833 5,614 8,497 11,330 16,995 25,493

# of TP Noise Detection Results 2,540 5,246 7,977 10,465 15,762 21,858
# of FP Noise Detection Results 281 343 472 377 655 4,500

% of Noise Reduced 79.73% 87.34% 88.33% 89.04% 88.89% 68.09%
# of Wrongly-labeled Samples Left 574 711 992 1,242 1,888 8,135%

TABLE VIII: Noise Reduction on Drebin Dataset at Different Noise Ratios

Noise Ratio 5% 10% 15% 20% 30% 45%

# of Training Set 103,210 103,210 103,210 103,210 103,210 103,210
# of Wrongly-labeled Samples 5,160 10,321 15,482 20,400 30,936 46,445

# of TP Noise Detection Results 4,658 9,121 12,700 17,870 26,120 44,804
# of FP Noise Detection Results 788 605 878 2,232 1,875 20,247

% of Noise Reduced 75.00% 82.51% 76.36% 76.66% 78.37% 52.87%
# of Wrongly-labeled Samples Left 1,290 1,805 3,660 4,762 6,691 21,888

TABLE IX: Noise Reduction on DeepRefiner Dataset at Different Noise Ratios

Noise Ratio 5% 10% 15% 20% 30% 45%

# of Training Set 88,352 88,352 88,352 88,352 88,352 88,352
# of Wrongly-labeled Samples 4,415 8,835 13,253 17,670 26,502 39,758

# of TP Noise Detection Results 3,985 7,947 12,406 14,737 21,707 23,604
# of FP Noise Detection Results 1,247 2,230 3,677 5,150 8,799 14,795

% of Noise Reduced 62.02% 64.71% 65.86% 54.26% 48.71% 22.15%
# of Wrongly-labeled Samples Left 1,677 3,118 4,524 8,083 13,594 30,949

labels. Though this percentage is lower than the other cases in
the experiments, it is still substantial in this extreme case.

Table VIII shows a similar trend for Differential Training’s
effectiveness on noise reduction working on Drebin dataset
at various noise ratios. The percentage of noisy labels being
reduced fluctuates from 75.00% to 82.51% if the noise ratio
varies between 5% and 30%, and it decreases to 52.87% at
noise ratio 45%.

Table IX shows a wider fluctuation margin of noise label
detection rate on DeepRefiner dataset, which varies from

48.71% to 65.86% for the noise ratio range of 5% to 30%.
This wider fluctuation margin is probably due to the relatively
simple feature set selected by DeepRefiner as compared to
more comprehensive feature sets used by SDAC and Drebin.
Nonetheless, Differential Training can still detect nearly half
of wrong labels even if the noise ratio is as high as 30% in
the training set. While in the extremely noisy case for 45% of
noise ratio, Differential Training reduces 22% of wrong labels.
While this result is lower than the other cases as the noise ratio
is close to random labelling, the effectiveness of Differential
Training is still non-negligible in reducing the noise in the
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training dataset.

Tables VII, VIII, and IX also show a trend between the
detection performance of Differential Training and the noise
ratio in the dataset. When the noise ratio ranges from 5%
to 30%, the detection accuracy does not change much; while
the ratio increases to 45%, a significant decrease in detection
accuracy is observed.

Differential Training detects label noises as outliers. When
there are almost the same number of outliers as non-outliers,
it is difficult for Differential Training to distinguish between
outliers and non-outliers, leading to a significant drop in its
detection accuracy.

IX. COMPARISON AMONG DIFFERENTIAL TRAINING,
CO-TEACHING, AND DECOUPLING ON NOISE REDUCTION

In this section, we compare Differential Training with
two state-of-the-art robust learning algorithms, including Co-
Teaching [20] and Decoupling [27], both of which are designed
for training robust deep neural networks with noisy labels.

Co-Teaching trains two neural networks simultaneously
on a noisy dataset, where the two models are of identical
architecture but initialized independently at the beginning.
Given each mini-batch of the dataset, each network views
its small-loss data samples as potentially-clean samples, and
provides them to its peer network for updating the parameters
in the peer network. In Co-Teaching, the two networks have
different learning abilities; they can thus filter each other’s
different types of error that are introduced by noisy labels
in the learning process. After training, the two fully-trained
models cooperate to output a predicted label for each sample
in the testing phase, where the predicted label is determined by
an output weight that is the sum of the output weights of the
input sample from the two models. Co-Teaching can be used to
detect noisy labels. If the predicated label of an input sample
is different from the original label of the input sample, the
original label is considered as a noisy label, and thus flipped.
The source code of this algorithm is publicly available and
provided in [1].

Decoupling also trains two neural networks simultaneously
on a noisy dataset, with these two networks being of the
same structure but initialized independently. During the model
training, each mini-batch of the dataset is fed to both models
simultaneously to generate the prediction results. If a sample in
the mini-batch is predicted with different labels from the two
models, it is regarded as meaningful for the model learning
and only the “meaningful” samples in the mini-batch are later
used in the backward propagation step to update the parameters
in both models. At the end of training, Decoupling randomly
chooses one of the two trained models as the produced classi-
fier. Decoupling can be used to detect noisy labels. If an input
sample’s label that is predicted by the produced classifier is
different from its original label, the original label is considered
as noisy, and thus flipped for correction. Decoupling’s source
code is publicly available and provided in [2].

We apply both Differential Training, Co-Teaching, and
Decoupling to the noisy versions of all three datasets, including
SDAC dataset, Drebin dataset, and DeepRefiner dataset, where
the noise ratio is set to 10% as in the default setting. We

TABLE X: Comparison between Differential Training (DT),
Co-Teaching (CT) and Decoupling (DC)

SDAC Drebin DeepRefiner
Dataset Dataset Dataset

% of Wrongly Labels 87.45% 82.51% 64.71%Reduced by DT
% of Wrongly Labels 76.49% 78.14% 21.72%Reduced by CT
% of Wrongly Labels 68.43% 65.37% 29.80%Reduced by DC

# of TP/FP Noises 5,246/343 9,121/605 7,497/2,230Detected by DT
# of TP/FP Noises 5,131/841 8,997/933 3,311/1,392Detected by CT
# of TP/FP Noises 4,305/463 8,107/1,360 4,392/1,606Detected by DC

Detection results (F-score) 89.04% 73.20% 91.37%on Noisy dataset
Detection results (F-score) 97.19% 84.40% 93.41%on dataset processed by DT
Detection results (F-score) 96.01% 77.36% 93.33%on dataset processed by CT
Detection results (F-score) 92.38% 79.80% 92.19%on dataset processed by DC

Runtime Performance 55.34 62.52 102.12of DT (hour)
Runtime Performance 4.08 20.09 23.93of CT (hour)
Runtime Performance 2.24 21.71 14.15of DC (hour)

compare their performances in terms of the percentage of
wrongly labels being detected/reduced in the noisy datasets.
For fair comparison, the neural networks used in Co-Teaching
or Decoupling are chosen to be the same as the ones used in
Differential Training, being two-layer MLP networks with 500
nodes in the first layer and 1000 nodes in the second layer.

Table X compares Differential Training with Co-Teaching
and Decoupling in terms of noise detection result and runtime
performance. The runtime performance is evaluated on a single
desktop personal computer without GPU. The PC is equipped
with one Intel(R) i5-4590 3.3 GHz CPU and 12 GB physical
memory running on the Ubuntu 14.04 (LTS) operating system.

The table shows that while Differential Training takes
longer time than Co-teaching and Decoupling, it outperforms
these two approaches considerably in all three cases in terms
of noise detection accuracy. Specifically, Differential Training
produces the most True-Positive (TP) results and the least
False-Positive (FP) results in all the cases except for the
FP result in the case of DeepRefiner. The malware detection
results (F-score) with the datasets processed by Differential
Training are also better than those processed by the other two
noise detection approaches.

Different strategies are exploited for identifying or process-
ing noise samples. Differential Training identifies a sample as
“noise” based on all of its loss values in the whole training
process, while Co-Teaching treats a sample to be potentially-
clean based on its individual loss value in each mini-batch, and
Decoupling identifies a noise sample based on its prediction
result that is related to its loss value in the last epoch only. Our
comparison shows that the strategy exploited by Differential
Training is more reliable in detecting noisy labels than other
strategies exploited by Co-Teaching and Decoupling.
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X. DISCUSSION

A. Limitation

Time cost of Differential Training. As shown in section IX,
Differential Training has a higher time cost than Co-teaching
and Decoupling. This is mainly because Differential Training
reduces the label noises in a gradual way in multiple iterations,
while in each iteration two separate classification models (i.e.,
WS model and DS model) are trained. In comparison, both
Co-teaching and Decoupling rely on two classification models
being trained in a single iteration.

Accuracy of noise ratio estimation. The accuracy of the
noise ratio estimation used in outlier detection may affect the
performance of Differential Training. If the estimated noise
ratio is significantly different from the actual ratio, Differential
Training may produce more false positives and false negatives
in identifying noise labels. While the noise ratio estimation
algorithm we adopted enables Differential Training to outper-
form Co-Teaching and Decoupling in rigorous experiments,
it is still possible to further improve the performance of
Differential Training by adopting a more accurate noise ratio
estimation algorithm in its outlier detection. We leave this as
a future work.

B. Generalization on Differential Training

Differential Training is designed to identify and correct
wrongly-labeled data samples for Android malware detection.
In this paper, we consider Android malware detection as
a binary classification problem, where each app is labeled
either benign or malicious. While we expect that the idea
of Differential Training can be generalized to other fields
for identifying data samples whose labels are misclassified,
it cannot be directly applied to correcting wrong labels for
multiclass classification. This is because Differential Training
simply flips the labels for identified noise samples to correct
them. For multiclass classification, additional effort is to be
made on how to correct wrong labels.

XI. RELATED WORKS

1) Android Malware Detection: Early research on Android
malware detection incorporates traditional machine learning
approaches such as k nearest neighbors (kNN) [35], [42],
[32], support vector machine (SVM) [55], [47] or Decision
trees [18], [52] with manually selected features such as system
calls [12], [13], permissions [39], embedded strings [10],
APIs [42], [31], [53], and communication intents [48]. Later
research tends to focus on deep learning algorithms and
automatic feature engineering for Android malware detection.
Maldozer [24], R2-D2 [21] and DroidDetector [38] are several
examples that rely on convolutional neural networks to perform
malware detection based on APIs vectors, while some other
malware detection approaches make use of recurrent neural
networks to process sequential app inputs such as API call
sequences [30], [45], [49]. There also exist hybrid approaches
(e.g., [25]) that combine multiple types of malware detection
models for malware detection. A common assumption taken in
the existing malware detection research is that all training apps
are correctly-labeled; however, it is difficult, if not possible,
to obtain noise-free large-scale training data in practice due
to the high complexity of malware detection and the fast

evolvement of app development. It is thus important to study
the impact of label noises to malware detection and improve
the performance of malware detection given noisy training
data. Differential Training is complementary to the previous
research on malware detection since it provides a generic
framework to reduce label noises in training data and can work
with any Android malware detection approach for improved
performance.

2) The Label Noise Problem in Machine Learning: The
label noise problem has been recently addressed in the ma-
chine learning literature, where the focus is on how to train
classification models that are tolerant to label noises. Various
approaches have been developed to alleviate the negative
effects of wrongly-labeled samples in model training so as
to improve the quality of the finally-trained models.

One approach adjusts the loss calculation in the process of
model training according to label noise estimation [29], [54].
Another approach relies on the models of special structure
that can reduce the impact caused by label noise in model
training [41], [34]. And other approaches aim at training noise-
tolerant models for various purposes [17], [28], [44]. All of
these approaches perform noise detection according to the final
states of input samples in either training phase or testing phase.

According to Schein, et al., the intermediate states of an
input sample are useful in measuring the uncertainty between
the predicted label and the actual label of the sample in the
process of model training [36]. Inspired by this, Chang et
al. accelerated the process of model training [14]. However,
the intermediate states of input samples during model training
have not been utilized to process noisy samples except in Co-
Teaching [20], where the individual loss value of each input
sample in each mini-batch is examined during model training.
Different from all these works, Differential Training detects
label noises by examining all loss values for each input sample
in the whole training process.

XII. CONCLUSION

In this paper, we proposed Differential Training as a
generic framework to detect and reduce label noises from
training data for any machine learning-based Android malware
detection. Differential Training is novel due to (i) the use
of intermediate states of input samples in the whole training
process for noise detection, (ii) the use of downsampled set
to maximize the differences between wrongly-labeled samples
and correctly-labeled samples, and (iii) the use of outlier
detection algorithms for not relying on even a small set of
correctly-labeled training samples.

Our experimental results show that Differential Training
reduces 87.4%, 82.6% and 64.7% wrong labels in the training
sets of SDAC, Drebin and DeepRefiner, respectively in the
default setting where the noise ratio is set to 10%. With noise
reduced, the F-scores of these malware detection approaches
improve from 89.04%, 73.20% and 91.37% to 97.19%, 84.40%
and 93.41%, respectively. The improved F-scores are close
to their upper bounds (97.71%, 93.34% and 93.59%). Our
experiments also show that the performance of Differential
Training is consistent for processing datasets at various noise
ratios, and it is superior to the state-of-the-art robust learning
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algorithms Co-Teaching and Decoupling for training robust
deep neural networks with noisy labels.
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