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Abstract—Emerging WebAssembly(Wasm)-based cryptojack-
ing malware covertly uses the computational resources of users
without their consent or knowledge. Indeed, most victims of
this malware are unaware of such unauthorized use of their
computing power due to techniques employed by cryptojacking
malware authors such as CPU throttling and obfuscation. A
number of dynamic analysis-based detection mechanisms exist
that aim to circumvent such techniques. However, since these
mechanisms use dynamic features, the collection of such fea-
tures, as well as the actual detection of the malware, require
that the cryptojacking malware run for a certain amount of
time, effectively mining for that period, and therefore causing
significant overhead. To solve these limitations, in this paper,
we propose MINOS, a novel, extremely lightweight cryptojacking
detection system that uses deep learning techniques to accurately
detect the presence of unwarranted Wasm-based mining activity
in real-time. MINOS uses an image-based classification technique
to distinguish between benign webpages and those using Wasm
to implement unauthorized mining. Specifically, the classifier
implements a convolutional neural network (CNN) model trained
with a comprehensive dataset of current malicious and benign
Wasm binaries. MINOS achieves exceptional accuracy with a low
TNR and FPR. Moreover, our extensive performance analysis of
MINOS shows that the proposed detection technique can detect
mining activity instantaneously from the most current in-the-wild
cryptojacking malware with an accuracy of 98.97%, in an average
of 25.9 milliseconds while using a maximum of 4% of the CPU
and 6.5% of RAM, proving that MINOS is highly effective while
lightweight, fast, and computationally inexpensive.

I. INTRODUCTION

In recent years, a new type of fileless malware that exploits
the computational resources of end-users via browsers, has
become increasingly common [1]. This new strain of malware,
known as Cryptojacking (a.k.a., drive-by-mining) malware,
performs unauthorized and covert cryptocurrency mining oper-
ations in browsers without the end-users’ knowledge [2]. Both
the tremendous rise in the monetary value of cryptocurrencies,
and the profitability of browser-based mining, have been major
driving forces behind the use of cryptojacking. As such,
there have been a number of major cryptojacking incidents

* Minos is the beast in Dante’s Divine Comedy that acts as a judge in
underworld and decides which layer of the hell the sinner goes to.

that have affected various popular services and websites in
the past. For instance, some of these cryptojacking incidents
have affected popular streaming services, and web applica-
tions like YouTube [3], Openload, Streamango, Rapidvideo,
OnlineVideoConverter [4], Los Angeles Times [5], and some
other organizational websites (e.g., US and UK government
websites) [6]. A prime example that made the news recently
constitutes the episode of the Starbucks’ WiFi network in
Buenos Aires [7], which was injecting cryptojacking malware
through all its outgoing connections due to 1.4 million com-
promised MikroTik routers [8]. Also, several researchers [2],
[9], [10], [11], [12] confirmed that cryptojacking is prevalent
in the wild based on their analyses’ of websites in the Alexa
and Zmap top 1 million lists.

The birth of cryptojacking can be attributed to a number
of emerging technologies such as WebAssembly (Wasm),
WebWorkers, and WebSockets. In general, these technologies
have served to facilitate high-performing, scalable web ap-
plications running on browsers. In the context of cryptocur-
rency, Monero came forward with the promise of untraceable
transactions, which caught the attention of malicious entities
in the dark web [13]. The Coinhive mining service provided
WebAssembly-based Monero-mining scripts to website owners
as an alternative source of income/profit [9], [2], [13]. Thus,
cryptojacking was born, a new cryptocurrency mining malware
running covertly on end-user browsers that relies on the latest
web technologies and easily reaches its victims via websites
without requiring any software installation. The misuse of
Coinhive scripts by malicious entities without the consent
of end-users facilitated the shut down of Coinhive in March
2019 [14]. Although Coinhive is no longer maintained or oper-
ational, numerous studies [15], [14] indicate that cryptojacking
malware is still in use in the wild. The findings of our study
add further support to this statement.

There exist several detection and protection mechanisms
against cryptojacking malware. In this respect, several browser
extensions (e.g., Nocoin, minerBlock, etc.) exist that employ
the use of blacklists to stop malicious cryptocurrency mining
operations. However, blacklists are not a suitable remedy
since malicious entities that use cryptojacking malware change
their domains’ names frequently [9], [16]. Antivirus software,
on the other hand, performs signature matching by looking
for the presence of specific keywords (e.g., miner, coin,
Coinhive, etc.), and function names that are indicative of a
cryptojacking script on the webpage. This detection technique
was also reported to be easily bypassed [17]. In addition to
these protection mechanisms, various researchers proposed a
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number of highly accurate detection systems for cryptojacking
malware. Most of these techniques are based on the analysis
of dynamic features. These include fixed thresholds [16], se-
mantic instruction-count-based signature matching [17], CPU,
memory and network traffic features [18], [19], [20], run-
time, network, mining-related and browser-based features [12],
block-level profiling and dynamic instrumentation [15], [21],
[22], hardware performance counters [23], and instruction-
count-based analysis and memory events [10]. Although such
existing detection systems are promising and report high detec-
tion accuracy, there are several issues to consider. Firstly, the
studies using dynamic analysis techniques have high runtime
overheads. They also suffer from measurement inaccuracies
due to noise resulting from external processes/applications.
In addition, they require administrator privileges to monitor
CPU and memory events. Since benign web applications also
use the aforementioned web technologies (i.e., WebAssembly,
WebWorkers, WebSockets), the existing dynamic techniques
can have high false positives. Moreover, cryptojacking authors
employ dynamically generated domain names, proxies, and
encrypted communications, which render detection systems
that rely on network-data analysis inefficient. Finally, dynamic
analysis and instrumentation-based detection systems running
continuously in the background can negatively affect the
quality of the web surfing experience of end-users.

In this paper, we propose MINOS, a lightweight, fast and ef-
ficient defense solution against cryptojacking malware. MINOS
is a novel cryptojacking detection system that employs the use
of gray-scale image representations of Wasm-binaries in web
browsers. Specifically, MINOS converts a suspected Wasm bi-
nary to a gray-scale image, and utilizes a Convolutional Neural
Network (CNN)-based Wasm classifier to classify the image
as either malicious (i.e., cryptojacking) or benign. Unlike
dynamic analysis-based techniques, MINOS does not require
continuous monitoring of CPU, memory, and network events
or counting running instructions. Hence, its runtime overhead
is significantly lower, and it does not affect the quality of
the web surfing experience of end-users. In addition, evasion
attempts employed by cryptojacking malware authors based on
CPU throttling, dynamic domain names usage, and encrypted
communications, would be unsuccessful against MINOS.

We designed and implemented the MINOS lightweight
cryptojacking detection system as an end-to-end framework.
We trained and evaluated MINOS using one of the most
comprehensive collected datasets on cryptojacking malware
samples in the wild. The framework is further evaluated by
testing it against a dataset of real webpages in the wild that use
Wasm. The results of this evaluation conclude that the classifier
achieves extremely high accuracy, and is able to accurately and
instantaneously identify the presence of cryptojacking malware
while consuming minimal computational resources.

Contributions: The contributions of this paper are listed as
follows:

• A novel cryptojacking detection mechanism that im-
plements a Wasm binary classifier in a lightweight and
computationally inexpensive end-to-end framework
with instantaneous detection capabilities - MINOS.

• A novel Wasm binary classification technique that uti-
lizes gray-scale image representations of the binaries
to train a convolutional neural network.

• Our extensive evaluation demonstrates that MINOS is
capable of detecting Wasm-based cryptojacking with
98.97% accuracy on a compiled dataset of real, in-the-
wild samples, with minimal overhead. Specifically, the
proposed detection mechanism successfully detected
all cryptojacking malware in our datasets within 25.9
milliseconds on average, with only 6.5% and 4%
maximum utilization of RAM and CPU, respectively.

Organization: The rest of the paper is organized as follows:
Section II gives the background information. Section III an-
alyzes the existing detection mechanisms, and outlines why
there is a need for a new cryptojacking detection system.
Section IV defines the threat model. Section V proposes an
overview of our novel MINOS framework. Section VI de-
scribes how we implemented MINOS. Performance evaluation
of MINOS is performed in Section VII. Section VIII provides
discussions and considerations on various aspects. Related
work is summarized in Section IX, and Section X finalizes
the paper with the conclusion.

II. BACKGROUND

A. Cryptocurrency Mining and Cryptojacking

Cryptocurrency mining started with CPU-bound PoW
schemes that mine Bitcoin or Ether currencies [9]. When one
of the miners computes a block successfully, a new block for
the blockchain is generated by the miner, and in return, the
miner receives a certain amount of cryptocurrency as a reward.
Since the revenue that could be obtained was directly propor-
tional to the amount of processing power, Application-Specific
Integrated Circuits (ASICs), Field Programmable Gate Arrays
(FPGAs) and Graphics Processing Units (GPUs) became the
de facto platforms for CPU-bound PoW schemes instead of
ordinary desktop computers [9], [2]. In order to remedy this
issue, new cryptocurrencies (i.e., Monero, Bytecoin, etc.) that
utilize memory-bound PoW schemes emerged. These schemes
were based on hash puzzles that required voluminous interac-
tions with the memory rather than CPU power. Hence, ordinary
computers started to be suitable mining environments for such
cryptocurrencies.

Cryptocurrency mining in browsers first started with the
Coinhive miner, which promised an alternative income oppor-
tunity to website owners in 2017 [2], [9], [13]. In Coinhive
mining, website owners were placing cryptocurrency mining
scripts on their websites that would trigger the mining pro-
cess within the visitors’ browsers. There were also legitimate
websites that would receive the consent of users to mine
cryptocurrency. However, this extra income opportunity caught
the attention of malicious entities. These individuals began to
covertly mine cryptocurrency without the explicit consent of
users. This phenomena is known as cryptojacking, or drive-by
mining / coinjacking [2]. In this new type of malware, attackers
misuse the processing power of victims, and derive revenue
from it.

A malicious cryptocurrency mining script can be injected
into websites in a number of ways [1], [2]: 1) Website
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Fig. 1: We illustrate the process of implementing malicious Wasm modules that mine cryptocurrecy in webpages. The right-most
image shows the resulting Wasm module through a binary dissassembler. The highlighted portions of text (i.e. strings found
in the binary) confirm that the module was compiled using Emscripten and that the binary is indeed executing cryptocurreny
mining functions.

owners can embed such scripts in their websites and activate
them without taking consent of the visitors. 2) Third-party
services can inject such scripts without informing neither
website owners nor end-users. 3) Malicious browser extensions
can run cryptocurrency miners in the background silently.
4) Attackers can breach servers, browser extensions, third-
party services, and inject cryptojacking malware. 5) Vulnerable
network devices such as routers, access points, etc. can be
exploited to mine cryptocurrency through web traffic.

A browser-based cryptocurrency miner typically consists
of a JavaScript code snippet that has the identification number
of the script owner. It also has the corresponding code that
configures the mining process, communicates with the cryp-
tocurrency service provider, and starts the mining operation.
The identification number of the script owner discriminates
the malicious entity that owns the script amid other entities
from the cryptocurrency service provider’s point of view.
In this way, service providers can monitor and measure the
total hashing power provided by script owners. The service
provider communicates with miners through high-performance
communication primitives, like WebSockets. In order to in-
crease profit, cryptocurrency miners use WebWorkers to run
the mining process in parallel via multiple threads. Further,
to solve hash puzzles with high efficiency, they utilize miner
implementations in WebAssembly instead of JavaScript [9].

B. WebAssembly and Cryptojacking Malware

WebAssembly (Wasm) is a low-level binary instruction
format that promises to run code near native speeds in a
stack-based virtual machine within the browsers [24]. It is
currently supported by four major, widely-used browsers,
including Google Chrome, Mozilla Firefox, Microsoft Edge,
and Safari. Its use of binary encoding results in efficiency in
size and load-time, and execution speeds that are comparative
to native machine code [24]. Other principle features include
it being easy to decode, hardware and platform-independent,
and compact [25].

Rather than replacing JavaScript (JS), Wasm is meant to
supplement and run in parallel with JS. The language is
designed to be used as a target for compilation of numerous
high-level languages such as C, C++, and Rust. Webpages,
written in JS, will also instantiate Wasm modules that are then
compiled in a sandbox environment. Using the same Web APIs
available to JS, Wasm modules have the ability to call in and

out of the JS context, and access browser functionality. The
most widely used toolchain for compiling modules written
in C/C++ into Wasm is the open source LLVM compiler,
Emscripten. The near native speed of Wasm is achieved due to
the fact that the modules have already been optimized during
compilation, and memory management is done without the use
of a garbage collector.

Advantageous features of WebAssembly make it suitable to
implement and execute browser-based cryptocurrency mining
functions that require substantial computational power such as
cryptonight_hash. As such, a vast majority of browser-
based cryptojacking malware implements Wasm to execute the
cryptocurrency mining payload. This is apparent as Konoth
et al. [10] reported that 100% of the 1,735 cryptocurrency
mining websites they identified in their study utilized Wasm. In
parallel to this study, Musch et al. [11] analyzed the prevalence
of WebAssembly in wild. They inspected the Alexa top 1
million websites, and realized that 0.16% of the websites
employ WebAssembly. Their analysis revealed that more than
half of the websites that employ WebAssembly, are using it
for malicious purposes. They highlighted that cryptojacking is
the major application among malicious use-cases.

Crytojacking malware authors write code in C/C++ that
performs mining functions including:

cryptonight_create,
cryptonight_destroy, and

cryptonight_hash.

They then compile this to a Wasm module using the
Emscripten toolchain. This Wasm module is then accessed
through the JavaScript function,

WebAssembly.instantiateStreaming.

The fetch() method of the Fetch JavaScript API is used
as the function’s first argument. This method fetches, compiles,
and instantiates the module, enabling access to the raw byte
code. During the compilation phase, the Wasm binary has
already undergone optimization and can hook directly into the
backend where machine code is generated and executed. This
code performs mathematical operations that facilitate solving
convoluted hash puzzles i.e., mining cryptocurrency. A visual
depiction of this procedure can be seen in Figure 1.
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Fig. 2: An image depicting a Wasm binary with each section
of the image being labelled corresponding to each of the 12
respective sections described in Section II-C.

C. Structure of WebAssembly Modules

A Wasm module comprises 12 distinct sections, each with
its own section ID ranging from 0 to 11. The following list de-
scribes each module and includes each section’s corresponding
ID number (Figure 2).

0) Custom section: This section is either used for
debugging purposes or by third-party extensions for
custom purposes. It contains a name that identifies the
section as the custom section and a custom sequence
of bytes for use by third-party extensions.

1) Type section: The type section decodes or defines
a vector of function types. This component contains
every function type utilized in the module.

2) Import section: This section decodes a vector of a
set of imports that are required in order to confirm
that the module is valid during instantiation. Each
import definition consists of a module name and a
name for an element within that specific module.

3) Function section: The function section consists of a
vector of type indices representative of the type pa-
rameter of the functions defined in the module. Each
function definition consists of 3 parameters: type,
locals, and body. The locals and body parameters are
encoded in the code section.

4) Table section: This section contains a vector of
tables that are defined by their table type. A table
consists of a vector of values of a specific element
type.

5) Memory section: This component decodes into a
vector of linear memories described by their memory
type, consisting of raw, uninterpreted bytes.

6) Global section: The global section contains a vector
of global variables used in the module. Each global
variable definition consists of a single value describ-
ing its type.

7) Export section: This section consists of a vector of
a set of exports that the host environment can access
after module instantiation.

8) Start section: The start component defines the index
of an optional start function that is invoked during
module instantiation after tables and memories are
initialized. This function is used to initialize the state
of the module.

9) Element section: The element section is comprised
of a vector of element segments that initialize a
subrange of a table based on a specifically defined
offset.

10) Code section: The code section contains a vector
of code entries that consist of pairs of expressions
and value types. The four value types that Wasm
variables can take include 32 and 64-bit integers and
32 and 64-bit floating-point data. In the module’s
code, these types are represented by the terms i32
and i64, and f32 and f64 respectively. Each code
entry is comprised of the size of the function code in
bytes, and the function code. The function code, in
turn, consists of local variables and the body of the
function as expressions. These correspond to the local
and body parameters of the sections of the function
mentioned previously.

11) Data section: This section is comprised of a vector
of data segments that initialize a range of memory
based on a specifically defined offset.

III. NEED FOR A NEW CRYPTOJACKING DETECTION
SYSTEM

The current literature has a plethora of works on the
detection of malicious cryptocurrency miners. We can group
the works into three categories based on the type of detection
system: 1) browser-based detection (targeting cryptojacking),
2) host-based detection (targeting stand-alone miners that run
as a malicious software on hosts), and 3) network-based
detection (targeting any type of miners). In this section, we
will briefly examine the detection systems for each category
respectively. In addition, we will outline the need for a new
cryptojacking detection system.

A. Malicious Cryptocurreny Mining Detection Systems

Browser-based Mining (Cryptojacking) Detection: Several
researchers proposed highly accurate detection systems against
cryptojacking malware. Hong et al. [16] proposed CMTracker
that uses the cumulative time spent on hashing operations and
stack characteristics of threads. Wang et al. [17] proposed
SEISMIC, as a semantic signature-matching-based detection
system that instruments the Wasm modules to count specific
instructions in runtime. Rodriguez and Posegga [18] proposed
RAPID, a Support Vector Machine (SVM) based classifier that
uses CPU and memory events, and network traffic features.
Kharraz et al. [12] proposed OUTGUARD, that builds an
SVM classifier using features of runtime, network, mining, and
browser events. Bian et al. [15] proposed MineThrottle, which
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uses a block-level profiler and dynamic instrumentation of the
Wasm code that is pointed by the profiler at compile time. Kel-
ton et al. [19] proposed CoinSpy which utilizes computation,
memory, and network features. Conti et al. [23] used Hardware
Performance Counters (HPC) data to detect cryptojacking.
Konoth et al. [10] proposed MineSweeper that firstly analyzes
the Wasm modules and counts number of specific instructions.
It tries to find out how similar the analyzed module is to
cryptojacking malware Wasms. In addition, it monitors cache
events during runtime.

Host-based Stand-alone Mining Detection: In terms of mali-
cious cryptocurrency miners not targeting browsers but directly
hosts, Darabian et al. [26] proposed a detection system that
uses opcode sequences and system calls of Windows Portable
Executable (PE) files. Berecz and Czibula [27] employed
both static features (i.e., entropy, and header, section, and
function information) and API calls. Vladimı́r and Žádnı́k [28]
presented two techniques, in which the first technique uses a
decision tree on the flow features, and the second technique
acts like a miner client probing the miner server.

Network-based Detection: As a network-level detection
mechanism, Neto et al. [29] proposed MineCap, a network-
flow-based detection and blocking mechanism to protect the
network of devices controlled by the SDN controller. MineCap
relies on Apache Spark Streaming library and incremental ML
model to detect the cryptocurrency mining flows.

B. Challenges and Need for a New Detection System

Cryptojacking detection is challenging. Benign web ap-
plications frequently use the technologies that are also used
by cryptojacking malware (e.g., WebAssembly, WebWorkers,
WebSockets). Similar to cryptojacking scripts, benign web
applications can consume high CPU and memory resources.
All of these characteristics can affect the accuracy and false
positive rates of detection systems. In addition, end-users
browse the web through a variety of browsers using vari-
ous operating systems that require solutions to be platform-
independent. Moreover, end-users expect pages to load quickly
and run flawlessly, which force detection solutions to be
lightweight and efficient. In addition, attackers can throttle
the resource consumption of their malware, change function
names and strings, use proxies, dynamically generated domain
names, and encrypted communications that make their detec-
tion increasingly challenging.

However, considering the challenges and approaches pro-
posed in prior work, cryptojacking detection can still be
improved drastically. Existing detection approaches, albeit use-
ful, have several drawbacks. Firstly, cryptojacking is moving
from JavaScript to WebAssembly for various reasons (e.g.,
performance, hardware support) [12]. However, only a small
portion of prior studies [17], [10], [12] take this change into
account. Secondly, cryptojacking detection systems [17], [10],
[12], [18], [15], [19] relying on dynamic analysis features can
suffer from high computational overhead, reduced measure-
ment accuracies due to noise caused by other processes, and
false positives resulted from benign websites using the same
technologies. For this reason, practical applications of such
schemes may cause quality-of-experience issues for end-users.
Moreover, attackers can easily find ways to circumvent existing

detection systems. To be more specific, fixed threshold values
used by CMTracker [16] can be evaded easily. The techniques
of Vladimı́r and Žádnı́k [28] are not effective against private
mining pools or mining pools hidden behind proxies. Cryp-
tojacking scripts can use encrypted communication, dynamic
domain names, alternative communication primitives (e.g.,
XMLHttpRequest), and proxies to bypass detections systems
that use network-based features [9]. In addition, some detection
systems have drawbacks that may limit their acceptance and
usage by end-users. For instance, one of the features used
by OUTGUARD [12] (i.e., MessageLoop event) is browser-
dependent. MineCap [29] can be utilized only by operators
which employ SDN in their networks. Therefore, individual
users cannot use it. Instrumentation code added by SEIS-
MIC [17] may severely affect the performance of legitimate
web applications that use Wasm, which may degrade the
quality of experience of end-users.

Based on all of the mentioned reasons, a new cryptojacking
detection system is needed, which is lightweight, isolated from
external noise, robust against adversarial attempts, and which
considers the changing landscape of cryptojacking malware. To
address these issues, we propose MINOS, a new cryptojacking
detection system that employs visualization of cryptojacking
Wasms.

IV. THREAT MODEL

In this study, we consider an attacker model that injects
cryptojacking script in a number of ways:

• The attacker can inject a cryptojacking script to their
website and activate it without taking consent of
visitors,

• The attacker can embed a cryptojacking script to their
services that are used by various websites as a third-
party service, and they may not inform the website
owners,

• The attacker can compromise access points, routers,
and any other intermediate devices, and configure the
device to inject their cryptojacking scripts to all web
traffic.

In addition to the methods used to inject cryptojacking
scripts, the attacker can use dynamically generated domain
names, proxies, alternative communication protocols (e.g.,
XMLHttpRequest) and encrypted communications to obfus-
cate the network-level behavior of his/her script. Moreover,
the attacker can configure his/her script to throttle the CPU
usage of cryptojacking. Regarding obfuscating the cryptojack-
ing code, our attacker model considers the obfuscation of
(1) strings, and (2) function names only since these are the
most common applications of obfuscation currently applied to
browser-based cryptocurrency miners in the wild, as reported
by Wang et al. [17].

The attacker is assumed to have the major implementation
of the cryptojacking malware in WebAssembly due to the
performance superiority of WebAssembly over JavaScript. We
find this assumption reasonable since many studies [10], [11],
[12] pointed out the fact that almost all of the cryptojacking
scripts that were detected in the wild were based on We-
bAssembly. For this reason, although it is possible, we do not
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Fig. 3: Overview of the MINOS’s framework detailing its four components. The Wasm binary auto-collector downloads Wasm
binaries to a designated folder. The preprocessor then converts the binaries to gray-scale images and feeds them to the Wasm
Classifier. A pre-trained CNN in the Wasm Classifier classifies images of each binary as either malicious or benign. Finally, the
Notifier receives the classification results and alerts the user if results indicate a malicious mining activity is present.

Fig. 4: Gray-scale images of Wasm binaries that belong to
cryptojacking samples.

consider the attacker employing pure JavaScript-based crypto-
jacking implementations. In addition, we do not target legit-
imate cryptocurrency mining operations (e.g., UNICEF [30])
in the browsers that informs the end-users, and asks for their
consent.

V. MINOS FRAMEWORK

A. Inherent Similarity of Cryptojacking Malware

Cryptojacking malware implementations have several in-
herent similarities as highlighted by Wang et al. [17] and
Musch et al. [11]. They are constrained by optimized imple-
mentations of specific proof-of-work (PoW) schemes based on
memory or CPU-bound hash puzzles. Although cryptojacking
malware authors can employ various tactics to prevent their
malware from being detected, they still have to implement the
same PoW schemes, with the same hashing algorithms. This
is in fact, one of the unique characteristics of cryptojacking
that distinguishes it from other malware families. Hence, we
hypothesized that their implementations should share similar
characteristics, and maybe even look syntactically, and seman-
tically similar to each other. In fact, the semantic similarity
of cryptojacking malware strains was confirmed by Wang et
al. [17]. In order to verify the validity of our hypothesis,
we collected Wasm binaries of both benign and cryptojacking
samples, and converted them to gray-scale images, as depicted
in Figure 4. As shown in this figure, gray-scale images of
Wasm-binaries belonging to cryptojacking samples (i.e., the
gray-scale images in the first row) are visually very similar to
each other. Based on this observation, and motivated by the

drawbacks of existing detection mechanisms explained in Sec-
tion III, we propose MINOS, a novel, lightweight cryptojacking
detection system, in this study.

B. System Model

The architecture of MINOS framework, as shown in Fig-
ure 3, consists of four primary components: Wasm module
auto-collector, preprocessor, Wasm classifier, and notifier.

The first component of MINOS is the Wasm Module Auto-
Collector. As the user is browsing the Internet, this component
checks if the website being visited currently produce any Wasm
binaries, and if so, downloads them to a specified folder ( 1 ).
The second part is the preprocessor, which reads the specified
folder where the Auto-collector downloads the Wasm binaries,
and converts each binary in the folder to a gray-scale image
( 2 ). It further preprocesses this image into a format that
can be read by the next component. In the third part, the
transformed binaries are input to the Wasm Classifier, a pre-
trained CNN that classifies each preprocessed binary as either
malicious or benign ( 3 ). Finally, the notifier receives the
classification results from the CNN and, based on those results,
will either alert the user of malicious mining activity or do
nothing ( 4 ).

Wasm Module Auto-Collector: As the user is browsing the
Internet, this auto-collector is continuously, and simultaneously
running in the background, and checking whether each web-
page visited is utilizing Wasm. If a certain website is indeed
using Wasm, and a Wasm module has been instantiated, the
collector automatically downloads and extracts the associated
Wasm binary to a specified folder. It should be noted that
this script will only download Wasm binaries and no other
web page components. In addition, if a webpage loads more
than one Wasm module, the auto-collector will download all
instantiated Wasm binaries simultaneously to the specified
folder.

Preprocessor: Before the Wasm classifier can perform its
task, the extracted Wasm binary needs to be preprocessed to
convert the data into a format that the neural network is able
to use as input. This involves converting each Wasm binary
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to a gray-scale image, and resizing it to a common size. The
preprocessor converts the binary into an array of integers with
each integer representing a pixel of a gray-scale image, and
then normalizes and reshapes the resulting array. The final
reshaped array is then passed on to the Wasm classifier.

Wasm Classifier: The Wasm classifier is a convolutional
neural network (CNN) that is pre-trained on a dataset that
consists of 150 malicious, and 150 benign Wasm binaries. The
structure of the CNN consists of 3 sets of convolution layers
followed by max-pool layers with an increasing number of
filters in each successive convolution layer (16, 32, and 64).
The kernel size used in each convolution layer is set to (3,3),
while the pool size of each max-pool layer is set to (2,2).
These layers are followed by a final dense layer, with the
output being an integer representing whether the sample is
benign (0) or malicious (1). The trained neural network is fed
the transformed data from the preprocessor as input in order
to classify the collected Wasm binary as benign or malicious.

Notifier: If the Wasm classifier classifies the binary in question
as malicious, the user is informed that the webpage they are
currently visiting is using their computational resources to
mine cryptocurrency, and that it is recommended that they
close it, and therefore terminate any mining processes running
in the background. However, if the binary is classified as
benign, the notifier does nothing, and the user continues to
browse uninterrupted with the Wasm Module Auto-Collector
continuing to check for the instantiation of Wasm modules.

VI. IMPLEMENTATION OF MINOS

This section provides details regarding the dataset used
in the study, as well as the technical implementation of the
MINOS framework. The framework is implemented as an
application written in Python 3 in only 90 lines of code, with
a supplemental script written in node.js. The implementation
is performed and evaluated on a system running Ubuntu
18.04 with an Intel Core i7-9700K processor and 16 GB
of available RAM. The system has a total of 8 cores, with
each processor running a base frequency of 3.6 GHz. The
current implementation is designed to work specifically with
Google Chrome, as it is the world’s most used web browser.
The following subsections provide an in-depth look into each
component and outline details, including algorithms involved
and libraries/APIs utilized.

A. Wasm Module Auto-Collector

A script written in node.js provided by the authors of
[11] automatically collects, and downloads Wasm binaries to
a specified folder as the user is browsing the web. It utilizes
Puppeteer, a Node library that is able to communicate with
and manipulate/control Google Chrome over the DevTools
Protocol, through a high-level API. The code wraps JavaScript
functions that instantiate a WebAssembly module such as
WebAssembly.instantiateStreaming, and logs the
module’s binary file to the NodeJS backend.

B. Preprocessor

A Wasm module binary consists of a sequence of hex-
adecimal numbers. This vector of hexadecimal values can be
modified and transformed into a gray-scale image. To facilitate

Fig. 5: The first row of gray-scale images belong to Wasm
binaries of cryptocurrency mining webpages. The images in
the second row represent Wasm binaries of benign webpages,
primarily games that employ Wasm.

such a conversion, the Wasm binary is first converted into a
vector of 8-bit unsigned integers (uint8) and then reshaped
into a two-dimensional array. This reshaped array is then
divided by 255 to represent each integer as a pixel that takes
a value ranging from 0 to 255 (with 0 being black, and 255
being white). These pixels together form a gray-scale image
representation of the Wasm module binary. Figure 2 depicts
an example of a gray-scale image of a Wasm binary that
utilizes the CoinHive cryptocurrency mining service. As shown
in the figure, visually distinct regions in the gray-scale image
correspond to specific sections in the Wasm binary structure.
Examples of binary to image transformations of malicious
and benign webpages are shown in Figure 5. As it can be
observed from Figure 5, binaries that mine cryptocurrency
are visually extremely similar when converted to gray-scale
images. This observation also holds true for benign binaries.
Another observation is that the images of malicious Wasm
binaries are distinct from those belonging benign webpages.

Algorithm 1: Preprocessor
1 def preprocess():
2 while len(Wasm directory) == 0 do
3 time.sleep(1)
4 if len(Wasm directory)! = 0 then
5 Wasm images → []
6 for file in Wasm directory do
7 f → open(file)
8 ln → getSize(file)
9 width → math.pow(ln, 0.5)

10 rem → ln%width
11 a → array(′B′)
12 a.fromfile(f, ln− rem)
13 f.close()
14 os.remove(file)
15 g → reshape(a, (len(a)/width), width)
16 g → uint8(g)
17 h → resize(g, size, size)
18 h → h/255
19 h → h.reshape(−1, 100, 100, 1)
20 Wasm images(h)
21 classify(Wasm images)
22 return preprocess()
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The visualization procedure is implemented using a re-
cursive function written in Python 3, the details of which
are depicted in Algorithm 1. In Lines 2-3, a while loop is
constantly checking whether the destination folder for ex-
tracted Wasm binaries is empty at one second intervals (i.e.,
it is checking every second). In Lines 4-7, once a binary is
collected and added to the folder, it is opened and ready for
further preprocessing. In Line 5, the variable Wasm_images
is declared, which will store the converted images. Line 6
ensures that if a website loads multiple Wasm modules, each
downloaded module is visited in each iteration of the for loop
and is preprocessed. Lines 8-10 calculate length and width
parameters, ensuring that the final resized array will have a
relatively similar length and width. In Line 11, the file is
converted to an array of unsigned integers. In Lines 13-14, after
the array is reshaped and the file is closed, the file is deleted
from the directory so that once the function has executed, it
does not preprocess the same module repeatedly. Lines 15-16
reshapes the created array, and converts it into an array of
8-bit unsigned integers (uint8) that range in values from 0
to 255. The value of each integer in the array represents the
brightness of a pixel ranging from black to white (0 to 255).
In Lines 17-18, the image array is resized to a common size
of 100 by 100, and the pixel values are normalized to a range
of 0 to 1 by dividing the array by 255. This normalization
is done as it is easier for the model to process input arrays
with a smaller range of values. Line 19 reshapes the array to a
four-dimensional array that the CNN can accept as input, and
Line 20 appends the array to the Wasm_images list. Once
the binary or binaries are converted to images, and added to
this list, the classify() function is called, which takes the
images as an argument. This function will be referenced to,
and discussed in the following subsections. The preprocess
function ends with a recursive call ensuring that it continues
to check the directory at one second intervals for new input.

C. Convolutional Neural Network & Notifier

Algorithm 2: Classification Retriever
1 def classify(images):
2 results → []
3 for ima in images do
4 results.append(model.predict classes(ima))
5 if 1 in results then
6 notify user()
7 return

The Wasm classifier is built using the TensorFlow software
library, specifically using TensorFlow’s high-level API, Keras.
The CNN is written in Python 3 using TensorFlow version
1.13.1. The model is trained across 50 epochs using the
RMSprop optimizer, with the learning rate manually set to
0.0001.

Algorithm 2 outlines the classify() function called in
Line 21 of Algorithm 1. This function retrieves the classifica-
tion result of each binary collected and converted to images
by the preprocess function outlined in Algorithm 1. In
Line 2, the variable results is declared, which will store
the results of the classification of each binary. In Line 3, the
model.predict_classes() Keras function is used to

classify each image in Wasm_images. The function returns
an integer representing whether the sample is benign (0) or
malicious (1). Each classification result is appended to the
results list that the notifier will use to perform its task.

The notifier receives a classification result from the CNN
as a list of integers taking values of either 0 (benign) or 1
(malicious). In Line 5, if the list contains any instances of
malicious classification (i.e., any 1’s), the user is informed via
a pop-up dialog created by the notify_user() function
in Line 6, that the webpage they are currently visiting is
attempting to mine cryptocurrency, and that they should close
it immediately to prevent continued unauthorized use of their
computer’s resources.

VII. PERFORMANCE EVALUATION

In this section, details of the dataset used in the study are
outlined including sources and number of samples collected.
This is followed by an evaluation of the performance of the
Wasm classifier and an overhead analysis of both the classifier
and the MINOS framework.

A. Methodology

To evaluate MINOS, we use a number of classification
accuracy metrics across two different datasets consisting of
Wasm binaries and webpages that instrument cryptojacking
malware. The first is a dataset of Wasm binaries used to train
MINOS. The second dataset consists of webpages in-the-wild
that use Wasm and includes benign webpages and those that
instrument cryptojacking malware. Details of each dataset are
outlined below, followed by a description of the metrics used
in our evaluation:

Training Dataset: The dataset used to train the Wasm Classi-
fier consists of 150 malicious and 150 benign Wasm binaries
that were obtained from numerous studies and resources. A
large portion of the dataset consists of binaries that were
collected and used in the following other studies in the
literature: SEISMIC [17], MineSweeper [10] and Musch et al.
[11]. The remainder of the binaries were collected manually
using resources such as VirusTotal [31] and VirusShare [32],
NoCoin [33] and MadeWithWasm [34]. A breakdown of the
number of binaries collected from each resource, including the
distribution of benign and malicious samples, can be found in
Table I below. This is followed by a brief description of the
other resources and how the binaries were collected from each
of them.

TABLE I: Training Dataset Breakdown

Benign Malicious
SEISMIC 6 4

MineSweeper 4 34
Musch et al. 105 45

VirusTotal and VirusShare 0 63
NoCoin 0 4

MadeWithWasm 35 0
Total 150 150

VirusTotal and VirusShare: VirusTotal and VirusShare are
two popular websites that are used for malware research
and practice purposes (e.g., scanning, sharing). Both websites
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provide various malware samples along with their detection
results with respect to several antivirus engines. In order to
obtain the newest samples that were detected by antivirus
engines, both VirusTotal and VirusShare were used in a way
that complemented each other. In this respect, the VirusTotal
API enables researchers to automatically check the detection
results for a specific sample (up to four queries per minute)
but does not allow downloading of such samples. VirusShare,
on the other hand, enables researchers to download large
packages of malware, but does not have an API. To obtain the
newest malware samples, a 73.15 GB malware package shared
publicly on the 21st of April, 2020 was downloaded from
VirusShare, and the hash values of the samples that have the
file type of HTML were extracted. Since HTML samples can
contain various malware types (e.g., redirector, downloader,
ramnit, trojans, etc.), the VirusTotal Premium API was used to
determine the ones labeled as malicious cryptocurrency mining
scripts. Using a bash script, the hash values obtained from
the VirusShare samples were checked using the VirusTotal
API in every 15 seconds. If the VirusTotal API indicates that
the sample was identified as cryptojacking malware, then the
sample was automatically extracted from the local VirusShare
package, and using the Puppeteer API [35], opened in Google
Chrome in incognito mode with developer options to examine
if it compiles and runs Wasm for cryptojacking.

Using the developed script, we were able to determine
34 unique websites (adult, streaming, forums, etc.) that still
perform cryptojacking operations using Wasm. We would like
to note that the same web pages and also different pages
of the same websites were detected cryptojacking positive
by antivirus engines at different time intervals. For instance,
antivirus engines detected piratebay’s individual torrent search
result pages to be employing cryptojacking. However, the
website was injecting the same cryptojacking script to every
other sub domain as well. Therefore, we omitted multiple
occurrences of the same website, and counted websites that
had every sub-domain infected as 1. We analyzed the samples,
and discovered the addresses of 8 unique mining services still
operational. Table II outlines the list of active mining services
that use Wasm. When we checked the domain names, we found
that, except for bimeq.com.vn and monero.cit.net,
the remaining domains already reside in the NoCoin [33] list.
In addition, we realized that the VirusShare malware package
that was shared with the community in April 2020 has several
cryptojacking samples that try to use the obsolete Coinhive
mining service. Since Coinhive is no longer maintained, these
samples do not perform any mining operations. Nevertheless,
antivirus engines seem label them as cryptojacking malware
since they have specific keywords (i.e., Coinhive, miner, mine,
etc.). Further, we found that some samples which do not
perform any mining operations, and do not have any mining-
related script declarations, were falsely detected as cryptojack-
ing samples due to having specific keywords in the actual
HTML text.

NoCoin: NoCoin [33] is a browser extension available on
Chrome, Firefox, and Opera, that aims to block websites that
mine cryptocurrency, using a blacklist. Each website on the
blacklist was visited using Google Chrome, one-by-one, to
check for the presence of mining activity. This was achieved
by opening Chrome DevTools, and manually checking for the

TABLE II: Cryptojacking Services Extracted from VirusTotal
and VirusShare Samples

https://statdynamic.com/lib/crypta.js

https://www.hostingcloud.racing/ATxh.js

https://www.hostingcloud.racing/5Dgk.js

https://www.hostingcloud.racing/LGIy.js

https://www.hostingcloud.racing/winX.js

https://www.hostingcloud.racing/l6nc.js

http://biomeq.com.vn/forum/script.min.js

http://monero.cit.net/monero/p.js

instantiation of Wasm modules in the Sources tab. Since the
blacklist is relatively old, most of the websites no longer exist
or are not mining cryptocurrency. Four of the websites still
functioned, and as such, the Wasm modules were downloaded.
These modules are downloaded in the Web Assembly textual
format rather than in binary form, and therefore must be
converted to a binary. The conversion is performed using
the WebAssembly Binary Toolkit (WABT), specifically, the
wat2Wasm tool.

MadeWithWasm: Made with WebAssembly is a website
that showcases applications, projects, and websites that use
WebAssembly. Each of these were visited, and in a similar
fashion to No Coin, using Chrome DevTools, the Wasm
modules were downloaded in textual format, and converted to
binaries using the WABT. It should be noted that not all of the
use cases and websites listed on MadeWithWasm instantiated
Wasm modules when checked with Chrome DevTools. A
subset of the collected text modules could not be converted to
binaries due to errors associated with WABT. The remaining
17 modules were successfully converted to binaries, and added
to the dataset of benign samples.

In-the-wild dataset: This dataset consists of websites in the
wild including both benign websites, as well as cryptomining
websites, that utilize web assembly. This dataset was compiled
using two sources namely, PublicWWW [36] and Tranco [37].

Using the PublicWWW source code search engine, we
search for websites that instantiate one or more web assembly
modules. This is a realistic representation of cryptomining sites
in the wild as MineSweeper’s [10] evaluation concluded that
100% of the cryptomining websites they found utilized Wasm
while Musch et al. [11] found that in the Alexa 1M, more
than 50% of websites that use Wasm, use it for cryptomining
purposes. Additionally, we crawled the first 100K websites
from the Tranco 1M list (Alexa 1M is no longer published)
for the presence of cryptomining activity. Our search returned
a combined total of 682 websites from both sources with 613
being benign and 69 malicious.

In order to label our in-the-wild dataset, we followed a
similar manual labelling process to Musch et al.’s work [11]
and MineSweeper [10] where certain criteria were used to label
the in-the-wild samples. The criteria we used are as follows:

• Checking the decompiler view of the collected Wasm
binary for the presence of hashing functions. This
approach was also used by MineSweeper [10].
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(a) Accuracy (b) Learning Curve (c) ROC Curve

Fig. 6: Performance metrics of MINOS framework. Accuracy, learning curve, and ROC curve of MINOS are depicted respectively.

• Checking the file size of the extracted Wasm bi-
nary of a website. We found that Wasm binaries
of games/applications were substantially larger than
those of malicious applications (e.g., 17MB benign
and 100KB malicious). This was also reported by
Musch et al. [11].

• Checking if a website loads multiple web worker
threads. Running multiple hashing operations in par-
allel is a common behavior of cryptojacking malware.

Classification accuracy metrics: To evaluate the accuracy of
MINOS, numerous accuracy metrics are calculated. Using the
training dataset, we evaluate the performance of MINOS by
calculating its overall accuracy, the learning curve (loss against
number of epochs) and the ROC curve (true positive rate
against false positive rate). The MINOS framework is further
evaluated by testing it against the in-the-wild dataset using
metrics such as accuracy, precision, sensitivity, specificity, and
F1 score.

B. Evaluation of MINOS against Training dataset

The performance of MINOS against the training dataset was
evaluated based on a number of metrics, including accuracy,
optimization loss, and true positive and false positive rate. The
dataset was divided into training and testing sets using an 80/20
split. In Figure 6(a), it can be seen that the model converges
to 100% accuracy on both the training and test sets after 30
epochs. The optimization learning curve in Figure 6(b) shows
that both the training and testing loss decrease to a point of
stability after approximately 30 epochs. This indicates that the
model is neither overfitting nor underfitting and therefore is
able to generalize effectively. Figure 6(c) displays the receiver
operating characteristic (ROC) curve for the classifier. The
area under the ROC curve is 1, indicating that the model’s
ability to distinguish between the two classes (benign and
mining) is perfect. In addition, this also signifies that the test
set’s classification results contained no false positives or false
negatives.

C. Evaluation of MINOS against in-the-wild dataset

Using the Puppeteer API, MINOS visited each website
in the dataset and determined whether or not cryptojacking
malware was implemented on the website. As a result of this
scraping process, the Wasm Binary Auto-Collector extracted

TABLE III: Accuracy Metrics Against In-the-wild Dataset

Accuracy Sensitivity Specificity Precision F1 Score
0.9897 0.971 0.9918 0.9307 0.9504

TABLE IV: Overhead of Training MINOS

Wasm Classifier
Preprocessing Training

RAM Usage (%) 4.3 4.1
CPU Usage (%) 2 52

Time (s) 0.497 24.8

a total of 1534 Wasm binaries to be analyzed. The reason
this number more than doubles the number of websites is due
to the fact that the vast majority of benign webpages in the
dataset loaded more than one Wasm binary. Additionally, the
size of the Wasm binaries belonging to these benign webpages
was inconsistent, and had a wide range of values ranging from
1 KB - 10 MB. In contrast, the webpages that were mining
cryptocurrency only loaded one Wasm binary and the size was
more consistent, taking values between 87 KB - 155 KB.

MINOS was able to detect and correctly classify 67 ma-
licious webpages, and 608 benign webpages, obtaining an
overall accuracy of 98.97%. Table III shows other calculated
accuracy metrics illustrating MINOS’s performance against this
dataset. From the malicious webpages, two were incorrectly
classified as benign. Misclassifications in the benign webpages
consisted of five false positives where MINOS identified benign
webpages as malicious. The benign webpages were mostly e-
commerce websites, games, and web-applications while the
malicious webpages were either illegal video streaming or
adult websites.

D. Overhead Analysis

Training MINOS: The overhead of training the framework
is summarized in Table IV. During the preprocessing stage,
when the Wasm binaries are converted to images, 4.3% of the
16 GB of available RAM is utilized with the conversion of all
binaries, taking 0.497 seconds. The entire dataset is stored in
virtual memory as an array of arrays taking up a mere 1.448
Kb of space. The total time taken to build, compile, and train
the model in 50 epochs was 24.8 seconds. During the training
process, a maximum of 4.1% of RAM was used, and no more
than 52% of the CPU’s processing power was in use.
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(a) Original miner (b) 25% obfuscated
.

(c) 50% obfuscated (d) 75% obfuscated (e) 100% obfuscated

Fig. 7: Gray-scale image representations of miner binaries with respect to varying amount of obfuscations. a) Binary of un-
obfuscated miner, b) 25% of function names obfuscated, c) 50% of function names obfuscated, d) 75% of function names
obfuscated, e) 100% of function names obfuscated.

TABLE V: Runtime Overhead of MINOS Implementation

MINOS Implementation
WASM

Auto-collector Preprocessor Conversion
to Image Notifier

RAM Usage (%) 4 6.3 6.5 6.3
CPU Usage (%) 2 0 4 0

Detection time (s) 0.0259

MINOS Implementation: The overhead of the implemen-
tation of the MINOS framework and its various modules, is
outlined in Table V. Since the implementation relies on a
pre-trained model, the overhead incurred during training, the
model is not considered here. While the Wasm auto-collector
runs and checks for the presence of Wasm binaries, 4% of
the 16 GB of available RAM, and 2% of the CPU is utilized.
As the preprocessor script runs recursively and continues to
check for newly collected Wasm binaries, it is utilizing a
constant 6.3% of RAM and 0% of the system’s CPU. Once the
preprocessor detects a newly collected instance or instances of
Wasm binaries, the RAM usage varies between 6.3% and 6.5%
while the CPU usage increases to 4%. After preprocessing,
the CPU usage drops back down to 0% and RAM usage
remains at 6.3%. Obtaining the prediction or predictions from
the model and notifying the user caused no fluctuations in
RAM or CPU usage, indicating that the processing power
used during these processes was negligible. The total time
is taken to execute MINOS, from the collection of the Wasm
binary or binaries to notifying the user was, on average, 0.0259
seconds. Considering this, and the fact that the maximum RAM
and CPU usage was 6.5% and 4% respectively, it is evident
that the MINOS framework is lightweight, extremely fast and
computationally inexpensive.

E. MINOS Against Obfuscation

As an attempt to evaluate the robustness of MINOS against
adversarial evasions, we chose an open-source browser-based
cryptocurrency miner, namely Webminerpool1 as a basis min-
ing code to obfuscate. Webminerpool provides various Cryp-
tonight PoW implementations written in C, and creates a
Wasm-based miner after compilation. Although obfuscation
has been an active topic of research in the malware domain, it
is an unexplored area of in cryptojacking malware. To the best
of our knowledge, no open-source or proprietary obfuscation
tool exists for WebAssembly. For this reason, we applied

1https://github.com/notgiven688/webminerpool

Listing 1: An example code snippet from the source code of
a browser-based cryptocurrency miner.
1
2 static void copy block(uint8 t ∗dst, const uint8 t ∗src)
3 {
4 ((uint64 t ∗)dst)[0] = ((uint64 t ∗)src)[0];
5 ((uint64 t ∗)dst)[1] = ((uint64 t ∗)src)[1];
6 }

Listing 2: An example code snippet from the source code of a
browser-based cryptocurrency miner that has been obfuscated.
1
2 static void fun55(uint8 t ∗dst new, const uint8 t ∗src)
3 {
4 ((uint64 t ∗)dst new)[0] = ((uint64 t ∗)src)[0];
5 ((uint64 t ∗)dst new)[1] = ((uint64 t ∗)src)[1];
6 }

obfuscation before the compilation process of Wasm modules,
in the high-level C source-code of Webminerpool. In order to
perform the most common obfuscation approach in the wild,
function name obfuscation, we firstly extracted the function
names used in the source and header files of Webminerpool.
Then we gradually obfuscated varying amounts of function
names in the source and header files. Sample code snippets
from the Cryptonight source code (cryptonight.c) before
and after obfuscation are depicted in Listing 1 and Listing 2
respectively. In the listings, a sample obfuscation is performed
by renaming the copy_block function to fun55.

In order to see the effects of different amount of ob-
fuscations, we firstly obfuscated 25% of the function names
in the source and header files of Webminerpool. Then, we
increased the number of function names to 50%, 75%, and
finally, to 100% in which every function name was obfuscated,
excluding C memory management functions (i.e., memset,
memcpy, malloc and free) [38], [39], [40]. Figure 7
shows the gray-scale image representations of the resulting
miner samples. As shown in the figure, although different
amounts of function names are obfuscated in the miner code,
the resulting binaries of the miner have very similar gray-scale
image representations. To evaluate to robustness of MINOS
against the obfuscated miner samples shown in Figure 7, we
fed the samples to MINOS and observed that MINOS is able to
detect the obfuscated binaries regardless of the level or degree
of obfuscation.

VIII. DISCUSSION AND BENEFITS

Underlying Concept: MINOS captures the essence of cryp-
tojacking malware due to a unique feature of cryptojacking
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malware (i.e., implementation of specific PoW schemes based
on memory or CPU-bound hash puzzles) that causes imple-
mentations to be syntactically, and semantically similar to
each other. This was verified by both our initial analysis in
Section V-A, and the study by Wang et al. [17]. In fact, gray-
scale images of hundreds of unique cryptojacking malware
samples that we analyzed are visually very alike, while looking
significantly different from benign Wasm binaries. For these
reasons, the image-based classifier of MINOS can recognize the
specific patterns, and can capture the essence of cryptojacking
malware effectively using gray-scale image.

Lightweight Runtime Overhead: As is evident by the
results of our performance evaluation, the overhead incurred
during the implementation and actual runtime of the MINOS
framework is extremely minimal. While other detection sys-
tems in the literature report similar accuracy, their detection
methods are based on the analysis of dynamic features. This
means that in both the data collection stage, as well during
the implementation of these detection methods, the webpages
that use cryptojacking malware were allowed to run and
effectively mine cryptocurrency until the required features are
extracted or until the respective detection method is able to
detect the presence of mining activity. Further, the actual
collection of features in such dynamic-analysis based systems
requires additional resources or supplemental applications and
programs. Since MINOS does not use dynamic features, it does
not require webpages that instrument cryptojacking malware to
run for a certain amount of time to extract relevant features.

Instantaneous Detection Capability: MINOS is capable of
detecting cryptojacking scripts instantaneously. As soon as the
instantiation and compilation process of Wasm modules is
completed in the browser, MINOS immediately converts the
resulting Wasm binary to a gray-scale image and classifies it
as either benign or malicious. Since MINOS does not rely on
dynamic analysis features, the cryptojacking malware is not
required to commence its mining process.

Freedom from Administrative Privileges: Cryptojacking
detection systems that rely on the monitoring of CPU, memory
and cache events require administrative privileges. However,
such a necessity introduces additional drawbacks for end-
users who do not have administrative rights. In addition, such
detection systems which run with administrative privileges
may result in other security and privacy issues since they
can monitor almost every application running on the host
system. MINOS does not force end-users to have administrative
rights, and thus ordinary users need not worry about additional
security issues.

Platform Independence: MINOS does not utilize browser-
specific or operating system-specific features/tools. Although
the majority of existing detection systems are similar to
MINOS in this respect, not every detection system fulfills this
condition. For instance, OUTGUARD [12] relies on browser-
specific features which limits its application in other widely
used browsers.

Quality of Web Surfing Experience: MINOS has extremely
low runtime overhead and successfully detects the cryptojack-
ing scripts even before they begin the mining process. How-

ever, existing detection systems either instrument and watch
the Wasm modules of every web application, or continuously
monitor CPU, memory and network events which may affect
the quality of the web surfing experience of end-users. We
believe that quality of web surfing experience is a crucial
metric for the success of any cryptojacking detection system
and that such systems should cause minimal interference
to the quality of the web surfing experience of end users.
In addition, since more and more benign applications (e.g.,
Autocad [41]) are moving to the web thanks to WebAssembly
and other technologies (e.g., WebWorkers, WebSockets), the
performance of such benign web applications needs to be
ensured.

Robustness Against Common Evasion Attempts: Prior
work in the literature shows that adversaries are utilizing a
number of techniques to bypass the detection systems. To
evade antivirus engines, they pay attention not to use well-
known strings (e.g., Coinhive, miner). To bypass blacklists,
they frequently change domain names. To eliminate any other
detection systems, they throttle the CPU usage of their scripts,
set up proxies to hide mining service providers, and use
encryption in communication. Although these techniques can
be effective against existing detection systems, MINOS stands
resilient against all of these attempts since it utilizes only the
gray-scale image representation of compiled Wasm binaries.

Since MINOS is a detection tool based on the characteristics
of the binary, we have to consider robustness against code
obfuscation. Prior cryptojacking studies show that the only
code obfuscation attempts seen in the wild are obfuscation
of strings and function names. As our analysis demonstrates,
MINOS is robust against these obfuscated cryptojacking sam-
ples. Currently, no obfuscation tool exists to perform other
obfuscation techniques seen in previous malware research, on
Wasm binaries. Obfuscation in cryptojacking is an unexplored
research and practice area at the moment. In the future, it may
be possible for adversaries to find ways to apply advanced
obfuscation techniques in cryptojacking, and existing detection
schemes including MINOS may be affected by it. However,
creating an obfuscation tool for Wasm is beyond the scope of
this paper. In addition to obfuscation, adversaries can apply
adversarial machine learning (ML) attacks to attempt to evade
the deep learning-based classifier of MINOS. Adversarial ML
attacks are very common in the image domain, and a number
of studies exist on the application of such attacks in the
malware domain. However, adversarial ML attacks in the
malware domain require that functionality of the malware has
to be preserved after the perturbations. If an adversary tries
to modify the gray-scale image of his cryptojacking malware
using such attacks, the perturbations will result in changes
in Wasm code (when converted back to a binary), which
can break the functionality of the cryptojacking malware.
Similar to the obfuscation case, adversarial ML attacks to
cryptojacking detection is an unexplored research domain at
the moment.

Generalization of the Detection Technique: Image-based
detection has been proven very effective in previous research
for Windows Portable Executable-based malware detection. If
individual Wasm-based malware families (other than crypto-
jacking malware) have syntactic and semantic similarities, then
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it would be possible to generalize MINOS to effectively detect
such Wasm-based malware as well.

IX. RELATED WORK

The research conducted by Eskandari et al. [2] was the first
study in the literature that pointed out the pervasiveness of
cryptojacking. They analyzed censys.io BigQuery dataset that
has top 1 million sites of Zmap and 30 thousand websites from
the PublicWWW dataset for the existence of Coinhive script.
Prevalence of WebAssembly in the wild was also researched
by Musch et al. [11], [9] by inspecting Alexa top 1 million
websites. Bijmans et al. [8] analyzed one of the largest scale
cryptojacking incidents, which consisted of almost 1.4M com-
promised MikroTik routers injecting cryptocurrency mining
scripts to all outgoing connections. Carlin et al. analyzed the
growth of cryptojacking in their study [1]. Varlioglu et al.
[14] inspected the websites that were previously found to have
cryptojacking scripts by CMTracker [16].

Several detection systems exist in the literature, as we dis-
cussed in Section III. Among the proposed detection systems,
CMTracker [16] is the only scheme that uses fixed thresholds.
SEISMIC [17], MineThrottle [15] and MineSweeper [10]
employ code instrumentations. ML models based on a number
of dynamic analysis features were utilized by RAPID [18],
OUTGUARD [12], and CoinSpy [19]. Conti et al. [23] made
use of Hardware Performance Counters (HPC) data to detect
cryptojacking. Darabian et al. [26] utilized Windows PE op-
codes and API calls. In addition to API calls, Berecz and
Czibula [27] used both entropy and header, section, and func-
tion information to detect miners. Vladimı́r and Žádnı́k [28]
relied on the network flow features and active probing the
miner servers. MineCap [29] employed network-flow-based
detection via Apache Spark Streaming library and incremental
ML model.

Difference from Existing Work: We can consider the differ-
ences of MINOS from existing work in two ways: performance-
wise or conceptually. In terms of performance-wise com-
parison, detection accuracy and overhead can be examined.
Considering the detection accuracy, we cannot compare MI-
NOS against prior studies due to reproducibility issues. For
instance, while only three studies in the literature openly share
their source code (CMTracker [16], OUTGUARD [12] and
MineSweeper [10]), it is not possible to run those systems for
comparison because of either dependency issues with depreci-
ated libraries or model-specific limitations (manually created
cryptojacking fingerprints). In terms of overhead comparison,
it is not fair to compare MINOS with existing detection systems
since those systems are based on dynamic analysis that require
cryptojacking samples to run for a certain amount of time, and
analyze the memory and cache events, CPU usage, network
traffic, or browser events. Depending on the implementation
of cryptojacking samples their performances may change.
However, MINOS does not run cryptojacking samples, and only
converts them to gray-scale images for detection. Conceptually,
our work differs from the existing work in several ways:
(1) It does not rely on dynamic analysis features, hence it
does not require the mining samples to run for a specified
period of time for feature collection and detection purposes.
Also, (2) the performance of MINOS is not affected by third-
party applications running on the host or on the browser. In

addition, (3) common evasion techniques used by adversaries
(e.g., CPU throttling, dynamically generated domain names,
proxies, encrypted communication, etc.) are not effective to
bypass MINOS’s detection. Unlike existing detection systems,
(4) the proposed detection technique does not have high
runtime overhead, thus promises a better quality of web surfing
experience for end-users compared to other schemes. Further,
(5) MINOS does make use of browser or operating system
specific features/tools, which makes it platform independent.
Moreover, unlike earlier work, (6) it is not necessary for
MINOS to have administrative privileges to run on any specific
platform. Finally, (7) MINOS represents the first work in the
literature that classifies malicious and benign Wasm binaries
using gray-scale image representations of the cryptojacking
malware.

X. CONCLUSION

Considering the prevalence of Wasm-based cryptojacking
malware in the wild, and the high overhead inherent to current
dynamic-analysis based detection methods, a detection tech-
nique that is able to accurately and rapidly identify instances
of such malware with low computational cost is necessary.
In this paper, we proposed MINOS, a novel cryptojacking
malware detection technique that utilized an image-based
classification technique to distinguish between benign and
malicious Wasm binaries. Specifically, MINOS implements a
convolutional neural network (CNN) model trained with a
comprehensive dataset of current malicious and benign Wasm
binaries. MINOS achieved exceptional accuracy with a low
TNR and FPR. Moreover, our extensive performance analysis
showed that the proposed detection technique can detect min-
ing activity on a dataset of webpages in-the-wild in an average
of 25.9 milliseconds while using a maximum of 4% of the CPU
and 6.5% of RAM, proving that MINOS is highly effective
while lightweight, fast, and computationally inexpensive. As
future work, we aim to develop a Chrome extension that
utilizes the MINOS framework so that the overhead incurred
during its operation is reduced and webpages that are mining
cryptocurrency without permission are automatically closed.
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APPENDIX

A. Gray-scale Wasm Images

Gray-scale images of all the benign and malicious Wasm
binaries included in our training dataset. The vast majority of
the mining samples are visually, extremely similar. This means
that at the binary level, they are executing either similar or
identical instructions (hashing algorithms). In addition, it can
be seen that many of the benign samples are unique, and in
some cases they look completely dissimilar to the malicious
samples. The reason for this is that most of the benign samples
are web applications or games that execute binary instructions
that vastly differ from those executed by malicious samples.
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(a) Malicious Samples

(b) Benign Samples

Fig. 1: GRAY SCALE IMAGES OF ALL 300 WASM BINARIES IN OUR TRAINING DATASET: (A) 150 MALICIOUS WASM SAMPLES
AND (B) 150 BENIGN SAMPLES.
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