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Abstract—Internet of Things (IoT) platforms enable users to
deploy home automation applications. Meanwhile, privacy issues
arise as large amounts of sensitive device data flow out to IoT
platforms. Most of the data flowing to a platform actually do
not trigger automation actions, while homeowners currently have
no control once devices are bound to the platform. We present
PFIREWALL, a customizable data-flow control system to enhance
the privacy of IoT platform users. PFIREWALL automatically
generates data-minimization policies, which only disclose mini-
mum amount of data to fulfill automation. In addition, PFIRE-
WALL provides interfaces for homeowners to customize individual
privacy preferences by defining user-specified policies. To enforce
these policies, PFIREWALL transparently intervenes and mediates
the communication between IoT devices and the platform, without
modifying the platform, IoT devices, or hub. Evaluation results on
four real-world testbeds show that PFIREWALL reduces IoT data
sent to the platform by 97% without impairing home automation,
and effectively mitigates user-activity inference/tracking attacks
and other privacy risks.

I. INTRODUCTION

With the prosperity of Internet of Things (IoT), smart
systems (e.g., smart homes, factories, and hospitals) have
become realistic and are expanding with an ever-increasing
speed [1]. IoT Platforms, such as Samsung SmartThings [2],
Amazon Alexa [3], openHAB [4], allow smart home users to
connect heterogeneous IoT devices (e.g., sensors, actuators,
appliances) and install applications on the platform to create
automatic interactions among devices, i.e., home automation.

As IoT device data flow outside, protecting user privacy
becomes critical [5], [6]. Existing work protects user privacy
from malicious application developers [7], [8], [9], [10], [11],
[12], [13] or eavesdroppers [14], [15], [16], [17]. However,
it is surprising that, while a platform receives huge amounts
of privacy-sensitive data from bound IoT devices, few works
regard the platform as untrustworthy and provide privacy pro-
tection solutions. In fact, it is baseless to assume the platform
is trustworthy and its data access protection is flawless, and
thus we should consider that the rich data may be exposed to
attackers [18], [19]. Furthermore, many IoT platforms share
user data with partners (e.g., advertisers) for the expansion
of businesses [20], [21], [22]; any improper handling may
disclose privacy-sensitive data to third parties.

To support home automation, many IoT devices continu-
ously stream data, such as sensor events, to an IoT platform,
although most of the data actually do not trigger automation
actions. This deviates the principle of “data minimisation” in
European General Data Protection Regulation (GDPR) [23].
We also find that no capabilities are provided for users to
control the leakage of device data to the platform, failing
to realize user-centric authorization. Therefore, we seek a
privacy-enhancing system that can be used as an “add-on”
into existing systems by privacy-conscious users. This system
aims to 1) minimize the data sent to the platform and 2)
allow users to define customizable data-protection policies for
individual privacy preferences. Multiple challenges arise for
attaining these goals.

Challenge 1. Data minimization should not affect home au-
tomation. We observe that the semantics of home automa-
tion apps can be represented as rules in a trigger-condition-
action programming paradigm (code analysis [24], [25], [10]
and natural language processing [10], [26], [27] have proven
effective in extracting rules from apps). Our insight is that,
according to the rule semantics, we could reduce data leakage
without impairing automation. For example, given a rule “when
a motion is detected (trigger), if the indoor temperature is
higher than 79◦F (condition), turn on the A/C (action),” we
could derive data-minimization policies, such that 1) if the
temperature is not higher than 79◦F , no motion or temperature
data are sent to the platform; 2) if the A/C is already on (that
is, the rule execution will not change anything), no data need
to be sent, and 3) otherwise, the temperature and the motion
data must be sent, but the temperature value can be obfuscated
to a random value larger than 79◦F .

Challenge 2. Many platforms are closed systems that do
not allow platform-level modifications, and it is probably
unrealistic to expect a platform to cooperate to enforce data
minimization. Thus, how to enforce data-protection policies in
closed systems is a challenge. One may propose to avoid this
challenge by building a new purely-local platform, such that
no data have to flow out of a home, or one can simply cut the
network cable of a local gateway [28] and enforce the home
automation locally. However, most of the leading platforms
(IFTTT, SmartThings, Google Home, Amazon Alexa) employ
a cloud-based architecture due to its advantages in many as-
pects such as storage, integrated services, management. Thus,
existing users may not be willing to give up their choice of
platforms.

Inspired by the concept of firewalls [29], [30], we design
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PFIREWALL as a mediator, which sits between IoT devices
and the hub (or the platform backend cloud) to transparently
filter data based on privacy-protection policies. However, our
PFIREWALL is significantly different from the traditional fire-
walls. First, the “trigger-condition-action” paradigm of IoT
automation rules is different from that of traditional firewall
rules. Second, PFirewall utilizes application-layer data and per-
forms semantics-aware data filtering, while traditional firewalls
do not use application-layer payload data. There is another
challenge for implementing PFIREWALL: the original commu-
nication between IoT devices and the hub (or the platform
backend cloud) is encrypted, which prevents PFIREWALL from
understanding it and then filtering data. We overcome this
challenge with a virtualization approach: On one hand, the data
mediator acts as a hub to pair with all the IoT devices. On the
other hand, PFIREWALL creates a virtual device (for each real
IoT device), which connects with the hub (or platform backend
cloud). This way, neither the IoT devices nor the platform
needs to be modified.

We demonstrate the ideas by implementing PFIREWALL
on three representative IoT platforms: SmartThings classic,
the new SmartThings1 and openHAB, where the former two
are cloud-based IoT platforms and the third a gateway-based
platform. We evaluate PFIREWALL in four real-world testbeds.
The results show that PFIREWALL reduces the amount of
data sent to the platform by 97%, without affecting home
automation. Our performance evaluation also shows that the
data reduction severely impairs the attacker’s ability to infer
and track privacy-sensitive behaviors, such as bathroom usage,
home occupancy, etc. An earlier version of this paper was
posted on arXiv in October 2019 [31].

The contributions of this work are summarized as follows.

• We design an effective data flow control system to protect
user privacy in home automation. Data-minimization poli-
cies are automatically generated based on automation apps,
reporting only the needed data for app execution (minimiz-
ing data out). Moreover, we provide users an easy-to-use
tool to define and customize their own privacy policies (e.g.,
“during the sleep mode, no data should be sent out from
devices in bedrooms”).

• We overcome the challenges that most IoT platforms and
IoT devices are closed-systems and cannot be modified
to support the proposed data filtering, and implement our
solution on the standard wireless communication protocols
including ZigBee, Z-Wave and WiFi.

• We implement a prototype to work with various IoT devices
and three popular platforms: SmartThings classic, the new
SmartThings and openHAB. Through the evaluation in
four real-world testbeds, we demonstrate that our system
significantly reduces the privacy risks due to data leakage
and it causes very small latency to home automation.

II. BACKGROUND: SMART HOME PLATFORMS

Smart home platforms can be categorized into cloud-based
platforms (CBPs) and gateway/hub-based platforms (GBPs),

1SmartThings supported the two major versions at the time of research.
Although the SmartThings classic mobile app was discontinued in October
2020, most features concerned in this paper such as SmartApps are now
included in the new system.
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Fig. 1: Smart home platform architecture.

according to whether the core framework of a platform is
hosted in a remote cloud or a gateway/hub device located at
home (as shown in Fig. 1). Note that the gateway running a
core framework at home does not resolve the privacy leakage
threats completely, as the gateway connects to the Internet and
is under the full control of the platform cloud administrator.
We choose a CBP—SmartThings, one of the most popular
and full-fledged platforms, as an example to describe the key
components in a smart home system.

• Hub. A CBP hub connects IoT devices through distinct
short/medium-range wireless radios (ZigBee, Z-Wave, etc.).
The hub plays a key role to ensure the interconnectivity and
interoperability of heterogeneous IoT devices. A GBP also
has a hub-like device2 which not only connects IoT devices
but also hosts the core framework (described below). Note
that the hub or gateway device, though physically located at
home, is conceptually regarded as a part of the platform in
terms of data privacy protection in that it is under the full
control of the platform cloud administrator.

• Cloud. The backend cloud of a CBP hosts the core frame-
work and provides cloud messaging, storage and other nec-
essary services. The cloud in a GBP is typically responsible
for messaging and storage. The cloud messaging service
facilitates some critical functionalities, such as notification,
third-party application integration, remote monitoring and
control. Many Internet-based services depend on the cloud.

• Core Framework. The core framework runs major func-
tionalities of a platform, including home automation. Smart-
Things classic provides a sandboxed runtime environment
for running device handlers and SmartApps. Device handlers
are software wrappers that abstract the physical devices as a
set of capabilities and they handle the underlying protocol-
specific communications between the core framework and
the physical devices. The core framework represents each
physical device as a device instance by instantiating the
corresponding device handler. Automation rules can be
defined by installing SmartApps or configuring the rule-
creating interfaces on the companion mobile app.

• Companion and Third-Party Apps. To provide a conve-
nient user interface (UI) for users to manage their hubs, IoT
devices and apps, a platform usually provides a smartphone
companion app. For instance, in the SmartThings companion
app, users can install and configure a SmartApp.

III. MOTIVATION AND THREAT MODEL

In this section, we first discuss two privacy concerns that
motivate this work, and then present the threat model.

2We use gateway for distinguishment.
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A. Privacy Concerns about Platforms

1) Trust By Default: In smart home systems, the platforms
are typically fully trusted. After being installed, a platform
gains the access privilege to all connected home IoT devices
technically by design and legally, by claiming a terms and
conditions or a privacy policy. After that, IoT platforms receive
rich data from connected devices, no matter whether the data
are required or not for providing services. To demonstrate
this fact, we conduct an experiment on an exemplar platform–
SmartThings.

Are IoT data continuously flowing out of homes? To
answer this question, we connected four ZigBee devices (a
multipurpose sensor, a motion sensor, an arrival sensor and
a smart outlet) and a Z-Wave sensor (Aeotec Multisensor
6) to a SmartThings hub and observe the data received by
the SmartThings cloud on its logging interface [32]. We did
not install any automation apps and did not operate any
SmartThings-provided interfaces. We only interacted with the
IoT devices physically. We found that the platform cloud kept
receiving device data (e.g., motion, switch, temperature, etc.)
from devices, indicating that device data flow out via the hub
even when they are not needed by any automation. Besides our
experiment, traffic analysis researches [33], [34] also show that
certain traffic patterns for transmitting device events from the
SmartThings hub to the backend cloud can be observed when
the corresponding events are generated by devices, which is
consistent with our result.

Reasons for this fact include: (1) to enhance interoperabil-
ity, IoT devices are designed to simply send out all data to
the paired hub or cloud for further processing, but unaware of
how the data will be consumed; (2) most platforms support
more than one service (e.g., home automation, dashboards
for viewing and changing device states), and therefore do
not deploy a data filtering component on the hub devices
(manufactured by them) or at the front-end to filter out data that
are not needed for specific services. However, we argue that the
system could be improved or patched to enhance user privacy
in different services. In this paper, we focus on enhancing
user privacy in the home automation service, which is context-
aware and more difficult to address than other services. We
also discuss a possible solution for the dashboard service in
Section VIII.

2) Limited User Capabilities: Currently, users have few (or
no) capabilities to control device data sent to a platform [35].
They only have a binary choice: either connect a device to
the platform or not; once connected, the device continuously
reports data to the platform.

B. Threat Model

We consider that a smart home platform may be exploited
by attackers for accessing user private data and inferring
user privacy-sensitive behaviors. For example, an attacker may
find a way to gain access to the data; also the platform
administrators may be curious to mine user privacy. We do
not assume that the platform is attacker-controlled, but aim
to handle the concern that the rich data may be exposed to
attackers and exploited for malicious purposes. The platform
is assumed to be honest, i.e., it faithfully operates all services
and does not perform active attacks on users. Attacks that

exploit vulnerabilities of home IoT devices [36], [37], side
channels [14], [17], [38], or home local networks [39], [40] to
steal private data are not within the scope of this work.

Malicious IoT apps may request more device data than
what is needed by the claimed functionality in the app de-
scriptions. Detecting and preventing such malicious apps have
been well studied, e.g., [41], [10]. In this work, we assume
that this kind of malicious apps have been inspected by an
existing solution such as [10]. Moreover, many platforms (e.g.,
SmartThings, Amazon Alexa) allow users to create rules on
mobile app interfaces, largely eliminating such attacks.

PFIREWALL itself contains a firewall that only allows
traffic from whitelisted sources (attacks targeting PFIREWALL
are further discussed in Section VIII).

IV. SYSTEM OVERVIEW

To protect data privacy, IoT data are processed before they
leave a smart home. In this work, we propose a privacy-
preserving data minimization approach that can guarantee the
correctness and completeness of the desired home automation,
satisfy personal privacy preferences, and significantly reduce
the amount of data sent to the platform. In order to achieve
these goals, three challenges need to be addressed.

First, data protection must not accidentally affect the
correctness and/or completeness of home automation (Sec-
tion V-A1). Second, it is challenging to enforce the data
protection without modifying the IoT devices, hub, or platform
framework which are usually closed systems (Section V-B).
Third, it is non-trivial to provide user-friendly interfaces for
non-expert users to define their own privacy-protection policies
(Section V-A2).

Most IoT devices can be categorized as the following two
cases (Section V-B1 presents our survey of commercial IoT
devices): (1) IoT devices use open-source wireless technolo-
gies (e.g., ZigBee, Z-Wave, and Bluetooth) to connect with an
in-home hub, and (2) IoT devices use WiFi to connect, in an
end-to-end encryption manner, with their vendor cloud, which
then bridges IoT devices to IoT platforms through encrypted
channels. In case (1), PFIREWALL can act as the hub to
directly connect with IoT devices, and hence can see the packet
contents from the devices. In case (2), PFIREWALL cannot
act as a hub to directly talk with these devices but instead
could access the devices via the REST (REpresentational State
Transfer [42]) APIs provided by the vendor cloud. With the
above observations, we propose to place a mediator between
IoT devices and the platform to intervene in the communication
between them. The mediator makes it possible to process the
raw IoT data before forwarding them to the platform. With
this insight, we design PFIREWALL, a system that can enforce
strong privacy protection and user privacy preference, while
not affecting the home automation at all.

As shown in Fig. 2, PFIREWALL comprises these modules:

• Device Connector talks with IoT devices directly via
device-dependent protocols such as ZigBee, Z-Wave, or
indirectly via vendor cloud APIs (see Section V-B1). It also
forwards the raw device data to the policy-based data filter
for processing.
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Fig. 2: Architecture of PFIREWALL. Solid arrows: device data/command
flows; dotted arrows: inputs for generating policies. PFIREWALL can auto-
matically generate policies from apps, so user-specified policies are optional.

• Platform Connector interacts with the platform through
specific connectivity technology supported by the platform,
on behalf of the physical devices connected to the device
connector (Section V-B2). The device connector and plat-
form connector collaboratively mediate data between IoT
devices and the platform.

• Policy-Based Data Filter sits between the device connector
and platform connector to filter the sensitive data (i.e.,
events) from IoT devices based on policies. It has three main
components: policy generator, conflict detector and policy
engine. The policy generator generates data-filtering policies
in two ways: (1) it takes automation rules as input to gen-
erate data-minimization policies (Section V-A1) and (2) it
transforms user-specified policies (from the user interfaces)
into executable-formatted policies (Section V-A2). Conflict
detector inspects if a user-specified policy conflicts with
existing data-minimization policies and reports conflicts to
users (Section V-A3). Policy engine interprets and executes
all policies.

Note that while PFIREWALL filters device events before
reporting them to the platform, it does not filter commands,
i.e., all commands received from the platform by the platform
connector are forwarded to the physical devices via the device
connector.

V. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
details. We first describe the policy-based data filter for con-
textually controlling IoT data flows (Section V-A). Then, we
present the mediator for enforcing policies in existing IoT
systems (Section V-B). To demonstrate the applicability of
PFIREWALL, we show how PFIREWALL integrates with three
popular platforms: SmartThings classic, the new SmartThings
and openHAB (Section V-B2).

A. Data Filtering Policies

PFIREWALL filters data based on two types of policies:
automation-dependent data-minimization policies (APs) and
user-specified policies (UPs). To achieve data minimization,
i.e., only reporting the minimum amount of data that are
necessary for home automation, automation rules are analyzed
to generate the corresponding APs. UPs are generated from
a user interface provided by PFIREWALL and work with
APs simultaneously, which is an important supplement to
customize privacy preferences that cannot be learned from
home automation.

1) Automation-Dependent Data-Minimization Policies:
Home automation systems run user-customized trigger-
condition-action rules, each of which can be expressed as

“when [trigger], if [condition], then [action]” [43], [44]. Each
rule runs reactively, i.e., it reacts when its trigger is satisfied by
a new event (termed as trigger event) and then executes action
if the smart home is under the prescribed condition. Note that
the trigger and condition are different: a trigger describes a
constraint that checks against the new events, while a condition
includes a set of constraints that check on the static states (e.g.,
current device states, time, etc.). An example rule R1 is “when
a presence sensor ps1 becomes present (trigger), if the reading
of a temperature sensor ts1 is higher than 86◦F (condition),
then turn on the fan f1 (action).” Some automation rules follow
trigger-action, i.e., “when [trigger], then [action]”, which is
a special case of the trigger-condition-action paradigm where
condition is always true.3 For example, a trigger-action rule
R2 is defined as “when the reading of a temperature sensor
ts1 is higher than 86◦F , then turn on the fan f1”. Without loss
of generality, we will use the rule R1 as a running example
to present how PFIREWALL filters data.

Automation Rule Extraction. Extracting automation rules
from rule-creating interfaces is the first step for AP generation.
Automation rules are generated by installing IoT apps or
using rule templates on web/mobile app interfaces. The rule
extraction regarding both methods has been widely studied
by state-of-the-art literature. Code analysis has been shown to
be an effective way to extract rule semantics from IoT apps.
For example, by utilizing Abstract Syntax Tree (AST) analysis
on SmartApps, [45] identifies requested and used capabilities
in SmartApps, [10], [27] break down SmartApps and extract
rule information, [46], [26], [11] build Deterministic Finite
Automatons (DFAs) from SmartApps. Symbolic execution is
a powerful technique to analyze rule semantics from apps
[24], [25]. Text data crawling and natural language processing
have been used for rule extraction from mobile apps and web
pages [26], [47]. Rather than develop new tools, in this paper,
we adapt the solution provided in [24] to extract rules from
SmartThings classic and manually encode rules defined in the
new SmartThings and openHAB for which we are unable to
find an open-source implementation. We envision that more
rule extraction tools will be developed and made publicly
available, which can eliminate the manual efforts for encoding
rules.

Policy Generation. Consider the example rule R1. By default,
the event streams from devices (presence sensor, temperature
sensor, fan) are reported to the platform for executing R1.
However, we observe that these data are not all required for
executing R1 in cases:

(1) The presence sensor ps1 does not send any event;
(2) ps1 sends a “not present” event;
(3) The temperature measured by ts1 is lower than 86◦F ;
(4) The fan f1 is “ON”;
(5) ps1 sends a “present” event and the last reported tempera-

ture by ts1 is higher than 86◦F .

In cases (1)-(4), there is no need to report any data from
ps1 and ts1, as well as data from other devices if they
are not used in other rules. In case (5), it is unnecessary
to report the temperature data since the temperature value

3To avoid confusion, we explicitly use when and if to distinguish trigger
and condition, respectively.
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1TRIGGER:{
2match (:type).(:subject).(:attribute)
3satisfy (:operator)->(:value)
4[fetch*] (:type).(:subject).(:attribute*)
5[branch] (:operator1)->(:value)
6run (:method)(:paras)(:delay)
7[else] (:method1)(:paras1)(:delay) }
8CHECK: [{
9fetch (:type).(:subject).(:attribute)
10satisfy (:operator)->(:value)
11[fetch*] (:type).(:subject).(:attribute*)
12[branch] (:operator)->(:value)
13[run] (:method)(:paras)
14[else] (:method1)(:paras1) }, ...]

Listing 1: Context-aware policy format

Temperature 
sensor (     ) > 86

Trigger

Condition

Action

Automation Rule

Data Minimization Policy

CHECK
fetch       (            ).(      ).(                      )
satisfy    (     ) -> (     )
fetch*     (            ).(     ).(                        )
branch   (     ) -> (     )
run         (           ) (       ) (0)
else        (                   ) (             ) (   )

fetch       (            ).(     ).(            )
satisfy    (       ) -> (     )

match     (            ).(       ).(                 )
satisfy     (       ) -> (              )
fetch*     (            ).(       ).(                  )
branch    (     ) -> (              )
run         (          ) (        ) (     )
else        (                   ) (        ) (     )

TRIGGER

Turn on the fan (   )

Presence sensor
(      ) == "present "

Fig. 3: Policy derivation from an automation rule.

stored in the platform database (i.e., the last reported value)
satisfies the rule condition checking. In no cases, the ON/OFF
state of f1 is useful for executing R1. In addition, we can
report a random temperature value that is higher than 86◦F
instead of the real one when reporting a temperature value is
necessary for rule execution. From this example, we can see
that only a small portion of the device data are required for
home automation, which motivates us to run data-minimization
policies that can significantly reduce the amount of data going
out while not affecting any automation rules. Given the unique
trigger-condition-action paradigm, the existing access control
policy parsers cannot be directly used. Therefore, we develop
a customized context-aware policy format and a corresponding
policy engine for the trigger-condition-action paradigm.

Formally, we define a data flow policy as P=(T, C), where
T and C denote the TRIGGER and CHECK section in a
policy, respectively, as shown in Listing 1. Fig. 3 illustrates an
policy instance that is derived from the running rule example
R1. TRIGGER defines the incoming event that awakens the
execution of P and CHECK encapsulates a list of items, each
of which contains a constraint that must be satisfied for the
policy to indeed perform actions. TRIGGER is derived from
the Trigger of an automation rule (e.g., R1) and CHECK is
derived from the Condition and Action of the same rule.

type indicates that a datum is related to a device or to
time; subject is used to identify a specific IoT device (i.e.,
device ID); attribute specifies the attribute of a device (a
device may have multiple attributes) or a time-related feature
(e.g., time of day, date, timer). Fields type, subject and
attribute are used to uniquely identify an event type (e.g.,

TABLE I: Summary of methods used in data flow policies

Method Description

keep() Report the original value
block() Do not report
diffKeep(v) Report a different value (6=v) and then value v
randomize(v1,v2) Report a random value ∈ (v1,v2)
startTimer(id) Create or reset a timer with identity id
stopTimer(id) Stop and reset a timer with identity id
fireTimer(id) Fire a timer id and execute actions in its callbacks
addCallback(id,act) Add an action act to the callbacks of timer id

an event of a device ps1’s presence) or a state type (e.g., the
reading of a device ts1’s temperature). Hence, these fields in
TRIGGER indicate that only data of the specific event type
(e.g., ps1’s presence) trigger the execution of the policy P;
similarly, these fields in CHECK indicate what states (e.g., ts1’s
temperature and f1’s switch) P should query for constraint
satisfaction checking. Fields operator and value define a
constraint to the event (ps1’s presence is “present”) or state
(ts1’s temperature is higher than 86) in the same block. The
policy P will take actions only when all the constraints defined
in TRIGGER and CHECK are satisfied; if any constraint is
not satisfied, the policy execution aborts and will not perform
actions. Recall the aforementioned cases (1)-(5). The policy
in Fig. 3 only needs to report data for ensuring the correct
execution of R1 when a new “present” event is observed from
ps1 and at the same time ts1’s current temperature is higher
than 86 and f1 is off.

Policy actions defined in run or else indicate how to
report data to the platform. method and parameters define
how to process the corresponding raw data and delay controls
the timing for reporting the processed data to the platform.
Table I shows a summary of all the supported methods. In the
default setting, binary-value sensors such as the presence sen-
sor reports binary values alternatively; thus, the platform only
fires an event when observing a value change. Our data filtering
may affect the alternation of “present” and “not present” values
in the data stream of ps1. When the platform receives “present”
but finds the last received value is also “present,” it will not
fire a new “present” event in its framework and thus R1

cannot be triggered. The policy uses diffKeep() to address
this issue; diffKeep() reports “not present” followed by
“present” with a time delay T , which ensures a “present”
event is fired on the platform4. However, if the last reported
value is “not present”, the policy only needs to use the method
keep() which reports the received value “present”. To handle
the above situations in TRIGGER, fetch* is introduced for
the policy to query the last reported value.5 The policy takes
the action defined in run if the constraint defined by branch
is satisfied; otherwise, the action in else is performed. Fields
marked with “[ ]” are optional in the policy format.

fetch* and else are also introduced in CHECK items
to handle similar situations. If the last reported temperature
value to the platform is higher than 86, the policy does
not need to report the newly queried temperature value to
the platform (using block()) since R1’s condition-checking

4We fine-tuned the value of T and found a sweet spot as small as 300
millisecond without causing failure in the three platforms.

5Different from attribute which represents the current value of a device
attribute, attribute∗ denotes the latest reported value of this attribute.
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yields the correct result based on the last reported value. If
the last reported temperature is equal to or lower than 86,
the policy must report a temperature event higher than 86◦F
before reporting a “present” event to make sure the rule R1 is
correctly executed. Instead of reporting the real temperature
value, the policy uses randomize(86, MAX) to report
a random value. In R1, the temperature compares with a
threshold (86◦F ), so a random value between 86◦F and the
upper limit of a temperature MAX is sufficient for the condition
checking. MAX/MIN denotes the upper and lower boundary
values of a specific attribute.6 We obtain such information from
SmartThings Capabilities Reference [48].

With the above design, the policy derived from R1 (see
Figure 3) expresses multi-faceted information for PFIREWALL
to process data:

1) Context: when and only when an incoming event of ps1 is
“present”, the current reading of ts1 is higher than 86◦F ,
and the state of f1 is not “ON,” some data will be reported.
Otherwise, the policy will be skipped and no data will be
reported at all.

2) TRIGGER data reporting: if the latest reported value of ps1
is “present,” use the diffKeep() method to process the
current value for reporting; otherwise, use keep().

3) CHECK data reporting: if the latest reported value of ts1
is higher than 86◦F , use the block() method to process
the current value of ts1; otherwise, use randomize(86,
MAX).

We implement a policy engine to parse and execute the
policies. The policy engine listens to all the incoming raw data
from the IoT devices and time-related information if registered.
When receiving a new data datum D, the engine uses D to
evaluate the maintained policies one by one. Algorithm 1 sum-
marizes the general workflow of how the engine evaluates and
executes a policy P. Specifically, it first checks if D matches the
type, subject, and attribute in TRIGGER, and then
examines if the value of D satisfies the constraint specified by
operator and value. If true, P is triggered and proceeds
to execution. Then the engine evaluates all items specified in
CHECK. Since the data required for evaluating the CHECK
items are not new events but the current smart home status
(e.g., the device working status), the policy engine fetches the
information indexed by type, subject and attribute
from a database DB, which stores the current states of all
connected devices and updates them when devices report any
change. Only when constraints defined in all CHECK items are
satisfied, the actions defined in all run or else fields will
be performed. During the above process, a policy terminates
if there is any event mismatch or constraint violation. Besides,
the policy engine also maintains another database DB∗ to keep
record of the last reported data for each device attribute.

PFIREWALL also deals with time-related automation. For
instance, if a rule is defined as “when the door is opened if time
is after 18:00, turn on TV”, the derived policy needs to fetch
system time for condition checking. When a rule has a timer,
e.g., “when motion sensor becomes inactive for 5 minutes,
turn off the light”, multiple policies are bundled to operate by
calling the methods for starting, stopping and firing a timer.

6For instance, temperature (-460∼10000 ◦F), humidity (0∼100%), lumi-
nance (0∼100000 lux).

Algorithm 1: The algorithm for executing a policy
Input : D← new datum, P← A privacy policy

DB← Newest Device Status Database
DB∗ ← Newest Reported Data Database

Output: Reported Data Set DS
1 if match(D.source, P.TRIGGER.(type, subject, attribute)) and

satisfy(D.value, P.TRIGGER.(operator, value)) then
2 foreach checkitem ∈ P.CHECK do
3 val ← fetch(DB, checkitem.(type, subject, attribute))
4 if !satisfy(val, checkitem.(operator, value)) then
5 return
6 if !checkitem.hasField([run]) then
7 continue
8 if checkitem.hasField([branch]) then
9 val∗ ←fetch(DB∗,

checkitem.(type, subject, attribute))
10 if satisfy(val∗, checkitem.(operator, value)) then
11 DS← run checkitem.(method, paras)
12 else
13 DS← run checkitem.(method1, paras1)
14 else
15 DS← run checkitem.(method, paras)
16 if P.TRIGGER.hasField([branch]) then
17 val∗ ←fetch(DB∗, P.TRIGGER.(type, subject, attribute))
18 if satisfy(val∗, P.TRIGGER.(operator1, value)) then
19 DS← run P.TRIGGER.(method, paras)
20 else
21 DS← run P.TRIGGER.(method1, paras1)
22 else
23 DS← run P.TRIGGER.(method, paras)

Timer
(id1, duration)

Active

Inactive

Motion Sensor

StartTimer(id1)

StopTimer(id)

addCallback(id1, action1)

if duration > 5min, 
fireTimer(id1)

action1
...

Fig. 4: An example showing how PFIREWALL handles a rule whose
condition has a timer. The methods are shown in Table I. action1 is defined
to report “inactive” to the platform with method keep or diffKeep. Each
timer maintains a list of actions which will be called when the timer fires. To
accommodate, the timer in the rule is removed to avoid doubling the timer.

Fig. 4 illustrates the workflow of how PFIREWALL handles
this example.

The policy design supports all the rule features (e.g., state-
checking, timers, delayed actions) employed by most popular
platforms such as HomeKit, SmartThings, Alexa, Google
Home, IFTTT, etc. However, the policy design currently does
not support some uncommon automation rule semantics that
are rarely seen. For instance, if a rule’s trigger or condition
checks historical values of a device (e.g., “if the precipitation
in the past seven days is less than 100ml (trigger), turn on the
sprinkler system (action)”), PFIREWALL will simply let all the
values pass to the platform to ensure the correctness of rule
executions. The policy design of PFIREWALL is extendable to
support such rules when needed.

2) User-Specified Policies: We propose an interactive ap-
proach for users to specify data-protection policies. This is
motivated by three reasons: 1) users have individual privacy
preferences that cannot be derived from automation rules; for
example, users might prioritize privacy rather than automation
functionality for some device types during a time period or
under certain situations; 2) the platform may integrate a third-
party service but there is no rule extractor available to extract
semantics from it; 3) users have rights to control the use of
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(a) (b)

Fig. 5: Screenshots of PFIREWALL mobile app. The app provides an
information tab showing users what data every device type generates and the
corresponding privacy implications, and a policy tab allows users to define
context-aware data control policies.

their data. In principle, UPs have higher priority than APs in
controlling data.

We develop a mobile app for end-users to specify policies.
As shown in Fig. 5(a), information is displayed to help users
understand what privacy issues each device and its data may
imply. With the templates in Fig. 5(b), users are able to con-
figure whitelist, blacklist and conditional-style policies during
a specified time period or under certain contexts. Finally, UPs
are encoded into the policy format in Listing 1 for execution.

3) Policy Conflicts: It is possible that a user’s UPs conflict
with existing APs and hinder the automation since UPs are
designed to override APs. Nevertheless, users need a warning
that shows them what conflicts are caused and which automa-
tion rules are affected. Therefore, an automated policy conflict
detection is needed. Two policies P1 and P2 conflict with each
other if all the following requirements are satisfied: (1) P1

and P2 are triggered simultaneously, i.e., an event makes both
constraints c1T and c2T (defined in TRIGGER fields of P1 and
P2, respectively) hold; (2) both policies are finally executed,
i.e., all the constraints c1i and c2i in the CHECK fields of both
policies are evaluated true; (3) two policies define different
actions (i.e., data processing methods, parameters, or delays)
for the same data. Formally, let S(C) denote the set of all
possible contexts that satisfy the set of constraints C, and
O(a), E(a) denote the object (i.e., the controlled data) and
effects of a certain action a (defined in both TRIGGER and
CHECK fields). A conflict occurs when the formulas hold.

S(c1T ) ∩ S(c2T ) 6= ∅,
S(c11, c

1
2, · · · ) ∩ S(c21, c

2
2, · · · ) 6= ∅,

∃i, j,O(a1i ) = O(a2j ),E(a1i ) 6= E(a2j ).

PFIREWALL detects policy conflict for each newly submit-
ted/updated UP against every AP. When an AP is added/up-
dated due to automation rule adding/updating, PFIREWALL
also detects it against all existing UPs. To verify the first
two formulas, we encode each constraint in a policy into a
quantifier-free first-order formula:

(type[.subject[.attribute]])︸ ︷︷ ︸
data source and type

(operator)(value).

Device 
Connector

Platform 
Connector

1. join/leave
2. raw events

IoT Device 1. join/leave
2. processed events 

Virtual Device 
Instance

1. join/leave
2. raw events 3. command

3. command 3. command

1. create/remove
2. processed events 3. command

1. join/leave
2. processed events

3. command

Original Flow PFirewall Flow

IoT 
Platform

Fig. 6: Workflow of the mediator.

To verify the last formulas, we check whether the two policies
perform contradictory actions (by looking at the methods and
parameters in run and else fields) on the same data.

Thus, the conflict detection is transformed into a constraint
satisfaction problem that can be solved by a constraint pro-
gramming solver. In our implementation, we use a JavaScript
linear solver javascript-lp-solver [49]. If the constraint
set derived from two policies is not solvable, it means the
two policies have no conflict. Otherwise, two policies have a
conflict. PFIREWALL presents detected conflicts to users for
decision making.

The solving complexity is determined by the constraints
derived from policies, which only involve simple numerical
relationships and the search space (e.g., the range of device
values, the number of devices in a policy) is very small. In
our evaluation, it takes less than 400 milliseconds to check
a pair of policies and we did not encounter a failure due to
timeout.

B. Data Flow Mediation

To enforce data flow policies in a closed-source IoT system,
we introduce a mediator for relaying communications between
IoT devices and the IoT platform, as shown in Fig. 6. The
mediator needs to act as both a device connector to interact
with IoT devices and a platform connector, which generates a
virtual device on behalf of each real device, to interact with
the target platform. An advantage of our design is that the
mediator PFIREWALL does not modify the IoT devices, hubs,
or the platforms.

1) Connecting IoT Devices: We investigate the communi-
cation technologies used by IoT devices in the market, i.e.,
the top 1000 IoT devices with the most total reviews on five
popular online stores (Amazon, BestBuy, Costco, Walmart,
and Home Depot). Our investigation focuses on two important
questions: (1) the portion of IoT devices that use each of the
popular wireless technologies and (2) among the devices using
end-to-end encryption technologies (such as WiFi) to connect
with endpoint/vendor clouds, how many of them provide cloud
APIs for accessing devices. The result is presented in Fig.
7. Currently, PFIREWALL cannot handle IoT devices that
use proprietary or end-to-end encrypted connections but do
not provide accessing APIs. However, we envision that more
IoT cloud endpoints will provide open APIs in the future
to increase interoperability and facilitate service integration.
To demonstrate the feasibility, we choose two open-source
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Fig. 7: Statistics of popular communication technologies employed by
commercial IoT devices and statistics of availability of device accessing APIs
of WiFi devices. “Others” include devices that use other technologies including
Clear Connect RF [50], HAP [51], GSM [52]. PFIREWALL could handle
over 74% of the investigated devices (including WiFi-connected devices with
unofficial APIs).

standard protocols (ZigBee, Z-Wave) and the most common
end-to-end encrypted protocols (WiFi connection with the
vendor clouds which provide REST cloud APIs).

To play the role of a device connector, the mediator
needs to handle 3 major tasks associated with IoT devices:
1) adding or removing devices to PFIREWALL; 2) receiving
events from devices; and 3) sending commands to devices. The
device connector alike functions have been implemented and
are available in many open-source platforms, e.g., openHAB
[4] and Mozilla IoT [28], which allow developers to add
add-ons for integrating various IoT devices using different
communication techniques. At the time of research, openHAB
supports 275 bindings that have been tested to work with
hundreds of commercial IoT devices and Mozilla IoT also has
tested more than 100 mainstream devices. In our implemen-
tation, we utilize the ZigBee and Z-Wave add-ons of Mozilla
IoT to realize connecting with ZigBee and Z-Wave devices.
Specifically, the mediator is built on a Raspberry Pi with a Digi
XStick USB dongle (ZB mesh version) and an Aeotec Z-Stick
(Gen5) to extend ZigBee and Z-Wave capabilities, respectively.
For WiFi devices, we use the REST APIs provided by three
vendor clouds (Philips Hue, LIFX, and Honeywell) to access
devices connected to them.

2) Connecting Various Platforms: When a physical device
is connected to PFIREWALL, the platform connector creates
an instance of virtual device for it. The virtual device interacts
with a platform on behalf of the physical device, i.e., it
(1) is discovered by the platform as a new device instance,
(2) reports the post-filtering events to the platform, and (3)
forwards commands from the platform to the physical device
(via the device connector). Popular platforms support vari-
ous connectivity protocols; for example, SmartThings classic
supports LAN- and cloud-based device integration [53], the
new SmartThings supports cloud-connected devices [54], and
openHAB supports the Message Queuing Telemetry Transport
(MQTT) protocol [55], Mozilla IoT provides REST-based Web
Things framework and APIs [56], and Wink allows creating
REST API devices [57]. These features allow a virtual device
instance created by the platform connector to talk with the
platform as if it is a real device. We implement the mediator
to work with three representative systems with different inter-
facing techniques: SmartThings classic, new SmartThings, and
openHAB, without modifying the software of these platforms
or the hubs manufactured by them.

Platform
Connector

Virtual Device
-SmartOutlet

Virtual Device
-MotionSensor

SmartThings Cloud

Service Manager SmartApp

Device Handler
 -SmartOutlet

Device Handler
- MotionSensor

Discover 
(SSDP)

Command
(UPnP)

PFirewall

Data (UPnP)

Fig. 8: Overview of interfacing with SmartThings classic. Note that the
communication between PFIREWALL and the SmartThings cloud is bridged
by a SmartThings hub, which is omitted here.

Interfacing with SmartThings Classic System
We choose LAN as the protocol for communicating with
the SmartThings classic system. SmartThings classic uses a
device handler (DH) for abstracting each supported device
type. Accordingly, we build a virtual device (VD) type for each
DH, as illustrated in Fig. 8. We develop a service manager
SmartApp on SmartThings, which uses SSDP (Simple Service
Discovery Protocol) to discover VD instances on the same
LAN as the SmartThings hub. SmartThings classic uses a
combination of IPs and ports to uniquely identify devices.
To be discovered as different devices, each VD instance uses
a unique port. After discovering a VD instance, the service
manager app adds it as a child device. When a child
device is added, SmartThings classic automatically selects
a DH and abstracts it according to the model property of
the child device. Hence, we make the model of a VD
instance the same as the name of the target DH. After the initial
connection, a VD instance on the mediator side interacts with
a DH instance on the SmartThings via the UPnP (Universal
Plug and Play) protocol. In additional, we adapt all DHs for
ZigBee/Z-Wave devices available in the SmartThings IDE. For
each DH, we add a subscribe() function that perform the
SUBSCRIBE operation in UPnP. When a DH is instantiated
(which means a VD instance is created and a child device is
added), it uses the IP and port to send a SUBSCRIBE SOAP
(Simple Object Access Protocol) message to the VD instance.
Moreover, we replace the original code with new code for
receiving and sending SOAP messages. The original code is in
parse and command functions of DH for receiving ZigBee/Z-
Wave data and sending ZigBee/Z-Wave commands. At this
point, the VD and DH instances become addressable to each
other and a subscribe/publish based UPnP communication is
implemented to report data and send commands.

Interfacing with the New SmartThings System
We achieve interfacing with the new SmartThings system
by developing a SmartThings schema connector [58] for
PFIREWALL platform connector, which requires a cloud-to-
cloud connection between PFIREWALL and SmartThings. To
this end, we use fast reverse proxy [59] to expose PFIRE-
WALL (placed in a home network) to the SmartThings cloud,
register PFIREWALL as an application in SmartThings De-
veloper Workspace [60], and make the platform connec-
tor (for the new SmartThings) run as an HTTPs server.
The PFIREWALL schema connector implements handlers
for the interaction types [61] pre-defined by SmartThings,
including Reciprocal Access Token (mutual authenti-
cation), Discovery (SmartThings discovers devices con-
nected to PFIREWALL), State Refresh (SmartThings queries
device states from PFIREWALL), Command (SmartThings
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Fig. 9: Overview of interfacing with openHAB.

sends commands to PFIREWALL), Device State Callback
(PFIREWALL reports events to SmartThings), Discovery
Callback (PFIREWALL reports newly added devices to
SmartThings). For privacy reasons, when the new SmartThings
system sends a State Refresh) request, PFIREWALL reports
the previously-reported states of the requested devices (instead
of reporting the current device states).

Interfacing with openHAB
PFIREWALL uses MQTT to interface with openHAB be-

cause it is a general connectivity protocol and allows for
virtualizing any device types with flexibility. Fig. 9 shows
the high-level architecture of the integration. openHAB pro-
vides an embedded MQTT broker. When a new device
is added to PFIREWALL, a VD instance is created. For
each supported attribute of this devices, if it is a read-
only attribute (e.g., motion, temperature), the VD subscribes
to a topic data/{deviceId}/{attribute} for publishing
events; if it is a writable attribute (e.g., switch), the VD
subscribes to two topics data/{deviceId}/{attribute}
and cmd/{deviceId}/{attribute} for publishing events
and receiving commands, respectively. Meanwhile, by creat-
ing a new entry in openHAB thing configuration file [62],
PFIREWALL adds a corresponding MQTT thing instance with
channels to openHAB. Each thing channel in openHAB corre-
sponds to an attribute in VD (e.g., motion, switch) and shares
the same topic(s). Thus, the corresponding VD in PFIREWALL
and thing channels in openHAB could exchange events and
commands via the shared MQTT topic(s).

VI. EVALUATION

A. Evaluation Setup

We set up four real-world testbeds for evaluating the
performance of PFIREWALL: an office with 5 members (T1),
a two-bedroom apartment with 1 member (T2), and two one-
bedroom apartments each of which has 2 members (T3 and
T4).7 The floor plan and device placement are shown in Fig. 10.
The deployed platform and device types are given in Table II.
The configured automation rules of the testbeds are listed in
Table III. We ask the members of the testbeds to write down
their desired automation rules in English for their own office
or home, and then the authors implement the specified rules
by installing official apps (T1, T2), developing custom apps
(T1, T2, T4), and/or using the mobile companion app interface
(T3). The rules are tested and adjusted for one week to make
sure they meet the needs of the testbed members.

B. Performance of Data Mediating

To test the correctness of PFIREWALL, we disable data
filtering in each testbed, i.e., PFIREWALL simply forwards

7We have received the IRB approval (See Appendix B).
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Fig. 10: The layout and device placement in four testbeds. Each presence
sensor PR1∼6 is carried with a member.

device events to the target platform without executing any
policies. We use the built-in device-level event logs provided
by SmartThings Groovy IDE [32] to capture the data received
by SmartThings classic and the new SmartThings systems.
openHAB does not provide a similar web interface for looking
up events, so we build an event logger by utilizing the
openHAB REST API [63]. We observe duplicate events in the
event logs of SmartThings, and we remove duplicate events
before data analysis.

We run experiments using the above setting in all four
testbeds for one week and compare the event sequence re-
ceived by PFIREWALL and the platform for each testbed. The
experimental results are given in Table IV, which demonstrate
that our mediator works correctly in relaying IoT device events
to the platforms.

C. Performance of Data Filtering

To evaluate the performance of our policy-based data filter,
we run the four testbeds for another week with data filtering,
i.e., we enable the execution of data-minimization policies.
Also, two user-specified policies: UP1 (DO NOT report MO1
motion data between 5pm to 8am) and UP2 (DO NOT report
MU1 contact data between 10am to 6pm) are defined in T1.

1) Correctness and Reliability: Comparing the received
event sequences becomes meaningless since data are filtered in
this setting. Instead, we evaluate the correctness of executions
of automation rules.

Methodology. PFIREWALL records all commands sent by the
platform in each testbed. We ask the testbed members to keep
a record of their manual operations on mobile companion apps
and manually remove the commands caused by these opera-
tions; thus, the remaining commands are supposed to be issued
by executions of rules; We use p-commands to denote the
commands that are issued by the platform when PFIREWALL
is used. We check if p-commands (i.e., the execution result
from filtered events) are sound (i.e., policies do not cause
false positive device actuation) and complete (i.e., policies
do not lead to missed device actuation) against ground truth
commands, denoted as gt-commands, which are supposed to
be issued by the platform using the same automation rules over
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TABLE II: Deployed platforms and devices in the four testbeds. PFIREWALL uses ZigBee (MU, MO, OL, SL, WS, SW), Z-Wave (AM), LAN (PR) or cloud
APIs (WL, HM, HB, LB, HS) to connect these devices.

Testbed Platform Device (Abbr.) Protocol Attribute Num

T1
SmartThings

Classic

SmartThings hub v2 ZigBee, Z-Wave, WiFi, Ethernet – 1
Multipurpose sensor (MU) ZigBee contact, temp. 1
Motion sensor (MO) ZigBee motion, temp. 1
Smart outlet (OL) ZigBee switch, power 2
Smart light (SL) ZigBee switch 1
Presence sensor (PR) ZigBee presence 5

T2
SmartThings

Classic

SmartThings hub v2 ZigBee, Z-Wave, WiFi, Ethernet – 1
Multipurpose sensor (MU) ZigBee contact, temp. 3
Motion sensor (MO) ZigBee motion, temp. 2
Smart outlet (OL) ZigBee switch, power 2
Smart bulb (SL) ZigBee switch 4
Aeotec MultiSensor (AM) Z-Wave motion, humidity, luminance 2
Presence sensor (PR) ZigBee presence 1

T3
SmartThings
New System

Philips Hue Bridge ZigBee, Ethernet – 1
Multipurpose sensor (MU) ZigBee contact, temp. 3
Motion sensor (MO) ZigBee motion, temp. 3
Smart outlet (OL) ZigBee switch, power 3
Smart switch (SW) ZigBee switch 3
Water sensor (WS) ZigBee water, temp. 1
Honeywell water leakage (WL) WiFi water, temp. 1
Hue motion sensor (HM) ZigBee motion, temp., luminance 2
Hue bulb (HB) ZigBee switch 2
LIFX bulb (LB) WiFi switch 1

T4 openHAB

Philips Hue Bridge ZigBee, Ethernet – 1
Multipurpose sensor (MU) ZigBee contact, temp. 3
Motion sensor (MO) ZigBee motion, temp. 3
Smart outlet (OL) ZigBee switch, power 1
Smart switch (SW) ZigBee switch 1
Hue motion sensor (HM) ZigBee motion, temp., luminance 4
Hue bulb (HB) ZigBee switch 3
Hue switch (HS) ZigBee button 1
LIFX bulb (LB) WiFi switch 1
Dimmable light (DL3) ZigBee level 1

the raw (unfiltered) events. To generate the gt-commands, we
disconnect PFIREWALL from physical devices and replay the
one-week raw events to the platform in each testbed, i.e., the
raw events are sent to the platform over another week based
on their timestamps. Note that all rules in Table III are date-
insensitive so that the dates of the timestamps of events does
not affect the rules. For convenient comparison, we adjust the
start time of gt-commands and make it the same as that of
p-commands, i.e., make the two sets of commands start at the
same time such that we can compare them.

To verify the soundness of each command in p-commands,
we check if it has a counterpart within 3 seconds in the gt-
commands. If so, the command is sound. Recall that PFIRE-
WALL removes redundant rule executions (i.e., commands)
while platforms not; for example, PFIREWALL will not send
data for a rule to turn on a fan if the fan is already “ON”
(see Section V-A1). Thus, the p-commands should not be
considered incomplete if it has no counterpart of a redundant
command in the gt-commands. Therefore, we traverse the raw
events and gt-commands in parallel and remove such redundant
commands before verifying completeness. Then, we check if
every command in the gt-commands has a counterpart within
3 seconds in the p-commands.

Results. We compute the ratio RS and RC of commands that
are sound and complete, respectively, as shown in Table V. We
find that 15 command records are not sound and 1 command
(i.e., SL4 OFF) in the gt-commands cannot find a match in
the p-commands (marked in bold). Recall that we ask the
testbed members to annotate their manual operations on mobile
companion apps because these manual operations also generate
commands which cannot pass the soundness verification. We

ask the testbed members to recall and confirm if they miss
annotating manual operations at the timestamp of the unsound
commands. After rectifying the annotations, we repeat the
soundness verification process. The updated results in the
parentheses in Table V show that RS increases after improving
the user annotations. The remaining 4 unsound command
records are very likely to be generated by forgotten manual
operations. On the other hand, we look up the SmartThings
live logging [32] and confirm that rule 13 (see Table III) indeed
issues an OFF command to device SL4 at the timestamp of
the unmatched command (SL4 OFF). Therefore, the command
may be lost during transmission from SmartThings cloud to
PFIREWALL. The evaluation results prove that PFIREWALL
does not impede the home automation.

Evaluation of a naive pull-based approach. Considering
some platforms use both push (i.e., devices report data to
platforms via callbacks) and pull (i.e., platforms request
data from devices) models to obtain data, a naive privacy-
preserving approach is that PFIREWALL does not report data
to the platform unless the platform proactively requests, on
the assumption that the platform pulls data on demand. The
SmartThings new system uses both push and pull. We use
one of the SmartThings testbed T3 to evaluate this baseline
(pull-based) approach. We keep the configuration of devices
and rules the same and modify the behavior of PFIREWALL,
i.e., PFIREWALL responds to State Refresh (pull) with
unfiltered real data but does not push any data. We run this
new setting for a week and use the aforementioned correctness
verification methodology to check if the baseline approach
guarantees the correctness of automation.

The results in Table VI show that the baseline approach
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TABLE III: Installed rules in all testbeds. Source: official app (O), custom app (C), templates on mobile/web interface (T).

Testbed ID Source Description and Device Bindings

T1

1 O When front door (MU1) is opened, turn on light (SL1).
2 O When no motion (MO1) or presence (PR1∼5) is detected for 5 minutes, turn off light (SL1).
3 C When presence (PR1) becomes present, if time is before 12am, turn on coffee machine (OL1).
4 C When motion (MO1) detected, if temperature (MU1) is below 70◦F , turn on heater (OL2).
5 C When motion (MO1) is active for longer than 60 minutes, send a message to alert.
6 C When door (MU1) is open, if no presence (PR2∼5), send a message.

T2

7 O When door is opened (MU2), turn on light (SL2).
8 O When motion (MO2) active if luminance (AM1) is below 15 LUX, turn on light (SL3).
9 O When presence (PR6) becomes present if between 5-8pm, turn on oven (OL3).
10 O When motion (MO2) active if not presence (PR6), send a notification.
11 O When wardrobe door (MU4) open, turn on light (SL5); when door (MU4) close, turn off light (SL5).
12 O When motion (MO2), if temp. (MU3) below 68◦F , turn on heater (OL4); when motion (MO2) inactive for 20 minutes, turn off heater (OL4).
13 C When door (MU3) opened, turn on light (SL4); when door (MU3) closed if motion (MO3) inactive for 5 minutes, turn off light (SL4).
14 C When humidity (AM2) exceeds 85% if motion (AM2) active but motion (MO3) keeps inactive for 30 minutes, send a notification.

T3

15 T When bedroom motion (MO6) active between 10am and 12am, turn on light (SW3).
16 T When kitchen motion (HM1) active between 7am and 12am, turn on microwave outlet (OL6).
17 T When sink water leakage (WL1) detected and all motion (MO4∼6, HM1∼2) inactive, send a text message.
18 T When front door (MU5) open and luminance (HM2) is below 30 LUX, turn on lights (LB1, OL7).
19 T When bathroom motion (MO4) active and water sensor (WS1) wet, turn on fan (SW1).
20 T When 7am, turn on coffee outlet (OL5); when 6pm, turn off coffee outlet (OL5).
21 T When bathroom motion (MO4) active between 10am and 1am, turn on light (SW2).
22 T When bathroom motion (MO4) inactive and bathroom door (MU6) closed, turn off light switch (SW2) after 10 minutes.
23 T When study room motion (MO5) active between 9am and 12am and luminance (HM2) is below 30 LUX, turn on lights (LB1, OL7, HB1∼2).
24 T When study desk motion (HM2) active between 9am and 12am and luminance (HM2) is below 30 LUX, turn on light (LB1, OL7, HB1∼2).

T4

25 C When stovetop motion (HM4) active, if Hue switch (HS1) activates button 1 (day mode) or 3 (nap mode), turn on lamp outlet (OL8).
26 C When stovetop motion (HM4) inactive for 5 minutes, turn off the lamp outlet (OL8).
27 C When living room motion (MO7) active, if Hue switch (HS1) activates button 1 (day mode) or 3 (nap mode), turn on living room light (LB2).
28 C When living room motion (MO7) inactive for 20 minutes, turn off living room light (LB2).
29 C When bathroom motion (HM3) active, if Hue switch (HS1) activates button 1 (day mode) or 3 (nap mode), turn on lights (SW4, HB3); if Hue

switch (HS1) activates button 2 (night mode), turn on light switch (SW4).
30 C When bathroom motion (HM3) inactive and door (MU8) open for 15 minutes, turn off lights (SW4, HB3).
31 C When bedroom motion (HM6) active, if Hue switch (HS1) activates button 1 (day mode), turn on light (HB5).
32 C When bedroom motion (HM6) inactive for 10 minutes, turn off light (HB5).
33 C When study room motion (HM5) active, if Hue switch (HS1) activates button 1 (day mode) or 3 (nap mode), turn on light (HB4).
34 C When study room motion (HM5) inactive for 30 minutes, turn off light (HB4).
35 C When front door (MU9) open, set the dimmer (DL1) brightness level to 100%; after 5 minutes, set the dimmer to 0%.

TABLE IV: Comparison of events received by PFIREWALL mediator and
the target platform in all testbeds. Total: the total data volume received by
PFIREWALL mediator and the platform, respectively. Due to space limits, we
list partial representative devices and attributes, covering different communi-
cation protocols and attribute types (binary/numeric-value) in every platform.

Testbed Device Attribute Total Inconsistency

T1

MU1 contact 1372, 1372 0
MU1 temperature 6174, 6174 0
MO1 motion 1598, 1598 0
OL1 switch 24, 24 0
SL1 switch 18, 18 0
PR1 presence 46, 46 0

T2

AM1 motion 268, 268 0
AM1 humidity 459, 459 0
AM1 luminance 648, 648 0

T3

WS1 water 12, 12 0
MO6 temperature 6919, 6919 0
WL1 water 4, 4 0
HM1 luminance 1547, 1547 0
HM2 motion 4046, 4046 0
HB1 switch 26,26 0
LB1 switch 18,18 0

T4

MO7 motion 2116, 2116 0
HB4 switch 19, 19 0
LB2 switch 26, 26 0
HS1 button 15, 15 0
DL1 level 32 , 32 0

leads to failures (non-executions) of most automation rules
(i.e., rules in line 3-11) except rule 20 (line 1 & 2; device:
OL5), which only uses a specific time to trigger the rule.
According to our observation, SmartThings only pulls the state
of a specific device when we operate on the SmartThings
mobile app to refresh its state; otherwise, SmartThings relies
on the push model to update devices’ states and trigger rules.
Thus, when the naive approach is employed, most automation

rules cannot be triggered because the platform does not know
the events that trigger the rules.

2) Latency: Compared to the original systems, PFIRE-
WALL adds one more “hop” to the original system. Therefore,
the additional latency LHA introduced by PFIREWALL to
home automation consists of the computation latency L1 for
executing policies and the additional transmission delay. The
additional transmission delay includes the event transmission
delay L2 from PFIREWALL to the local hub (SmartThings
classic) or to the platform (the new SmartThings, openHAB)
and the command transmission delay in the reverse direction.
Thus, LHA is approximately equal to the sum of computation
latency L1 and a round-trip transmission delay 2 ∗ L2, i.e.,
LHA = L1 + 2 ∗ L2. We obtain L1 by computing the
elapsed time from when PFIREWALL receives an event to
when PFIREWALL reports the event (if the event is reported),
and we obtain L2 by computing the elapsed time from when
PFIREWALL reports an event to when the hub/platform re-
ceives the same event. We compute the latency for all events
and show the averaged results in Table VII. The extra latency
(about 0.6 second) is a tradeoff for mitigating privacy leakage.
User experience suffers less than indicated by the latency
since many rules (e.g., rule 2, 3, 4, 5 in Table III) are not
time-critical. Hence, the latency (up to 0.7 seconds) of most
automation rules is acceptable.

3) Reduction of Data Leakage: To show the effectiveness
of PFIREWALL in filtering events, we compare the data volume
collected by PFIREWALL with that reported to the platforms
and compute the relative Reduction Rate (RR). As shown in
Table VIII, PFIREWALL blocks more than 99% of numeric-
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TABLE V: Results of correctness verification of all device commands
that are issued by automation rules. NR: the number of device commands
received by PFIREWALL after removing ones caused by the annotated manual
operations; NS: the number of commands that are proved sound; NC: the
number of ground truth commands generated based on raw event replaying.
RS and RC are the ratio of commands that are sound and complete,
respectively.

Testbed Device Comm. NR
Soundness Completeness

NS RS NC RC

T1

OL1 ON 6(5) 5 0.83(1.00) 5 1.00
OL2 ON 7 7 1.00 7 1.00
SL1 ON 9 9 1.00 9 1.00
SL1 OFF 9 9 1.00 9 1.00

T2

OL3 ON 4(3) 3 0.75(1.00) 3 1.00
OL4 ON 21(21) 20 0.95(0.95) 20 1.00
OL4 OFF 21(19) 17 0.81(0.89) 17 1.00
SL2 ON 10 10 1.00 10 1.00
SL3 ON 31 31 1.00 31 1.00
SL4 ON 20 20 1.00 20 1.00
SL4 OFF 19 19 1.00 20(19) 0.95(1.00)
SL5 ON 13 13 1.00 13 1.00
SL5 OFF 13 13 1.00 13 1.00

T3

OL5 ON 7 7 1.00 7 1.00
OL5 OFF 7 7 1.00 7 1.00
OL6 ON 2 2 1.00 2 1.00
OL7 ON 9 9 1.00 9 1.00
SW1 ON 5 5 1.00 5 1.00
SW2 ON 23 23 1.00 23 1.00
SW2 OFF 19(18) 17 0.89(0.94) 17 1.00
SW3 ON 7 7 1.00 7 1.00
HB1 ON 7 7 1.00 7 1.00
HB2 ON 7 7 1.00 7 1.00
LB1 ON 9 9 1.00 7 1.00

T4

OL8 ON 27 27 1.00 27 1.00
OL8 OFF 23 23 1.00 23 1.00
SW4 ON 67 67 1.00 67 1.00
SW4 OFF 55 55 1.00 55 1.00
HB3 ON 38 38 1.00 38 1.00
HB3 OFF 38 38 1.00 38 1.00
HB4 ON 34 34 1.00 34 1.00
HB4 OFF 34 34 1.00 34 1.00
HB5 ON 66 66 1.00 66 1.00
HB5 OFF 67(61) 61 0.91(1.00) 61 1.00
LB2 ON 37 37 1.00 37 1.00
LB2 OFF 37 37 1.00 37 1.00
DL1 Set 100 20 20 1.00 20 1.00
DL1 Set 0 20 20 1.00 20 1.00

TABLE VI: Results of the naive pull-based approach. See Table V for the
notations.

Testbed Device Comm. NR
Soundness Completeness

NS RS NC RC

T3

OL5 ON 7 7 1.00 7 1.00
OL5 OFF 7 7 1.00 7 1.00
OL6 ON 0 0 – 3 0.00
OL7 ON 0 0 – 8 0.00
SW1 ON 0 0 – 5 0.00
SW2 ON 0 0 – 27 0.00
SW2 OFF 0 0 – 23 0.00
SW3 ON 0 0 – 8 0.00
HB1 ON 0 0 – 7 0.00
HB2 ON 0 0 – 7 0.00
LB1 ON 0 0 – 7 0.00

value sensor readings, and 96.79% of binary-value sensor
readings and device states (i.e., motion, presence, switch,
etc.) which reveals sensitive information. By reducing the
disclosed data, PFIREWALL can effectively prevent smart
home platforms and potential attackers from inferring private
information of smart homes and homeowners based on large
amount of IoT device data in the original system. In general,
the RR of binary-value attributes are smaller than numeric-
value ones, since binary attributes are more often used as rule
triggers and hence cannot be completely blocked.

TABLE VII: Latency introduced by PFIREWALL (in seconds).

Testbed Computation
Latency L1

One-Way Transmission
Latency L2

Automation
Latency LHA

T1 0.136 0.233 0.602
T2 0.087 0.203 0.493
T3 0.143 0.274 0.691
T4 0.083 0.293 0.669

TABLE VIII: Results of the reduction rate RR and correct tracking ratio
CTR/CATR per device. VOL: the volume of raw event and the volume
of event reported to the platform after data filtering, respectively. The last
column is CATR if not specified and otherwise CTR. We present the results
for partial representative devices due to page limits.

Testbed Device Attribute VOL RR CATR (CTR)

T1

MU1 contact 1244, 9 0.99 0.01
MO1 motion 1574, 26 0.98 0.75
OL1 switch 22, 4 0.82 0.32
SL1 switch 18, 18 0.00 1.00
PR1 presence 42, 30 0.29 0.91
PR2 presence 42, 1 0.99 0.32

T2

MU2 contact 30, 10 0.67 0.01
MO2 motion 264, 45 0.83 0.46
PR6 presence 22, 4 0.82 0.48
OL3 switch 36, 4 0.89 0.03
AM1 illumance 658, 1 0.99 0.00 (CTR)
AM1 humidity 487, 0 1.00 0.00 (CTR)

T3

WS1 water 14, 5 0.64 0.03
MO4 motion 918, 45 0.95 0.15
MO6 motion 923, 7 0.99 0.38
HM1 motion 1090, 2 0.99 0.05
HM2 motion 5046, 2 0.99 0.31
HB1 switch 24, 12 0.50 0.22
WL1 water 4, 0 1.00 0.00

T4

HM3 motion 1354, 122 0.91 0.27
HM4 motion 1178, 50 0.96 0.55
HM5 motion 5778, 68 0.99 0.48
HM6 motion 2815, 127 0.95 0.22
MO7 motion 1898, 74 0.96 0.51
HB3 switch 338, 122 0.64 0.79
HS1 button 16, 14 0.13 0.54

4) Privacy Gain of PFIREWALL: We further investigate
how much privacy PFIREWALL enhances by studying the
degree that PFIREWALL prevents attackers from: (1) tracking
device states, and (2) inferring sensitive user activities.

Device Status Tracking. An attacker can precisely track the
state of a device by leveraging its complete event sequence.
When PFIREWALL is deployed, it filters out a very large
portion of device events such that it is not easy for an attacker
to infer the correct device state with partial information. We
define two metrics for this study: Correct Tracking Ratio
(CTR) and Correct Active-State Tracking Ratio (CATR):

CTR =
Duration of correctly guessing a sensor’s measurements

Total duration
(1)

CATR =
Duration of correctly guessing a device’s active state

Duration of guessing a device’s active state
(2)

CTR measures the correctness of tracking numeric-value
IoT attributes (e.g., temperature, humidity) and CATR mea-
sures the correctness of tracking binary-value attributes (e.g.,
motion and switch). CTR is not suitable for measuring binary-
value attributes; for instance, a CTR is equal to 80% when
simply guessing a motion sensor (which is “inactive” for 80%
of a day) is “inactive” all day. However, this does not indicate
a good inference since an active state (e.g., motion “active”,
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switch “on”) matters more than the other (e.g., motion “inac-
tive”, switch “off”) from the perspective of activity inference.
Instead, CATR only takes the active state of a binary-value
attribute into calculation and thus eliminates the impact of
unbalanced distributions of binary states.

We calculate the CTR or CATR of every attribute for all
devices in the four testbeds over one week. The result is shown
in Table VIII. The CTR of all numeric-value attributes are
equal or close to zero since most of them are not used by
automation rules and hence are not reported to the platform.
Although some numeric-value attributes are used in rule con-
ditions (e.g., AM1-luminance used by rule 8), more than 99%
of their values are not reported and therefore attackers cannot
correctly track them. Overall, most binary-value attributes have
a low CATR, showing that data filtering prevents attackers
from correctly tracking the device status. The CATR of a few
binary-value attributes (e.g., PR1-presence) is higher because
these attributes are heavily needed by rules and thus most of
their values cannot be filtered out.

Activity Inference. We consider a strong attacker who has
sufficient background and domain knowledge to perform so-
phisticated attacks to infer user activities. Smart home users
usually give a meaningful name (e.g., bathroom motion sensor,
bedroom light, microwave outlet) and assign a room to each
device. Hence, we assume that the attacker knows the rooms
of a home and the assigned room of every device. We also
assume that the attacker has expertise to associate activities
with device events and states.8 Based on the above assumptions
of a strong attacker, we implement methods (see Table IX) of
attackers to infer users’ activities. We run the methods on raw
events (before data filtering) and the processed events (after
data filtering) and compare the results.

As shown in Fig 11, the working hours of every member
who carries a presence sensor can be easily inferred by
observing the raw presence sensor data. Note that PR1∼5 are
the 5 presence sensors in testbed T1. Furthermore, the device
label of a presence sensor may carry personally identifiable
information (e.g., name) and thus the learned working hours
could be matched to individuals. When PFIREWALL is de-
ployed, most presence data are filtered out and thus attackers
cannot infer working hours correctly from PR2∼5. Attackers
can still achieve an accuracy of since the data of PR1 cannot be
completely filtered since both the states of PR1 (i.e., “present”
and “not present”) are needed for executing automation rules
2 and 3 (see Table III).

Figure 12 shows the confusion matrices of activity infer-
ence attacks before and after data filtering on testbed T3 and
T4. Without PFIREWALL, the attacker correctly recognizes
most activities. The recall (a.k.a., true positive rate) is 1 for
most activities except that it is 0.83 for activities 1, 2, 6 in
T3. Data filtering brings the recall of most activities down to
less than 0.34 and some (activity 1, 5, 7 in T3 and 5 in T4)
even to 0, making the attacker miss recognizing most activities.
Overall, the total recall of all activities drops from 0.96 to
0.19 in T3 and from 1 to 0.13 in T4. Hence, by filtering
data, PFIREWALL significantly degrades the performance of
the activity inference attacks.

8Such knowledge can be easily learned from a lot of existing literature such
as [64], [65], [66], [67].

TABLE IX: Methodology for inferring user activities in different testbeds.
Device, room and time information is exploited.

Activity ID Methodology Testbed
Working 0 presence sensor on T1

Leaving
home 1

front door open/closed→all motion sensors become
inactive for at least 10 minutes

T3, T4

Arriving
home 2

front door open/closed → at least a motion sensor
becomes active within 3 minutes

T3, T4

Toileting 3 1 minute < bathroom motion active < 10 minutes T3, T4

Showering 4
bathroom motion active → water sensor wet T3

15 minutes<bathroom motion active<60 minutes T4

Sleeping 5
bedroom motion active→no motion active in other
rooms→bedroom motion inactive>10 minutes

T3, T4

Cooking 6
kitchen motion > 10 minutes T3, T4

microwave outlet power > 1000W T3

Preparing
coffee 7 coffee machine outlet power > 1000W T3
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Fig. 11: Visualization of inferred working hours based on the presence
sensor data in testbed T1 without and with data filtering, respectively. For
simplicity of illustration, we round all working hours to the nearest hours.
PR1∼5: presence sensors in T1.

VII. RELATED WORK

A. Smart Home Security

Recent research have explored smart home security and
safety in various aspects. Fernandes et al. [41] revealed de-
sign vulnerabilities in the permission system of SmartThings.
Follow-up works [46], [10], [68], [69], [70] have designed new
mechanisms to improve access control in IoT systems. Security
researches also studied the application security. For instance,
Jia et al. [46] extensively surveyed app-level attacks on IoTs,
and presented a context-based permission system. Other than
single-app attacks, cross-app interaction (CAI) threats attracted
the attention of recent works [71], [24], [25], [12], [11].
HomeGuard [71], [24] is the first work that systematically
studies this problem and also the first one that proposes to use
theorem proving to detect CAI threats. iRuler [72] applies the
same approach to studying CAI threats on the IFTTT platform.

In addition to automation applications, resource-
constrained and diverse IoT devices raise unique challenges.
For example, how to conduct IoT authentication [73]
and pairing [74] for IoT devices that only have a button
or knob is an intriguing question. As another example,
researchers frequently employ data-driven techniques to
detect malfunctions in smart homes but the detection is
hardly precise and explainable. HAWatcher [75] proposes
a novel semantics-aware approach that utilizes semantic
information, such as automation rules and device relations, to
mine correlations from event logs for precise and explainable
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Fig. 12: Results of activity inference attacks (see Table IX) in testbed T3 and
T4. FN and FP denote false negative and false positive inference, respectively.

anomaly and attack detection. Security issues related to voice
assistants draw great attention [76], [77], [78]. For example,
MVP-Ears [78] presents a highly accurate (accuracy > 99.8%)
audio adversarial example (AE) detection method inspired
by multiversion programming, and it can proactively handle
transferable audio AEs. This work is concerned with the rich
privacy-sensitive data generated by IoT devices.

B. Smart Home Privacy

Privacy is an important research topic in smart home
ecosystems. Zheng et al. [5] studied smart home owners’
perceptions of privacy risks and actions taken to protect their
privacy. The study found that users are unaware of privacy
risks from inference algorithms operating on data from their
IoT devices, and they expect device manufacturers to protect
their privacy though it is not the case. Celik et al. [7] tracked
the sensitive data flows in programming frameworks and
identified that 138 out of 230 apps in SmartThings transmit
at least one kind of sensitive data over platform-provided
APIs, which means malicious apps have the capability to
steal user data collected by the platform. The literature [41],
[46], [79], [80] also demonstrated that IoT apps/rules can
be exploited to breach user privacy. FlowFence [9] enforced
a data flow control mechanism for sensitive data protection.
However, unlike our work, FlowFence protects sensitive data
from unauthorized apps rather than the platform, which is
trusted in their threat model. Plus, FlowFence requires the
cooperation from the platform and app developers to operate.
Xu et al. [81] filter and obfuscate data sent from IoT platforms
to IFTTT to enhance smart home privacy; however, the user
data still flow to IoT platforms. How to protect smart home
privacy from such IoT platforms as SmartThings and Amazon
has not been studied prior to our work.

C. In-hub Security and Privacy Enforcement

Many in-hub schemes are proposed to enforce security and
privacy schemes in the IoT domain. Simpson et al. designed

an in-hub security manager built atop the smart home hub
to patch vulnerable IoT devices and strengthen authentication
[82]. The security manager is deployed in an open-source
system HomeOS. FACT [69] and HanGuard [70] enforced
access controls in the middle by implementing controllers on
an open-source hub and a programmable WiFi router, respec-
tively. By comparison, these schemes rely on a programmable
hub (gateway, router) that can indeed intercept and control
the communication between the home area network and the
Internet. However, in cloud-based smart home platforms like
SmartThings, communications between the commercial hub
and the backend cloud are encrypted [83] and hence the
router can neither decrypt nor modify the packets on demand.
PFIREWALL provides a novel approach to working with closed
systems, without modifying the IoT devices, hubs, or clouds.

D. Firewall-Based Solutions

Network firewalls have been extensively studied in different
communication layers, such as data-link [84], [85], network
[86], [87], transport [88], and application [89], [90], [91], and
in different aspects, such as policy compactness [92], [93],
verification [94], languages [95], conflicts [96], [97], and so on.
PFIREWALL is essentially an application layer filtering system.
Existing application firewalls, such as intrusion prevention
systems [89] and web application firewalls [90], [91], check
on non-payload information (e.g., IP address, port, protocol,
DNS, HTTP URL, etc.). On the other hand, PFIREWALL is
a novel contextualized solution to the privacy protection of
smart homes by inspecting application-layer payloads (i.e.,
events) and performing semantics-aware data filtering against
the “trigger-condition-action” automation rules.

VIII. DISCUSSION AND LIMITATIONS

Can PFIREWALL perform home automation and thus get
rid of the cloud? Theoretically, PFIREWALL is capable of
executing the extracted rules locally and disclosing no data
to the platform. However, we did not employ this design
due to practical considerations. (1) The kick-cloud-out strat-
egy may cause ethical or legal concerns which our research
team cannot tackle. While PFIREWALL may provide home
automation, all other cloud-based services (messaging, storage,
and remote management) will be lost. (2) Huge engineering
efforts are needed to implement an equivalent rule engine that
supports the same programming framework and APIs as well
as maintaining them in a long run. Therefore, we strategically
separate the data-filtering policy engine and the rule engine;
and PFIREWALL only deals with data filtering.

Pull Strategies. There are two pull-based models for home
automation: batch pull and lazy pull. A representative platform
employing batch pull is IFTTT, which polls the most recent N
(50 by default) events about once every hour [98]. This model
still does not take data minimization into consideration. Lazy
pull is a naive privacy-preserving framework where platforms
only pull the current state of devices when needed instead of
expecting devices to continuously push data to them. Lazy pull
is probably impractical for home automation, as the platforms
cannot predict the occurrence of device events. To our best
knowledge, no smart home platforms use lazy pull.
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User efforts. To deploy PFIREWALL, users only need to pair
their IoT devices with PFIREWALL mediator and operate on
the mobile companion app to connect PFIREWALL with the
target platform. All these operations are similar to using their
original platforms and users do not need any expertise.

Compatibility. Besides home automation, a dashboard func-
tion for viewing and controlling device states is usually
provided on a companion mobile app by the IoT platform.
With PFIREWALL, the dashboard may not always display the
correct device states. However, this does not undermine the
value of PFIREWALL, which can be deployed as a privacy
enhancing add-on for privacy-conscious users who mainly use
the platform for automation. It is worth noting that occasional
remote access from the companion app does not justify that
IoT data should continuously flow to the platform. With a
small amount of engineering effort, PFIREWALL can provide
an equivalent dashboard on its mobile app, which can be used
by users for viewing and controlling device states. End-to-end
encryption can be used to protect data transmissions between
the local PFIREWALL mediator and the mobile app, such that
data will not be disclosed to the platform or third parties (e.g.,
cloud-based relay servers).

Generalizability. Although our prototype implementations are
on SmartThings and openHAB, the presented approach can be
adapted to other IoT systems. As discussed in Section V-B,
it is practical to implement such a mediator in most systems.
On one hand, the mediator could be extended to connect a
large portion of IoT devices (see Section V-B1). On the other
hand, the mediator could interface with many platforms via a
communication technology supported by the platform. Finally,
a spectrum of techniques such as code analysis, UI parsing, and
NLP have been employed for extracting automation rules from
IoT apps or web/mobile interfaces. Therefore, PFIREWALL
can be extended to support more devices and platforms with
some engineering efforts. The impact of unsupported devices
(which have no APIs) depends on how many such devices are
deployed in a particular home. A large-scale investigation on
real households that have IoT devices will be helpful to answer
this question. This will be our future work.

Attack surface. Like many existing IoT security systems
(ContexIoT [46], IoTGuard [11], FACT [69]), our proto-
type adds an additional component to a smart home, which
might become a potential target of attackers. We argue that
PFIREWALL can be considered as an IoT hub (with privacy
protection functionalities), so conceptually it does not make a
smart home more exploitable. PFIREWALL employs existing
communication technologies used by IoT devices and plat-
forms to connect them and does not introduce new protocols.
Furthermore, PFIREWALL knows who it should talk with, so it
can maintain a whitelist, using an embedded firewall, to discard
any incoming traffic initiated by unknown sources. Although
it is possible that the platform could detect PFIREWALL and
behave adversely, it cannot obtain more sensitive data by doing
so because PFIREWALL by design only passes data that enables
the execution of automation rules that are specified by users.

IX. CONCLUSION

We presented PFIREWALL, a semantics-aware customiz-
able data flow control system for protecting privacy of

smart home owners. PFIREWALL filters data by enforcing
data-minimization policies automatically derived from au-
tomation applications and, optionally, user-specified policies.
We overcame multiple challenges and designed an elegant
virtualization-based mediating system, which enforces the
policies without modifying IoT platforms or devices. We
implemented a prototype of PFIREWALL and evaluated it in
four real-world testbeds with various IoT devices of different
communication protocols (ZigBee, Z-Wave, and WiFi). The
evaluation results demonstrated that PFIREWALL can signif-
icantly reduce sensitive data leakage without affecting home
automation. It severely impairs the attacker’s ability to monitor
and infer a homeowner’s privacy-sensitive behaviors. Besides
smart homes, PFIREWALL can also significantly enhance pri-
vacy for many other smart environments, such as smart offices,
hospitals and factories.
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APPENDIX

A. User Study

1) Setup: We conduct a user survey to study users’ attitude
and abilities towards defining customized data-protection poli-
cies with our policy templates (Section V-A2). We recruit 20
adult participants who are knowledgeable about the concepts
“home automation”, “smart home” or “IoT” from our institu-
tions. Participants completed the trial tasks of our “PFirewall
Survey” app in our lab using smartphones we provided and
after that answered several questions.

We asked the participants to get familiar with a smart home
setting where 10 automation rules (Fig. 13(b)) are configured
to work with 15 devices (Fig. 13(a)). The app provides a page
(Fig. 13(c)) to illustrate the architecture of the system and the
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(a) (b) (c) (d)

Fig. 13: The PFirewall Survey mobile app used in the user survey.

potential risks of data leakage; we did not explain the content
and ask questions about this page to avoid influencing the
understanding of end-users by factors other than the interface
itself. Besides, the app also provides an interface showing the
list of 15 devices; when a device is selected, the app switches
to a device detail page (e.g., Fig. 13(d)) showing what data
the device generates and what privacy risks are imposed if
the data are leaked. In addition, policy templates (as shown in
Fig. 5(b)) were provided for participants to define their own
policies. After a 30-minute trial, participants were asked to
answer questions.

2) Results: All 20 participants cared about their data pri-
vacy and thought it useful to define their own data flow policies
for protecting privacy. However, 2 participants thought they
would not spend time in defining policies even if an app
is available. We collect the number of participants who had
privacy concerns on each listed device. Cameras and smart
speakers were the top two devices whose data are considered
sensitive by the participants (19 and 16, respectively); half or
more participants had concerns on the status data of smart
locks, doors and windows (11, 13, 10, respectively); Each of
humidity sensors, heaters, lights, powers and coffee makers is
concerned by less than 3 participants.

Besides the listed devices, the participants also cared about
the data privacy of smart TVs, smart window blinds, smart
outlets. Regarding the usability of our policy templates, 8
participants thought the templates are “very easy” to use and
12 participants thought them “easy” to use. Three participants
found that they could not specify policies to control data by
specifying multiple conditions with the templates, for example,
the combination of a device state and a specified time period.
According to the feedback, we address this issue by allowing

users to choose if they would like to add a new one recursively
after they complete a condition.

Overall, participants concern data privacy and hold a pos-
itive attitude in defining own policies with our templates. The
result also shows that participants may overlook the privacy
risks of some devices like humidity sensor and powers, which
we have discussed in Section VI-C4. Hence, data-minimization
policies and user-specified policies could work together to
achieve better privacy protection.

B. IRB Approval

Our testbeds need to collect data from the testbed providers,
including the 5 office members and 5 apartment members.
Also, our user study involves 20 participants. We have received
the approval from the IRB in the institution where all the
above investigations are performed. The testbed providers and
survey participants (undergraduate and graduate students) were
recruited through emails and flyers. $500 was paid to the
participants of each testbed and $50 was paid to each survey
participant.

We value the participants’ privacy during our investigation
processes. The data collected from all testbeds do not contain
personally identifiable information and location data. The
collected data will be transmitted to and stored in the password
protected computer of one of the authors. Computers that store
data have password-protected accounts and will be in a locked
office that has limited access. Only the researchers identified
on this protocol will have access to the data. Survey partic-
ipants are asked to submit their questionnaire anonymously
without revealing any personally identifiable information. The
questionnaire will be stored in the locked office after analyses.
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