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Abstract—DolphinAttacks (i.e., inaudible voice commands)
modulate audible voices over ultrasounds to inject malicious
commands silently into voice assistants and manipulate controlled
systems (e.g., doors or smart speakers). Eliminating DolphinAt-
tacks is challenging if ever possible since it requires to modify
the microphone hardware. In this paper, we design EarArray,
a lightweight method that can not only detect such attacks but
also identify the direction of attackers without requiring any
extra hardware or hardware modification. Essentially, inaudible
voice commands are modulated on ultrasounds that inherently
attenuate faster than the one of audible sounds. By inspecting
the command sound signals via the built-in multiple microphones
on smart devices, EarArray is able to estimate the attenuation
rate and thus detect the attacks. We propose a model of the
propagation of audible sounds and ultrasounds from the sound
source to a voice assistant, e.g., a smart speaker, and illustrate
the underlying principle and its feasibility. We implemented
EarArray using two specially-designed microphone arrays and
our experiments show that EarArray can detect inaudible voice
commands with an accuracy of 99% and recognize the direction
of the attackers with an accuracy of 97.89%.

I. INTRODUCTION

More than 3.25 billion voice assistants (e.g., Siri, Alexa)
have been installed around the world, and it is anticipated that
by 2023 the number will reach up to eight billion [1]. Re-
searchers have identified various attacks against such systems,
and one of the most devastating attacks is DolphinAttack [14],
whereby attackers can inject inaudible voice commands and
performs various malicious attacks, such as open a door, make
a phone call, or place an order. DolphinAttacks modulate
malicious voice commands onto ultrasounds and thus create
inaudible voice commands. As the ultrasound is received by a
microphone, its non-linearity vulnerability will demodulate the
voice command from the ultrasound carrier into the baseband
and the injected command exhibits almost no difference from
the audible command.

To defend against DolphinAttacks, researchers have pro-
posed two types of strategies. The first class detects the
attacks by analyzing the subtle yet distinct characteristics
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Fig. 1. When an inaudible voice command (i.e., DolphinAttack) is played
to a smart speaker, the inherent frequency difference will result in measurable
discrepancy in terms of propagation attenuation. By measuring the attenuation
properties of the incoming sound, EarArray can recognize whether it is an
inaudible voice command and even tell the direction of the attacker. The sig
1 represents the voice signal captured by the first microphone.

embedded in the received sound signals, e.g, the unique high-
frequency components caused by the demodulation process
in the microphones [14] or the nonlinearity distortion created
when the malicious voice commands pass through microphone
circuits [35]. However, a sophisticated attacker [36] can re-
move such distinct characteristics and bypass the detection.
The second class is to actively cancel the malicious inaudible
voice commands by emitting an inverted ultrasound [36]. Such
methods not only rely on extra ultrasound devices but also
require to constantly emit ultrasound, which has shown to
induce health issues, e.g., hearing loss, nausea, headache [2],
[3], and to repel pets, such as dog and cat.

In this paper, we proposed a lightweight detection method,
EarArray, which requires no extra hardware or hardware
modification. Instead of utilizing the signal distortion caused
by the microphones, EarArray looks into the propagation
difference between inaudible voice commands (i.e., ultrasound)
and audible ones. As depicted in Fig. 1, when a voice
command is played by a speaker, the voice propagates to
the smart device (e.g., smartphone and smart speaker) and
reaches to its microphones at various times depending on the
distances between the speaker and the microphones. On the
smart device side, each microphone will receive a sound with
the amplitude inversely proportional to the square of distance
as well as the attenuation rate. Notably, the attenuation rate
is, in terms, proportional to the square of sound frequency.
Therefore, EarArray shall be able to estimate whether the
command is an audible one or an inaudible one with the
measurements obtained by multiple microphones (microphone
array, for example) on a smart device because the decaying
rate of ultrasounds (> 20kHz) is larger than audible sounds
(typically below 5kHz for human voice). The advantage of
EarArray is that it relies on the physics of sound propaga-

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual 
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24551
www.ndss-symposium.org



tion, and will not be affected by the microphones’ hardware
characteristics.

EarArray utilizes an interesting yet challenging intuition,
and the effectiveness of EarArray depends on answering the
following questions. (1) Is the attenuation rate difference be-
tween the audible sounds and ultrasound sound large enough to
be measured and utilized? (2) How to estimate the propagation
attenuation efficiently? (3) Since the attacker may hide at any
direction to the smart devices, will it always be possible to
detect inaudible commands regardless of where she is? To
answer the aforementioned questions, we first theoretically
model the propagation of sound in terms of attenuation to
quantify the measurable difference between ultrasound and
sound. Then we specially designed two microphone arrays
with three (mimicking the case of a smartphone) and five
microphones (mimicking the case of a smart speaker like Ama-
zon Echo) respectively. The specially-designed microphone
arrays are placed on a cuboid and a cylinder and a multiplex
data acquisition card is used to collect audio data from the
channels of the microphone array simultaneously. By doing
this, EarArray is able to estimate the attenuation rate by
measuring the amplitude of the recordings from each of the
microphone channels, calculates the power spectral density of
the measured signal, and extracts three representative features.
To be lightweight, EarArray is a software-based solution
and can be integrated into existing commercial products such
as smartphones and Amazon Echo without involving any extra
hardware. EarArray makes use of the three key features and
can utilize a simple machine learning algorithm, i.e., a support
vector machine (SVM) to identify inaudible commands. In
practice, EarArray can be installed on smart speakers and
smartphones, as long as the device has three or more micro-
phones ∗. To better defend against inaudible voice commands
with EarArray, the smart speaker manufacturer can further
optimize the distribution of microphones, e.g., keeping the
angles of microphones in different plane, which is already a
solution for most smart speakers such as Amazon Echo, as
shown in Fig. 4. We extensively evaluated the performance
of EarArray by varying the attack location, angles, ambient
noises, and the carrier frequency of inaudible voice commands,
etc. Our experiments show that EarArray can be effective
and robust in various conditions.

In summary, our contributions are summarized as follows:

• We discovered that the propagation attenuation of
audible commands and inaudible ones is different and
thus can be used to detect DolphinAttacks. We theoret-
ically analyze the attenuation difference by simulating
the sound propagation over a microphone array.

• We designed EarArray that detects DolphinAttacks
by estimating the propagation attenuation of voice
commands.

• We implemented two prototypes of EarArray and
evaluated the performance of EarArray with two
specially-designed microphone arrays. EarArray
can detect inaudible voice commands with an accuracy
of 99% and recognize the direction of the attackers
with an accuracy of 97.89%.

∗Nowadays almost all smartphones have at least three microphones for
noise reduction, as shown in Tab. I
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Fig. 2. The transformation progress of inaudible voice commands. By
modulating audible voice commands on ultrasound (e.g., Amplitude Modu-
lation), the voice commands can be inaudible. By utilizing the nonlinearity
of microphones, the voice commands can be demodulated from the high-
frequency carrier and then recognized by a speech recognition system.

II. RATIONALE OF DEFENDING DOLPHINATTACK BY
ACOUSTIC ATTENUATION

In this section, we first review the inaudible voice command
attack known as DolphinAttack [14], then we present the basics
of the attenuation of acoustic waves and give the rationale why
it can be used to detect DolphinAttack. Finally, we analyze
popular smart devices and show the feasibility of detecting
DolphinAttacks from the support of multiple microphones.

A. DolphinAttack: An Inaudible Voice Commands Attack

The key idea of inaudible voice commands attack [14] is
to modulate voice commands on ultrasonic carriers such that
these inaudible commands can be captured by the microphone
and demodulated back to the original voice commands. Since
the frequencies at which the modulated voice commands
propagate in the air are above 20 kHz, this kind of attack
is completely inaudible to human ears and hard to be detected
by human.

Fig. 2 shows the three stages of how the inaudible voice
commands are transformed. In Stage 1, the voice commands
are Amplitude-modulated (AM) on ultrasound carrier (e.g., 25
kHz) and therefore there are only high-frequency ultrasound
components shown in the frequency domain. In Stage 2,
both ultrasound and the low-frequency voice commands are
recovered by using the nonlinearity of microphone hardware.
In the final Stage 3, high-frequency ultrasound component
has been filtered by the low-pass filter and only the voice
commands remain. Thus the demodulated voice command
will be the same as normal voice commands, making it very
difficult to directly detect the inaudible voice commands attack.
Especially, the attack voice commands appear just after the
microphone module.

Our defense method against such attacks is inspired by
the physical phenomenon that the incident wave of different
frequencies traveling around a geometrical object (such as
smart devices) will have different attenuation properties. This
is because that the attenuation of the acoustic wave is directly
related to the frequency, distance, and obstacle, etc. As we
will elaborate next in Section II-B. Therefore, we can use the
attenuation distinction of ultrasound and sound perceived from
the smart devices to detect inaudible voice command attacks.

B. Attenuation of Acoustic Sounds

Acoustic attenuation describes that the intensity of an
acoustic wave decreases as the wave propagates in the medium.
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Here we consider three main sources for the acoustic attenu-
ation: 1) the inverse-square law; 2) sound absorption; and 3)
diffraction.

1) The inverse-square law: The inverse-square law states
that the intensity of waves is inversely proportional to the
square of the distance (d) from the source of the wave. As the
acoustic wave propagates in the air, the circumference of the
acoustic circle expands larger with the increase of the traveling
distance. So the energy per unit length decreases. Theoretically,
the attenuation of wave (Linv) can be expressed as:

Linv ∝ d2 (1)

According to Eq.1, the sound pressure level (SPL) of sound
received by microphones located at places with different dis-
tances from the sound source will vary. This type of attenuation
is related to the traveling distance.

2) Absorption Attenuation: This type of attenuation is
caused by thermal or viscous effects and is related to the
acoustic frequency. The thermal effect is that the coherent
molecular motion of the sound waves is transformed into
the incoherent molecular motion in the air, which directly
transmits the vibration to the medium as heat. Another cause
is the energy consumption caused by the viscosity of the
air and the attenuation of sound in air also varies with
temperature and humidity [15]. This type of attenuation is a
power law frequency-dependent acoustic attenuation, and can
be expressed as:

E(d+ ∆d) = E(d)e−a(w)∆d (2)

where E denotes the amplitude of an acoustic field variable,
∆d represents wave traveling distance, w denotes the angular
frequency of wave, a(w) is the attenuation coefficient, and

a(w) = a0w
n, n ∈ [0, 2] (3)

and a0 and n are tissue-dependent attenuation parameters [16].

From Eq. (2) and (3), we can conclude that attenuation in-
creases with acoustic frequency and distance. Therefore, high-
frequency signals received by different microphones placed at
different positions will differ more than low-frequency signals.
This phenomenon inspires us to detect the inaudible voice
commands by using multiple microphones.

3) Diffraction Attenuation: Diffraction [15] occurs when
the spreading of the wave bends around obstacles, corners, and
through openings. For example, when an obstacle is in the path
of a spreading wave, the wave will bend around the obstacle
and spread into the shadow regions behind it. The amount
of diffraction will be inversely proportional to the acoustic
frequency (f ):

Ldif ∝ f (4)

where Ldif represents the attenuation caused by diffraction.

When the wavelength of a low-frequency sound is equal
to or larger than the size of a smart device, the effect of
diffraction of low-frequency sound will be obvious. Large
wavelength waves will diffract around the edge of the smart
device and not be decayed. So only small portion of the

TABLE I. A LIST OF POPULAR SMART DEVICES AND THEIR
MICROPHONE ARRAYS.

Type Manuf. Model MICs Distribution

Smartphone
& Tablet

& PC
& Wearable device

Apple iPhone 11 3 3-D
Apple iPhone XR 4 3-D
Apple iPhone X 4 3-D
Apple iPhone 8 4 3-D
Apple iPhone 7 4 3-D
HUAWEI Mate 10 3 3-D
HUAWEI Mate 9 4 3-D
HUAWEI P40 Pro 2 3-D ‡
SAMSUNG Note 10 Plus 3 3-D
SAMSUNG S20 Ultra 3 3-D
SAMSUNG Note8 2 3-D
Apple ipad pro 5 3-D
Apple Macbook pro 3 3-D
Apple Airpods pro∗ 2 3-D‡

Smart speaker

Amazon Amazon Echo 7 2-D
Google Google Home 2 2-D
Alibaba Tmall Genie 6 2-D
Mi Xiaomi Speaker 6 2-D
Jingdong DingDong mini2 6 2-D

∗ Each side has one microphone.
‡ Not on the same surface.

wave will be scattered from smart device. The intensity of
the sound received by microphones at different positions will
not vary significantly. But for high-frequency ultrasound, the
propagation process is more sensitive to distance and obstacles
as its wavelength is extremely small, ultrasound traveling
toward multiple microphones will reach each microphone with
different attenuation.

Remark: Based on the above analysis, we conclude that
the incident wave with different frequencies will produce
totally different attenuation property after encountering smart
devices. The frequency of inaudible voice commands is in
range of 20 kHz to 50 kHz while normal voice commands
have frequency 50 Hz to 2 kHz. This suggests that it might
be possible to detect the inaudible voice commands attack by
measuring and analyzing the attenuation property from the
microphones of smart devices. We will demonstrate this later
in the paper.

C. Microphone Arrays on Commercial Smart Devices

As the real sound fields are three-dimensional, to fully
measure and analyze the sound attenuation property, the mi-
crophones on smart devices should be located at different
positions and facing different directions. Table I summarizes
representative smart devices. We can see that most of the
smartphones have multiple microphones which form a spatial
3–D microphone array (the microphones are located on dif-
ferent sides). Fig 3 shows the distribution of microphones on
Amazon Echo and iPhone XR. For Amazon Echo, each micro-
phone is located on the top surface which can be classified as
2-D distribution. But iPhone XR has four microphones that are
located on different sides, which belongs to 3-D distribution.
All of the popular smart speakers, however, adopt the planar
microphone arrays with 2-7 microphones placed on the top
surface [13].

Although some of the smart devices have multiple micro-
phones in 3-D arrays, users don’t have the permission to record
multi-channel sound. To the best of our knowledge, all the
Apple mobile devices or iOS applications even didn’t support
stereo sound recording until iPhone XS was released [17], but
iPhone XS can only record stereo sound in videos. For most
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Fig. 3. Modern smart devices support multiple microphone to obtain high-
quality audio. The microphone array of Amazon Echo (7 microphones) [21]
and iPhone XR (4 microphones) [18].

Android devices, we can use a stereo recording application
to capture sound in stereo with built-in microphones, never-
theless, the multi-channel recording isn’t supported either. It
is noteworthy that Siri and other voice assistants can pick up
sounds using multiple built-in microphones, thus, the smart
devices with multiple microphones have the ability to capture
multi-channel signal. On these devices, our proposed defending
method will not need to install any new microphones.

III. ACOUSTIC MODELING

In this section, we first model the attenuation of audible
and inaudible sound in the process of propagation. Then, the
sound field distribution around a cylinder was simulated using
COMSOL [20], and measured by five microphones located at
different positions of the cylinder.

A. Theoretical Analysis

Fig. 4 depicts the scenario of the sound propagation when
the sound meets a cylinder. Assume that the signal emitted
from speaker is x(t) and yi(t) is the signal received by ith
microphone. Without loss of generality, let x(t) be a single
frequency signal with frequency f when the sound is audible;
in the case of an inaudible voice attack, x(t) will be an
amplitude modulated signal, the frequency of baseband signal
will be the same as the audible sound, and the carrier frequency
is fc, which is a high-frequency signal.

Audible signal. After the audible sound propagates dis-
tance di, without considering the frequency response of mi-
crophone, the received signal at the ith microphone can be
modeled as:

yi(t) = h(di, f, γi)cos(2πft+
di
c
) (5)

where h represents the transfer function after transmitting
from the speaker to the microphone which is affected by dis-
tance di, frequency f , and γi which is the obstacle-dependent
attenuation parameter, c is the acoustic velocity. The transfer
function will affect the received signal’s phase and strength.

Inaudible signal. In this case, the inaudible signal is the
amplitude modulated signal. After propagating close to the ith
microphone, without considering the phase change, the signal
can be expressed as:

�

Speaker

�

�

M1

M5

M2

M4

M3

�

�

�

Fig. 4. The propagation model for sound transmission from a speaker to
a voice assistant (e.g., Amazon Echo). The sound source can be around the
smart speaker, by varying the distance parameter and the angle parameters
including θ and ϕ.

yi(t) = h(di, f, fc, γi)cos(2πfct)(1 + cos(2πft)) (6)

When the inaudible modulated signal is captured by the
microphone, the modulated low frequency sound can be suc-
cessfully demodulated and recovered from the nonlinearity of
microphone circuits [14]. Without considering the attenuation
of the microphone, the received signal can be expressed as:

yi(t) = h(di, f, fc, γi)cos(2πf(t+
di
c
)) (7)

Comparing Eq. 5 and Eq. 7, we observe that the attenuation
transfer function of attack signal is also related to the carrier
frequency fc, the attenuation will increase with frequency,
thus, the attenuation difference of different paths is more
significant.

B. Simulation

As mentioned above, due to the impact of frequency and
shelter of surface, the sound field distribution surrounding the
smart speaker is spatial-dependent. To evaluate and demon-
strate the spatial properties of the sound field, we design a
simulation experiment with different distances between the
cylinder and the speaker array using COMSOL [20]. Fig. 5 and
Fig. 6 show the settings and the blue cylinder represents the
smart speaker while the flat box represents the speaker array. In
the simulation, the distance between the sound source and the
speaker ranges from 30 cm to 180 cm, the audible frequency
is set to 500 Hz, and the inaudible frequency is set to 25 kHz.

As shown in Fig. 5, the sound field distribution of the 25
kHz signal generated by the speaker array is concentrated in
the propagation direction of sound waves. There is almost no
energy in the opposite direction, which represents the direction
of high-frequency waves. And the microphone in the direction
of the high-frequency signal receives the strongest energy.
The microphones on the left and right also receive a certain
amount of energy due to the diffraction of the sound waves.
However, the backside of cylinder has the most attenuation of
the acoustic energy due to the presence of solid cylinders. The
simulation results show that the phenomenon remains valid
even with longer distances.
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(a) d = 30cm            (b) d = 60cm     (c) d = 90cm (d) d = 120cm    (e) d = 150cm     (f) d = 180cm

Fig. 5. Ultrasound (25 kHz) field simulation of acoustic attenuation. The top views show sound field distribution when incident waves hit a cylinder. The
distance between the simulated sound source and the microphone ranges from 30 cm to 180 cm. The size of speaker is 35 cm × 35 cm, the height and diameter
of cylinder are 16 and 10 cm.

(a) d = 30cm               (b) d = 60cm                (c) d = 90cm (d) d = 120cm               (e) d = 150cm             (f) d = 180cm

Fig. 6. Audible sound (500 Hz) field simulation of acoustic attenuation. Compared with Fig. 5, we can see that the acoustic field distribution are more
uniform than that of ultrasound.

Fig. 6 shows the results when the speaker emits 500 Hz
sound waves. Unlike the high-frequency (25 kHz) simulation
results, now the energy is all around the speaker, not only in
the propagation direction. In addition, the simulation results
suggest that the field distribution around the microphone array
is close to uniform with the attenuation of propagation.

In summary, the simulation results verify that the energy
received by microphones in each channel are significantly
different due to the attenuation and diffraction of sound wave
when the frequency of incident wave is 25 kHz, but it is
uniform in the case of low-frequency source.

C. Verification of Acoustic Attenuation

To further verify the sound field distribution around the
microphone array, we use the microphone array to pick up
acoustic signals after playing the sound and inaudible sound
(Modulated sound), and then show the field differences using
the variance of band power of the five received signals. We
now report the experiment setup and the results at different
distances.

1) Experiment Setup: During the experiments, we use an
iPhone x smartphone to generate a 500 Hz single tone and
played by a portable mini Bluetooth speaker JBL GO [24]. The
inaudible sound is an AM modulated signal and generated by
the signal generator and will be played by a transmitter array.
The transmitter array is designed with 40 ultrasonic transducers
in parallel. The frequency of the baseband signal is also 500

Hz, the carrier frequency fc is set to 25 kHz. The distance
between the center of the microphone array and the sound
source range between 30 cm and 180 cm, the step is 30 cm.
To fully evaluate the influence of the position of sound source,
the sound source will be rotated around the z-axis, as Fig. 4
shows, θ is set to 90 degree, ϕ changes from 0 to 360 degree,
the step is 30 degree. A photo of the experimental setup is
shown in Fig. 10.

2) Results: The results are shown in Fig. 7, where we use
variance of band power to represent the uniformity of sound
field. That is, to calculate the variance of the signals received
by the five microphones at each degree, as described above
in the experiment setup. If there is an acoustic signal and its
sound field is uniform, then the energy of the five channels
would be very close. If the signal is modulated by a high-
frequency carrier wave, because the carrier has an effect of
directionality and poor diffraction, some microphones have
strong energy, while other channels have very weak energy.
As a result, we see a large variance.

As shown in Fig. 7, these curves correspond to a speaker
changing from 0◦ to 360◦ with a step of 30◦ on the x-y
plane and launching baseband signals directly or modulated
the baseband on carrier signals. The variance curve of audible
signals ranges from 0.17 to 0.5. However, as for AM modulated
signals, we can see the energy variance ranges from 0.65 to
1 when the distance is 30 cm. With the distance between the
speaker and the microphone increases, the variation range of
variance curve is between 0.15 and 0.62, for high-frequency
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(a) d = 30cm (b) d = 60cm (c) d = 90cm (d) d = 120cm (e) d = 150cm (f) d = 180cm

Fig. 7. Verification of acoustic attenuation. Under the setting of Fig. 4, acoustic attenuation is calculated as variance of the band power of sound signals from
five microphones under various settings, e.g., distance between sound source and the voice assistant, angles, and carrier frequency of ultrasound. The attack is
launched at different distances range from 30 cm to 180 cm. Clear difference of ultrasound and audible sound has been shown as contrast.

sound, the variation ranges from 0.57 to 1. The difference
between acoustic signal and high-frequency modulated signal
is significant.

In summary, we observe that the diffraction attenuation in-
creases with acoustic frequency. As the acoustic frequency in-
creases, the sound field becomes significantly spatial uniform.
Thus, the difference of high-frequency ultrasound received by
the five microphones is higher than low-frequency sound.

IV. DESIGN OF EARARRAY

In this section, we introduce the design of EarArray to
detect inaudible voice commands based on acoustic attenua-
tion.

A. Overview

Fig. 8 shows the overview of the system architecture. The
voice commands are first captured by the built-in microphone
array on a device, e.g., the Echo dot and the audio signals are
then fed into our EarArray system. Finally, the EarArray
system will output the detection result i.e., whether the com-
mand is a DolphinAttack signal or from a human user. To
achieve the above purpose, we have designed EarArray and
it mainly consists of three major components, which are 1)
Audio signal preprocessing, 2) Feature extraction and 3) Attack
detection & localization.

B. Audio Signal Preprocessing

The audio signal preprocessing module is used to filter the
noise in the input signals from multiple microphones and then
prepare audio samples with a specific length for the feature
extraction module.

Signal denoising. Due to sound interference from the
environment, the signals from microphones are noisy. To
improve the SNR of the signal, we exploit a band-pass filter to
get rid of interference from unwanted frequencies. Considering
the fact that the typical frequency of human sound is from 50
Hz to 2 kHz, we set the cut-off frequencies of the band-pass
filter as 50 Hz and 2 kHz respectively in our design.

Voice activity detection and segmentation. The sound
signal after microphones are a sequence of speech signals
interleaved with non-speech signals. To further improve the
quality of the sound signal, we choose to abandon the non-
speech signal intervals. To do this, we first detect non-speech
signal intervals by exploiting the voice activity detection

(VAD) algorithm [19]. VAD is a common method of detecting
the presence or absence of speech in sound signals. To detect
and delete non-speech intervals, a band-power-based detection
algorithm is used. To calculate band power of each channel, we
first compute power spectral density (PSD) based on Welch’s
method which reduces noise in the estimated power spectra
and then compute the band power in the given frequency range.
The equation of VAD can be expressed as:

y(t) =

{
yn(t), pn > thres

Non− speech, pn ≤ thres
(8)

Where, y(t) denotes the voice signal after VAD, yn(t) denotes
the nth segment, pn denotes the band power of the nth
segment. thre can be expressed as:

thres = λ1 ∗max(p) + λ2 ∗min(p), p = p1, p2, ...pn (9)

Where, λ1 and λ2 can be set to 0.04 and 3.

Specifically, we divide a whole sound signal into several
segmentations with a step of 400 ms and the overlap of each
frame is set to 200 ms. For each signal segmentation, we
calculate its power of specific frequency band (50–2000 Hz)
and discard those whose band power lower than a threshold.

By doing this, the non-speech signal segmentations can
be removed and only speech-related signal segmentations are
kept, the process is shown in Fig. 9. And note that, the
VAD algorithm is applied on the channel with the highest
band power since all channels are almost synchronized, the
non-speech signal of the other channels can be abandoned
according to the highest band power channel.

C. Feature Extraction

For the segmentations from the audio signals, we inves-
tigate the features representing the spatial inhomogeneity of
sound. The preliminary analysis using band power variance
computed by five channel signals indicate that the sound
characteristics generated by pure-tone signal can be clearly
distinguished from pure-tone AM signals. In the next, we
calculate three representative features, the feature extraction
process depicted in Fig. 9.

Range and standard deviation of band power. As the
speech signal is a narrow frequency bandwidth signal, we use
the frequency band power to indicate the sound intensity on
five channels. The range of band power can be expressed as:
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Fig. 8. The workflow of EarArray. The audio signals are first captured from multiple microphones on a device and then fed into the detection component
which includes pre-processing, feature extraction, and attack detection. Attack detection results including attack source orientation will be output.

Fig. 9. Pre-processing workflow. VAD algorithm is used to detect the speech and non-speech segments, and then the speech segments are concatenated. Our
window size is 0.4 s, and the overlap between each window is set to 0.13 s. The features can be obtained by calculating the energy of each speech window in
the same column as the Figure depicts.

range = max(P )−min(P ), P = {p1, p2...pm} (10)

Where, pm denotes the band power of the mth channel. In
the same way, we can also get the standard deviation of band
power std.

Pearson Correlation Coefficient. Besides range, std, we
use the Pearson correlation coefficient corr between two
spectra to estimate the uniform of the sound signals instead of
using time-domain signals, that is because the phase difference
between any two channels’ signal will affect the Pearson
correlation coefficient. In the frequency domain, the phase
difference can be eliminated. As we have 5 channel signals,
we choose the pair of signals with the biggest difference in
energy to get corr.

Finally, we obtain 3 different features range, std, corr
to represent the uniform of measured sound field. To show
the feasibility of using the 3 features to detect inaudible
voice commands, we calculate the features of inaudible voice
commands and normal voice commands and show the results
in Fig. 11, from which we can find that the two different
types of features are distinguishable and the gap between them
is obvious. Thus, these features can represent the difference
between sound signal distribution.

D. Attack Detection and Localization

1) Attack Detection: EarArray utilizes a machine learn-
ing (ML) based method to detect the inaudible voice com-
mands with the above features. We choose Support Vector

Machine (SVM) as the classifier in our design considering its
simplicity and low-cost in terms of computation. We collect
multi-channel voice segmentations in the off-line training
phase as training samples, the voice samples include two
types of voice commands: 1) Inaudible voice commands with
different carrier frequencies, e.g., 25 kHz, 40 kHz, etc.,; 2)
Audible voice commands. Both of the samples are collected
by the specially-designed microphone-array device, as shown
in Fig. 10. The traces are collected at different locations
around the sound source. After training with these samples,
the characteristics of the two sound signals will be registered
in the trained model.

In the process of the detection phase, features of the
unknown label voice samples will be calculated and finally
classified according to the trained model.

2) Orientation Localization: After detecting there is an
inaudible voice command attack, EarArray can also report
the orientation of the attacker. Almost all of the popular
smart speakers support sound source localization based on the
TDoA algorithm, this kind algorithm can work well in sound
source localization when the signal-to-ratio (SNR) is high.
However, the signal in some channels is too weak to apply the
TDoA algorithm effectively as the serious attenuation of high-
frequency inaudible voice commands. Thus, the performance
of the method will dramatically decrease under attack.

To overcome the above localization challenge facing an
inaudible voice command attack, we propose a band-power-
based localization method for each microphone channel to
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Fig. 10. The experimental setup. Three self-made ultrasonic speaker arrays with center frequencies of 25, 32, 40 kHz. A hardware signal modulator is used.
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Fig. 11. The feasibility to detect inaudible attacks with the three features
which including range, standard deviation (std), and Pearson Correlation
Coefficient (corr) of band power

infer the direction of the attacker. As the band power in each
channel is sensitive to distance and obstacles, the microphone
facing toward sound source has the strongest signal strength
and vice versa. Thus we regard the attacker is from the
direction where the microphone has the strongest power. As
a fact, the attacker orientation can be located in a quite large
angle because we cannot have a very fine-grained signal power
estimation. Thus, in EarArray the localization module only
outputs a coarse direction, namely, “North”, “South”, “West”
or “East” and the user can further identify the location of the
attacker by looking at the structure of the house like windows
and walls. We evaluate the performance of such a coarse
localization in the Sec. V.

V. IMPLEMENTATION AND EVALUATION

In this section, we start with the introduction of our
specially-designed prototype of a microphone array to better
evaluate the performance of EarArray and then elaborate on
the evaluation.

A. Implementation

To verify the performance of EarArray, we design a
special 3-D microphone array as we don’t have permission to
record multi-channel sound on popular smart devices. Imagine

Fig. 12. (a) The specially-designed prototype of a microphone array which
supports 9 channels, and we use 5 microphones in this paper; (b) The prototype
of a smartphone with three microphones.

that as the acoustic wave encounters the smart speaker, the
backside will produce a shadow region, and with increasing
sound frequency, the shadow will become more significant,
and this kind of spatial property of the sound field will be
completely captured by the 3-D microphone array. A data
acquisition card is used to collect five channel signals for sub-
sequent analysis. To play the inaudible voice commands, we
design 3 ultrasound transducer arrays with center frequencies
of 25, 32, 40 kHz which are shown in Fig. 10(b).

As we can see from Fig. 12(a), the height of the cylinder
body of the microphone array is 15 cm and its diameter is 10
cm, the distance between the sound inlet of each microphone
and the top edge is set to 1.2 cm. Five ADMP401 MEMS
microphones [23] were used in our prototype. The microphone
array can be applied to fully measure the sound field instead of
all microphones are located on the top plane. In particular, we
use one microphone located on the center of the top surface
of the cylinder, which is like the Echo microphone placement
in Fig. 3. The other four microphones are uniformly located
around the curve of the top surface. To evaluate the perfor-
mance of EarArray on commercial smartphones, we also
design and implement a prototype with only 3 microphones,
whose size is 15 × 7.5 × 1cm. The three microphones are
located on the top, back surface, and bottom side respectively,
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TABLE II. THE LIST OF VOICE COMMANDS USED IN THE EXPERIMENT.

Speaker Voice command

TTS & Volunteers ∗

How is the weather today
Turn on airplane mode
Call 1 2 3 4 5
Facetime 6 7 8 9 0
Read my new messages

∗ In the experiment, we totally recruited 25 volunteers
(5 females and 20 males, aged between 20 and 29)

as shown in Fig. 12(b).

Using the specially designed smart speaker, we conducted
experiments to evaluate the effectiveness of EarArray in
terms of various factors, including carrier frequencies, attack
distances, angles, background noise, and voice commands
types. We also use the smartphone prototype to evaluate the
performance of EarArray on existing hardware with three
microphones. According to these experiments, we demonstrate
that EarArray can detect the inaudible voice commands
with accuracy of above 99%, meanwhile, the accuracy of
localization is up to 97.89%. We summarize the main results
as follows:

• EarArray shows the detection accuracy can be up
to 99% in various conditions and positions.

• EarArray can achieve localization accuracy as high
as 97.89%.

• EarArray is robust in terms of attack parameters,
i.e., attack distance, ambient noise, the angle between
a smart speaker and the attacker, etc.

B. Experimental Settings

Hardware setup. The experimental setup is shown in
Fig. 4 and Fig. 10. The benchtop transmitter is used for
modulating the voice commands played by a smartphone and
then emitting the inaudible voice commands with 3 narrow
bandwidth ultrasonic transducer arrays (The center frequencies
are 25, 32, 40 kHz respectively). The low-frequency audible
voice commands will be played by Bluetooth speaker JBL
GO controlled by an iPhone X. In our experiments, we use
the designed microphone array as the victim device. And the
positions of ultrasonic speaker and JBL GO are controlled by
ϕ, θ, and R as shown in Fig. 4.

Voice commands. We recruited 25 volunteers including 5
females and 20 males whose ages range between 20 to 29.
The volunteers were required to speak the 5 voice commands
shown in Tab. II. The whole process will be recorded by iPhone
6Plus, Galaxy S6, OPPO Reno2, OPPO Reno3 and then we
collect 500 voice samples. We also use Google Text-to-Speech
(TTS) engine to generate the five voice commands, which will
be used in the following experiments. We process the sound
samples offline in Python 3.7.

Environments. All the experiments are conducted in an
office with ambient noise of about 55 dB SPL except the
experiments which explore the impact of background noise.
The transmitting power of speaker is limited to 1 Watt.

Metrics. To evaluate the performance of the detection
system proposed in this paper, the following experiments are

conducted using 5 metrics. Accuracy: The rate that correctly
identifying legitimate and illegitimate voice commands, true
negative rate (TNR), true positive rate (TPR), precision, and
recall.

C. Overall Performance

1) Detection Accuracy: As we can see from Fig. 4, the
attacker could launch an attack at anywhere around the smart
speaker, to explore the detection performance from any spatial
location and given carrier frequencies (25, 30, 40 kHz), we
play the five audible voice commands and five inaudible voice
commands with ultrasonic transducer arrays and JBL GO at
positions controlled by ϕ, θ, and R. We first rotate speakers
around the diameter of the top surface (x-axis), that is, ϕ is
set to 0 degree, θ changes from -120 to 120 degree with a
step of 30 degree. The distance R is set to 30 cm and 60 cm
respectively. Secondly, the sound source will be rotated around
the z-axis, θ is set to 0 degree, ϕ changes from 0 to 360 degree,
the step is 30 degree.

To show the overall performance of EarArray, we calcu-
late the TPR, FPR, precision, and recall using all the recorded
samples, and plot the ROC curves and Precision-Recall (R-
P) curves as shown in Fig. 13(a)(b), from which we can
observe that EarArray successfully detects inaudible voice
commands with high reliability. The area under ROC curve
(AUC) can be up to 100% when the window size is fixed to
0.4 s, when the window size is 0.6 s, the AUC is also up to
96%. And the areas under P-R curves are above 99%.

2) Localization Accuracy: To investigate the accuracy of
localization for the inaudible voice commands, we choose
the audio samples recorded from microphones of different
directions, that is ϕ ranges from 0 to 360 degree with step
size of 30 degree, the attack distance is set to 60 cm. For
each direction, the experiment repeats three times, and we
calculate and average the accuracy of localization, the direction
I represent when ϕ ranges from 0 to 90 degree. The results
of localization are depicted in Fig. 13(c), from which we
can observe that the accuracy of localization is 100, 100,
97.89, 100%. In the process of experiments, we find that the
frequency response of microphone M3 is lower than the others
which will influence the received signal strength.

D. Impact of Distances

With the increase of distance, the sound field scattered from
the speaker will change accordingly, especially when the to
explore whether the variation of distance affects the detection
performance, the distance between sound source and smart
speaker is set to 30, 60, 100, 200, 300 cm. As the effective
attacking distance is hardware-dependent, when the distance
is 3 m, the SPL of received inaudible voice command is weak
which can’t achieve a successful attack, thus, the maximum
distance is set to 300 cm. The results are shown in Fig. 14
(a) confirm that with increase of distance, the TPR and TNR
don’t have obvious change. On the whole, even the SNR is
getting worse as the increase of distance, the performance of
EarArray doesn’t distance effect.
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Fig. 13. The overall performance of EarArray with attack detection and localization. The window size is the length of each voice sample.
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Fig. 14. (a) The impact of distance which ranges from 0.3 to 3 m; (b) The impact of angle ϕ which ranges from 0 to 120 degree; (c) The impact of angle θ
which ranges from -90 to 90 degree.

E. Impact of Angle.

The incident angle determines the position relationship
between sound source and five microphones, which directly
influence the SPL distribution at each microphone. And the
attacker can launch an attack in any concealed or most effective
position. To explore the impact of incident angle on the
performance of EarArray, we do the following experiments
at a distance of 60 cm with different angles θ, ϕ.

Impact of θ. To evaluate the influence of θ on EarArray,
ϕ is set to 0, and θ is changing from -120 to 120 degree (θ
is 90 degree when the sound source is paralleling to x-axis
positive direction), the step size is 30 degree. With increasing
of the absolute value of θ, the sound source will close to the
ground, thus, the maximum absolute value of θ is set to 120
degree. The results are shown in Fig. 14(b), as the value of θ
gradually increases from -120 to 120 degree, the values of TPR
and TNR are not obvious change and remain close to 100%,
which indicates the performance of EarArray doesn’t affect
by angle.

Impact of ϕ. In this experiment, we fixed θ at 0 degree and
change ϕ from 0 to 330 degree (ϕ is 90 degree when the sound
source is paralleling to y-axis positive direction), the step
size is 30 degree. The experimental results plot in Fig. 14(c),
from the figure, we can observe that the performance of the
EarArray does not change significantly with the changing
of ϕ, when ϕ is 120 and 210 degree, the values of TNR
are slightly lower than the average value. That is because
the frequency response of microphone (M3) is different from
the others which will influence the reality of measured sound
field distribution. In future work, dynamic gain control (DGC)
strategy should be applied to eliminate the interference of

differences in microphones.

F. Influence of Carrier Frequencies

Carrier frequency is a dominant factor that affects the
attack success rate, and it also shows great variance across
devices [14]. For EarArray, the carrier frequency is also an
important parameter that will directly influence the distribution
of the sound field and then affects the detection performance.
To investigate the effect of the carrier frequency, we conduct
the following experiments. We modulate the five voice com-
mands on 25, 32, 40 kHz carries respectively, and launch the
attack at a distance of 60 cm. We repeated the experiment 3
times and finally calculate the detection results as shown in
Fig. 15(a). From which we can observe that the maximum
accuracy is 99.14% at the carrier frequency of 40 kHz, which
reflects the sound field distribution of high-frequency sound is
more uneven, thus, it’s easier to detect.

G. Impact of Ambient Noise

Background noise will not only affect the recognition
rate of the speech recognition system but also change the
distribution of the spatial sound field. To evaluate the impact
of ambient noises, we simulate five scenarios by playing
accordingly audio with a given range of SPL in our office,
note that, the SPL of noise should be measured near the victim
device. The SPL of street, restaurant, office, car, and shopping
mall is 75–85, 65–75, 55–65, 60–70, 60–75 dB respectively.
The detection results are shown in Fig. 15(b), from which
we can find that the TPR will slightly decrease with the
increase of ambient noise, but the TNR does not affect by
noise. That is because the SPL of ambient noise is higher
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Fig. 15. (a) The carrier frequencies are 25, 32, 40 kHz respectively; (b) The impact of background noises. We simulate the five scenarios by playing background
sounds at chosen SPLs; (c) We use five different commonly used voice commands which are listed in Tab. II.
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(b) The impact of wall reflection.
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(c) The impact of multiple attack speakers.

Fig. 16. The performance of EarArray on three possible evasion techniques.

than audible voice commands, and the ambient noise includes
some non-speech high-frequency components which lead to
an uneven sound field and misclassification. On the whole,
the experimental results show that EarArray is robust to
different noise sources.

H. Impact of Different Voice Commands

To examine the effectiveness of EarArray with regard
to voice commands, we select five types of voice commands
which are list in Tab. II. We then play the 500 voice samples
using JBL Go and collect the audible signal, to collect the
inaudible signal, we modulate the 500 voice samples on 40 kHz
carries, and launch the attack at a distance of 60 cm. Fig. 15(c)
shows the impact of voice commands on TPR and TNR. As we
can see that the TPR and TNR of various voice commands are
almost the same and range from 98.4% to 100%. The results
illustrated that different types of voice commands would not
have an obvious impact on EarArray.

I. Evasion Techniques

To show the effectiveness of EarArray when the adver-
sary knows of the defense method and tries to circumvent the
protection, we consider three evasion strategies: 1) the attacker
is hiding behind an obstacle; 2) the victim device is close to
walls; 3) multiple speaker injection.

1) Hiding Behind Obstacles: In this experiment, we choose
a cylinder as the obstacle whose size is the same as that of the
smart speaker, and the distance between the obstacle and the
smart speaker is fixed to 40 cm while the distance between the
transducer array and obstacle is changing from 5 cm to 155

cm with a 30-cm step. Note that if the obstacle is much bigger
than the transducer array (9×15 cm), it will block the attack
signal when the transducer array is close to the obstacle. From
Fig. 16(a), we can see that only when the distance between the
obstacle and transducer array is 35 cm, the detection accuracy
is decreased to 97.7%, the accuracy of EarArray at other
distances can be up to 100%. Thus, the obstacle would not
reduce the effectiveness of EarArray.

2) Influence of Surrounding Walls: When the smart speaker
is close to walls, acoustic reflection from walls will influence
the distribution of the sound field, which might be leveraged
by adversaries. To evaluate the effectiveness with regard to
surroundings, we conduct the following experiments, the smart
speaker placed equidistant from two walls that are at a right
angle to each other. The distance between the walls and the
smart speaker ranges from 0 cm to 60 cm, the distance between
the transducer array and the smart speaker is fixed at 60
cm. The results are depicted in Fig. 16(b), from which we
can observe that the accuracy changes slightly with distances,
which remains within a certain range from 97.8% to 100%.
Thus, EarArray is resistant to the influence of surrounding
object and the defense effectively works.

3) Multiple Speaker Injection: To disrupt the uneven dis-
tribution of the sound field and escape detection, the adversary
might use two transducer arrays around the smart speaker.
In this experiment, we use two same transducer arrays to
evaluate the effectiveness of EarArray. The two transducer
arrays (speaker 1 and speaker 2) face toward the smart speaker,
simultaneously play the same inaudible voice commands, and
the three devices are in the same line. The distance between
speaker 1 and smart speaker (d1) is set to 60 cm, the distance
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(d) The detection performance on a
smartphone with three microphones.

Fig. 17. The impact of window size, overlap size, SPLs, and smartphone on the performance of EarArray.

between speaker 2 and smart speaker (d2) is changing from
20 cm to 100 cm, the step is 20 cm. Experimental results
as shown in Fig. 16(c) demonstrate that when the value of
d2 is equal to d1, the accuracy EarArray is 91.1% and
the TPR is 85.7%, this result means that the two speakers
could make the sound field more uniform when the SPL
of reached signals from two speakers are the same, and
will, in a manner, reduce TPR of EarArray. To improve
the performance of detecting multi-speaker injection, a more
sophisticated structure of the 3-D microphone array should be
studied, for example, the diaphragm of microphone doesn’t
face toward the sound inlet, thus, the inaudible signal will
greatly attenuate before propagating into the diaphragm. We
leave this to future work.

J. Influnce of Windowsize and Overlap Size

To investigate the impact of various window sizes on
EarArray, we make the window size changes from 0.05 to
2.25 s, the overlap size to is set to tw/2, and calculate the
accuracy, TPR, TNR respectively. Fig. 17(a) depicts how the
window size influences the performance of EarArray. As
the window size increases, the accuracy/TPR/TNR gradually
increases, and when the window size is above 0.4 s, the values
are maintained above 99% and slightly fluctuate.

Usually, a longer overlap size to brings more correlation
between adjacent voice samples, however, with given total
voice signal for training or testing, the processed data will
be repeated and decrease the detection efficiency. To find
a balance between detection performance and efficiency, we
fixed the window size to 1 s and change the overlap size
from 0.05 s to 0.7 s. Fig. 17(b) shows the performance of
detection under different overlap sizes. We can observe that
as the overlap size bigger than 0.17 s, the accuracy keeps at
a higher range from 98.9% to 100%. In general, to obtains a
good balance between efficiency and performance, the value
of to in the range from tw/4 to tw/2 is suitable.

K. Impact of Sound Pressure Level

To explore the impact of SPLs on EarArray, we lower
the SPL of inaudible voice commands to the minimum value
of 98.7 dB which still can be recognized by a smart device [5].
The SPLs were measured by a measurement microphone [7]
which is placed next to the smart speaker. Fig. 17(c) shows
the impact of the SPLs on the accuracy, TPR, and TNR.
Although a lower SPL always means a smaller signal-to-noise
ratio (SNR) for given noise levels, the accuracy of EarArray
still can be up to 100% when the SPL is 98.7 dB. With the

increases of SPLs, the accuracy decreases to 96.5% and then
increases to 100%, which suggests that EarArray is effective
even with a lower pressure level of the inaudible signal.

L. Smartphone with Three Microphones

In this section, we use the smartphone prototype to eval-
uate the effectiveness of EarArray on smart devices whose
microphone array design is similar to actual smartphones. We
play audible and inaudible voice commands 90 cm away from
the prototype which was placed on a table, the ϕ ranges from
0 to 330 degree, the step is 30 degree. The experimental results
plot in Fig. 17(d), and indicate that the accuracy was above
96.8% and was slightly affected by angles especially when
the angle is between 120 and 150 degree. We think that is
because the difference between the acoustic attenuation of
the three channels is the least when the speaker at the three
positions, and in a manner, reduce the accuracy. In summary,
EarArray also has a good performance on the smartphone
when the number of microphones decreases to three. In fact, as
the number of microphones increases and those microphones
were placed around the surfaces of smart device and facing
different directions, the acoustic attenuation will be measured
more sufficiently, thus, the performance of EarArray will be
better.

VI. RELATED WORK

As Voice Control Systems (VCSs) are playing a more
and more important role in our daily life, cyber attacks
against VCSs start to draw people’s attention. Regarding the
concealment feature of the attacks, current VCS attacks can be
divided into two types: audible and inaudible attacks. Inaudible
attacks, the attacker tries to approach the victim and plays
recorded audio to the victim device. The audio is usually
generated in a tricky way such that it is incomprehensible
to humans while comprehensible to the device. The audible
attacks are theoretically feasible but have limitations in practice
due to the fact that the audio used for attack is usually
distinguishable from white noise. In inaudible attacks, the
attacker modulates malicious voice commands on ultrasonic
carriers, so the commands become inaudible to human ears,
but still receivable to microphones on VCSs duce to nonlinear
effects of microphone circuits. Inaudible attacks are a totally
imperceptible attack.

A. Audible Attack on VCSs

Generative adversarial networks (GANs) are originally
proposed for image recognition missions, due to their great
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performance researchers are inspired to explore the feasibility
of using GANs in speech generation. Existing works have
proposed to use GANs for generating incomprehensible audio
commands to attack speech recognition systems [25], [28],
these malicious audio is disguised as some random noise so
the victim won’t be able to notice the attack. This work [26]
proposed a approach to deceive human’s ears by hiding an
executable voice command in adversarial audio which appears
to be simple music to human. Nicholas et al. [10], [11]
demonstrated that the targeted audio adversarial examples by
modifying existing audio can be generated, which introduce a
new domain to study adversarial examples. Based on the above
work, Metamorph achieves the over-the-air attack.

As speech biometrics recognition gradually takes place of
traditional identification technologies [29], the newly devel-
oped automatic speaker verification (ASV) systems can defend
traditional VCS attacks to some extent. However, the replay
attack still poses a great threat to these ASV systems, it can
bypass the verification by simply replaying a pre-recorded
audio. Villalba et al. [30] presented many vulnerabilities of
ASV systems towards far-field replayed attacks. In the anti-
spoofing competition ASV2017 [31], Witkowski, et al. [32]
pointed out that replay attacks can be detected by analyzing
the high-frequency band of the replayed recordings. Zeyan
et al. [33] improved the discriminating ability of the relative
phase (RP) features by proposing two new auditory filter-
based RP features for replay attack detection. To detect the
remote attaker, Lee et al. [12] proposed a sonar-based liveness
detection system. Speaker-Sonar emits an inaudible sound and
tracks the user’s direction and to compare it with the direction
of the received voice command. If the inaudible attack is
launched by a nearby and moving attacker, the sonar-based
method will fail.

B. Inaudible Attack on VCSs

Kasmi et al. [34] introduced a kind of new voice command
injection into modern smartphones using intentional electro-
magnetic interference with headphone cables. The limitation
is that the attack devices must be plugged into a smartphone.
DolphinAttack [14], [5], [8] translated typical audible voice
commands into ultrasonic frequencies making it inaudible to
the human ear, but still decipherable by the microphones and
the always-on voice assistants. [14], [5] also proposed a
defense strategy from the software level based on audio feature
extraction. However, the signal features vary significantly
along with the different types of microphones. The defense
method in [35]depends on the nonlinearity of microphone
circuits, which is different from what we proposed, i.e., we
utilize the prorogation characteristic of sound in the air.
We have validated experimentally that nonlinearity is device-
dependent. For instance, amplitude skewness, one of the main
features used for nonlinearity, are valid with Sumsung Galaxy
S6 Edge+ but are not valid for iPhone 4S and iPhoneSE.
As mentioned in [36], it is possible to conceal all three
proposed features related to nonlinearity. He et al. [36]
designed a “guard” signal transmitter to detect and capture the
attack signal, it is also capable to neutralize the attack signal.
Light Commands [6] use light to inject commands into voice-
controllable systems by aiming an amplitude-modulated light
at the microphone’s aperture. To detect light-based command
injection, they attempt to detect the attack by comparing

signals from multiple microphones or add a barrier film before
the microphone’s diaphragm to blocks straight light beams.
As only one microphone receives a signal while the others
receive nothing, EarArray also can be applied to detect the
Light Commands. SurfingAttack [9] injects the inaudible signal
using ultrasound propagation in solid media, by utilizing the
nonlinearity, the ultrasound signal can be demodulated and rec-
ognized by the speech recognition system. By monitoring the
frequency component in high frequency range, SurfingAttack
can be detected. Different from their method, EarArray utilizes
the difference in propagation attenuation between ultrasound
and sound to detect attacks. UltraComm [4] proposes an
approach for acoustic communication which different from
EarArray. It leverages nonlinearity effect of microphones
and transmit modulated data on frequency above 20 kHz and
recovers it in the audible frequency band.

Our work in this paper shows the distinguishing field
features between the acoustic signals and high-frequency mod-
ulated signals. We analyzed different attack scenarios of smart
voice assistant and smartphones and implemented the defense
mechanism based on the analysis of sound field features. In
contrast to the defense method mentioned in [35], [36], our
defense algorithm is more efficient and it is instructive for the
design of microphone array in the future.

VII. CONCLUSION AND FUTURE WORK

Voice assistants brought convenience to our daily life,
however, they have also exposed our privacy to a certain type
of various malicious attacks using inaudible voice commands.
In this paper, we proposed a light-weight mechanism named
EarArray to defend voice assistants against these inaudi-
ble voice command attacks. We theoretically analyzed the
attenuation property of audible voice command and inaudible
voice command and proposed to use sound field distribution
as features to tell apart normal commands initiated by human
beings and inaudible command generated by machines. We
have conducted plenty of experiments to prove the feasibility
of EarArray, results show that EarArray can achieve
99% accuracy for attack detection, and 97.89% localization
accuracy for inaudible voice commands.

Our future work includes overcoming the problem that
mobile phones cannot read multi-channel data at the same
time, extracting field patterns from more different types of
voice assistant devices, and hopefully generalizing our defense
algorithm for all voice assistant devices.
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