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Abstract—Apple devices (e.g., iPhone, MacBook, iPad, and
Apple Watch) are high value targets for attackers. Although these
devices use different operating systems (e.g., iOS, macOS, iPadOS,
watchOS, and tvOS), they are all based on a hybrid kernel called
XNU. Existing attacks demonstrated that vulnerabilities in XNU
could be exploited to escalate privileges and jailbreak devices. To
mitigate these threats, multiple security mechanisms have been
deployed in latest systems.

In this paper, we first perform a systematic assessment of
deployed mitigations by Apple, and demonstrate that most of
them can be bypassed through corrupting a special type of
kernel objects, i.e., Mach port objects. We summarize this type
of attack as (Mach) Port Object-Oriented Programming (POP).
Accordingly, we define multiple attack primitives to launch the
attack and demonstrate realistic scenarios to achieve full memory
manipulation on recently released systems (i.e., iOS 13 and
macOS 10.15). To defend against POP, we propose the Port Ultra-
SHield (PUSH) system to reduce the number of unprotected Mach
port objects. Specifically, PUSH automatically locates potential
POP primitives and instruments related system calls to enforce
the integrity of Mach port kernel objects. It does not require
system modifications and only introduces 2% runtime overhead.
The PUSH framework has been deployed on more than 40,000
macOS devices in a leading company. The evaluation of 18
public exploits and one zero-day exploit detected by our system
demonstrated the effectiveness of PUSH. We believe that the
proposed framework will facilitate the design and implementation
of a more secure XNU kernel.

I. INTRODUCTION

XNU-based operating systems, e.g., iOS and macOS, are
popular targets for attackers, possibly due to potential financial
gains [52]. Attackers could exploit vulnerabilities to escalate
the privilege to a higher one, i.e., the root privilege. However,
the root user of iOS and macOS cannot access or modify
important system files. Thus, in order to get full control of
the system (e.g., jailbreaking the system), attackers have to
find a way to bypass this limitation.

Memory corruption in the operating system kernel is a
common way to achieve this goal. For instance, buffer over-
flow and use-after-free (UAF) are two types of vulnerabilities
that could cause memory corruption. With a buffer overflow

vulnerability, return addresses on the stack or kernel objects in
the heap can be corrupted. In the case of a UAF vulnerability, a
previously freed object with a function pointer could be abused
by attackers to hijack the control flow.

Furthermore, if attackers know addresses of some useful
code gadgets, e.g., via arbitrary kernel read/write primitives,
they can leverage code-reuse attacks, including return-oriented
programming (ROP) [64] or return-to-libc [3], to redirect the
control flow to these gadgets and gain the capability of kernel
code execution.

With the development of vulnerability detection technique,
e.g., the fuzz testing [5, 54, 66], the number of memory corrup-
tion vulnerabilities discovered in XNU has increased rapidly
in recent years [8]. Accordingly, to raise the bar for attackers
and prevent the vulnerabilities from being exploited, several
mitigations [20], e.g., DEP [12], ASLR [2] and CFI [53], have
been adopted by the latest iOS and macOS systems.

However, attackers have abused a special type of kernel
object, i.e., Mach port, to bypass these mitigations [33, 36, 51].
In XNU, a Mach port is represented by a pointer to an
ipc_port object, which is used to represent abstractions
(e.g., task and thread) in the kernel. User space applications
could interact with Mach port objects to access the underlying
abstractions by sending Mach messages to ports. In order to
invoke a system functionality that is represented by a Mach
Port, an application first asks the kernel for accessing a port.
Then it leverages the IPC (Inter Process Communication)
mechanism to send Mach messages to that port. By corrupting
this kernel object, all existing defense mechanisms adopted in
the recently released XNU systems (i.e., iOS 13 and macOS
10.15) can be bypassed. By doing so, an attacker can achieve
multiple primitives (e.g., kernel memory read/write) by simply
issuing system calls in user space. The root cause is that Mach
port objects are unconditionally trusted by the kernel. Indeed,
the Mach port object has been exploited in several known
attacks. However, how to systematically leverage the Mach port
objects to gain steady kernel memory read, write and execution
capabilities is still unknown by the community.

In this paper, we first review the mitigation techniques
in recent released XNU systems (i.e., iOS 13 and macOS
10.15) and illustrate how they make the traditional exploitation
techniques ineffective. Based on public exploits, we then
systematically summarize (Mach) Port-Oriented Programming
(POP), an attack technique that leverages Mach port kernel
objects to bypass these mitigations. Specifically, because the
kernel unconditionally trusts Mach port objects without effec-

?Corresponding author.

Network and Distributed Systems Security (NDSS) Symposium 2021 
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23126
www.ndss-symposium.org



tive verification, if the attacker has the capability to corrupt
kernel port objects, he or she could achieve multiple primitives
through user space system calls.

We then propose the Port Ultra-SHield (PUSH) to defend
against this attack. PUSH automatically locates unsafe Mach
port objects based on the primitive models and instruments
related system calls to deploy security policies. Specifically, it
constructs Mach port-oriented control flow (POC) graphs and
locates Mach port objects that could potentially be corrupted
and abused to launch the POP attack. Then, PUSH uses
examiners to check the integrity of these kernel objects (i.e.,
objects that can potentially be corrupted by attackers) before
or after specified system calls. To make our solution practical,
PUSH is deployed through kernel extensions with negligible
overheads, without requiring any modification to the XNU
kernel.

We evaluated PUSH with 18 public exploits. All of them
could be detected and blocked by our system. This demon-
strated the effectiveness of our system with small perfor-
mance overhead (2%). In addition, the PUSH framework has
been deployed on more than 40, 000 MacBooks in Alibaba
Group [4]. It successfully detected mutated public exploits
and a previously unknown exploit. We have discussed POP
and PUSH system with Apple’s security team (follow-up
id: 707542859). They appreciate our efforts to improve the
security of their products. Accordingly, security enhancements
like object address verification (e.g., zone_require() [50])
and object data verification (e.g., data-PAC [9]) for Mach
port objects have been deployed on later released XNU systems
(e.g., iOS 14 beta).

In summary, this paper makes the following main contri-
butions:

• We summarize POP, a (Mach) port-oriented attack
technique that can bypass most of XNU kernel miti-
gations, and demonstrate the way to achieve multiple
attack primitives (Section III).

• We present POP primitive searcher, a static detection
tool to locate exploitable Mach port related objects
and system calls (Section IV).

• We propose PUSH, a generic kernel object protection
framework for XNU. It enforces kernel object integrity
to prevent the corruption of Mach port objects and
defend against the (Mach) port-oriented programming
attack (Section V).

• We show the effectiveness of PUSH through the de-
tection and blocking of 18 public exploits. PUSH does
not require system modifications and only introduces
2% runtime overhead (Section VI). Moreover, the
PUSH framework has been deployed in a leading
company with more than 40,000 macOS devices and
successfully detected new exploits (Section VII).

II. BACKGROUND

In this section, we will briefly present the necessary back-
ground knowledge to understand our proposed system.
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Fig. 1: Mach port name and the ipc_port structure [13].

A. Mach port

A Mach port in XNU is a kernel controlled communica-
tion channel between user-space processes and the kernel. A
process with appropriate privilege is able to send messages
to a port. Ports are used to represent resources, services,
and facilities (e.g., hosts, tasks, threads, memory objects, and
clocks). It provides object-style access to these abstractions.
To access resources in the kernel, a process could send Mach
messages to a specific type of the Mach port. In user space, a
Mach port name is an integer number representing a handler
for a Mach port in the kernel space. In kernel, a Mach port is
represented by a pointer to an ipc_port object.

Figure 1 shows the structure of ipc_port. There are
40 types of ipc_port objects in XNU-6153.11.26 (the
kernel of iOS 13 and macOS 10.15). The io_bits field
defines the type of the object. For instance, an ipc_port
object with the IKOT_TASK type represents a Mach task,
which is a machine-independent abstraction of the execution
environment of threads. The io_references field counts
the reference number of the object. If the number decreases
to zero, the kernel object will be freed. Locking related data
is stored in the io_lock_data field. The receiver field
is a pointer that points to the receiver’s IPC space (e.g.
ipc_space_kernel). The ip_kobject field points to a
kernel data structure according to the kernel object type. Note
that there is no type integrity check for ipc_port objects.
Hence, the attacker can change the type (io_bits field) of
the object through a memory corruption vulnerability, leading
to a type-confusion attack.

B. Kernel zone & heap feng shui

In order to manage the heap memory available in the
kernel space, the XNU kernel uses the zone allocator. It
is similar to the slab in Linux and the pool in Windows.
In particular, a zone is a collection of fixed-size memory
blocks (a.k.a, elements). They are accessible from efficient
interfaces for memory allocation and deallocation. Specifically,
the kalloc() function family contains the most frequently
used memory allocation functions. They provide the access to a
fast general-purpose memory allocator built on top of the zone
allocator. The kalloc() function supports a set of allocation
sizes, ranging from 16 bytes to several kilobytes (each size is
a power of 2). When the allocator is initialized, it creates a
zone for each allocation size and the name of the zone reflects
its size. For instance, the zone name kalloc.32 means that
the zone’s size is 32 bytes.
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During the exploitation, attackers need to manipulate the
heap memory layout to ensure that a particular kernel object
will most likely reside inside a particular zone. This technique
is called heap feng shui [17]. For instance, in order to overwrite
the function pointer inside a kernel object (the target kernel
object), attackers can spray lots of kernel objects on the heap,
which have the same size with the target object. Since the
newly created objects are likely adjacent to the target kernel
object, attackers can corrupt the interested kernel object in a
predictable way.

In earlier versions of XNU, the freelist contains all
the freed kernel objects inside a zone with a LIFO (last-in-
first-out) policy. Hence, the layout of kernel objects in the
same size zone is predictable. To make the object layout
hard to be predicted, Apple deployed a mitigation called
random_free_to_zone in iOS 9.2 and macOS 10.11.2.
When a new zone block is allocated, XNU will randomly
choose the first or last position in the block and add it
into the free_elements list. In this case, it is hard for
attackers to corrupt the kernel objects in a predictable way. In
Section IV-A, we will introduce a type of primitive (querying
primitive) in the POP attack to bypass the zone element
randomization.

C. Mitigations

The arm-race between Apple and the jailbreaking commu-
nity (and attackers) is like an escalating game of cat and mouse.
In particular, to raise the bar for successful exploitation of
vulnerabilities, Apple has developed corresponding defenses,
e.g., many hardware-assisted protections including KIP [25]
for iOS devices. However, they are mainly used to prevent
attackers from patching the kernel (after gaining the capability
of kernel memory manipulation). Instead, POP escalates an
attacker’s capability from a limited memory corruption to
arbitrary kernel memory manipulation. In the following, we
will illustrate deployed mitigations that are related to the POP
attack.

DEP/KASLR Apple has deployed Data Execution Preven-
tion (DEP) and Kernel Address Space Layout Randomization
(KASLR) since iOS 6 and macOS 10.8. DEP is a system-
level memory protection feature. It ensures that a memory
page cannot be writable and executable at the same time to
prevent the code injection attack. To break DEP, the code-
reuse attack (e.g., ROP) was proposed. It utilizes the code
that is already present in the memory (e.g., ROP gadgets).
In particular, after hijacking the control flow, attackers could
redirect the control flow to execute ROP gadgets. This attack
requires the knowledge of gadget addresses in the memory.
KASLR randomizes the locations of various memory segments
(e.g., code and data) to make the gadget addresses hard to
be predicted. To bypass KASLR, attackers usually leverage
information leakage vulnerabilities or corrupted kernel objects
to obtain addresses of gadgets in the memory.

CFI Control-flow integrity (CFI) is another type of the
defense mechanism. It ensures that runtime control transfers
follow a pre-computed control flow graph that consists of valid
control flow transfers. A hardware-assisted (Pointer Authenti-
cation Codes) CFI is deployed on Apple devices (iPhone 11
and iPhone XS) with the A12/A13 chip. However, attackers
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Fig. 2: An example flow of the POP attack. It first corrupts an ipc_port
kernel object. After that, kernel functions will be invoked through a system call
to achieve various attack primitives, e.g., manipulating the kernel memory (as
shown in the graph). Other primitives could also be used during a real attack.

can still bypass the protection to escalate privileges through
POP attacks (case study 2 and 3 in Section VI-A).

D. The Traditional Attack Flow

Traditional attacks to the XNU kernel usually request both
an information leak vulnerability and a control flow hijacking
vulnerability. The information leak vulnerability is used to
break KASLR. By doing so, an attacker could calculate gadget
addresses and construct a ROP chain. With the control-flow
hijacking vulnerability, an attacker could redirect the control
flow to execute the ROP gadgets. Depending on the found ROP
gadgets, different primitives like arbitrary kernel memory read
and write can be achieved. However, with the deployment of
CFI, hijacking the control flow becomes hard. Thus, POP, the
(Mach) port-oriented attack is proposed.

III. DEMYSTIFYING (MACH) PORT-ORIENTED
PROGRAMMING

The Mach subsystem in the XNU kernel is responsible for
receiving Mach messages and performing requested operations
on resources such as tasks and threads. Consequently, by issu-
ing Mach system calls and counterfeiting ipc_port objects,
attackers can achieve useful attack primitives. In this section,
we summarize a kind of attacks [33, 36, 51] that leverage
Mach ports to achieve arbitrary kernel memory manipulation.
The attack is launched through issuing multiple system calls.
Since it is mainly based on the Mach port kernel object, we
call it (Mach) Port-oriented Programming (POP) in the paper.
Figure 2 illustrates the flow of a POP attack.

A. Assumptions

The main goal of the POP attack is to manipulate kernel
memory content and layout, even in the case that multiple
mitigations discussed in Section II-C are present in the system.
Our attack assumes an existence of a memory corruption
vulnerability that could be used to corrupt a kernel object.
This is a fair assumption since such vulnerabilities are com-
mon nowadays [22, 31, 33, 46]. POP escalates an attacker’s
capability from a limited memory corruption to arbitrary kernel
memory manipulation. After that, further attacks could be
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launched, such as directly changing critical kernel data, e.g.,
conditional variables or function pointers.

B. POP Definition

The POP attack is based on counterfeiting the ipc_port
kernel object. It consists of multiple attack primitives and can
defeat existing defense mechanisms.

To help readers better understand POP, we classify primi-
tives used in the POP attack according to their behavior:

Querying Primitive (QP) QP is used to break the
randomization-based mitigation and help the attacker to find
the handler of the corrupted port in kernel without crashing the
system. However, the attacker can only gain limited informa-
tion (e.g., error return value) from QP. A successful attack
usually requires multiple invocations of this primitive.

Kernel Memory Read Primitive (RP) RP helps the attacker
to gain partial or arbitrary kernel memory read capability. It
abuses corrupted port objects with an inadequate check of
the type integrity. The limitation is it can be invalidated by
adding type integrity checks. Besides, it is usually hard to find
alternative ones.

Kernel Memory Write Primitive (WP) WP helps the at-
tacker to change the memory in limited or arbitrary kernel
addresses. In general, XNU provides lots of ways to legitimate-
ly change the data in the kernel. But it is hard for attackers
to write arbitrary data to arbitrary addresses. A powerful WP
usually leverages a fake ipc_port object that consists of
additional kernel information (e.g., the map memory space of
kernel_task) obtained through RP.

Privileged Purpose Primitive (PPP) XNU provides power-
ful system calls for privileged ports (e.g., host_priv and
kernel_task). If an attack can obtain a send right to
privileged ports, he or she can enlarge the attack surface or
even control the whole system. We summarize the abuses of
these Mach system calls as privileged purpose primitives.

Other Attack Primitives After obtaining arbitrary kernel
memory manipulation capabilities, the attacker has multiple
strategies for further attacks. In this section, we use the
arbitrary code execution primitive (ACEP) as an example. If
the kernel CFI is not enforced, the attack can achieve this
by corrupting function pointers or vtable (the traditional
way). If the CFI is deployed, it can be bypassed through a
key forgery strategy [14]. It’s worth noting that this primitive
is not necessary for POP to be effective. We can leverage
previously discussed ones (e.g., PPP and/or WP) to gain
privilege escalation through directly changing critical kernel
data.

Note that most POP primitives are only changing non-
control data. For QP, RP, WP, and PPP, the counterfeit objects
only contain fake data or pointers to other objects. The function
pointers are not changed. However, for ACEP, the attacker
needs to corrupt function pointers inside the object.

C. POP Attack Chain

A POP attack chain consists of a sequence of POP prim-
itives: from a weak primitive such as a limited memory
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Fig. 3: The overview of the POP attack chain and dependencies between
primitives. An arrow from A to B means the primitive B depends on the
primitive A.

corruption vulnerability to a strong primitive, e.g., arbitrary
kernel memory manipulation. In general, a successful POP
attack consists of the following steps.

Step 1: The attacker leverages a memory corruption vulnera-
bility to gain a send right to a fake ipc_port object
whose fields can be read and written by the attacker.

Step 2: The QP primitive helps the attacker to find the right
port name (i.e., the handler of the fake ipc_port
object) in user space and provides enough kernel
object information for the next primitive (RP).

Step 3: After getting the handler of the fake ipc_port
object, the attacker can use RP to read kernel memory
by modifying the content of the fake ipc_port
object.

Step 4: With enough kernel information (e.g., the map
memory space of the kernel_task and the
ipc_space_kernel receiver of kernel space) ob-
tained through RP, the attacker can construct a fake
kernel task port object to get an arbitrary kernel
memory write ability through WP.

Step 5: The attacker can modify the critical kernel data
through WP to get send rights to privileged ports
in user space. Through privileged ports, the attacker
can leverage PPP to achieve privileged operations
(e.g., arbitrary process and thread manipulation) and
other primitives. For instance, arbitrary code execution
primitive (ACEP) can be implemented by changing the
function pointers of kernel objects via PPP.

Figure 3 shows the overview of a POP attack chain and
dependencies between primitives. For instance, RP depends
on the QP to bypass KASLR and provide the information
of kernel objects. The information is needed to construct a
fake ipc_port object. Besides, traditional exploit technique
needs arbitrary code execution primitives to perform memory
read/write through ROP. In contrast, POP attack gains kernel
memory read and write capability through standard system
calls (RP and WP) with counterfeit kernel objects. These
primitives are abstractions of attacking capabilities. They exist
in multiple types of port objects that can be reached by user
programs through Mach messages.

D. An Example of the POP Attack: Yalu Exploit

Yalu [51] is a POP based exploit that can be leveraged to
jailbreak iOS 10.2. In the following, we illustrate each step of
this exploit and POP primitives used.

Making a fake Mach port via a heap overflow vulner-
ability CVE-2017-2370 is a heap overflow vulnerability in
the mach_voucher_extract_attr_recipe_trap()
function. Yalu exploit first sends lots of Mach messages with
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Fig. 4: pid_for_task() and mach_vm_*() related structures [13].

the OOL (out-of-line) port that points to the kernel memory. It
then uses the heap overflow vulnerability to overflow an OOL
port pointer to make it point to a fake ipc_port object in
user space. After receiving the Mach messages, Yalu exploit
gains a valid send right to the fake ipc_port object whose
fields can be read and written by the attacker.

Breaking KASLR via QP With KASLR, base addresses of
kernel components are randomized. But some global kernel
objects (e.g., Mach clock) are stored in a fixed place in the
kernel. For instance, the function clock_sleep_trap()
(Listing 7 in Appendix) is a system call expecting its first
argument to be a send right to the global system clock. This
function will return KERN_SUCCESS if the port name is
correct. Therefore, this system call could be converted into a
QP. Consequently, Yalu exploit counterfeits the kobject field
of ipc_port object with IKOT_CLOCK type and invokes the
clock_sleep_trap() system call to lunch a brute force
attack to guess the address of the global system clock and
break KASLR.

Getting arbitrary kernel memory read capability via R-
P By using the type-confusion attack, RP can leverage some
system calls to copy sensitive data between the kernel space
and the user space. For instance, pid_for_task() is such
a system call (Listing 8 in Appendix) which returns the PID
number corresponding to a particular Mach task. However,
this function does not check the validity of the task, and
directly returns the value of task->bsd_info->p_pid
to the user space after calling get_bsdtask_info() and
proc_pid() (Figure 4). Therefore, by carefully adjusting
the offsets in a fake task structure, it is possible to convert this
system call into a RP. Consequently, Yalu exploit leverages
the pid_for_task() system call to gain an arbitrary kernel
memory read primitive via a fake IKOT_TASK object.

Manipulating the kernel memory via PPP XNU provides
a powerful set of routines such as mach_vm_*() for user
space programs to manipulate their own memory. In general,
a process only has the privilege to access its own task port and
memory. However, Yalu exploit uses RP to create a fake kernel
task to bypass the ownership check of the memory space.
Then it leverages PPPs (i.e., mach_vm_*()) to manipulate
the kernel memory.

Executing arbitrary code in kernel via ACEP I/OKit is an
object-oriented device driver framework. Its object contains a
virtual table. Because of PPP, Yalu exploit can manipulate
the kernel memory. Therefore, To gain a ACEP, Yalu exploit
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Fig. 5: Modifying an IOKit userclient’s vtable [13].

changes the vtable entry of an I/OKit object and invokes
iokit_user_client_trap() to redirect the control flow
to the address of a ROP gadget (Figure 5). With PPPs and
ACEPs, Yalu exploit patches the kernel functions and finally
jailbreaks the device. Note that this step requires the change
of a function pointer. Thus, the deployment of CFI can make
this step ineffective. However, other methods [14] to change
critical kernel data could be used.

IV. POP PRIMITIVE SEARCHER

In this section, we propose our POP primitive searcher,
a static analysis tool to locate exploitable Mach port related
objects and potential POP primitives. On the one hand, an
attacker can leverage this tool to facilitate a POP attack. On
the other hand, it can be used to help defend against the POP
attack (Section V).

A. Primitive Model

To better describe a POP functionality, we use the follow-
ing structure (called Primitive Model) to define the primitive.
In particular, the primitive model is used to define a possible
attacking behavior (primitive) based on the code sequence
with specific kernel objects and code patterns. The syntax of
primitive models is based on the AST (Abstract Syntax Tree)
used in LibClang [28]. The key concepts of the primitive model
are in the following.

• Label: name of the primitive model.

• Pattern: the code patterns in AST (e.g.,
DeclRefExpr, BinaryOperator ’*’ and
CXXMemberCallExpr) to define a behavior.

• Object: expected Mach port objects (e.g.,
ipc_port_t and task_t) to be processed in
the primitive.

• Entry with object: Mach system call entries (e.g.,
mach_port_set_context()) for user space pro-
grams to invoke and Mach port objects (e.g., task_t)
to be processed in the primitive. This is the output of
the POP primitive searcher.

In XNU, different kinds of Mach port objects are stored
in separate zones. Thus the attacker is only able to corrupt
specific Mach port objects. Therefore, based on the type of
corrupted Mach port objects, POP primitive searcher takes
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Label, Pattern, and Object as inputs, then examines all
possible Mach system call entries (i.e., Entry) to find possible
POP primitives.

As an example, we assume an attacker has a send right to
a dangling port and wants to get a RP (i.e., kernel memory
read primitive) for the future exploitation. He or she can use
the POP primitive searcher with the RP model (Listing 1)
to find potential primitives. Specifically, Label denotes the
type of this primitive. Object shows the expected Mach
port objects (e.g., ipc_port_t and task_t) used in the
primitive. Pattern is used to define the behavior of this type
of primitive that transmits data from the kernel space to the
user space. The POP primitive searcher outputs possible Mach
system call entries (Entry) with suitable Mach port objects.

Listing 1: Kernel memory read primitive model
[Input]
Label: ’RP’
Object: ipc_port_t, task_t, proc_t, thread_t
Pattern: CallExpr convert_port_to_\S*\(.*\) |

CallExpr port_name_to_\S*\(.*\) |
CallExpr iokit_lookup_object_port\(.*\),
BinaryOperator.*’=’\n.*memberExpr |
BinaryOperator.*’=’\nˆ((?!BinaryOperator)[\s\S])
{0,1000}ImplicitCastExpr.*\n.*MemberExpr|
CallExpr.*\nˆ((?!CallExpr)[\s\S]){0,1000}
DeclRefExpr.*copyout|
CallExpr.*\nˆ((?!CallExpr)[\s\S]){0,1000}
DeclRefExpr.*bcopy

[output]
Entry_with_object:
mach_port_get_context: ipc_port_t
pid_for_task: task_t
mach_port_get_attributes: ipc_port_t
...

B. Implementation

In the following, we provide an overview of our imple-
mentation.

Collecting resources POP primitive searcher relies on the
XNU source code, the XNU kernel cache, and primitive mod-
els. The source code and the kernel cache are used to generate
graphs for each Mach system call. Besides, primitive models
are used to search POP primitives among these graphs. The
XNU source code can be downloaded from the Apple’s open
source website [48]. The XNU kernel cache is a repository
of pre-linked kernels. It contains exported function addresses
and offsets of fields of kernel objects. Apple also releases all
versions of the XNU kernel cache on its developer website [6].

Getting all Mach system call entries and Mach port object-
s For all possible system call entries using Mach messages
(e.g., MIG system calls and Mach traps), the POP primitive
searcher analyzes the XNU source code (e.g., MIG subsystem
definition files and mach_trap_table) to generate a list of
POP entries and related Mach port objects (see Table I) based
on the Mach subsystems.

Generating AST for source code files POP primitive
searcher modifies the Makefile of the XNU source code to
replace the original compiling mode to the AST-dump mode
(clang++ -Xclang -ast-dump -fsyntax-only) to
generate AST for each source code file.

Generating Mach port-oriented control flow graph for each
entry For each entry, POP primitive searcher constructs a
Mach port-oriented control flow graph (POC in the paper)
based on AST files. Note that the POC is a structured repre-
sentation. All information about a function is bundled up in a
class hierarchy.

The nodes in the POC are statements (Stmt), expressions
(Expr), and declarations (Decl). The searcher recursively
generates POCs for all functions from a system call entry.
To solve the search complexity issue, POP primitive searcher
only chooses code paths containing Mach port related objects
to prune the graph. Specifically, it stores the structures of all
38 Mach port objects (e.g., task_t and thread_t) and
links Mach system calls with these objects. Moreover, POP
primitive searcher records possible code paths based on the
object’s member filed values. That means, through the POC
graph, we can figure out kernel functions that will be executed
by a Mach system call, as well as Mach port objects that are
affected during the execution.

Searching matched primitives For each path in the POC,
POP primitive searcher classifies the code path based on
primitive models (Section IV-A). If the path has expected Mach
port Objects and matches the code Pattern, POP primitive
searcher will mark it as a potential primitive.

For instance, Figure 11 in the appendix shows a POC
for the pid_for_task() system call. According to the
DeclStmt of POC, the searcher firstly records three kernel
objects, i.e., mach_port_name_t, proc_t, and task_t.
Then, it records a port_name_to_task() CallExpr
in the system call which transfers a mach_port_name_t
object into a task_t Mach port object. Subsequently, the
POP primitive searcher records code paths which contain the
member filed values of the task_t object and other objects
interacted with the task_t object. In particular, the code path
invokes copyout(&pid, pid_addr, sizeof(int))
to copy kernel space data back to the user space address,
which complies with our kernel memory read primitive model
(Section IV-A).

C. Results

In our experiment, our searcher detected 713 potential
POP primitives in XNU-6153.11.26. In the following, we will
describe four different primitive models.

QP QP deals with randomization-based defenses (e.g., zone
elements randomization and KASLR). The code pattern
of QP model includes decision making statements (e.g.,
IfStmt and SwitchStmt) and return value assignment
(e.g., ReturnStmt). Listing 2 shows the model of the
querying primitive.

POP primitive searcher detected 436 querying prim-
itives in nearly every Mach subsystem. For instance,
in the TIME subsystem, by changing the ip_kobject
field of the ipc_port_t object and invoking the
clock_sleep_trap() function, the attacker can figure out
the global address of the system clock and break KASLR (Sec-
tion III-D). Moreover, some QPs can be used to bypass zone
elements randomization. As we mentioned in Section II-B,
with zone elements randomization, it is difficult for an attacker
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Mach subsystem # POP entries Object type Related object structure
RAW PORT 39 IKOT NONE ipc port t
HOST 56 IKOT HOST, IKOT HOST PRIV, IKOT HOST NOTIFY, IKOT HOST SEC host t, host priv t, host security t
PROCESSOR 18 IKOT PROCESSOR, IKOT PSET, IKOT PSET NAME processor t, processor set t, processor set name t
TASK 105 IKOT TASK, IKOT TASK NAME, IKOT TASK RESUME, IKOT NAMED ENTRY task t, task name t, task inspect t, ipc space inspect t

ipc space t, task suspension token t, vm map t
MEMORY 30 IKOT UPL, IKOT MEM OBJ, IKOT MEM OBJ CONTROL upl t, memory object t, memory object control t
THREAD 23 IKOT THREAD thread t, thread act t, thread inspect t
DEVICE 88 IKOT MASTER DEVICE, IKOT IOKIT SPARE, IKOT IOKIT CONNECT, io connect t, io object t

IKOT UEXT OBJECT, IKOT IOKIT IDENT
SYNC 24 IKOT SEMAPHORE, IKOT LOCK SET semaphore t, lock set t
MACH VOUCHER 7 IKOT VOUCHER, IKOT VOUCHER ATTR CONTROL ipc voucher t, ipc voucher attr control t
TIME 6 IKOT TIMER, IKOT CLOCK, IKOT CLOCK CTRL mk timer t, clock serv t, clock ctrl t
MISC 49 IKOT PAGING REQUEST, IKOT MIG, IKOT XMM PAGER, IKOT XMM KERNEL, ledger t, work interval t, mig object t, UNDReplyRef,

IKOT XMM REPLY, IKOT UND REPLY, IKOT LEDGER, IKOT SUBSYSTEM, auditinfo addr, fileglob, arcade register t
IKOT IO DONE QUEUE, IKOT AU SESSIONPORT, IKOT FILEPORT, IKOT LABELH
IKOT WORK INTERVAL, IKOT UX HANDLER, IKOT ARCADE REG

MACH TRAP 56 port name to *() thread t, task t, task inspect t, ipc voucher t,
semaphore t, host t, work interval t

Sum 501 43 38

TABLE I: Classification of POP entries and Mach port objects (based on the MIG and Mach trap subsystems) in XNU-6153.11.26. Note that some object types
may have multiple structures.

Listing 2: Querying primitive model
Label: ’QP’
Object: ipc_port_t, .*\_t
Pattern: CallExpr convert_port_to_\S*\(.*\)|

CallExpr port_name_to_\S*\(.*\)|
CallExpr iokit_lookup_object_port\(.*\),
IfStmt([\d\D]{0,1000})DeclRefExpr.*_t|
SwitchStmt([\d\D]{0,1000})DeclRefExpr.*_t,
ReturnStmt([\d\D]{0,500})IntegerLiteral

to manipulate zone elements in a predictable way. Conse-
quently, exploiting a buffer overflow vulnerability may destroy
unexpected objects in the adjacent place, and make the system
crash.

To bypass the zone elements randomization, an attack-
er can use a QP in the RAW_PORT subsystem with the
mach_port_kobject() system call to check the type of
an ipc_port object to know whether it is the one he/she
just corrupted. Specifically, the mach_port_kobject()
system call returns the value on the io_bits offset of the
target object even if it is not a valid ipc_port object. Thus,
the attacker can send lots of ports with the IKOT_NONE
type through MACH_MSG_OOL_PORTS_DESCRIPTOR Mach
message to the kernel and then trigger the memory corrup-
tion vulnerability to corrupt the type of an ipc_port to
a particular type, e.g, IKOT_TASK. The exact type does
not matter here, as long as it is different from the o-
riginal one (IKOT_NONE). Then the attacker can use the
mach_port_kobject() system call to check the type of
a received port to see whether it is the one with the expected
type (IKOT_TASK). If so, the corrupted kernel object has been
found and will be further used to implement other primitives.

RP/WP RP/WP helps the attacker gain kernel memo-
ry read/write capability to limited or arbitrary kernel ad-
dresses. Listing 1 and Listing 3 describe the models of
RP and WP, respectively. In our experiment, 29 RP/WP
are detected by our searcher. Most of them are found
in the TASK and MACH_TRAP subsystems. For exam-
ple, mach_port_set/get_*() can gain limited kernel
memory read/write through a dangling port 1. Specifically,

1A port referring to a freed ipc_port object is called a dangling port.
A ipc_port object contains a set of member fields pointing to the kernel
memory.
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Fig. 6: Limited kernel memory R/W through mach port set/get *() [13].

the ip_context field in the ipc_port object is used
to associate a user space pointer with a port (see Fig-
ure 1). By applying mach_port_get_context() and
mach_port_set_context() to a dangling port, the at-
tacker can read and write a 64-bit value from and to a kernel
address, which points to the freed ipc_port object plus the
ip_context offset (Figure 6).

Listing 3: Kernel memory write primitive model
Label: ’WP’
Object: ipc_port_t, task_t, proc_t, thread_t
Pattern: CallExpr convert_port_to_\S*\(.*\)|

CallExpr port_name_to_\S*\(.*\)|
CallExpr iokit_lookup_object_port\(.*\),
BinaryOperator.*’=’\n.*memberExpr|
BinaryOperator.*’=’\nˆ((?!BinaryOperator)
[\s\S]){0,1000}.*MemberExpr|
CallExpr.*\nˆ((?!CallExpr)[\s\S])
{0,1000}DeclRefExpr.*copyin|
CallExpr.*\nˆ((?!CallExpr)[\s\S])
{0,1000}DeclRefExpr.*bcopy

PPP If the attacker can obtain a send right to privileged
ports, he/she can enlarge the attack surface or even control
the whole system through PPP. The key component of the
PPP model is the Object type. That’s because PPPs process
privileged ipc_port objects, including host_priv_t and
kernel_task. The model of the privileged purpose primi-
tive is defined in Listing 4.

In total, our searcher found 176 privileged purpose prim-
itives existing in HOST, PROCESSOR and TASK subsystems.
For instance, with a send right to the host_priv port,
an attacker can gain send rights to other powerful ports
(e.g., processor_set port). Moreover, with a send right
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Listing 4: Privileged purpose primitive model
Label: ’PPP’
Object: host_priv_t, kernel_task, vm_map_t
Pattern: CallExpr convert_port_to_\S*\(.*\)|

CallExpr port_name_to_\S*\(.*\)|
CallExpr iokit_lookup_object_port\(.*\)

to the kernel_task port, the attacker can leverage PPPs
(i.e., mach_vm_*() system calls) to manipulate the kernel
memory.

Other attack primitives Beside the previous three primi-
tives, there exist other primitives that can be leveraged to
launch further attacks like jailbreaking the device. Note that
these primitives are not necessary for a POP attack. In
this section, we use the arbitrary code execution primitive
(ACEP) as an example. The key component of the ACEP
primitive model is function pointer related code patterns (e.g.,
CXXMemberCallExpr). The model of the ACEP is defined
in Listing 5.

Listing 5: Arbitrary code execution primitive model
Label: ’ACEP’
Object: io_object_t, io_connect_t, clock_t, .*
Pattern: CallExpr convert_port_to_\S*\(.*\)|

CallExpr port_name_to_\S*\(.*\)|
CallExpr iokit_lookup_object_port\(.*\),
CallExpr([\d\D]{0,500})\
ImplicitCastExpr([\d\D]{0,500})->|
CXXMemberCallExpr([\d\D]{0,500})->

Our searcher detected 72 arbitrary code execution prim-
itives. Most of them are found in the DEVICE subsystem
(e.g., the iokit_user_client_trap() discussed in Sec-
tion III-D). The TIME subsystem also contains some ACEPs.
For instance, the clock_get_time() system call first
gets the cl_ops structure pointer and then invokes time
related functions inside the cl_ops structure to get the time
information (Listing 9 in Appendix). Moreover, the cl_ops
structure pointer is initialized to point to the clock_list[]
array (a global variable) stored in a fixed place in the ker-
nel. Consequently, the attacker can modify the data of the
clock_list[] array or the clock object to achieve arbitrary
kernel code execution.

V. PUSH

To mitigate the POP attack, we propose a framework called
Port Ultra-SHield (PUSH) on macOS. In this section, we will
present the system design and implementation of the PUSH
framework.

A. System Design

PUSH first searches different types of potential POP prim-
itives previously discussed in Section IV, and then enforces
security policies to maintain the integrity of kernel objects
that can be corrupted by attackers. Figure 7 shows the overall
system design. In particular, PUSH consists of the following
main components:

• POP primitive searcher (Section IV) It is a tool
to automatically locate potential POP primitives and
output Mach system calls with related Mach port

system calls

Apps

Kernel space

User space

PUSH checker

XNU

BSD
KEXTs: 
IOKit, APFS,  
network,etc.

Mach

PUSH policy generatorPOP primitive searcher

XNU source code &
kernel caches

Primitive models

PUSH policy rules
& examiners 

POC graphs &
POP primitives

PUSH

Fig. 7: The overall design of PUSH.

objects based on primitive models. Specifically, our
system generates Mach port-oriented control flow
graphs (POC) and finds different primitives.

• PUSH policy generator It is a framework to gen-
erate PUSH policy rules to enforce the integrity of
Mach port objects before and/or after particular Mach
system calls. For each Mach port object, PUSH policy
generator can take different kinds of actions (e.g.,
checking object address and object data).

• PUSH checker It is a kernel extension to deploy
PUSH examiners. To make the system more flexible,
security rules can be updated at runtime.

We will illustrate PUSH policy generator and PUSH check-
er in the following sections.

B. PUSH Policy Generator

Based on the result of POP primitive searcher, PUSH
policy generator knows the Mach port objects that need to be
protected, as well as system call names. Moreover, it selects the
appropriate examiner to protect these objects. However, exam-
iners (currently, four examiners were implemented) themselves
need to be developed manually.

To manage generated rules, we implemented a PUSH
policy framework. The basic structure of a PUSH policy is
defined in the Listing 6. The push_object_name and
push_entry_name specify the name of protected kernel ob-
ject and related system call name. The mpc_ops is a pointer to
the registered callback functions in the PUSH_policy_ops
structure. The callback functions are examiners for different
types of events in the life cycle of a kernel object, such as
creation, initialization, transformation, and destruction.

Listing 6: PUSH policy definition
struct push_policy_conf {

const char *push_entry_name;
const char *push_object_name;
// operation vector
const struct PUSH_policy_ops *mpc_ops;

};

struct PUSH_policy_ops {
object_address_examiner_t *koa_examiner;
object_querying_examiner_t *koq_examiner;
kernel_task_examiner_t *ktv_examiner;
object_data_examiner_t *kot_examiner;
// extensible policy rules
...

};
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To mitigate the POP attack, our current prototype supports
four different kinds of examiners illustrated in the following.

1) Kernel object address examiner: For old iOS/macOS
devices, the CPU does not support PAN (Privileged Access-
Never)/SMAP [39], which enforces the rules that the kernel
code cannot access user space memory. However, without
PAN/SMAP, even on the latest iOS and macOS system,
the attacker can still directly make a dereference for a
mach_port_name_t object in the kernel space to a fake
ipc_port object in the user space. This significantly reduces
the difficulty of the attack, because the attacker does not need
to craft a counterfeit object in the kernel space and guess its
address.

We implemented the kernel object address exam-
iner for the ipc_object when the hardware-based
SMAP is not available. The examiner checks deref-
erence operations for mach_port_name_t objects in
related system calls. If the address of the derefer-
enced kernel object is not in the kernel zone area
(i.e., addr >= zone_map_min_address && addr +
obj_size <= zone_map_max_address), the examiner
will return immediately with a warning or an error, according
to the user’s configuration.

2) Kernel object querying examiner: In Section IV-C, we
discussed an accessory that uses the POP querying primitives
to break freelist randomization and KASLR. This attack relies
on querying the return values of system calls or the value of
the field of specified kernel objects. To mitigate such a brute-
force attack, the kernel object querying examiner counts the
frequency of the ERROR return value or specified kernel object
(e.g., same port name with different object types) that are
accessed in a time period, and then triggers different operations
based on the user’s configuration (e.g., a warning or an error
return value).

3) Kernel task examiner: In iOS 11 and macOS 10.12,
Apple deployed a Mach port related mitigation called
task_conversion_eval() [49] to protect the kernel’s
task port. However, for mach_vm_*() related system calls
discussed in Section III-D, the most significant unit is the
task’s map structure of an ipc_port object. An attacker
could craft a counterfeit ipc_port object with the kernel
task’s map structure to control the kernel memory and bypass
task_conversion_eval() mitigation [21]. To this end,
the kernel task examiner instruments related system calls
and compares the processing map structure with the one of
the kernel tasks. If the caller process does not belong to
the kernel (current_task() != kernel_task) and the
target ipc_port object has the same map structure with the
kernel task, the examiner will trigger configured operations.

4) Kernel object data examiner: For the purpose of
reducing our system’s performance overhead, there is
no integrity check for the ipc_port objects and it-
s sub-objects. For instance, pid_for_task() invokes
get_bsdtask_info() and proc_pid() to get the pro-
cess info and the pid number of the target process. Neverthe-
less, the XNU kernel does not check whether the object is a
real process object or not, and just returns the value in a fixed
offset. Due to this reason, the type-confusion attack can be
launched to achieve an arbitrary kernel memory read primitive
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Fig. 8: pid_for_task() instrumentation and checking [13].

through pid_for_task() (Section III-D).

To mitigate such an attack, the kernel object data
examiner checks the member fields of the object when it
is being invoked and enforces its integrity. In our system,
there are three types of object data integrity check. They
include the checks for ip_kobject, ip_receiver, and
ip_requests in the PUSH examiner. For instance, the
ip_requests field of the ipc_port object is used in the
mach_port_get_attributes() system call. By pro-
viding a flavor value of MACH_PORT_DNREQUESTS_SIZE,
the system call will return the value of
fakeport->ip_requests->ipr_size->its_size.
Thus the attacker can use this system call to retrieve kernel
memory information by counterfeiting a port with a calculated
ip_requests structure. PUSH will check the integrity of
the ip_requests object to ensure it is valid.

Extensible policy rules and examiners. With the de-
velopment of the XNU kernel, new types of kernel objects
and system calls will emerge. Accordingly, there is a high
probability that new attack primitives will be located and
exploited by attackers. To make our system defend against new
attack primitives, it can scan the new XNU source code and
generate new rules. After that, the new rules could be loaded
by PUSH kernel extension, without changing the source code
of the extension itself.

C. PUSH Checker

Our system needs to find reliable code points to execute the
examiners. Unfortunately, the KAuth [7] and the MAC system
in the XNU kernel cannot be used by our system. Specifically,
the KAuth [7] kernel subsystem exports a kernel programming
interface (KPI) that allows third-party kernel developers to
authorize actions within the kernel. However, the operation
set is limited. Most POP primitives could not be covered by
supported operations. On the other hand, the MAC framework
is more powerful than KAuth. Its callouts exist in all system
calls and every single operation can be intercepted. But the
MAC framework is private and can only be used by Apple.
Moreover, the rules are hardcoded in the code of the XNU
kernel, and new rules cannot be updated without a kernel
replacement.

To solve these issues, we propose PUSH checker, a kernel
extension which dynamically deploys PUSH policy rules using
the code instrumentation technique. PUSH checker can be
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loaded into the kernel through kextutil [26] which does
not require a kernel code modification. Based on PUSH rules,
PUSH checker replaces the original code entry of the target
system call into a trampoline (i.e., a jump instruction to another
code path). The trampoline jumps to the examiner stored in
PUSH checker. Then, the examiner verifies the integrity of
the target kernel object based on PUSH rules. If the check
passes, it jumps back to the original function. Figure 8 in
Appendix shows a real example of the instrumentation for the
pid_for_task() system call and the detour routine to the
corresponding checkers.

Note that PUSH only adds limited verification code before
invoking a system call. The verification code does not contain
dangerous operations like kernel heap memory allocation and
modification. Thus, it will not lead to more POP primitives
since it does not add new POP entries. In addition, the self-
protection is needed to protect the loaded rules and critical
PUSH data in the kernel memory. This is achieved with a read-
only memory protection through the page table. First, a read-
only memory is enough to protect the critical PUSH data since
attackers only have limited memory corruption capability. They
cannot directly manipulate read-only memory regions. Second,
by using our PUSH system, the POP attack can be defeated.
Thus attackers cannot achieve the arbitrary code execution
capability to change the memory protection property of the
page table.

VI. EVALUATION

In this section, we evaluate the effectiveness and the
performance overhead of our prototype.

A. Effectiveness

To evaluate the effectiveness of our system, we first select
representative vulnerabilities and exploits in the wild. In par-
ticular, we first performed a statistic study of the vulnerabilities
existed in XNU. To this end, we implemented a crawler
to dump the information published on the Apple security
updates [8], and then selected kernel vulnerabilities, ranging
from macOS Sierra 10.12 to macOS Catalina 10.15. Since our
goal is to evaluate the effectiveness of PUSH framework in
protecting the macOS system in the case of vulnerabilities,
we further collect all working exploits from public bug report
platforms, e.g., Google’s project-zero bug reports [37], and
ExploitDB [15]. Finally we collected 11 kernel vulnerabilities
and 18 public exploits 2 to evaluate the effectiveness of our
system. Note that some exploits are developed for iOS system.
We manually ported them into the macOS platform.

In the experiment, we first ensure that each exploit works
on corresponding systems. Then we deploy the PUSH frame-
work and run the exploit again to check whether our system
detects and blocks the attack. The experiment result shows
PUSH provides deterministic protection for every vulnerability
and blocks each attempt to exploit the system (see Table II).

In the following, we will use three cases to explain how
our system blocks the exploit and protects the XNU kernel.

Case study 1: Yalu exploit We have discussed the Yalu
exploit in Section III-D. It counterfeits the kobject field

2All of our collected exploits can be downloaded at [1].

of ipc_port object with IKOT_CLOCK type and calls the
clock_sleep_trap() system call to locate the address of
the global system clock with a brute force attack. By using the
kernel object querying examiner we proposed in Section V-B2,
PUSH will detect the brute force process after a few failed
attempts. Moreover, because the fake ipc_port object is
allocated in the user space, the kernel object address examiner
(Section V-B1) will block the attempt of the exploitation in
the first place.

Case study 2: Voucher swap exploit CVE-2019-6225 [23]
is a MIG reference counting vulnerability, which affects
iOS 12 and macOS 10.14. The code exists in function
task_swap_mach_voucher(). The automatically gen-
erated MIG code is in _Xtask_swap_mach_voucher()
function (Listing 11 in Appendix). The input value of
in_out_old_voucher is a voucher reference owned by
task_swap_mach_voucher(). Unconditionally overwrit-
ing it without calling ipc_voucher_release() will leak
a voucher reference. In addition, the value new_voucher
is not owned by task_swap_mach_voucher()
and it is being returned in the output value of
in_out_old_voucher. It will consume a voucher
reference that task_swap_mach_voucher() does not
own. Thus, an attacker can leak a reference on a voucher by
calling task_swap_mach_voucher() with the voucher
as the third argument, and drop a reference on the voucher
by passing the voucher as the second argument.

Accordingly, the exploit makes a dangling voucher through
task_swap_mach_voucher(). Moreover, by crafting an
OOL (out-of-line) port message and refilling it to the freed
voucher zone, the exploit could modify the overlapping vouch-
er’s iv_refs field, which changes one port pointer in the
OOL port message and makes it point to a fake ipc_port
object. After that, the exploit gets a send right to the fake
ipc_port object through receiving OOL port message. Then,
it builds a fake task object to gain an arbitrary kernel
memory read primitive via pid_for_task(). Nevertheless,
according to our kernel object data examiner (Section V-B4),
PUSH checks the member fields of the object when it is being
invoked. The tricks used in pid_for_task() system call
should only return a valid pid number of the current process
which makes the exploit chain failed to get significant kernel
information.

Case study 3: Oob timestamp exploit CVE-2020-
3837 [18] is a vulnerability affecting iOS 13 and macOS
10.15. The vulnerable is in the AGXCommandQueue::
processSegmentKernelCommand() method of the
IOAcceleratorFamily kernel driver. The checking of the
size in this method to parse the IOAccelKernelCommand
parameter from the user space is incorrect. It allows the
attacker to write a 8-byte timestamp data past the end of a
shared memory buffer.

Consequently, the oob_timestamp exploit uses the
out-of-bounds timestamp data to corrupt the size of an
ipc_kmsg object of a Mach message. When the message
is destroyed, it will free a subsequent out-of-line ports array,
allowing the attacker to reallocate the array with controlled
data and receive a Mach port of a fake ipc_port object in
the user space. Moreover, the fake ipc_port object points
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TABLE II: Detailed information of representative vulnerabilities and exploits used in our evaluation

macOS/iOS version Vulnerability (CVE number) Public exploit Targeted Mach port object

macOS 10.12/iOS 10
CVE-2016-4669 Phoenix [35] IKOT NONE, IKOT IOKIT CONNECT, IKOT TASK
CVE-2016-7644 Mach portal [47] IKOT NONE, IKOT TASK
CVE-2017-2370 Yalu [51], Mach voucher macOS [32] IKOT CLOCK, IKOT TASK, IKOT IOKIT CONNECT

macOS 10.13/iOS 11

CVE-2017-13861 Async wake [21] IKOT NONE, IKOT TASK ,IKOT HOST PRIV
CVE-2018-4150 Bfp-filter-poc [16] IKOT NONE, IKOT CLOCK, IKOT TASK, IKOT IOKIT CONNECT
CVE-2018-4241 Multi path [46], Multipath kfree [34] IKOT NONE, IKOT TASK
CVE-2018-4243 Empty list [33] IKOT NONE, IKOT TASK
CVE-2018-4344 Spice [38], Treadm1ll [42] IKOT NONE, IKOT TASK, IKOT IOKIT CONNECT

macOS 10.14/iOS 12 CVE-2019-6225 Voucher swap [23], v3ntex [45] IKOT NONE, IKOT VOUCHER , IKOT TASKMachswap [30], CVE-2019-6225-macOS [11]
CVE-2019-8605 SockPuppet [24] IKOT NONE, IKOT HOST, IKOT TASK

macOS 10.15/iOS 13 CVE-2020-3837 Oob timestamp [18], Time waste [41] IKOT NONE, IKOT TASK , IKOT HOST PRIV

to a fake task which has the same map field as that of the
kernel’s task. Thus, the attacker could use mach_vm_*()
system calls to manipulate the kernel memory. Our kernel task
examiner of the PUSH framework (Section V-B3) will check
the target map structure of the caller process with the kernel,
and then stop the user space programs from manipulating the
kernel memory.

Note that we proposed and implemented PUSH before the
releasing of voucher_swap and oob_timestamp exploit.
This demonstrates the effectiveness of our system to block new
exploits.

B. Performance

Benchmarks and evaluation setup To evaluate the over-
head induced by PUSH, we run several benchmark programs:
LMBench [29], wrk HTTP benchmarks [44] for Apache,
and Sysbench benchmarks [40] for MySQL. We first run
programs on the macOS system without PUSH. Then, we
deploy PUSH A (without kernel object address examiner)
and PUSH B (with kernel object address examiner) on the
system 3. After that, we run benchmark programs again.
We run each benchmark 10 times and calculate the average
execution time. Our experiments are carried on a MacBook
Air with 1.3 GHz Intel Core i5 CPU and 4 GB memory,
with a few different XNU versions crawled from the Apple
developer website[6], ranging from macOS Sierra (10.12) to
macOS Catalina (10.15).

Instrumentation points The performance of PUSH is main-
ly correlating with the number of instrumentation points (IPs).
Specifically, the performance will become worse when more
IPs are deployed in the system. The number and the location
of IPs for PUSH are shown in the following:

• QP: PUSH added 4 IPs to prevent attackers from
guessing global kernel object addresses.

• RP/WP: PUSH added 8 IPs to perform the data
integrity check for the ipc_port object and related
kobjects.

• PPP: PUSH added 2 IPs for mach_vm_*() and
host_*() related system calls to check the
host_priv and kernel task Mach port objects.

3For some modern MacBooks with a hardware based SMAP protection
or systems with zone_require() protection, the kernel object address
examiner is not necessary.

pipe
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Fig. 9: Communication bandwidths in MB/s (bigger is better).
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Fig. 10: File & VM system latencies (times in microseconds, smaller is better).

• ACEP: currently, PUSH does not add IPs for ACEP.
We leverage existing CFI (e.g., LLVM-CFI [27] and
PAC) to defend the ROP gadgets to gain this capa-
bility. Noting that CFI cannot be leveraged to defend
POP.

• Kernel object address examiner (on PUSH B): for
devices without the SMAP protection, PUSH added
43 IPs for address verification in port name deref-
erence functions (e.g., port_name_to_*() and
convert_port_to_*()).

Note that 13 IPs are used to protect POP primitives in
real world exploits. Other IPs can also make POP exploits
ineffective. However, this over-protection will not cause prob-
lem to our system, except that it will cause more performance
overhead.

LMBench Table III shows the result of processor/processes
activities of LMBench benchmark programs. PUSH_A’s over-
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TABLE III: Processor/processes activities (times in microseconds, smaller is
better).

OS null I/O open close fork proc exec proc sh proc
Without PUSH 1.43 16.8 682 3778 7310
With PUSH A 1.43 (0%) 17.0 (1.2%) 686 (0.5%) 3807 (0.8%) 7345 (0.5%)
With PUSH B 1.44 (0.6%) 17.1 (1.7%) 693 (1.6%) 3851 (1.9%) 7393 (1.1%)

TABLE IV: Wrk benchmark experiment results for the Apache HTTP server
system. In the case of the same number of threads (12) and running time
(120s), the more HTTP requests the system sends, the better the system
performs. PUSH introduces 1.32% overhead for HTTP request generation and
1.28% overhead for the data transfer.

Test Model Time Without PUSH With PUSH B Overhead
Request generation 120s 7148.06 reqs/sec 7054.93 reqs/sec 1.32%
Data transfer 120s 2.37 MB/s 2.34 MB/s 1.28%

head is from 0% to 1.2% and PUSH_B’s overhead is from 0.6%
to 1.9%. The result is expected. The benchmark programs that
hit more IPs will have a larger overhead. Moreover, the results
of communication bandwidths (showed in Figure 9) and file &
VM system latencies (showed in Figure 10) are very similar
to the result of processor/processes activities. In general, the
system only has an average of 1% overhead (without kernel
object address examiner) and 2% overhead (with kernel object
address examiner) for LMBench benchmark programs.

Apache and MySQL Apache is a free and open-source
cross-platform web server. The wrk is a modern HTTP bench-
mark tool capable of generating HTTP client requests. In the
experiment, we use wrk to stress test the Apache http server
running on macOS with PUSH. Table IV shows the result.
In the case of the same threads and running time, the more
HTTP requests the system sends, the better the performance of
the system. PUSH presents 1.32% overhead for HTTP request
generation and 1.28% overhead for data transfer.

MySQL is an open-source relational database management
system (RDBMS). Sysbench is a multi-threaded benchmark
tool based on LuaJIT. It is frequently used for database bench-
marks. In the experiment, we use Sysbench to generate test
cases of on-line transaction processing for MySQL. Table V
shows the result. In the same running time (1,800s), the more
the system operates, the better the system performs. PUSH
has 0.96% overhead for the READ ONLY test model with
155 instrumentation point hits and 1.87% overhead for the
READ WRITE test model with 548 instrumentation point hits.

Besides, this experiment is tested on the system with full
PUSH policies loaded. Users could configure lightweight rules
for specific kernel objects to further reduce the performance
overhead.

VII. REAL DEPLOYMENT

The PUSH system has been deployed in Alibaba Group
with more than 40,000 macOS devices for nine months (since
2019.8). It successfully detected two mutated exploits (based
on voucher swap [23] and oob timestamp [18]) and one
new exploit. The new exploit is used in an E-mail phishing
attack. Specifically, the attacker sent a phishing email with a
malicious app as the attachment. The app is disguised as a PDF
document that will execute an AppleScript [19] once opened.
The script downloads a real PDF file and opens it through
the Priview app. Then it downloads an attack payload. The

attack payload uses a zero-day memory corruption vulnera-
bility in the Graphics kernel driver to escalate its privilege
and leaves a persistent backdoor with root privilege in the
system (by leaving a trojan file written by Go language in
the /usr/local/bin/ folder and a plist launch file
in the /Library/LaunchDaemons/ folder). Because the
attack payload uses POP primitives (e.g., pid for task() and
mach vm write()) to gain kernel memory read/write capability
and change its permission, it was detected by the PUSH sys-
tem. We have reported this zero-day vulnerability to Apple 4.

Note that for each alert reported by the PUSH framework,
the detailed execution context information including the pro-
cess information and the executable program will be trans-
ferred to a deployed EDR (Endpoint Detection and Response)
client. The EDR client will upload this information to a remote
server for further manual verification. Fortunately, we have not
found any false positives of the reported alerts yet.

However, iOS and watchOS cannot load third-party kernel
extensions. To deploy our system on these devices, we need to
first jailbreak the devices. For instance, we can leverage iBoot
exploits (e.g., checkra1n [10]) to jailbreak old Apple devices
(from iPhone 5s to iPhone X). In fact, it is much easier for
Apple to re-implement a similar PUSH system for iOS. For
instance, the rules used in our system can be transparently
translated to corresponding MAC rules of the XNU kernel by
Apple.

We are happy to know that after reporting our discov-
ery and discussing the PUSH framework with their security
team (follow-up id: 707542859), Apple will deploy security
enhancements against the Mach port issue in a future release
of iOS and macOS. In fact, recently released systems (iOS 13
and iOS 14 beta) have deployed new protective measures (e.g.,
zone_require() and data-PAC for kernel objects) that are
similar with our kernel object address examiner (see Sec-
tion V-B1) and kernel object data examiner (see Section V-B3).

VIII. DISCUSSION

In this section, we discuss limitations and possible im-
provements of our system.

First, our work only focuses on the Mach port kernel object
which is a high value target for attackers due to the capability
they can achieve after corrupting it. However, there may exist
other similar kernel objects that could be exploited. Second,
due to the search complexity, the POP primitive searcher only
focuses on code paths that contain Mach port related objects.
It may miss some kernel objects and functions, leading to
the incomplete call graph and data flow graph. Moreover,
the POP primitive searcher detects POP primitives based
on primitive models. In the current prototype, all primitive
models are manually developed. They highly rely on the
expert experience. Consequently, our searcher may lose some
potential POP primitives. Thus, one possible improvement is to
leverage the program analysis technique (e.g., CPU emulator
framework [43]) to improve the completeness of the primitive
searcher.

4This zero-day vulnerability is still under Apple’s internal investigation.
Apple requested us to keep it confidential. We will update the CVE number
and release a POC of the vulnerability at this link [1] after it is fixed by Apple.
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TABLE V: Sysbench benchmark experiment results for the MySQL database management system. Read Ops, Write Ops, Other Ops and Total Ops
columns present the number of related SQL querying operations. IP Hits shows the number of PUSH instrumentation points that were hit. In the case
of the same Running Time (1,800s), the bigger number of the system operation means the better performance. PUSH introduces 0.96% overhead for the
READ ONLY test model with 155 instrumentation point hits and 1.87% overhead for the READ WRITE test model with 548 instrumentation point hits.

Test Model Time Without PUSH With PUSH B OverheadRead Ops Write Ops Other Ops Total IP Hits Read Ops Write Ops Other Ops Total Ops IP Hits
READ ONLY 1,800s 2,891,784 0 413,112 3,304,896 0 2,864,246 0 409,178 3,273,424 155 0.96%
READ WRITE 1,800s 1,399,048 399,728 199,864 1,998,640 0 1,373,288 392,368 196,184 1,961,840 548 1.87%

Besides, PUSH cannot mitigate all kinds of POP primitives.
For instance, querying primitives use error return values to
obtain information. It is similar to the side-channel attack,
which is based on information retrieved from the implemen-
tation of a computer system, rather than the weaknesses in
the implemented algorithm itself (e.g. vulnerabilities). Kernel
object querying examiner we proposed in Section V-B2 may
not eliminate all of the querying primitives.

Moreover, PUSH does not intend to prevent the arbitrary
code execution primitive, because it is not a necessary step
to lunch the POP attack in the first place. For instance,
critical kernel data could be changed (through PPP) to escalate
privileges, instead of executing arbitrary code. A common POP
attack usually follows the steps described in Section III-C.
Although an attacker could omit some steps by chaining
multiple vulnerabilities, the attack can still be detected by our
system, unless the attacker does not use any protected POP
primitives.

The evaluation on public exploits demonstrated the effec-
tiveness of our system to block them. However, it cannot prove
that our system can block every new attacks. Fortunately,
PUSH supports extensible policy rules with examiners to
prevent new threats in the first place. As long as the (new)
exploit uses protected primitives, it can still be detected and
blocked by our system. This has been demonstrated by the
discovery of a zero-day vulnerability and the corresponding
exploit (Section VII). In addition, we will keep updating the
collection of public POP exploits [1] and practical POP attack
primitives.

IX. RELATED WORK

PUSH is a generic kernel object protection framework for
the XNU kernel, providing Mach port kernel object integrity
to prevent the POP attack. In this section, we will illustrate
other systems related to our work.

Szekeres et al. [67] systematically studied the memory
corruption attack, from the potential reasons to multiple de-
fense mechanisms. They also discussed why most protection
mechanisms are not deployed in practice. They suggest that
only solutions whose overhead is reasonable can be really
deployed. Our proposed solution only incurs less that 2%
overhead. This contributes the real deployment of our system.

Abadi et al. [53] proposed the concept of control-flow
integrity. It enforces a security policy that the control flow
of a program cannot be hijacked. In particular, it computes
legitimate control flow transfers and then monitors the program
execution so that the control flow transfer is in the predefined
set. CFI in general is an excellent security mechanism. How-
ever, its effectiveness relies on the accuracy of the control flow

graph. Unfortunately, to obtain a complete and sound CFG is
sill a challenging task, due to the imperfect point-to analysis.

The Counterfeit object-oriented programming (COOP) [63]
is an attack of CFI systems. COOP proofs lots of defenses
(Code-Pointer Integrity [60], T-VIP [57], vfGuard [61], and
VTint [70]) that specifically target C++ are vulnerable and
Turing-complete attacks can be built with existed virtual
functions in C++. The reason is that many of these defenses
do not consider object-oriented C++ semantics. COOP creates
counterfeit objects that use existed virtual tables chosen by
attackers. Conceptually, the basic idea of our POP attack is
similar to the COOP attack. However, they face different
technical challenges. POP works for the XNU kernel. It
needs to automatically search for different types of attack
primitives through Mach port objects. This requires our system
to understand the interactions between user space programs
and the XNU kernel and take a Mach port aware way to locate
code gadgets. COOP works for C++ programs. It leverages
the virtual functions inside a user space program to construct
the gadget, which does not need to consider the semantics of
underlying kernel. Moreover, to ease the code-reuse attack,
complex gadget building frameworks like Newton [68] and
BOPC [59] are proposed. The proposed POP primitive searcher
in this paper could also be leveraged to ease the POP attack.

Accordingly, Veen et al. proposed TypeArmor [69], a
detection and confinement solution to mitigate advanced code-
reuse attacks (e.g., COOP [63]). The system relies on binary-
level static analysis to derive both target-oriented and callsite-
oriented control-flow invariants. Then it applies security poli-
cies at runtime. However, as previously discussed, the inaccu-
racy of the call graph may leave loopholes for attackers.

Because CFI can only enforce control flow integrity, at-
tackers are shifting to data-only attacks and proposed the data
oriented programming (DOP) [58]. DOP constructs expressive
non-control data exploits from arbitrary X86 programs. With
a single memory error, non-control data attack can achieve
Turing-complete computation using data-oriented program-
ming. To defend against the data only attack, Chen [56]
proposed a new compartmentalization mechanism to treat all
memory inside the system as sensitive. Moreover, Schlesinger
et al. [62], and Gaye et al. [55] proposed policies like data
confidentiality and integrity (DCI) that selectively protects
sensitive data. Song et al. [65] designed KENALI to mitigate
privilege escalation attacks based on data-flow integrity. How-
ever, POP is a new kind of DOP attack that targets kernel
objects. The proposed solutions may not work unless they
could protect the integrity of ipc_port kernel objects. We
have summarized the attack of POP and proposed a defense
mechanism called XNU Kernel Object Protector (XKOP) to
protect kernel objects in the XNU [13]. However, the talk did
not discuss the way to automatically find POP gadgets, as well
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as the implementation detail of XKOP. Our paper proposed the
methodology to detect POP gadgets and reported the result of
newly detected root exploits after deploying the system.

X. CONCLUSION

In this paper, we summary a new attack called (Mach) Port-
oriented Programming (POP) that leverages multiple Mach
ipc_port kernel objects to bypass existing mitigations.
Consequently, a defense mechanism called Port Ultra-SHield
(PUSH) is proposed to protect the integrity of Mach port
objects in the XNU kernel with small performance overhead
(2%). The PUSH system has been deployed in a leading
company with more than 40, 000 devices. The evaluation
of 18 public exploits and one zero-day exploit demonstrate
the effectiveness of the proposed system. We have discussed
this framework with Apple (follow-up id: 707542859). They
appreciate our efforts to improve the security of their products
and have deployed security enhancements against the Mach
port issue in recently released XNU systems.
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XI. APPENDIX

Listing 7: clock sleep trap() system call
kern_return_t clock_sleep_trap(

struct clock_sleep_trap_args *args)
{

mach_port_name_t clock_name = args->clock_name;
...
if (clock_name == MACH_PORT_NULL)

clock = &clock_list[SYSTEM_CLOCK];
else

clock = port_name_to_clock(clock_name);
...
if (clock != &clock_list[SYSTEM_CLOCK])

return (KERN_FAILURE);
...
return KERN_SUCCESS;

}

clock_t port_name_to_clock(
mach_port_name_t clock_name)

{
clock_t clock = CLOCK_NULL;
...
if (ip_active(port) && \
(ip_kotype(port) == IKOT_CLOCK))

clock = (clock_t) port->ip_kobject;
return (clock);

}

Listing 8: pid for task() system call
kern_return_t pid_for_task(

struct pid_for_task_args *args)
{

mach_port_name_t t = args->t;
user_addr_t pid_addr = args->pid;
...
//get the related task
t1 = port_name_to_task_inspect(t);
...
p = get_bsdtask_info(t1);
if (p) {

pid = proc_pid(p);
err = KERN_SUCCESS;

}
...
//return the pid value to userspace
copyout(&pid, pid_addr, sizeof(int));
...
return(err);

}

task_inspect_t port_name_to_task_inspect(
ipc_port_t port)

{
task_inspect_t task = TASK_INSPECT_NULL;
...
if (ip_active(port) && \

ip_kotype(port) == IKOT_TASK) {
task = port->ip_kobject;

}
...
return (task);

}

void *get_bsdtask_info(
task_t t)

{
return(t->bsd_info);

}

int proc_pid(
proc_t p)

{
if (p != NULL)

return (p->p_pid);
return -1;

}

BinaryOperator µ=¶
left
right: CallExpr mach_port_name_t

BinaryOperator µ=¶

right: task_t

BinaryOperator µ=¶
left
right: proc_t

DeclStmt: mach_port_name_t

DeclStmt: proc_t

DeclStmt: task_t

CallExpr task_t

MIP code pattern: 
CallExpr Function µcopyout¶ ...

BinaryOperator µ=¶
left
right: CallExpr proc_t

start

mach_port_name_t t = args->t;

user_addr_t pid_addr  = args->pid;

proc_t p;

task_t t1;

int pid = -1;

kern_return_terr = KERN_SUCCESS;

t1 = port_name_to_task_inspect(t);

(t1 == TASK_NULL)

err = KERN_FAILURE; p = t1->bsd_info;

pftout

pftout

(p)

pid  = p->p_pid;

(t1->t_flags & TF_CORPSE != 0)

err = KERN_SUCCESS;

task_deallocate(t1);

pid = get_audit_token_pid(&t1->audit_token);

err = KERN_FAILURE;

err = KERN_SUCCESS;

(void) copyout((char *) &pid, pid_addr, sizeof(int));

return(err);

end

RP

Fig. 11: (Mach) port-oriented control flow graph for pid for task() system
call.
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Listing 9: clock get time() system call.
kern_return_t clock_get_time(

clock_t clock,
mach_timespec_t *cur_time)

{
if (clock == CLOCK_NULL)

return (KERN_INVALID_ARGUMENT);
return ((*clock->cl_ops->c_gettime)(cur_time));

}

Listing 10: Mach voucher buffer overflow.
kern_return_t
mach_voucher_extract_attr_recipe_trap(

struct mach_voucher_..._args *args)
{

...
mach_msg_type_number_t sz = 0;

copyin(args->recipe_size, (void *)&sz, sizeof(sz));
...
uint8_t *krecipe = kalloc((vm_size_t)sz);
...
//args->recipe_size should be sz
copyin(args->recipe, (void *)krecipe, args->recipe_size)
...

}

Listing 11: task swap mach voucher reference counting.
kern_return_t
task_swap_mach_voucher(

task_t task,
ipc_voucher_t new_voucher,
ipc_voucher_t *in_out_old_voucher)

{
if (TASK_NULL == task)

return KERN_INVALID_TASK;

*in_out_old_voucher = new_voucher;
return KERN_SUCCESS;

}

mig_internal _Xtask_swap_mach_voucher(
mach_msg_header_t *InHeadP,
mach_msg_header_t *OutHeadP)

{
...
new_voucher = convert_port_to_voucher(

In0P->new_voucher.name);
old_voucher = convert_port_to_voucher(

In0P->old_voucher.name);
RetCode = task_swap_mach_voucher(task,

new_voucher,
&old_voucher);

ipc_voucher_release(new_voucher);
...

}
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