
Detecting Kernel Memory Leaks in Specialized
Modules with Ownership Reasoning

Navid Emamdoost
University of Minnesota

navid@cs.umn.edu

Qiushi Wu
University of Minnesota

wu000273@umn.edu

Kangjie Lu
University of Minnesota

kjlu@umn.edu

Stephen McCamant
University of Minnesota
mccamant@cs.umn.edu

Abstract—The kernel space is shared by hardware and all
processes, so its memory usage is more limited, and memory
is harder to reclaim, compared to user-space memory; as a
result, memory leaks in the kernel can easily lead to high-impact
denial of service. The problem is particularly critical in long-
running servers. Kernel code makes heavy use of dynamic (heap)
allocation, and many code modules within the kernel provide
their own abstractions for customized memory management. On
the other hand, the kernel code involves highly complicated data
flow, so it is hard to determine where an object is supposed to
be released. Given the complex and critical nature of OS kernels,
as well as the heavy specialization, existing methods largely fail
at effectively and thoroughly detecting kernel memory leaks.

In this paper, we present K-MELD, a static detection
system for kernel memory leaks. K-MELD features multiple
new techniques that can automatically identify specialized alloca-
tion/deallocation functions and determine the expected memory-
release locations. Specifically, we first develop a usage- and
structure-aware approach to effectively identify specialized alloca-
tion functions, and employ a new rule-mining approach to identify
the corresponding deallocation functions. We then develop a new
ownership reasoning mechanism that employs enhanced escape
analysis and consumer-function analysis to infer expected release
locations. By applying K-MELD to the Linux kernel, we confirm
its effectiveness: it finds 218 new bugs, with 41 CVEs assigned.
Out of those 218 bugs, 115 are in specialized modules.

I. INTRODUCTION

An operating system (OS) kernel is part of the trusted
computing base (TCB) in most modern software systems.
Vulnerabilities in the OS kernel allow an adversary to bypass
security measures and compromise the whole system. Much of
the research in the security community has focused on memory-
corruption bugs in the kernel [14, 19, 28, 47, 49]. At the same
time resource exhaustion vulnerabilities in the kernel have
been subject to less attention, though they too can have severe
consequences on system stability and availability [5, 33, 35].
Based on our study, we found out that just 17 CVEs were
assigned to Linux kernel memory leak bugs. 10 of these
vulnerabilities were discovered in the past two years.

Memory is a primary resource available to a kernel, and it
may be exhausted by memory leak vulnerabilities. A memory
leak happens when an allocated memory region is not released

even though it will never be used again. A memory region
is definitely leaked when all the pointers to the allocated
memory go out of scope or are overwritten. Leaked memory
becomes unusable until the system reboots. Kernel memory is
typically never swapped out, so a kernel memory leak reduces
the physical memory available for any other purpose. Due to
increased paging, a memory leak can hurt performance [11] and
eventually exhaust all the available memory. Kernel memory
leaks happen mostly on error-handling paths mainly because
such paths are less exercised during tests. If a path associated
with a memory leak gets executed frequently, the triggered
memory leak eventually causes a denial of service. Furthermore,
many small or infrequent memory leak bugs may lead to the
same situation [4, 8]. Of course, even if a memory leak occurs
only very rarely in normal operation of a system, a malicious
user may find a way to trigger a leak with high frequency.

For example, Figure 1 depicts a memory leak bug that was
discovered by our tool which was assigned CVE-2019-19062.
Here the function crypto_report() at line 13 allocates the
memory via nlmsg_new for a netlink message. Pointer to this
message is stored in skb. The code at line 14 checks whether the
allocation succeeded or not. If the allocation was not successful,
execution returns at line 15. If the allocation was successful, the
execution continues up to the line 19, where function crypto_-
report_alg() is called. The status of the call to crypto_-
report_alg() is checked at line 24. If it was successful, the
skb is consumed in lines after 26, but if crypto_report_-
alg() fails, the function returns at line 25 without releasing
skb, which is a memory leak.

Researchers have shown that an unprivileged user can
exploit memory-leak vulnerabilities to cause denial-of-service.
For example, Saha et. al [41] have shown cases of exploiting
such a class of vulnerabilities in the Linux kernel causing
memory exhaustion. As a result the system fails to allocate
any new memory region which in turn leads to failure in
unpredictable ways. The situation is not recoverable except
via system reboot. Those memory leaks are related to error-
handling paths that mistakenly miss releasing a dynamically
allocated object in the Linux file system. An unprivileged user
could exploit such bugs by triggering the error-handling path
by providing invalid inputs to a system call or mounting a
faulty file system.

Challenges. Two key challenges exist in static memory leak
detection for an OS kernel. (1) Specialized functions. Monolithic
OS kernels like the Linux kernel tend to contain tens of
thousands of different modules developed by numerous vendors
and programmers. We consider a function as specialized if it

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24416
www.ndss-symposium.org

is developed for a specific module to perform a customized
flavor of generic operation (like allocation/deallocation of a
network buffer). As a result, an OS kernel has a large number of
specialized functions for memory allocation and deallocation.
An effective detection requires identifying such specialized
allocation functions and the corresponding deallocation func-
tions. While there are only a handful of commonly used
allocation functions, we found more than 800 specialized ones.
(2) Complicated and lengthy data flow. A memory leak occurs
when a memory object is not released at the end of the object
life-cycle. In other words, an effective detection often has to
analyze a lengthy data flow—from allocation to the end of life-
cycle. More importantly, the lengthy data flow can be highly
complicated in an OS kernel: Pointers to allocated memory
object are also often copied between different data structures
across functions. An effective detection must determine which
location or function is responsible to release the memory object1.
We say a memory pointer is an escaping pointer if it is passed
to the caller of the current function and thus can be freed
outside the scope of the current code. A consumer function,
on the other hand is a callee of current function that takes the
ownership of the memory object, therefore the current function
should not try to release after returning from the consumer
function. An analysis needs to accurately recognize escaping
pointers and consumer functions to avoid false-positive memory
leak reports.

Given the challenges for static leak detection in an OS
kernel, one may wonder if a dynamic approach would yield
better results. We argue that a static detection works better
because there is no need to provide real or synthetic inputs to
trigger all potential execution paths. Moreover, for specialized
drivers, the specific hardware should be available to be able
to exercise the driver code. Because of such inherent code
coverage shortcomings of dynamic approaches, we opt for a
static leak detection.

Researchers have attempted to statically detect kernel
memory leaks; but their techniques have important limitations.
In particular, general bug finding tools like Coccinelle [36]
have limited effectiveness for detecting kernel memory leaks.
Coccinelle does not implement any specific bug-finding policy
but allows specifying patterns to search for potentially faulty
code blocks in a function’s CFG. For example, to find a
memory leak a general pattern could be like: any allocation
function should be followed by a deallocation. Such a high-
level pattern yields a high rate of false positive. Because
of the cost of manual rule specification, these tools have
been applied just to general purpose allocation functions that
have well-known deallocation counterparts (like kmalloc-
kfree). In addition, previously proposed systems that detect
resource release bugs [41, 48] either lack support for specialized
allocations, or fail to effectively handle escaping pointers and
consumer functions.

In this paper, we introduce K-MELD (Kernel Memory
Leak Detector), a static analysis tool, to detect kernel memory
leaks. K-MELD not only identifies specialized allocation
functions and the corresponding deallocation functions, but also
answers where an object is supposed to be released by handling
the complicated and lengthy data flow. K-MELD features

1Incorrectly placed releases introduce severe memory corruption bugs like
use-after-free or double-free.

1 /* File: crypto/crypto_user_base.c */
2 static int crypto_report(struct sk_buff *in_skb,
3 struct nlmsghdr *in_nlh, struct nlattr **attrs)
4 {
5 struct crypto_dump_info info;
6 ...
7 alg = crypto_alg_match(p, 0);
8 if (!alg)
9 return -ENOENT;

10

11 err = -ENOMEM;
12 /* Memory is allocated here */
13 skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
14 if (!skb)
15 goto drop_alg;
16 ...
17 info.out_skb = skb;
18 ...
19 err = crypto_report_alg(alg, &info);
20

21 drop_alg:
22 crypto_mod_put(alg);
23

24 if (err)
25 return err; /* Memory leaks here */
26 ...
27 }

Fig. 1: A new memory leak bug (CVE-2019-19062) detected by K-MELD:
the path ending at line 25 needs to release skb.

multiple new techniques. First, K-MELD identifies specialized
allocation functions by using a usage-driven and structure-
aware analysis, then uses a context-aware and path-sensitive
mining technique to detect corresponding release functions.
More specifically, the initial set of allocation functions are
populated based on the type and uses of the return value
and the way such value is derived. Then, assuming the faulty
dynamic allocation managements are outliers [10], the high-
level intuition is modeling the common approach of memory
releasing to effectively identify memory release operations
even in specialized cases. In a big corpus of code like a
kernel2, there are many potentially long execution paths. It
has been shown that error-handling paths get less of testing
and coding review [2, 30]. Based on our observation from
manually checking the sites of memory mismanagement bugs,
error-handling codes were where we could spot the bugs. In
addition, error-handling code are usually shorter than normal
execution paths and are intended to restore the state of system
from an error. That means we can expect to find the release
functions in error-handling paths if the function is supposed to
release memory. the number of correctly implemented error-
handling paths is much more than erroneous ones. Therefore,
modeling the common behavior of error-handling paths enables
us to single out potentially buggy implementations.

Second, we develop an ownership reasoning mechanism to
infer the release locations. K-MELD first uses enhanced escape
analysis to determine when the ownership of an allocated object
is transferred. We observed that kernels typically follow an
informal discipline of “ownership” of dynamically allocated
data (related to the concept codified in languages like Rust,
but without type-system support). A function that allocates
a memory object will either be responsible for deallocating
that object itself, or if the object is made available to the
caller via a return value or a pointer, the calling function also
takes the responsibility to deallocate the object. Based on this
pattern, our tool can avoid false positives by determining when

2For example the Linux kernel is over 27 MLOC.

2

objects can escape to a calling function: we do not expect a
function to deallocate an object on a path where the object
escapes. In such scenarios, the calling function is responsible
to appropriately manage the allocated memory object. On the
other hand, the allocating function may also pass a memory
object down the call-graph to a callee, thus it is important
to have an inter-procedural analysis to determine how the
callee treats the memory object. We call a function consumer
if it releases or the received memory object or allows it to
escape on all or some of its execution paths. This is important
because once returning from the callee, the allocating function
should not try to release the memory object if already released.
The analysis requires to handle conditional consumers as well.
These are functions that consume the memory object under
certain conditions: consider a socket packet-send function that
consumes the allocated socket buffer only in the case of a
successful send. In such case, the caller of packet-send has
to release the buffer if sending fails. K-MELD employs an
inter-procedural path-sensitive analysis to track memory object
propagation and identify consumer functions.

We implemented our tool as multiple LLVM passes, rule
mining, and rule application. We conservatively identified more
than 800 memory allocation, most of which are specialized
ones, and the associated release functions. After the ownership
reasoning via inter-procedural analyses, and rule application,
we detect 218 new memory leaks bugs even in many specialized
modules. Our evaluation also confirmed that our ownership
reasoning mechanisms significantly improves the accuracy.

Contributions We make the following contributions:

• An approach for identifying specialized allocation func-
tions. We develop a usage- and structure-aware approach to
effectively identify both common and specialized allocation
functions. The approach automatically identified more than
800 specialized allocation functions.

• A rule-mining approach for corresponding specialized
deallocations. We develop a context-aware approach for
mining rules and identifying specialized release functions.
The mining can differentiate erroneous and normal execution
contexts. We also employ field- and path-sensitive static
analyses that track data flows to enhance the rule mining.
Among the bugs found, 115 are caused by missing special-
ized deallocation functions. Note that the identification of
specialized allocations and deallocations is of independent
interest to the detection of other classes of bugs such as
NULL dereference, out-of-bound access, and use-after-free.

• An ownership reasoning mechanism for kernel objects.
We propose an ownership reasoning mechanism to infer
where an object is supposed to be released. We first develop
an path-sensitive pointer escape analysis to determine if
the ownership of an allocated memory object is transferred.
This analysis reduces false positives significantly. Moreover,
we develop an efficient consumer function detection to
precisely determine if the allocating function is responsible
to release the allocated memory. This analysis employs an
inter-procedural data flow and control flow analysis to track
the propagation of the allocated memory object downwards
in the call-graph.

• A scalable implementation and numerous new bugs. We
implement a scalable system, K-MELD, and apply it to the
Linux kernel. K-MELD detects a large number (218) of

new memory leak bugs with an acceptable false positive rate
(52%). 41 of the new bugs have been assigned with CVEs,
confirming the security impacts of kernel memory leaks. 115
of the bugs were located in specialized modules.

II. A STUDY OF KERNEL MEMORY ALLOCATION AND
LEAKS

In this section, we first take a look at the dynamic memory
allocation mechanism in a kernel (using the Linux kernel for
concreteness). Then we review the importance of memory leaks
in the kernel and the challenges for leak detection.

A. Dynamic Memory Allocation in the Kernel

Types of memory allocation. Dynamic memory allocation
in the kernel is not as straightforward as in user-space. The
complication comes mainly from the fact that the kernel
has much less physical memory available—generally kernel
memory is not pageable, and often the allocation is required to
be a physically continuous memory region and sometimes in
specific address ranges. The kernel allocation sometimes needs
to be atomic i.e. it should not sleep. Such delicacies make any
mistake in kernel allocation have a higher impact on the whole
system’s stability.

OS kernels typically allocate only a relatively small stack
per thread.3 This limitation requires kernel developers to avoid
allocating large structures on the stack but instead, to perform
more heap-based allocation. kmalloc is the general-purpose
allocation interface in the kernel. It takes two arguments:
size and flags. Like user-space malloc, size specifies
the allocation size in bytes. The flags argument controls
the behavior of the allocation. On success kmalloc returns a
pointer to the memory of size bytes, while in case of failure
a NULL pointer is returned. The flags parameter in kmalloc
tells the kernel how or where to perform the allocation.

As an example, the flag GFP_ATOMIC instructs the memory
allocator never to block, i.e., it cannot go to sleep to free up
the required memory. This is appropriate when the code holds
a lock, or in interrupt handlers. On the other hand, the flag,
GFP_KERNEL, indicates the normal kernel allocation which may
go to sleep. As another example, flag GFP_DMA instructs the
memory allocator to allocate from the physical address range
which is accessible by the hardware through direct memory
access. The header <linux/gfp.h> defines all the allocation
flags.

kmalloc returns physically continuous memory. Such an
allocation has two main advantages over virtual memory
allocations. First, it can be used by the hardware as non-CPU
devices use physical addressing. Second, physically continuous
memory can be allocated within a single large page and as a
result, be faster from memory translation perspective. However,
allocation via kmalloc has a higher chance of failure for large
sizes. Therefore if there is no need for physically continuous
memory, or if the allocation size is large, vmalloc should
be used. vmalloc uses page table manipulation to create a
virtually continuous memory region. It also may block when
allocating, and therefore cannot be used in an interrupt handler.

3On Linux, kernel thread stacks vary by architecture, but are commonly 1,
2, or 4 pages, so 4–16 KiB.

3

To avoid memory fragmentation, especially when many
identical objects should be allocated, a slab cache can be
used [3]. The cache should be set up via kmem_cache_create
and the allocation from the cache is realized via kmem_cache_-
alloc. For example, Linux maintains separate caches for inode,
dentries, and buffer heads [22].

The dynamically allocated memory should be explicitly
released when it has no further usage. Otherwise, the memory
is leaked and eventually, no further allocation will be possible.
The allocations via kmalloc should be released via kfree
which takes the pointer to the memory to be released and
returns the memory to the kernel. Allocations via vmalloc
should be released by vfree, and slab cache allocations via
kmem_cache_free.

Specialized allocation. Various kernel modules have their own
specialized allocators. Such allocators are responsible to allocate
and sometimes initialize a specialized structure. The memory
allocation is usually realized via a more primitive allocator, and
after some initialization or extra operations, a pointer is returned
to the caller. Such allocations require a specialized release and
are not deallocated just by kfree. For example, the netlink4

module uses nlmsg_new to allocate a new message and uses
nlmsg_free to release such message. Such specialization
particularly imposes challenges to the detection of memory
leaks because the detection must identify allocators and the
corresponding deallocators.

B. Memory Leaks in the Kernel

Memory-leak bugs in the kernel are considered security
critical [35]. That is because the amount of memory available
to the kernel is highly limited, and thus the kernel is susceptible
to memory exhaustion, leading to denial-of-service (DoS) [33].
Worse, a DoS in OS kernels is typically unacceptable because
it results in the whole system unavailable, which is particularly
critical for long-running servers. The DoS may further result in
other critical issues such as data losses or crash inconsistencies.

Memory-leak bugs become vulnerabilities when they are
triggerable by attackers. By repeatedly triggering a memory-
leak bug, attackers can eventually exhaust available kernel
memory and hang the whole system.

In order to detect the bug in Figure 1, K-MELD first
confirms the memory is successfully allocated via customized
allocator nlmsg_new, then it confirms the assignment at line
17 does not cause skb to escape (because the struct info is a
local variable). Then K-MELD checks if the call to crypto_-
report_alg is consuming skb. In this case, the memory object
is not consumed, so it means any execution path following the
line 19 should manage skb properly. This is not the case for
the execution path ending at line 25, so K-MELD reports it
as a bug.

III. OVERVIEW OF K-MELD

The goal of K-MELD is to thoroughly and precisely detect
memory-leak bugs in kernel code with static analysis. To
identify a memory-leak bug in a function, we model memory
leak as a case satisfying the following conditions:

4include/net/netlink.h

1) A function retains ownership of the allocated memory
2) The function finishes without releasing the allocated memory

Originally, the allocating function is the owner of the memory
object. However, the ownership of the object would likely
propagate to other functions, e.g., the pointer to the memory
object is passed to other functions (e.g. via return or param-
eters). As long as a function owns the memory region, the
function is supposed to release the memory region; failure
to do so is a memory leak. According to the modeling, we
structure K-MELD into three phases, as shown in Figure 2:
allocation/deallocation identification, ownership propagation
analysis, and missing deallocation detection.

As shown in Figure 2, K-MELD compiles the source
code into LLVM IR bitcode files. Such bitcode files are first
preprocessed to extract contextual and structural properties.
More specifically, we collect return type, argument signature,
definition and usages of functions. At multiple points of our
analyses, a call graph is used to identify the set of callees or
callers for each function. Therefore in the preprocessing step,
the global call graph is constructed via maintaining a map of
function and all of its callees. To resolve indirect calls, we use
function signatures to match the target function from among
functions whose address is taken. The preprocessing phase is
performed once.

Phase 1: allocation/deallocation identification. we identify
potential allocation functions by looking for pointer-returning
functions that are followed by a null-check on the returned
pointer. Additionally, we prune any function that is offsetting
the returning pointer from an arguments. We also track the
usage of the returned pointer to determine initialization before
being de-referenced. Once the allocation functions are identified,
deallocation functions are identified via rule mining. We refer
to the current allocation function as the “function of interest”
(FOI), while the function that calls the FOI is the “allocating
function.”

The high-level rationale behind using rule mining is that
assuming the correct behavior is prevalent in a big code basis
like the OS kernel, we can model such common behavior in the
form of sequential patterns. Rule mining uses sequential pattern
discovery techniques to identify the sequence of commonly
used operations on the memory object. This way for a specific
FOI we can identify the common sequence of operations that
are used for deallocation. For example, considering kmalloc as
FOI, by looking through error handling paths of kmalloc call-
sites we can observe the function kfree is called in most cases
before terminating the execution path. Thus one can conclude
that kfree is the associated deallocation function.

Phase 2: ownership propagation analysis. Recalling the two
conditions proposed earlier in this section, condition (1) needs
to know if the subject call-site is the owner of the allocated
memory object or not. On one hand, the escape analysis
tracks the propagation of the memory object upwards in call-
graph beyond the allocating function boundaries. On the other
hand, the consumer function detection tracks the propagation
of memory object downwards in call-graph. These analyses
determine if the subject call-site is still the owner of memory
object. Such analyses are realized via a customized data-flow
analysis. They need to be path-sensitive, to differentiate the
conditional escape or consumption. They also need to be

4

Ownership Reasoning Bug detection

Consumer
detection

Escape
analysis

Pre-processing

Source IR

bcCompile

Colle
ct

& Build

c

Call-graph

Usage structure

Function signature

Alloc/Dealloc detection

structure-aware

Alloca detection
Usage-aware

&

Dealloca detection

Mining-based

Dataflow
analysis

Path
exploration

Rule
application

Bug reports

Fig. 2: Overview of K-MELD. Identifying specialized allocation functions and the corresponding deallocatoin is followed by inter-procedural escape and consumer
function analysis to determine the ownership of each allocation. Rule application checks the presence of deallocation and reports the bugs.

field-sensitive to be able to track the pointer propagation via
struct fields. Such analysis tracks the def-use chain of an
allocated memory object on each execution path. The escape
analysis determines if the memory pointer is copied beyond
the allocating function (via a reference argument or global
variable). The consumer function determines if any callees
of the allocating function are releasing the memory object or
causing it to escape. In either case, the allocating function is
not the owner of the memory object anymore. Otherwise, the
allocating function is responsible for appropriately releasing
the memory object before returning.

Phase 3: missing deallocation detection. Once the previous
phases finish, we can evaluate condition (2) for the specific FOI.
That is any potential execution path missing appropriate release
function is a potential memory leak bug. The context-aware
Rule Mining identifies appropriate release functions associated
with each FOI, and then escape analysis and consumer function
detection analysis reason on the owner of allocated memory
object. For each FOI, any absence of associated deallocation
indicates a potential memory leak bug.

In the following sections we explain the core design compo-
nents of K-MELD which are specialized allocation/deallocation
function detection and ownership reasoning.

IV. ALLOCATION AND DEALLOCATION IDENTIFICATION

A. Identifying Allocators (FOIs)

The first challenge K-MELD overcomes is identifying
allocation functions, both generic and specialized ones. Manual
identification of allocation functions in an OS kernel is not
practical. That is because various kernel modules have their
own specialized allocation functions. We need an automated
way to be able to collect a set of allocations including the
specialized ones.

Observations. We observe that memory allocation is a critical
operation, which in case of success returns a pointer to the
allocated memory region, whilst in case of failure it returns
a NULL pointer. Because of this, the allocation functions are
followed by a null-check on their return value. When a memory
object is allocated, it requires initialization before being used
effectively. An initialization is realized either via an store
instruction or a call to memcpy/memset with the allocated

pointer as destination. Such initialization must be performed
before any read from the memory object.

To summarize, an allocation function has the following
properties.

• It returns a pointer.
• The pointer is immediately followed by a NULL check.
• The pointer is not derived from another base pointer.
• The object is initialized before being used, e.g., being

read.

Removing noisy functions. Besides the allocator functions,
there is another class of functions that return a pointer and may
be followed by a null-check. A getter function is a function
that produces a pointer out of one of its pointer arguments
either by indexing or accessing a field in struct. In order to
exclude getter functions from the set of initial allocators, we
first profile all pointer-returning functions in the kernel and
mark those that their returning pointer is derived (calculated or
accessed via GetElementPtr) from one of pointer arguments
as base pointer.

Characterizing Pointers. We evaluate the aforementioned
properties via use-finding and source-finding data flow. Use-
finding is a forward data flow tracking that determines the
operations on a pointer. For example use-finding helps to
identify any null-check on a pointer. Source-finding is a
backward data flow tracking that determines what is the source
of pointer. This, for example helps in determining if a pointer
is offset of a base pointer.

At this stage, our analysis tends to be more relaxed in terms
of the number of null-check or initialization. More specifically,
first we look for pointer returning functions which are not
profiled as getter function (i.e. offset returning) and are followed
by null-check and initialized in majority of their call-sites.
This set will be further refined when deallocation detection
is finished. As will be shown in §VII, our approach works
well; While it identifies the common allocation functions we
are aware of, it also identifies specialized allocation functions.

B. Context-aware Rule Mining for Deallocation Detection

After we identified allocation functions, we next identify
the corresponding deallocation functions. To do so, we use
sequential pattern mining on the error-handling operations.

5

Identifying and Collecting Error-Handling Paths. It is a
convention that failure of an operation in an OS kernel is
reflected in a return status, which in turn should be check by
the caller. The error handling is responsible for recovering from
errors and preventing the system from entering an unstable or
undefined state. Error-handling paths are relatively short, and
have clean and important operations to recover from the failure,
this makes it a great place to identify paired operations (e.g.
release, unlock or close).

To identify error handling paths at each FOI call-site, we
first extract intra-procedural execution paths. To do so, we
statically explore the control flow graph (CFG) in a depth-first
fashion. Each path starts from the function’s entry basic block
and ends in a basic blocks with return instruction as terminator.
Loops are unrolled for just one level. We also filter out the
execution paths that do not go through the FOI call. In most
cases the FOI return status is checked5. If the call to the FOI
fails, the corresponding failure branch will not continue to use
the resources (e.g., a pointer) returned by the FOI. Therefore,
any paths following the FOI failure branch are not interesting
to us because there will be no memory leaks. For example,
the path going through line 15 of Figure 1 cannot lead to a
memory leak of skb.

From the set of FOI success paths, we then identify error
handling paths. If a path explicitly returns an error code (similar
to those used in errno in user space, though kernel conventions
use negative values) or NULL, it is an error-handling path. Not
all error-handling paths are simple to identify. In most cases,
the return status of an operation is checked, and if it turns out
as an error code, the same error code is propagated up to the
caller.

Referring to Figure 1, the return status of call to crypto_-
report_alg() is checked at line 24 and the same status code
is returned. To identify such more complicated error-handling
cases, we look for a critical check. We define a critical check
as a check against zero or NULL that has no fall-through
and leads to a return instruction with an integer or NULL
parameter. A zero/non-NULL return status indicates that an
operation was successful, while a non-zero (usually a negative
errno) or NULL return status is an indication of the operation
failure. Therefore, for each critical check, based on the check
predicate we can determine which side of the check is taken
when an error happens. This way we can identify non-explicit
error handling paths like the one shown in Figure 1 line 24.

Sequential Pattern Mining. The mining is applied to the
sequential patterns of operations on error-handling paths of a
given FOI. This way we can extract the common patterns of
error handling for each FOI. A key part of such a finding is
which release functions are used to de-allocate the allocated
memory object. In terms of memory management, it means
when an allocation succeeds (i.e., the memory is allocated),
if an error happens later, how the allocated memory should
be released. This can be represented by a high-level rule in
form of <call FOI, check, release, return>. Such a sequential
pattern of operations is important because the OS kernel has
different mechanisms and functions to allocate and release

5If such a check is missing, it can be a missing-check bug. Since such bugs
are out of the scope of this paper, if FOI is not checked, we assume it was
successful.

memory dynamically. Finding associated release functions for
any FOI can be addressed via looking for the sequential pattern
of operations at the moment of error handling. Many specialized
allocation functions allocate and craft specialized memory
objects, which in turn require specialized de-allocation. Using
the rule mining technique we identify such specialized release
functions associated with a given FOI.

Frequent pattern mining algorithms expect the inputs in the
form of a sequence of operations. Once we extract the error
handling paths as described in IV-B, each path is transformed
into a representation of sequential opcodes. To do so, we retrieve
the LLVM opcode of each instruction on the path and form
the opcode sequence. For the case of call instructions, we also
retrieve the callee function name.

For each FOI, the opcode sequences are fed into the frequent
pattern mining algorithm. The result will be a set of opcode
patterns associated with error handling paths of the FOI. We
take the most general pattern which by definition will be
covering the maximum number of error handling paths and use
it to identify the associated release function. Such a function
is identified by cross-checking the result of mining against the
set of operations as the last operation on the allocated pointer.
Use-finding has a key role in here as we identify all operations
that use a copy of the allocated pointer and consider only such
operations in rule mining.

V. OWNERSHIP REASONING

Another key challenge we have to address to detect kernel
memory leaks is to decide where an allocated object is
supposed to be released. In K-MELD, we propose a new
ownership reasoning mechanism to infer the release locations.
The ownership reasoning mechanism includes two components:
enhanced escape analysis and consumer function detection.

A. Enhanced Escape Analysis

Understanding how a function manages the ownership of
allocated memory is a key factor in designing a precise memory
leak detection technique. The second condition of resource
release bugs (as mentioned in §III) refers to that the owner
function of the allocated memory fails to release the allocated
memory upon finishing the uses. If the allocating function
passes on the ownership of the memory object, then there
will be no leaking problem if the allocating function finishes
without releasing the allocated memory. The ownership can be
transferred either via returning the allocated pointer or assigning
the allocated pointer to a global object or a reference argument.
We call such ownership transfer as escaping the pointer.

For example Figure 3 shows a case of an escaping allocated
pointer. Here the allocated pointer escapes at line 33 via ref-
erence argument bounce_buf_ret. Looking at the call graph
reveals that the function hgcm_call_preprocess_linaddr()
is called repeatedly by hgcm_call_preprocess(). Eventually
the caller of hgcm_call_preprocess() which is vbg_hgcm_-
call() takes care of releasing bounce_bufs either in case
of success or failure. But the code in Figure 3 is still leaking
memory at line 27, and it is because the pointers does not escape
on this path. This shows the importance of path-sensitive escape
analysis that we are employing to determine how the ownership
of the allocation is changed. The leak can be resolved by moving

6

1 /* File: drivers/virt/vboxguest/vboxguest_utils.c */
2 static int hgcm_call_preprocess_linaddr(
3 const struct vmmdev_hgcm_function_parameter *src_parm,
4 void **bounce_buf_ret, size_t *extra)
5 {
6 void *buf, *bounce_buf;
7 bool copy_in;
8 u32 len;
9 int ret;

10

11 buf = (void *)src_parm->u.pointer.u.linear_addr;
12 len = src_parm->u.pointer.size;
13 copy_in = src_parm->type != VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT;
14

15 if (len > VBG_MAX_HGCM_USER_PARM)
16 return -E2BIG;
17

18 /* Memory is allocated here */
19 bounce_buf = kvmalloc(len, GFP_KERNEL);
20 /* Check for allocation success */
21 if (!bounce_buf)
22 return -ENOMEM;
23

24 if (copy_in) {
25 ret = copy_from_user(bounce_buf, (void __user *)buf, len);
26 if (ret)
27 return -EFAULT;
28 } else {
29 memset(bounce_buf, 0, len);
30 }
31

32 /* Allocation pointer is assigned to a reference argument */
33 *bounce_buf_ret = bounce_buf;
34 hgcm_call_add_pagelist_size(bounce_buf, len, extra);
35 return 0;
36 }

Fig. 3: An example of escaping pointer: The allocation pointer bounce_buf is
escaping via a pointer argument at line 33. But it is not enough to the prevent
memory leak at line 27 (CVE-2019-19048).

the assignment at line 33 to line 23. When an allocation pointer
is escaping on a path, then we assume there is another place
of code responsible to manage the allocation, and the current
path is not further explored for leak finding. This avoids the
path-explosion problem and the tracking of complicated data
flows, which in turn reduces false positives.

As mentioned in §IV-A source-finding is a backward data
flow tracking which is employed to identify the sources of any
destination that the allocation pointer is copied into. Source-
finding determines the destination of copy at line 33 is a
function argument. We tend to identify escaping pointer as
those are the pointers that their ownership is passed to other
functions, so it is safe if the current function do not release them.
To identify if an allocated pointer is escaping we should find
any variable that such pointer is copied into (via use-finding)
and then determine the kind of the destination variable (via
source-finding). If the destination variable is used in a return
instruction, is a global variable, or is a function argument, then
we can conclude that the allocated pointer escapes.

Path-sensitive escape analysis. Such an escape analysis
should be path-sensitive as not all the execution paths may
reach to the escaping point (as in Figure 3). Therefore, after
identifying error handling paths (as described in IV-B) we
perform escape analysis on each path. If the allocated pointer
escapes on a specific error handling path, then we exclude such
a path from the rest of our analysis, because the ownership
is changed and the allocating function is not the sole entity
having a handle on the allocated memory. It means if the
allocating function terminates without releasing the allocated

memory, there are still other live pointers to the allocation
and no memory leak yet has happened. Instead we collect the
escaping pointer information and go after the callers of the
allocating functions one by one, and look for potential memory
leak. This requires an inter-procedural analysis to track the
operations performed on the escaping pointer in the context of
the callers.

B. Consumer Function Detection

Consumer functions are another place that the ownership of
an allocated memory object is changed. An allocating function
may pass the memory object to its callees, so K-MELD
analyzes those receiving callees to make sure ownership is
not changed once returning from such callees. If the callee
is a consumer, then there will be no memory leak. It means
any execution path that is going through a consumer function,
should be disregarded for memory leak detection.

Figure 4 shows an example of consumer function. The
specialized allocator alloc_skb allocates a new network buffer
skb at line 12. At line 16 skb is passed to the function
t4_mgmt_tx which in turn passes skb to ctrl_xmit at line
26. As the implementation of ctrl_xmit shows the buffer is
consumed on all execution paths. More specifically, the skb is
released at lines 36 and 47, and is escaped via being added to
a queue at line 42. This confirms the code at line 18 should
not release skb. This example shows how K-MELD requires
an inter-procedural analysis to track skb across the function
calls.

Remember at this stage K-MELD knows associated deal-
locations of the FOI. So a pointer receiving callee becomes a
consumer when on all of its execution paths it either releases
or escapes the allocated pointer. This is realized by applying
escape analysis to the paths of the callee, and also tracking the
propagation of the allocated pointer in the callee to determine
if it reaches any deallocation function.

Conditional consumers. While analyzing consumer function
candidates, it may be the case that the candidate consumes
(releases or causes to escape) the memory object conditionally.
For example in Figure 5 the allocated nskb is passed to skb_-
put_padto which tries to pad the buffer. If it fails to do so,
the memory object is released (as in line 38). But if it succeeds
(as in lines 23 and 35) the ownership is not changed and the
allocating function has to handle nskb appropriately. K-MELD
handles such cases by first identifying the critical check at line
11. Then via the condition predicate it determines if the current
path is associated with success or failure of skb_put_padto
as described in IV-B. For example line 12 is associated with
the failure, then when processing skb_put_padto, K-MELD
only considers failure execution paths (only paths ending at
line 39). This way K-MELD determines the code at line 12 is
not responsible to release nskb, and there is no leak.

C. Detecting Bugs Using Mined Rules

Now that we presented the techniques, all the ingredients
are ready to check the satisfiability of the two memory leak
conditions in section III: the function owns the allocated
memory object, but fails to release it. As described in IV-A, we
collect the initial set of FOIs and then extract the error-handling
paths as explained in IV-B. These paths are fed into the rule

7

1 /* File: drivers/net/ethernet/chelsio/cxgb4/srq.c */
2 int cxgb4_get_srq_entry(struct net_device *dev,
3 int srq_idx, struct srq_entry *entryp)
4 {
5 ...
6 struct adapter *adap;
7 struct sk_buff *skb;
8 ...
9 adap = netdev2adap(dev);

10 ...
11 /* ALLOCATION */
12 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
13 if (!skb)
14 return -ENOMEM;
15 ...
16 t4_mgmt_tx(adap, skb); /* CONSUMER */
17 ...
18 return rc;
19 }
20

21 /* File: drivers/net/ethernet/chelsio/cxgb4/sge.c */
22 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
23 {
24 int ret;
25 ...
26 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); /* CONSUMER */
27 ...
28 return ret;
29 }
30

31 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
32 {
33 ...
34 if (unlikely(!is_imm(skb))) {
35 WARN_ON(1);
36 dev_kfree_skb(skb); /* RELEASE */
37 return NET_XMIT_DROP;
38 }
39 ...
40 if (unlikely(q->full)) {
41 ...
42 __skb_queue_tail(&q->sendq, skb); /* ESCAPE */
43 spin_unlock(&q->sendq.lock);
44 return NET_XMIT_CN;
45 }
46 ...
47 kfree_skb(skb); /* RELEASE */
48 return NET_XMIT_SUCCESS;
49 }

Fig. 4: Consumer function example: t4_mgmt_tx consumes the buffer skb
unconditionaly.

mining to detect associated deallocation functions as described
in IV-B. We prune the escaping paths and those going through
consumer functions. The remaining paths are used in a pattern-
matching step to detect the paths that miss the release function.
Such paths comprise K-MELD’s memory leak reports.

VI. IMPLEMENTATION

We have implemented K-MELD as multiple LLVM passes,
integrated with Python code to run the passes and rule mining,
and then perform the pattern matching.

A. Potential Allocation Functions

As our ultimate goal is detecting memory leak bugs, we
need to populate an initial set of potential memory allocation
functions. Such functions will become the initial set of FOIs for
the rest of our analysis. In order to scale to the large number
of specialized allocation functions in the kernel, we need this
phase to be automated.

Using a preprocessing LLVM pass over all the kernel, we
identify any pointer-returning function. Then looking into the

1 /* File: net/dsa/tag_ksz.c */
2 static struct sk_buff *ksz_common_xmit(struct sk_buff *skb,
3 struct net_device *dev, int len)
4 {
5 nskb = alloc_skb(NET_IP_ALIGN + skb->len +
6 padlen + len, GFP_ATOMIC);
7 if (!nskb)
8 return NULL;
9 ...

10 /* CONDITIONAL-CONSUMER */
11 if (skb_put_padto(nskb, nskb->len + padlen))
12 return NULL;
13 ...
14 return nskb;
15 }
16 /* File: net/core/skbuff.c */
17 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
18 {
19 int err;
20 int ntail;
21 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
22 memset(skb->data+skb->len, 0, pad);
23 return 0;
24 }
25 ...
26 if (likely(skb_cloned(skb) || ntail > 0)) {
27 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
28 if (unlikely(err))
29 goto free_skb;
30 }
31 err = skb_linearize(skb);
32 if (unlikely(err))
33 goto free_skb;
34 memset(skb->data + skb->len, 0, pad);
35 return 0;
36 free_skb:
37 ...
38 kfree_skb(skb);
39 return err;
40 }

Fig. 5: Conditional Consumer function example: skb_put_padto consumes
the buffer skb on failure.

definition of that function, we make sure the returning pointer
is not derived from any pointer argument, because allocation
function is supposed to return a previously non-existent memory
object. To do so, we use source-finding described in §IV-A
to make sure the returning pointer is a not coming from a
pointer argument. After that, we look at the call-sites of the
candidate allocator and using use-finding analysis determine
if the returned pointer is being null-checked and initialized or
not. This can identify a caller function of a primitive allocator
(like kmalloc) as a new allocator. Such design choice reduces
the tracking of complicated and lengthy data flows.

For some reason not all memory allocations are null-
checked. As an example if flag GFP_NOFAIL is passed to
kmalloc, the allocation cannot fail [21]. Additionally, some
primitive allocators like kzalloc or kcalloc zero-initialize
the memory object. Therefore, at this stage it is enough a
candidate allocator to be null-checked or initialized at least in
40% of cases (such threshold was selected based on empirical
observations in common allocators). This initial list of functions
later will be pruned when we apply release detection described
in §IV-B. Any function that fails to yield at least one release
function in rule mining will be discarded from the analysis
results.

B. Path Exploration

To identify error handling paths, as described in §IV-B, we
statically explore the CFG and determine if a path is error

8

handling or not. To avoid path explosion problem, in addition
to loop unrolling, we set a hard limit to the number of paths we
explore per function. We also set a limit on the path depth to
handle deep paths like mutually recursive calls. In the current
implementation, we set the both limits to 1000. Such a limit
was selected empirically to balance the pass running time and
the leak detection rate.

When exploring the paths, we keep track of the uses of the
allocated pointer. For each explored path, we maintain a list
of opcodes that work on FOI result; specifically, function calls
that take the FOI result as an argument. Such call instructions,
are used for consumer function detection. For each explored
path, we also record the last call instruction taking the FOI
result as an argument in a set called last_foi_use.

Pruning Infeasible Paths. We employ a simple but effective
infeasible path pruning. K-MELD is interested in the execution
paths where the allocation was successful. After detecting the
initial null-check on the FOI result, any subsequent null-check
on the same pointer will result in infeasible path if the condition
is taken. Therefore K-MELD prunes a path if any branch, either
in the allocating function, or in a consumer function, implies
that the allocated pointer is null.

C. Context-aware Rule Mining

For the purpose of sequential pattern mining, we employed
the CloFAST [12] algorithm. CloFAST is a fast algorithm for
discovering closed sequential patterns from a set of sequences.
A sequential pattern is a sub-sequence that appears in many
input sequences, and intuitively a pattern is closed if it cannot
be extended. More precisely the support of a sequential pattern
is the ratio of the number of times the sequential pattern appears
divided by the total number of input sequences. The input to the
CloFAST is a sequence database and a user-defined minimum
support minsup. The sequence database is a set of sequences
where each sequence is a list of opcodes associated with error
handling paths as described in §IV-B. The minimum support is
a frequency threshold in terms of percentage which is used to
recognize a frequent sequential pattern. A frequent sequential
pattern is a pattern with a support level of no less than minsup.
A closed sequential pattern is a frequent sequential pattern that
is not a subset of any other pattern with the same support level.
Discovering closed sequential patterns is more efficient than
finding all sequential patterns while missing no information
about the patterns [12]. Informally, as all sub-patterns of a
frequent pattern are also frequent, therefore mining closed
sequential patterns avoids generating unnecessary patterns and
as a result yields savings of space and computational costs. In
our implementation we empirically set the minsup to 0.6, as
further described in §VIII. In our implementation we noticed a
limitation of the mining algorithm with respect to the number
of input sequences. Meaning that the algorithm was not able
to process all execution paths even on a machine with a large
amount of memory. We avoided this limitation by first applying
escape analysis to prune uninteresting paths, and then feeding
in the sequence of operations on each path as input to the
mining algorithm.

Release Function Identification. Once the rule mining is
finished, we will have a set of sequential patterns for the
specific FOI. We are interested in the patterns that follow the

correct behavior of memory release; meaning <Call FOI, check,
release, return>. Such a pattern is used to identify the associated
release function to the FOI. We cross-check the mined pattern
against last_foi_use set populated at the path exploration phase.
This confirms the candidate release is the last function working
on FOI.

D. Ownership Reasoning

Path-sensitive Escape Analysis. We employ escape analysis
to track the ownership of the allocated memory. K-MELD’s
use of escape analysis is inter-procedural in that if a pointer
escapes from the current function f , it is never reported as a
leak from f . However all the callers of f are tracked to check
for leaking the pointer.

Consumer Function Path Profiling. For the purpose of
consumer function detection, K-MELD analyzes any called
function that takes the allocated pointer as an argument. It
labels the callee paths as success or failure based on the return
code. Then each caller path is associated with either of these
path collections. If the caller path takes the success side of the
consumer candidate, then callee’s success paths are considered
for releasing or escaping the allocated pointer, and vice versa.

Inter-procedural Data Flow. At multiple stages, K-MELD
employs inter-procedural data flow analysis to track the allo-
cated pointer. For each LLVM call instruction taking allocated
pointer as an argument, we determine the argument index in
the call instruction. Then in the definition of the callee we
start tracking the argument at that index. This way K-MELD
monitors the propagation of pointers across functions.

E. Pattern Matching and Error Finding

When we have identified the release functions associated
with the specific FOI, K-MELD then goes through the error
handling paths extracted for the FOI and applies pattern
matching. The pattern are of the form <call FOI, check,
call release, return> where any call to the identified release
functions will match the call release item.

Any path failing to match in the previous step will be further
investigated for potential consumer functions. K-MELD looks
at the function calls on the allocated pointer and checks if the
associated paths in the callee are consuming the pointer or not.
If consuming, such a path is disregarded as a potential bug.

This way any error handling path deviating from the
common approach of memory releasing will be found. Then
such bug candidate paths are manually audited to confirm it is
a memory leak bug. Once confirmed, we then prepare a patch
to fix the bug and submit the patch to the code contributors.

VII. EVALUATION

The effectiveness and scalability of K-MELD is tested on
the Linux kernel, version 5.2.13-stable. We compiled the kernel
code into LLVM bitcode using allyesconfig, and got 18074
LLVM IR bitcode files. The experiments were carried out on
an Intel Xeon CPU server with 48-cores and 256GB RAM,
and runs Ubuntu-18.04 OS with LLVM v8.0 installed.

9

A. Scalability

LLVM bitcode generation for the whole kernel took 5
hours. Allocation function collection took less than 2 hours.
Note that these two steps are a one-time process and can be
reused. Sequential pattern mining and pattern matching for
identifying deallocators took slightly more than one hour only.
The detection for each FOI takes from seconds to 4 hours (with
3 minutes average). The most time-consuming case (4 hours) is
for kmalloc with the largest number of callsites. Note that based
on K-MeLD design, each FOI can be analyzed independently,
making it possible to benefit from parallelization.

B. Set of Allocations and Associated Deallocations

Using the methods described in §IV-A we populated an
initial set of 4621 candidate allocator functions. Furthermore,
once the rule mining finished, those failing to produce at least
one associated deallocation, are pruned. This left us with 807
allocation functions6

These functions are considered as FOI for our evaluation.
These FOIs have a wide range of frequency (some with many
call sites, some with just a few), and so demonstrate K-MELD’s
effectiveness for both general-purpose and specialized allocation
functions. Withing this set of 807 functions, there are 4
generic allocation functions (like kmalloc) with over one
thousand callsites, along with more specialized allocation
functions with callsites down to 2 (like charlcd_alloc).
K-MELD was able to find the associated release functions
for even the most specialized allocation functions (with as
few as 2 callsites). Looking at the FOIs and associated
releases, we identified only 15 false positive cases (1.8%). Such
cases are result of incorrectly paired functions in the mining
algorithm (IV-B). In VIII we discuss the effect of minimum
support parameter in the mining algorithm on the rate of false
positive and false negative. Moreover, there were allocators like
fscache_alloc_retrieval that were not selected as FOI,
but were covered by K-MELD. These functions are either
escaping the allocation through pointer arguments, or did not
pair with a specific deallocator. But essentially they are using
other primitive allocators like kzalloc and are processed as
escaping functions. Looking into the internal of 807 FOIs,
we found a small number of primitive allocators (21 FOIs,
comprising 2% of all selected FOIs) that are used to perform
the actual allocations.

This selection of allocation and associated deallocation
functions are necessary for effectively detecting memory leak
bugs. To the best of our knowledge, none of the previous detec-
tion techniques used such a rich set of allocation-deallocation
functions.

C. Found Bugs

In total, K-MELD generated 458 leak warnings. After
manual audit we confirmed 218 new memory leak bugs. This
means K-MELD is bearing 52% false positive. We prepared
patches and submitted for those bugs. To date, 106 patches have
been confirmed by the Linux code maintainers and the rest are
under review. Table V (in §A) lists all the found bugs, giving

6The full list is available at: https://github.com/Navidem/k-meld/blob/main/
results/FOIs.txt

the source code file, function name, the FOI name, and whether
the bug is confirmed or not yet. We reported the number of
bugs based on the patches submitted, meaning that a single
patch sometimes covers multiple memory leaks in the same
function. We also requested CVE IDs for the leak bugs found,
which to date we received 41 CVEs as listed in Table VI (in
§A).

The bugs we found are spread among the most common
allocation functions like kmalloc (with 9244 call-sites) and
kzalloc (with 9926 call-sites); to the most specialized allo-
cation functions like sync_file_alloc, edac_mc_alloc()
and nlmsg_new() with 2, 17 and 333 call-sites, respectively.

From the perspective of specialized modules, among 218
detected bugs, 115 were related to the FOIs with 400 call-sites
or less. These results demonstrate the utility of K-MELD to
detect memory leak bugs even in specialized kernel modules.

D. Exploitability Analysis

Entry functions Attacker Count
System calls Userspace 137

Ioctl handlers Userspace 173

IRQ handlers Hardware 173

Reachable from any entry 182 (83.9%)

TABLE I: The number of reachable bugs for different types of entry functions.
IRQ = Interrupt request, Ioctl = I/O control.

As a first step toward automatically assessing the security
impact of the bugs found by K-MELD, we have tested the
control-flow reachability of each bug location from common
attacker-controllable kernel entry points. Precisely determining
the exploitability or even just reachability of bugs found
statically is a hard problem, especially in a kernel. Dynamic
approaches such as fuzzing or whole-kernel symbolic execution
can confirm exploitability if they find a triggering input, but
the search space is so large that these approaches can run
indefinitely without showing the absence of an exploit, and
code that interacts with hardware is challenging to execute
in simulation. Detailed checking of path feasibility such as
with static symbolic execution and constraint solving is also
expensive and suffers from path explosion. Therefore, in
this project, we weaken these conditions and try to find the
reachable call stacks between entry points function to vulnerable
functions.

To this end, we first analyzed the call relationship for every
function in the Linux kernel. To improve the accuracy rate,
we identify the indirect-calls and refine the indirect-call targets
by using struct type matching [25, 26, 50]. Then, we can
build a complete call-graph for the whole kernel. Based on
this call-graph, we try to find the shortest path between every
attacker-controllable functions to the functions that include
memory leak bugs.

As the starting points of these paths, we identify three
kinds of attacker-controllable functions in the Linux kernel:
system calls, I/O control handler functions, and interrupt request
handlers functions. Previous works such as [42] and [9] have

10

https://github.com/Navidem/k-meld/blob/main/results/FOIs.txt
https://github.com/Navidem/k-meld/blob/main/results/FOIs.txt

used these functions as entry points to guide the kernel fuzzer,
which show the effectiveness of these entry points. Finally,
we find 83.9% of bugs found by K-MELD can be potentially
reached from attacker-controllable points. Though this analysis
is coarse-grained, it confirms our intuition that a majority of
memory leaks in a kernel can likely be triggered by a local user
or a misbehvaing hardware device. By contrast an example of
a leak that cannot be triggered in this way is one that occurs
during kernel boot. Table I shows the number of vulnerable
functions that can be reached for different types of entry points.

E. False Positive Analysis

K-MELD has a false-positive rate of 52%, which we believe
is acceptable for a static analysis tool applied to an OS kernel.
We revisited the false warnings issued by K-MELD to get an
understanding on the sources of such false positives.

Infeasible paths are one of the main sources of false
warnings. As we use static path exploration and do not
check for path feasibility except a few cases, K-MELD may
assume some infeasible paths as potential leaks. Incorporating
some more expensive analysis like under-constrained symbolic
execution [38] can help avoid these cases. Customized device-
managed allocations caused false warnings, too. These are
driver-specific allocations that autonomously release all the
allocated resources at the time of device detachment. Uncom-
mon customized release functions which K-MELD fails to
identify in the rule mining step are another source of false
positives. These functions do not pass the minimum threshold
of mining and are basically not a wrapper for the common
release functions; therefore, it leads to false positive. For
example, K-MELD correctly identified kmem_cache_free()
as the release for kmem_cache_alloc(), but in 9 cases the
allocated cache is released via abort_creds().

F. False Negative Analysis

K-MELD misses memory leak bugs if the allocation
function is not in the set of FOIs. Additionally, even though
we incorporate inter-procedural escape and consumer function
analysis, these analyses are not complete and there may be cases
where pointer propagation is lost due to aliasing or complicated
data structure assignments. In order to perform a false negative
analysis we decided to use 17 previously detected memory leak
bugs which were assigned CVEs as ground truth. These bugs
were spread among multiple versions of the Linux kernel over
the span of 10 years. Instead of compiling multiple versions of
the kernel, we reproduced each bug by undoing the proposed
patch.

Table II shows the results of this analysis. Out of 17 cases,
it turned out one was false positive and the initially merged
patch was reverted later7. K-MELD correctly identifies 9 of
those memory leaks, and correctly identifies the reverted one
as escaped pointer. Two of those bugs are out of scope, as
the source of the bug is not missing a release function, but
API confusion8. Four of the bugs were not reproducible due
to the code structure changes between kernel versions. Finally,
K-MELD missed one bug due to the complicated pointer

7CVE-2019-12379: commit 84ecc2f was reverted by 15b3cd8.
8The leak happens because kvm_pin_pages() expects size, but kvm_-

unpin_pages() expects the number of pages as argument.

CVE # Reproducible K-MELD Success/Failure

CVE-2019-8980 ✓ Success

CVE-2019-9857 ✓ Success

CVE-2019-16995 ✓ Failure

CVE-2019-16994 ✓ Success

CVE-2019-15916 ✓ Success

CVE-2019-15807 ✓ Success

CVE-2019-12379 ✓ Success (correctly rejected)

CVE-2018-8087 ✓ Success

CVE-2018-7757 ✓ Success

CVE-2018-6554 X —

CVE-2016-9685 ✓ Success

CVE-2016-5400 ✓ Success

CVE-2015-1339 X —

CVE-2015-1333 X —

CVE-2014-8369 ✓ out-of-scope

CVE-2014-3601 ✓ out-of-scope

CVE-2010-4250 X —

TABLE II: False Negative Analysis results based on previous memory Leak
CVEs

propagation. More specifically, the allocation function causes
the allocated pointer to escape by adding it to a list in a field
of reference argument. K-MELD loses the track of the pointer
when it gets to the caller.

G. Comparison with Hector

Hector [41] is the closest detection tool to K-MELD. Hector
detects resource release bugs in a function if some error-
handling paths correctly release the allocated memory while
some other do not. Thus Hector fails to detect bugs in a function
where no path is correctly releasing the allocated memory. The
presence of correct path is a hint to hector to decide the current
function in the owner of the allocated pointer.

Unfortunately, Hector’s source code is not available, so we
cannot run it on the same kernel used in our main evaluation.
Instead we compile the old kernel used by Hector to LLVM
bitcode and run K-MELD on it. Hector reports bugs in version
2.6.34. Despite the challenges of compiling an old kernel using
LLVM, we managed do so partially and produce 6861 bitcode
files. On the other hand, we were able to obtain a raw table
of outputs from Hector authors containing 4979 entries. By
cross-referencing the table entries and the patches submitted
by authors to the Linux kernel9, we were able to retrieve 29
memory leak bugs identified by Hector. 16 of these bugs were
in the sources that produced bitcode. K-MELD successfully
detected all of these 16 bugs. Table IV in §A lists these bugs.
This experiment also demonstrated how good K-MELD is in
terms of detecting known bugs.

9Linux Kernel Mailing List: https://lkml.org/

11

Fig. 6: The effect of different minsup on deallocation detection

H. Effectiveness of Escape and Consumer Function Analysis

K-MELD incorporates inter-procedural path-sensitive es-
cape and consumer function analysis to reason on the ownership
of the allocated pointer. The escape analysis affects whether
an execution path should be further considered for potential
leak finding or not. Consumer function analysis determines if
the pointer is consumed once passed to a function. As a result,
both of these analyses affect the number of reports K-MELD
may generate for each FOI.

To evaluate the effectiveness of such analyses, we monitor
the total number of reports generated by K-MELD with
each of these analyses enabled and disabled. Our experiments
demonstrated disabling escape analysis increases the number
of reports to 1292, while disabling consumer function analysis
produces 1386 reports. This results confirms the effectiveness
of our path-sensitive escape and consumer function analyses
to reduce the false positive rate. We manually audited 20 of
these suppressed reports which were selected randomly and it
did not reveal any missed bug.

VIII. DISCUSSION

In this section we describe some additional design choices
in our implementation and evaluation.

Choosing Minimum Support. The rule mining algorithm
uses the parameter minsup to determine if a sequence is frequent
or not. This threshold affects the quality of identified release
functions for a given FOI. A too-high minsup may lead to
missing release functions of a given FOI, while a too-low
minsup may lead to incorrectly identified releases.

To perform pattern matching we need at least one release
function; if we miss a release function it contributes to false
positive in leak warnings by K-MELD. If we incorrectly
identify a release function it causes false negative. We prefer to
choose a minsup that does not yield incorrect release functions
to avoid false negative with the cost of some false positive.

To demonstrate the effect of different support levels on
the release function detection we randomly selected 100
potential allocation functions and recorded the number of
correct and incorrect pairs. Figure 6 shows the result. As it
shows, minsup=0.6 provides a good trade-off between release
detection true positives and false positives.

devm_kmalloc() devm_kmalloc_array()
devm_kcalloc() devm_kzalloc()
devm_kmemdup() devm_kstrdup()
devm_kasprintf() devm_kvasprintf()
devm_get_free_pages() devm_free_pages()

TABLE III: List of Managed Resource Allocations

Managed Resource Allocation. A feature known as man-
aged device resources was introduced in kernel 2.6.21 [18].
In this model, each device driver maintains a list of allocated
resources which will be released when the device is detached.
It means a manged resource allocator adds the memory to
the device list upon successful allocation. As documentation
states, there is no explicit release needed for managed resource
allocation. Such functions were not selected as potential FOIs
because in the mining step they did not yield at least one
release function. Table III lists such functions.

Reference Counting. The Linux kernel uses the technique
of reference counting [32] for some objects. Using reference
counting to manage the lifetime of an object is to have a
counter which is incremented whenever a reference is taken,
and decremented whenever a reference is released. When this
counter reaches zero, then any resource (like the memory) used
by the object can be freed. In our initial results we noticed
a higher number of false positives for some general purpose
allocators like kmalloc and kzalloc. After investigations it
turned out that reference counting releases are a major factor
of such false positives. We decided to perform another round
of mining, but this time just using the set of paths that were
not matched via kfree as release. Results were satisfying
where we identified three reference counting releases: kref_-
put, kobject_put, and put_device. Therefore, we added
these three functions to the set of release functions, whenever
kfree was identified as release.

Escaped Pointers. The path-sensitive escape analysis helps
with determining the locations of the code where the ownership
of the allocated memory is transferred. One strategy could be
tracking an escaping pointer in the context of the caller. If
the pointer is escaped to the caller via return or a reference
argument, then the caller is analyzed from the instruction
following the call. Tracking the pointer propagation determines
if it is being released or not. We tried this in K-MELD
and for each escaping pointer, tracked any potential caller. It
produces 131 reports, which auditing half of them did not reveal
any bug. Therefore we decided to de-rank those reports. Our
understanding is that complicated data flow used for escaping
via reference arguments and more complex feasible paths on
multiple levels of call-graph hinder the precision.

K-MELD does not track an allocation when it is added to
a global list or queue; therefore it may miss any subsequent
memory leaks. Our analysis shows that such cases of escape are
mainly realized through variants of list_add and queue_tail
functions.

Ranking Results. When exploring the execution paths as
described in IV-B we do not check for complicated infeasible
paths. As a result, if a release function is under a check there
will be a path that will not go through the release no matter
what is the check condition. One solution for this could be using

12

some heavyweight analysis like under-constrained symbolic
execution [38]. To avoid such expense, we took a different
approach. An infeasible path if not pruned, introduces false
positive, so we de-prioritize such path. More specifically, we
determine whether the release candidate function (last function
call using the allocated memory) is under a check, and also
whether the check is not critical (as defined in IV-B), then any
path going through such check is de-prioritized when generating
leak warnings.

Other Classes of Bugs. In the process of detecting kernel
memory leak bugs, we also found other types of security
bugs and submitted patches to the Linux kernel. As K-MELD
already searches to determine if an FOI result is null-checked
or not (IV-B), we found a handful of missing null-check bugs.
The call to an allocation function may fail and therefore a
null pointer may be returned. Therefore, any missing check
bug on an allocation operation is a potential null pointer
dereference. Use-after-free is another class of bugs, where
the pointer to an already released memory is used to read or
write. We explicitly looked for simple use-after-free bugs by
looking for any subsequent use of the pointer to the release
function, and interestingly found one such bug. We received
CVE-2019-1881410 for the bug where a pointer to an already
released memory was dereferenced in an error-handling path.

The general approach of rule mining employed in this paper
can be applied to any resource release bugs. Another common
case is locks: when a function acquires a lock, any potential
the error-handling path must release the lock. We leave such
extensions for future work. K-MELD is also extendable to other
OS kernels like FreeBSD. It requires compiling the source code
into LLVM IR and then running K-MELD on it to collect leak
reports, and then auditing the reports.

IX. RELATED WORK

Static Memory Leak Detection. Hector [41] has a similar
motivating intuition to K-MELD, and has also been applied
to the Linux kernel, but it is limited to finding inconsistencies
within a single function. Hector warns on situations where a
resource is released on some paths through a function and not
on others. It also checks whether a resource is returned from a
function, but not if it escapes via a pointer.

Leak Checker [48] tries to detect memory leaks via static
path sensitive pointer analysis. It reduces the memory leak
detection problem to a Boolean satisfiability problem, and
then uses a SAT-solver to identify potential bugs. Other static
memory leak detection techniques have been proposed [7, 13,
20, 34, 39, 43], which to the best of our knowledge were not
scalable to OS kernel.

Deviation-based Analysis. K-MELD’s use of mining is
similar to Engler et al.’s [10] proposal to infer bugs by
looking for deviations from commonly observed behavior.
More specifically, they looked for NULL-pointer inconsistency
through the OS kernel and were able to detect multiple bugs.

Pattern mining has been employed in previous research for
the purpose of program analysis. In [24] the authors used mining
on code revision history to find paired functions. Found pairs
are then checked at the run-time to find violations. The approach

10security/apparmor/audit.c:191

is not flow sensitive, and relies on user input to enhance
pattern matching. The authors of [16, 46] applied sequential
pattern mining for specification mining by focusing on Java
exception-handling code. PR-Miner [23] uses frequent item-set
mining to infer programming rules without using user-defined
templates. It does not consider the sequence of operations.
MUVI [29] uses a similar approach to detect concurrency bugs.
CHRONICLER [37] integrates sequential pattern mining with
a path-sensitive data flow analysis to identify precedence rules
for a function call. To the best of our knowledge none of these
works were applicable to a large system like OS kernel.

Error-handling based Detection. Using error-handling
code to detect bugs was employed previously is many works.
LRSan [44] and Crix [26] find classes of missing-check bugs
in the Linux kernel via employing error-handling code to
identify critical variables. Other techniques analyzing error-
handling code within the Linux kernel include [2, 17, 40]
where the error propagation is evaluated to detect potential
bugs. These techniques rely on explicit errno returning to
identify error-handling code. Based on our study, non-explicit
error-handling cases are common, and missing those, causes
false negative. Such error-handling cases are covered via critical
check identification in K-MELD as described in IV-B.

Kernel Vulnerability Analysis. Because of the inherent
complexity of the OS kernel, analyzing the whole kernel is
challenging. Therefore, first compiling the whole kernel into
LLVM IR became a practical approach. This facilitates the
analysis by employing LLVM passes. K-Miner [14] performs
inter-procedural analysis by extracting execution paths starting
from system-calls to detect memory corruption vulnerabilities.
Without the ownership reasoning mechanism and the identifi-
cation of specialized allocators/deallocators, K-Miner has to
analyze complicated data flows globally, which is very hard. As
a result it only focuses on the paths starting from syscalls. Dr.
Checker [31] finds vulnerabilities in the Linux kernel drivers via
static data flow analysis. KINT [45] and UniSan [27] employ
taint analysis to find integer overflow and information leakage,
respectively. SLAKE [6] provides an automated method to
exploit vulnerabilities in the Linux kernel by extending LLVM
for its static analysis, in tandem with the fuzzer Syzkaller [15].
DCUAF [1] proposes a static analysis approach to detect use-
after-free bugs in the Linux device drivers.

X. CONCLUSION

Memory leak bugs are a serious security vulnerability in
critical systems like OS kernels. In this paper we presented
K-MELD, an effective and scalable static memory leak detec-
tion for kernels that may consist of many modules. K-MELD
can detect memory leak bugs not only on general allocation
functions, but also on specialized allocation functions with
only a handful of call sites. K-MELD first identifies allocation
functions via a structure- and usage-aware approach, then associ-
ated deallocations are determined by using a sequential pattern
mining technique. To detect memory leak bugs, K-MELD
reasons on the ownership of the allocated memory object
to determine the location of expected dealocation call. Such
reasoning is realized via inter-procedural and path-sensitive
escape and consumer-function analysis. Our application of
K-MELD to the Linux kernel found 218 new memory leak

13

bugs among which the maintainers so far confirmed 106. We
also received 41 new CVEs for the detected memory leak bugs.

ACKNOWLEDGMENT

We would like to thank our shepherd, Mathias Payer,
and the anonymous reviewers for their insightful suggestions
and comments. We also thank Julia Lawall for providing
us with Hector results, and Linux maintainers for providing
prompt feedback on patching the Linux kernel. This research
was supported in part by the NSF awards CNS-1815621
and CNS-1931208. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective
static analysis of concurrency use-after-free bugs in
Linux device drivers,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019, pp. 255–268.

[2] J.-J. Bai, Y.-P. Wang, J. Yin, and S.-M. Hu, “Testing error
handling code in device drivers using characteristic fault
injection,” in 2016 USENIX Annual Technical Conference
(USENIX ATC 16), 2016, pp. 635–647.

[3] J. Bonwick et al., “The slab allocator: An object-caching
kernel memory allocator.” in USENIX Summer, vol. 16.
Boston, MA, USA, 1994.

[4] B. M. Cantrill, “Method and apparatus for post-mortem
kernel memory leak detection,” Feb. 18 2003, US Patent
6,523,141.

[5] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and
M. F. Kaashoek, “Linux kernel vulnerabilities: State-of-
the-art defenses and open problems,” in Proceedings of
the Second Asia-Pacific Workshop on Systems. ACM,
2011, p. 5.

[6] Y. Chen and X. Xing, “SLAKE: Facilitating slab manip-
ulation for exploiting vulnerabilities in the linux kernel,”
in Proceedings of 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19,
2019, pp. 1707–1722.

[7] S. Cherem, L. Princehouse, and R. Rugina, “Practical
memory leak detection using guarded value-flow analysis,”
in ACM SIGPLAN Notices, vol. 42, no. 6. ACM, 2007,
pp. 480–491.

[8] J. K. Chittigala, “System and method for finding kernel
memory leaks,” Jul. 16 2013, US Patent 8,489,842.

[9] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao,
C. Kruegel, and G. Vigna, “Difuze: Interface aware
fuzzing for kernel drivers,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 2123–2138.

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf, “Bugs as deviant behavior: A general approach
to inferring errors in systems code,” SIGOPS Oper. Syst.
Rev., vol. 35, no. 5, pp. 57–72, Oct. 2001. [Online].
Available: http://doi.acm.org/10.1145/502059.502041

[11] C. Erickson, “Memory leak detection in embedded sys-
tems,” Linux Journal, vol. 2002, no. 101, p. 9, 2002.

[12] F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba,
“CloFAST: closed sequential pattern mining using sparse
and vertical id-lists,” Knowledge and Information Systems,
vol. 48, no. 2, pp. 429–463, 2016.

[13] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou,
B. Xie, and H. Mei, “Safe memory-leak fixing for C
programs,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 459–470.

[14] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi, “K-
Miner: Uncovering memory corruption in Linux,” in
Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2018.

[15] Google, “syzkaller - kernel fuzzer,” 2019, https://github.
com/google/syzkaller.

[16] C. Goues and W. Weimer, “Specification mining with few
false positives,” in Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems: Held As Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2009,, ser. TACAS ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 292–306. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00768-2_26

[17] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and B. Liblit, “EIO: Error handling
is occasionally correct.” in FAST, vol. 8, 2008, pp. 1–16.

[18] T. Heo, “Devres - managed device resource,” 2019,
https://www.kernel.org/doc/Documentation/driver-model/
devres.txt.

[19] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented
rootkits: Bypassing kernel code integrity protection mech-
anisms,” in USENIX Security Symposium, 2009, pp. 383–
398.

[20] Y. Jung and K. Yi, “Practical memory leak detector based
on parameterized procedural summaries,” in Proceedings
of the 7th international symposium on Memory manage-
ment. ACM, 2008, pp. 131–140.

[21] Kernel.org, “kmalloc,” 2019, https://www.kernel.org/doc/
htmldocs/kernel-api/API-kmalloc.html.

[22] ——, “Slab allocator,” 2019, https://www.kernel.org/doc/
gorman/html/understand/understand011.html.

[23] Z. Li and Y. Zhou, “Pr-miner: automatically extracting im-
plicit programming rules and detecting violations in large
software code,” in ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 5. ACM, 2005, pp. 306–315.

[24] B. Livshits and T. Zimmermann, “Locating matching
method calls by mining revision history data,” in Pro-
ceedings of the Workshop on the Evaluation of Software
Defect Detection Tools. ACM, 2005, pp. 296–305.

[25] K. Lu and H. Hu, “Where does it go? refining indirect-call
targets with multi-layer type analysis,” in Proceedings
of the 2019 SIGSAC Conference on Computer and
Communications Security. ACM, 2019, pp. 1867–1881.

[26] K. Lu, A. Pakki, and Q. Wu, “Detecting missing-check
bugs via semantic-and context-aware criticalness and con-
straints inferences,” in 28th USENIX Security Symposium,
2019, pp. 1769–1786.

[27] K. Lu, C. Song, T. Kim, and W. Lee, “Unisan: Proactive
kernel memory initialization to eliminate data leakages,”
in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016,
pp. 920–932.

[28] K. Lu, M. Walter, D. Pfaff, S. Nümberger, W. Lee,
and M. Backes, “Unleashing use-before-initialization
vulnerabilities in the Linux kernel using targeted stack

14

http://doi.acm.org/10.1145/502059.502041
https://github.com/google/ syzkaller
https://github.com/google/ syzkaller
http://dx.doi.org/10.1007/978-3-642-00768-2_26
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html

spraying,” in Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb.–Mar. 2017.

[29] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa,
and Y. Zhou, “Muvi: automatically inferring multi-variable
access correlations and detecting related semantic and
concurrency bugs,” in ACM SIGOPS Operating Systems
Review, vol. 41, no. 6. ACM, 2007, pp. 103–116.

[30] lwn.net, “Injecting faults into the kernel,” 2019, https:
//lwn.net/Articles/209257/.

[31] A. Machiry, C. Spensky, J. Corina, N. Stephens,
C. Kruegel, and G. Vigna, “DR. CHECKER: A soundy
analysis for Linux kernel drivers,” in Proceedings of the
26th USENIX Security Symposium (Security), Vancouver,
BC, Canada, Aug. 2017.

[32] P. E. McKenney, “Overview of Linux-kernel reference
counting,” 2007, http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2007/n2167.pdf.

[33] MITRE, “CWE-400: Uncontrolled resource consumption,”
2019, http://cwe.mitre.org/data/definitions/400.html.

[34] M. Orlovich and R. Rugina, “Memory leak analysis by
contradiction,” in International Static Analysis Symposium.
Springer, 2006, pp. 405–424.

[35] OWASP, “Memory leak,” 2019, https://www.owasp.org/
index.php/Memory_leak.

[36] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller,
“Documenting and automating collateral evolutions in
Linux device drivers,” in EuroSys, 2008.

[37] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-
sensitive inference of function precedence protocols,” in
29th International Conference on Software Engineering
(ICSE’07). IEEE, 2007, pp. 240–250.

[38] D. A. Ramos and D. Engler, “Under-Constrained Symbolic
Execution: Correctness Checking for Real Code,” in
Proceedings of the 24th USENIX Security Symposium
(Security), Washington, DC, Aug. 2015.

[39] D. Rayside and L. Mendel, “Object ownership profiling:
a technique for finding and fixing memory leaks,” in
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM,
2007, pp. 194–203.

[40] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-
Dusseau, and A. C. Arpaci-Dusseau, “Error propagation
analysis for file systems,” in ACM Sigplan Notices, vol. 44.
ACM, 2009, pp. 270–280.

[41] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and
G. Muller, “Hector: Detecting resource-release omission
faults in error-handling code for systems software,” in
2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE,
2013, pp. 1–12.

[42] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Vol-
ckaert, G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz,
“PeriScope: An effective probing and fuzzing framework
for the hardware-OS boundary.” in NDSS, 2019.

[43] Y. Sui, D. Ye, and J. Xue, “Static memory leak detection
using full-sparse value-flow analysis,” in Proceedings of
the 2012 International Symposium on Software Testing
and Analysis. ACM, 2012, pp. 254–264.

[44] W. Wang, K. Lu, and P. Yew, “Check It Again: Detecting
Lacking-Recheck Bugs in OS Kernels,” in Proceedings
of the 25th ACM Conference on Computer and Com-

munications Security (CCS), Toronto, ON, Canada, Oct.
2018.

[45] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.
Kaashoek, “Improving Integer Security for Systems with
KINT,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
Hollywood, CA, Oct. 2012.

[46] W. Weimer and G. C. Necula, “Mining temporal
specifications for error detection,” in Proceedings
of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, ser. TACAS’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 461–476. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-31980-1_30

[47] J. Xiao, H. Huang, and H. Wang, “Kernel data attack is
a realistic security threat,” in International Conference
on Security and Privacy in Communication Systems.
Springer, 2015, pp. 135–154.

[48] Y. Xie and A. Aiken, “Context-and path-sensitive memory
leak detection,” in Proceedings of ESEC-FSE. ACM,
2005, pp. 115–125.

[49] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and
D. Gu, “From collision to exploitation: Unleashing use-
after-free vulnerabilities in linux kernel,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 414–425.

[50] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and
R. Wang, “PeX: A permission check analysis framework
for Linux kernel,” in 28th USENIX Security Symposium,
2019, pp. 1205–1220.

APPENDIX

source:lineno

net/key/af_key.c:3471

net/wireless/wext-core.c:763

fs/btrfs/volumes.c:3217

fs/autofs4/dev-ioctl.c:645

drivers/net/wan/farsync.c:2482

drivers/video/intelfb/intelfbdrv.c:524

drivers/block/cpqarray.c:1216

drivers/scsi/lpfc/lpfc_sli.c:9581

drivers/scsi/lpfc/lpfc_sli.c:9685

drivers/scsi/lpfc/lpfc_sli.c:9878

drivers/scsi/aic94xx/aic94xx_hwi.c:222

drivers/scsi/scsi_debug.c:3238

drivers/edac/i3200_edac.c:331

drivers/usb/misc/usbtest.c:1924

drivers/usb/misc/usbtest.c:1934

drivers/staging/comedi/comedi_fops.c:241

TABLE IV: List of bugs reproduced from Hector [41]

15

https://lwn.net/Articles/209257/
https://lwn.net/Articles/209257/
 http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2167.pdf
 http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2167.pdf
http://cwe.mitre.org/data/definitions/400.html
https://www.owasp.org/index.php/Memory_leak
https://www.owasp.org/index.php/Memory_leak
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-31980-1_30

Allocating Function FOI Missing Release Allocating Function FOI Missing Release

xcan_rx alloc_can_skb consume_skb bcm_sysport_probe alloc_etherdev_mqs free_netdev
__test_case_3 alloc_extent_map free_extent_map test_case_2 alloc_extent_map free_extent_map
__test_case_4 alloc_extent_map free_extent_map test_case_1 alloc_extent_map free_extent_map
s3fwrn5_i2c_read alloc_skb kfree_skb cxgbit_setup_conn_pgidx alloc_skb kfree_skb
mt7601u_burst_write_regs alloc_skb kfree_skb mt76x02u_mcu_wr_rp alloc_skb kfree_skb
cxgbit_setup_conn_digest alloc_skb kfree_skb mt7601u_write_reg_pairs alloc_skb kfree_skb
__sys_accept4 alloc_skb kfree_skb htc_config_pipe_credits alloc_skb kfree_skb
create_cq alloc_skb kfree_skb htc_connect_service alloc_skb kfree_skb
ath9k_wmi_cmd alloc_skb kfree_skb htc_setup_complete alloc_skb kfree_skb
cgx_probe alloc_workqueue destroy_workqueue mmc_blk_probe alloc_workqueue destroy_workqueue
mlxsw_emad_init alloc_workqueue destroy_workqueue bnxt_re_create_srq atomic_inc atomic_dec
bsg_sg_io blk_get_request blk_put_request generate_filter bpf_prog_alloc __bpf_prog_free
cfctrl_linkup_request cfpkt_create cfpkt_destroy cifs_setlk cifs_lock_init kfree
rsi_send_beacon dev_alloc_skb kfree_skb do_lookup_dcookie find_dcookie free_dcookie
fuse_create_open fuse_iget d_splice_alias hso_create_net_device hso_create_device kfree
ib_cm_insert_listen ib_create_cm_id kfree davinci_timer_register ioremap iounmap
fsl_ifc_nand_probe kasprintf kfree sja1105_static_config_upload kcalloc kfree
ti_dra7_xbar_probe kcalloc kfree alloc_sgtable kcalloc kfree
adis_update_scan_mode kcalloc kfree adis_update_scan_mode_burst kcalloc kfree
rtl_usb_probe kcalloc kfree usbduxfast_auto_attach kmalloc kfree
ca8210_probe kmalloc kfree kmemleak_test_init kmalloc kfree
__ubifs_node_verify_hmac kmalloc kfree nfs4_try_migration kmalloc kfree
ccp_run_sha_cmd kmalloc kfree af9005_identify_state kmalloc kfree
cx24117_load_firmware kmalloc kfree read_znode kmalloc kfree
predicate_parse kmalloc_array kfree getname_flags kmem_cache_alloc kmem_cache_free
dwc3_qcom_probe kmemdup kfree unittest_data_add kmemdup kfree
imx_pd_bind kmemdup kfree mlx5_fw_fatal_reporter_dump kvmalloc kvfree
hgcm_call_preprocess_linaddr kvmalloc kvfree btrfs_mount_root kvzalloc kvfree
btrfsic_mount kvzalloc kvfree mlx5_fpga_conn_create_cq kvzalloc kvfree
do_shmat kzalloc kfree btrfs_mount_root kzalloc kfree
sg_io kzalloc kfree cifs_sb_tlink kzalloc kfree
btrfs_qgroup_trace_extent kzalloc kfree btrfs_add_delayed_data_ref kzalloc kfree
subscribe_event_xa_alloc kzalloc kfree orangefs_mount kzalloc kfree
v9fs_mount kzalloc kfree fastrpc_dma_buf_attach kzalloc kfree
vmw_cmdbuf_res_add kzalloc kfree netlbl_unlabel_defconf kzalloc kfree
sdma_init kzalloc kfree bfad_im_get_stats kzalloc kfree
rpmsg_eptdev_write_iter kzalloc kfree qrtr_tun_write_iter kzalloc kfree
sof_dfsentry_write kzalloc kfree cx23888_ir_probe kzalloc kfree
komeda_wb_connector_add kzalloc kfree sof_set_get_large_ctrl_data kzalloc kfree
i40e_setup_macvlans kzalloc kfree v3d_idle_axi kzalloc kfree
i2400m_op_rfkill_sw_toggle kzalloc kfree nfp_flower_spawn_phy_reprs kzalloc kfree
nfp_flower_spawn_vnic_reprs kzalloc kfree dce100_create_resource_pool kzalloc kfree
dce100_clock_source_create kzalloc kfree __ipmi_bmc_register kzalloc kfree
bcm2835_timer_init kzalloc kfree ttc_setup_clockevent kzalloc kfree
davinci_timer_register kzalloc kfree cpufreq_dbs_governor_init kzalloc kfree
dce110_clock_source_create kzalloc kfree dce110_create_resource_pool kzalloc kfree
dce112_create_resource_pool kzalloc kfree dce112_clock_source_create kzalloc kfree
dce120_create_resource_pool kzalloc kfree dce120_clock_source_create kzalloc kfree
dce80_clock_source_create kzalloc kfree dce80_create_resource_pool kzalloc kfree
dce81_create_resource_pool kzalloc kfree dce83_create_resource_pool kzalloc kfree
dcn10_create_resource_pool kzalloc kfree dcn10_clock_source_create kzalloc kfree
dcn20_clock_source_create kzalloc kfree nouveau_bo_new kzalloc kfree
aspeed_video_probe kzalloc kfree vsp1_dl_list_alloc kzalloc kfree
fastrpc_buf_alloc kzalloc kfree arc_mdio_probe mdiobus_alloc kfree
xge_mdio_config mdiobus_alloc kfree e100_loopback_test netdev_alloc_skb consume_skb
nf_tables_addchain nla_strdup kfree nfnl_cthelper_get nlmsg_new nlmsg_free
ctnetlink_conntrack_event nlmsg_new nlmsg_free cttimeout_get_timeout nlmsg_new nlmsg_free
cttimeout_default_get nlmsg_new nlmsg_free ctnetlink_get_conntrack nlmsg_new nlmsg_free
crypto_reportstat nlmsg_new nlmsg_free crypto_report nlmsg_new nlmsg_free
ap_flash_init of_find_matching_node of_node_put ti_tscadc_probe of_get_child_by_name of_node_put
fimc_is_probe of_get_child_by_name of_node_put create_sysclk of_get_child_by_name of_node_put
st_dwc3_probe of_get_child_by_name of_node_put vpif_probe of_graph_get_next_endpoint of_node_put
imxfb_probe of_parse_phandle of_node_put ti_pipe3_get_sysctrl of_parse_phandle of_node_put
of_msi_get_domain of_parse_phandle of_node_put snd_rk_mc_probe of_parse_phandle of_node_put
qcom_smd_parse_edge of_parse_phandle of_node_put mxs_saif_probe of_parse_phandle of_node_put
dvic_probe_of of_parse_phandle of_node_put of_nvmem_cell_get of_parse_phandle of_node_put
hns_roce_v1_reset of_parse_phandle of_node_put smsm_parse_ipc of_parse_phandle of_node_put
smp2p_parse_ipc of_parse_phandle of_node_put dsa_port_parse_of of_parse_phandle of_node_put
rsnd_ssiu_probe rsnd_ssiu_of_node of_node_put rtsx_probe scsi_host_alloc scsi_host_put
myrb_detect scsi_host_alloc scsi_host_put macsec_encrypt skb_copy_expand kfree_skb
macsec_encrypt skb_unshare consume_skb macsec_decrypt skb_unshare consume_skb
at91_rtc_probe syscon_node_to_regmap of_node_put tm6000_start_stream usb_alloc_urb usb_free_urb
usbduxfast_auto_attach usb_alloc_urb usb_free_urb rtl819xU_tx_cmd usb_alloc_urb usb_free_urb
gs_can_open usb_alloc_urb usb_free_urb ath10k_usb_hif_tx_sg usb_alloc_urb usb_free_urb
rtl8192_tx usb_alloc_urb usb_free_urb kmemleak_test_init vmalloc vfree

TABLE V: List of new memory leaks found in the Linux kernel 5.2.13-stable

16

Allocating Function FOI Missing Release

acpi_ut_create_package_object acpi_ut_create_internal_object acpi_ut_remove_reference
ocfs2_initialize_super alloc_ordered_workqueue destroy_workqueue
adf7242_probe alloc_ordered_workqueue destroy_workqueue
nicvf_probe alloc_ordered_workqueue destroy_workqueue
i40iw_setup_cm_core alloc_ordered_workqueue destroy_workqueue
ca8210_dev_com_init alloc_ordered_workqueue destroy_workqueue
rsxx_dma_ctrl_init alloc_ordered_workqueue destroy_workqueue
kvaser_pci_add_chan alloc_sja1000dev free_sja1000dev
mwifiex_add_card alloc_workqueue destroy_workqueue
mwifiex_reinit_sw alloc_workqueue destroy_workqueue
ath10k_tm_cmd_wmi ath10k_wmi_alloc_skb consume_skb
create_key_field create_hist_field destroy_hist_field
__qedi_probe create_singlethread_workqueue destroy_workqueue
ttm_mem_global_init create_singlethread_workqueue destroy_workqueue
nandsim_debugfs_create debugfs_create_file debugfs_remove
mwifiex_pcie_alloc_cmdrsp_buf dev_alloc_skb kfree_skb
mwifiex_pcie_init_evt_ring dev_alloc_skb kfree_skb
rsi_send_block_unblock_frame dev_alloc_skb kfree_skb
lm36274_parse_dt device_for_each_child_node fwnode_node_put
lm3692x_probe_dt device_get_next_child_node fwnode_node_put
iwl_pcie_ctxt_info_gen3_init dma_alloc_coherent dma_free_coherent
s3c_fb_probe_win framebuffer_alloc framebuffer_release
chtls_recv_sock inet_csk_route_child_sock dst_release
psxpad_spi_probe input_allocate_polled_device input_free_polled_device
kimage_crash_copy_vmcoreinfo kimage_alloc_control_pages kfree
btrfs_add_delayed_data_ref kmem_cache_alloc kmem_cache_free
__btrfs_add_free_space kmem_cache_zalloc kmem_cache_free
tcp_accept_from_sock kmem_cache_zalloc kmem_cache_free
etnaviv_gem_prime_import_sg_table kvmalloc_array kvfree
alcor_pci_sdmmc_drv_probe mmc_alloc_host mmc_free_host
nl80211_get_ftm_responder_stats nlmsg_new nlmsg_free
ocfs2_acl_chmod ocfs2_get_acl_nolock posix_acl_release
meson_mx_socinfo_init of_find_matching_node of_node_put
of_flash_probe_versatile of_find_matching_node_and_match of_node_put
usbhs_rza1_hardware_init of_find_node_by_name of_node_put
mscc_ocelot_probe of_get_child_by_name of_node_put
rtl8366rb_setup_cascaded_irq of_get_child_by_name of_node_put
of_get_devfreq_events of_get_child_by_name of_node_put
max77620_initialise_fps of_get_child_by_name of_node_put
dwc3_qcom_of_register_core of_get_child_by_name of_node_put
axp20x_regulator_parse_dt of_get_child_by_name of_node_put
gpiod_get_from_of_node of_get_named_gpiod_flags gpiod_put
of_fwnode_graph_get_port_parent of_get_parent of_node_put
ath10k_qmi_setup_msa_resources of_parse_phandle of_node_put
dwc3_pci_probe platform_device_alloc platform_device_put
spi_gpio_probe spi_alloc_master spi_controller_put
meson_mx_socinfo_init syscon_node_to_regmap of_node_put
npcm7xx_ehci_hcd_drv_probe syscon_regmap_lookup_by_compatible of_node_put
meson_mx_socinfo_init syscon_regmap_lookup_by_compatible of_node_put
clps711x_keypad_probe syscon_regmap_lookup_by_compatible of_node_put
lpc18xx_dwmac_probe syscon_regmap_lookup_by_compatible of_node_put
fsl_sai_probe syscon_regmap_lookup_by_compatible of_node_put
spi_clps711x_probe syscon_regmap_lookup_by_compatible of_node_put
rk3036_codec_platform_probe syscon_regmap_lookup_by_phandle of_node_put
syscon_reboot_probe syscon_regmap_lookup_by_phandle of_node_put
gemini_sata_probe syscon_regmap_lookup_by_phandle of_node_put
rk3x_i2c_probe syscon_regmap_lookup_by_phandle of_node_put
rk3328_platform_probe syscon_regmap_lookup_by_phandle of_node_put
rk_spdif_probe syscon_regmap_lookup_by_phandle of_node_put
gsbi_probe syscon_regmap_lookup_by_phandle of_node_put
imx_init_from_tempmon_data syscon_regmap_lookup_by_phandle of_node_put
pistachio_clksrc_of_init syscon_regmap_lookup_by_phandle of_node_put
zynq_fpga_probe syscon_regmap_lookup_by_phandle of_node_put
create_event_toplevel_files tracefs_create_dir tracefs_remove_recursive
usbduxsigma_alloc_usb_buffers usb_alloc_urb usb_free_urb
rtl8xxxu_submit_int_urb usb_alloc_urb usb_free_urb
emmaprp_probe video_device_alloc v4l2_device_unregister
xfrm_bundle_lookup xfrm_policy_lookup xfrm_pols_put

TABLE V: List of new memory leaks found in the Linux kernel 5.2.13-stable (continued)

17

CVE # File:LineNumber

CVE-2019-18807 drivers/net/dsa/sja1105/sja1105_spi.c:405

CVE-2019-18808 drivers/crypto/ccp/ccp-ops.c:1758

CVE-2019-18809 drivers/media/usb/dvb-usb/af9005.c:965

CVE-2019-18810 drivers/gpu/drm/arm/display/komeda/komeda_wb_connector.c:151

CVE-2019-18811 sound/soc/sof/ipc.c:571

CVE-2019-18812 sound/soc/sof/debug.c:137

CVE-2019-18813 drivers/usb/dwc3/dwc3-pci.c:234

CVE-2019-19043 drivers/net/ethernet/intel/i40e/i40e_main.c:7187

CVE-2019-19044 drivers/gpu/drm/v3d/v3d_gem.c:541

CVE-2019-19045 drivers/net/ethernet/mellanox/mlx5/core/fpga/conn.c:460

CVE-2019-19047 drivers/net/ethernet/mellanox/mlx5/core/health.c:570

CVE-2019-19048 drivers/virt/vboxguest/vboxguest_utils.c:219

CVE-2019-19050 crypto/crypto_user_stat.c:315

CVE-2019-19051 drivers/net/wimax/i2400m/op-rfkill.c:85

CVE-2019-19052 drivers/net/can/usb/gs_usb.c:587

CVE-2019-19053 drivers/rpmsg/rpmsg_char.c:226

CVE-2019-19054 drivers/media/pci/cx23885/cx23888-ir.c:1165

CVE-2019-19056 drivers/net/wireless/marvell/mwifiex/pcie.c:1028

CVE-2019-19057 drivers/net/wireless/marvell/mwifiex/pcie.c:684

CVE-2019-19058 drivers/net/wireless/intel/iwlwifi/fw/dbg.c:535

CVE-2019-19059 drivers/net/wireless/intel/iwlwifi/pcie/ctxt-info-gen3.c:73

CVE-2019-19060 drivers/iio/imu/adis_buffer.c:80

CVE-2019-19061 drivers/iio/imu/adis_buffer.c:33

CVE-2019-19062 crypto/crypto_user_base.c:203

CVE-2019-19063 drivers/net/wireless/realtek/rtlwifi/usb.c:1034

CVE-2019-19065 drivers/infiniband/hw/hfi1/sdma.c:1522

CVE-2019-19066 drivers/scsi/bfa/bfad_attr.c:267

CVE-2019-19068 drivers/net/wireless/realtek/rtl8xxxu/rtl8xxxu_core.c:5435

CVE-2019-19069 drivers/misc/fastrpc.c:494

CVE-2019-19071 drivers/net/wireless/rsi/rsi_91x_mgmt.c:1575

CVE-2019-19072 kernel/trace/trace_events_filter.c:436

CVE-2019-19073 drivers/net/wireless/ath/ath9k/htc_hst.c:151

CVE-2019-19074 drivers/net/wireless/ath/ath9k/wmi.c:308

CVE-2019-19075 drivers/net/ieee802154/ca8210.c:3149

CVE-2019-19077 drivers/infiniband/hw/bnxt_re/ib_verbs.c:1406

CVE-2019-19078 drivers/net/wireless/ath/ath10k/usb.c:414

CVE-2019-19079 net/qrtr/tun.c:83

CVE-2019-19080 drivers/net/ethernet/netronome/nfp/flower/main.c:515

CVE-2019-19081 drivers/net/ethernet/netronome/nfp/flower/main.c:400

CVE-2019-19082 drivers/gpu/drm/amd/display/dc/dce100/dce100_resource.c:1088

CVE-2019-19083 drivers/gpu/drm/amd/display/dc/dce100/dce100_resource.c:660

TABLE VI: List of new memory leak CVEs

18

	Introduction
	A Study of Kernel Memory Allocation and Leaks
	Dynamic Memory Allocation in the Kernel
	Memory Leaks in the Kernel

	 Overview of K-MeLD
	Allocation and Deallocation Identification
	Identifying Allocators (FOIs)
	Context-aware Rule Mining for Deallocation Detection

	Ownership Reasoning
	Enhanced Escape Analysis
	Consumer Function Detection
	Detecting Bugs Using Mined Rules

	Implementation
	Potential Allocation Functions
	Path Exploration
	Context-aware Rule Mining
	Ownership Reasoning
	Pattern Matching and Error Finding

	Evaluation
	Scalability
	Set of Allocations and Associated Deallocations
	Found Bugs
	Exploitability Analysis
	False Positive Analysis
	False Negative Analysis
	Comparison with Hector
	Effectiveness of Escape and Consumer Function Analysis

	Discussion
	Related Work
	 Conclusion
	Appendix

