
Let’s Stride Blindfolded in a Forest:
Sublinear Multi-Client Decision Trees Evaluation

Jack P. K. Ma
and Raymond K. H. Tai

Department of Information Engineering
The Chinese University of Hong Kong
{mpk016,tkh016}@ie.cuhk.edu.hk

Yongjun Zhao
Strategic Centre for Research in

Privacy-Preserving Technologies & Systems
Nanyang Technological University, Singapore

yongjun.zhao@ntu.edu.sg

Sherman S. M. Chow
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
sherman@ie.cuhk.edu.hk

Abstract—Decision trees are popular machine-learning classi-
fication models due to their simplicity and effectiveness. Tai et al.
(ESORICS ’17) propose a privacy-preserving decision-tree evalu-
ation protocol purely based on additive homomorphic encryption,
without introducing dummy nodes for hiding the tree structure,
but it runs a secure comparison for each decision node, resulting
in linear complexity. Later protocols (DBSEC ’18, PETS ’19)
achieve sublinear (client-side) complexity, yet the server-side path
evaluation requires oblivious transfer among 2d real and dummy
nodes even for a sparse tree of depth d to hide the tree structure.

This paper aims for the best of both worlds and hence the
most lightweight protocol to date. Our complete-tree protocol
can be easily extended to the sparse-tree setting and the reusable
outsourcing setting: a model owner (resp. client) can outsource
the decision tree (resp. attributes) to two non-colluding servers
for classifications. The outsourced extension supports multi-client
joint evaluation, which is the first of its kind without using multi-
key fully-homomorphic encryption (TDSC ’19). We also extend
our protocol for achieving privacy against malicious adversaries.

Our experiments compare in various network settings our of-
fline and online communication costs and the online computation
time with the prior sublinear protocol of Tueno et al. (PETS ’19)
and O(1)-round linear protocols of Kiss et al. (PETS ’19), which
can be seen as garbled circuit variants of Tai et al.’s. Our protocols
are shown to be desirable for IoT-like scenarios with weak clients
and big-data scenarios with high-dimensional feature vectors.

I. INTRODUCTION

Machine learning summarizes training data as a mathemat-
ical model that can make predictions on (unforeseen) queries.
Clients can get prediction results, but the simple means of
uploading their information to a prediction service provider
forfeits their privacy. Meanwhile, the model is a valuable asset
of the service provider, and it may leak information about
the sensitive training data. Revealing the model for client-side
prediction is not sensible and may even violate the law.

Privacy-preserving inference protects the privacy of both
the client and the model owner. While generic cryptographic

tools exist (e.g., [28], [34], [2]), classifier-specific solutions can
be more efficient. We focus on the decision-tree classifier [9],
which is widely used [24], e.g., for spam detection, multimedia
protocol tunneling, and content classification. Tree evaluation
starts from the root node as the first decision node of the tree.
It compares a node-specific threshold with one of the features
or attributes in the client query, and traverses to the left or right
node based on the comparison. The process iterates across each
level until reaching a leaf node, which stores a classification
label as the tree evaluation result. The simple comparison-
based design makes decision trees interpretable; on the other
hand, it may also deter model owners from providing inference
as a service if no privacy protection over the model is in place.

Note that the comparisons along the evaluation path suffice
to derive the result, i.e., the number of comparisons is linear
in the tree depth d, or sublinear in the tree size denoted by m
(cf., the number of decision nodes). Ideally, the complexity of
a privacy-preserving decision-tree evaluation protocol should
also be sublinear, without being blown up by any artifacts
introduced for privacy, e.g., padding a tree until it has 2d nodes.

We also consider outsourcing computation. For scenarios
such as Internet-of-things (IoT) and smart metering, weak de-
vices often periodically report data to a cloud platform, which
can run decision-tree classification over the data (Fig. 1). We
observe that outsourcing not only helps in offloading but also
enriches the functionality, such as multi-client evaluation, in
which each client contributes a part of the feature vector (e.g.,
multiple hospitals hold different records of a patient). Trivial
approaches leak the interested feature of each decision node
(e.g., a specific hospital is contacted directly for the attribute
of interest it holds). With secure outsourcing, a single cloud
platform can run classification over a composite feature vector
collected from different clients, without learning the attributes
and without further interacting with any clients. Similarly,
secure outsourcing also supports evaluations of random forests
contributed by multiple decision-tree owners.

This work aims to make privacy-preserving inference more
usable in practice. Technically, we propose a baseline protocol
that achieves the best of two existing paradigms, namely, sub-
linear client-side computation complexity, without incurring an
exponential blow-up in server-side complexity. Not only this
improves the state-of-the-art on the foundational level, but this
design is also easily extensible to the outsourced setting, saving
us the ad-hoc efforts in customizing yet another protocol. We
also extend it to achieve privacy against malicious adversaries.

Corresponding authors: Yongjun Zhao and Sherman Chow. Part of the work
was done while Yongjun Zhao was with the Chinese University of Hong Kong.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23166
www.ndss-symposium.org

Interaction
Data Sharing

…
 …

Result Users

Tree Owners

Clients
Outsourced

PPDT

Fig. 1: An outsourced scenario: Cameras and cashiers (the
clients) secret-share the photographs and purchase records to
the cloud servers, which can then carry out private classifica-
tion. Multiple tree owners can also delegate their respective
models. All (queries, models, and results) are in secret shares.

A. Related Works

Foundational protocols. We first discuss five works
with foundational contributions [11] and a systematization
study [24]. Bost et al. [8] treat a decision tree as a high-degree
polynomial and use fully-homomorphic encryption (FHE) to
evaluate it. Wu et al. [46] get rid of FHE by adding dummy
nodes to form a complete tree for hiding the tree structure.
In many cases, the decision tree is sparse and not complete
(e.g., [40]). Padding a deep-but-sparse tree into a complete tree
results in a huge (O(2d)) waste in bandwidth and computation.
The protocols of Tai et al. [40] do not require such tree
transformation and are more efficient for sparse trees. Their
novelty lies in the re-interpretation of path evaluation as “path
cost” computation that is doable via additive HE (AHE).

Kiss et al. [24] abstract many constructions in the literature
and propose a modular construction from three sub-protocols:
(oblivious) feature selection, (secure) comparison, and path
evaluation, which can be instantiated by either HE or garbled
circuit (GC) with secret sharing (SS). Their detailed compar-
ison suggests that using GC for comparison and HE with the
path-cost trick [40] for path evaluation (i.e., GGH or HGH)
is the best-fit for a weak client with limited storage. Their
study covered only protocols prior to their work of at least
O(m) complexity.1 The boundary of the above three tasks may
become unclear for sublinear protocols [22], [42].

Joye and Salehi [22] reduce the number of secure compar-
isons2 to (d−1), i.e., one comparison, each taking 2 rounds, at
each tree level. Since each decision node works on a different
feature, for feature selection at each level `, the client uses

(
2`

1

)
or 1-out-of-2` oblivious transfer (OT) protocol, which takes 2
rounds too. The client then decrypts the retrieved ciphertext,
and runs secure comparison with the server to get a (shared)
bit indicating which node to traverse next. The total number
of rounds is linear in d. Unlike [40], this protocol requires the
server to transform the tree into a complete tree.

Concurrent to [22], Tueno et al. [42] propose a sublinear
(in m) decision-tree protocol (i.e., only (d − 1) comparisons
as [22]) using oblivious array indexing (OAI), which can

1Kiss et al. [24] briefly mentioned (without implementation) O(d)-round
variants of GGG/HGG and “Joye and Salehi present a similar protocol in [22].”

2Joye and Salehi [22] also improved the efficiency of the secure comparison
protocol of Damgård, Geisler, and Krøigaard (DGK) [16].

be instantiated by GC+OT, OT alone, or oblivious RAM
(ORAM). The tasks involved, feature selection and tree in-
dexing, have complexity O(n) and O(2d). OAI from OT
requires only symmetric-key operations. OAI from (efficient)
ORAM requires GC, with complexity sublinear in the number
of nodes, but has higher computation and communication costs
for small trees. At each level, the server and the client run OAI
over the client’s attributes and run GC for comparison3. They
also invoke another OAI over the 2` decision nodes4 at each
level ` to obtain shares of the index of the next node, followed
by a GC to traverse. These take up to 4 rounds per level and
O(2d) communication for processing a randomized complete
tree (or O(d4) communication but O(d2) rounds if ORAM is
used). Table I compares the major protocols in the literature5.

Outsourced extensions. Aloufi et al. [3] consider a client
and multiple model owners outsource collaborative evaluation
of a random forest to a cloud server via multi-key somewhat-
homomorphic encryption (SHE). The model owners send the
decision trees encrypted under (pre-generated) joint SHE keys
while the client sends its attributes encrypted under its SHE
key to the cloud. The cloud then evaluates over the ciphertexts
extended under both client and model owners’ keys. As such,
everyone needs to interact to decrypt the final result.

Two recent (concurrent) works [31], [49] also consider out-
sourced extension with two non-colluding semi-honest clouds6.
Liu et al. [31] just consider query outsourcing without hiding
the attribute index from the clouds. The tree owner needs to
stay online as one of the clouds. Their comparison utilizes
homomorphism for addition and Beaver triplets [7] for multi-
plication. Its evaluation cost is linear in m (plus the number
of dummy nodes), and it still leaks an upper bound of m.

Zheng et al. [49] replace the “pure AHE” approach [24] of
Tai et al. [40] with additive-sharing counterparts (and Beaver
triplets) using known secure computation tricks [14]. With the
client attribute secret-shared to the clouds, feature selection can
be done with the naı̈ve 2-server private information retrieval
by matrix-vector multiplication with vectorization as in a prior
O(m) decision-tree evaluation protocol [14], incurring O(m)
online communication7. Comparisons use an O(t)-round bit-
wise protocol [14] followed by a standard modulus conversion,
such that they still work with the path-cost computation [40].

While these two works [31], [49] aim for outsourcing, their
results are the worst of both worlds according to our criteria.
Namely, it spoiled the O(1)-round benefit of the underlying
protocols [8], [40], but without achieving the sublinear (in m)
complexity of existing O(d)-round protocols [22], [42]. Both
works also confine to “regular” outsourcing benefits, without
identifying the possible benefits of multi-client or multi-server
support. Table II summarizes the outsourcing protocols.

3The GC contains 3t AND-gates for comparison and multiplexing (for
selecting the next node to traverse after comparison).

4Tueno et al. [42] suggested handling sparse trees by OAI over fewer (than
2`) nodes; however, this leaks the tree structure, so this paper treats it as 2`.

5Table I omits “non-interactive” (i.e., round-optimal) protocols [33], [41],
which require public-key somewhat HE and heavier computation. For example,
Lu et al. [33] transform the 4-round protocol of Tai et al. [40] into 2-round.

6This computation model was also used for securely computing/outsourcing
other tasks (e.g., private set intersection [13] and linear mean classifiers [44]).

7The tree owner needs to compute and share an m×n selection matrix. A
trusted initializer is assumed to prepare large vectorized multiplicative triplets
of size m× n. The clouds process them with O(mn) communication.

2

TABLE I: Summary of Private Decision-Tree Evaluation Protocols: n: the number of t-bit client features, m: the number of
decision nodes, m̄: the number of depth-padded nodes (O(m2)), d: the tree depth, DGK: Damgård–Geisler–Krøigaard protocol,
GC: garbled circuit, HE: homomorphic enc/decryption/operation, OT: oblivious transfer, SKE: secret-key enc/decryption, SS:
secret sharing. Sel, Comp, Path: feature selection, comparison, and path evaluation. OT or GC not in {} is for the whole tree.

Sel {at level `} Comp Path {at level `} Client Computation Server Computation Round Leakage

[46] HE 2d DGK HE,
(2d

1

)
-OT O((n+ 2d)t HE O(2d) DGK + O(2d) HE O(1) d

[40] (HHH) HE m DGK HE O(m+ nt) HE + O(m) DGK O(mt) O(1) m

[6] (GGG) GC, nt×
(2
1

)
-OT O(m̄) GC, garbled decision tree O(m̄t log m̄) O(m̄t log m̄) O(1) d, m̄

[24] (GGH) GC, nt×
(2
1

)
-OT m GC HE O(m) HE + O(mt logm) SKE O(md) HE + O(mt logm) SKE O(1) m

[24] (HGH) HE m GC HE O(m+ n) HE + O(mt) SKE O(md) HE + O(mt) SKE O(1) m

[22] HE, {
(2`

1

)
-OT} d HE

(2d
1

)
-OT O(n) HE + O(d) DGK O(2d + dt) 2d d

[42] (OT) SS, {
(n
1

)
-OT} d GC3 GC, {

(2`
1

)
-OT} O((n+ t)d) O(2d + dt) 4d d

Ours (Complete) SS, {
(n
1

)
-OT} d GC, {

(2
1

)
-OT} O((n+ t)d) O(2d + dt) 2d− 1 d

Ours (Sparse) SS, {
(n
1

)
-OT} d GC, {

(2
1

)
-OT} O((n+ t)d) O(m+ dt) 2d− 1 d,m

TABLE II: Comparison of Two-Server Outsourced Protocols (MT stands for the number of Beaver’s multiplication triplets.)

Selection Comparison Path Evaluation Round Leakage Trusted Initializer

Liu et al. [31] no obliviousness m HE + m MT dm MT d+ 3 d,m, {ixi}mi=1 Required

Zheng et al. [49] mn MT mt MT SS O(t+ d) d,m Required

Ours (Outsourced) d×
(n
1

)
-OT d GC d×

(2
1

)
-OT 2d d,m No

B. Technical Challenges and Our Contribution

We propose semi-honest secure protocols that only perform
a sublinear number of secure comparisons. We start with one
for complete trees and extend it for sparse trees. The building
blocks include additive secret sharing, OT, and GC merely
for comparison. Our design is arguably optimal considering
feature selection, comparison, and path evaluation.

I) Our selection uses 1-out-of-n OT over n client attributes,
instead of the garbled decision tree [6] or garbled selection
network of GGG/GGH [24], which uses GC and nt OTs [28],
incurring an online communication cost of 2λ · tn, where t
is the bit-length of an attribute (say, 64) and λ is the security
parameter (say, 128). Looking ahead, online communication
for our protocol is dominated by d · tn. Usually, decision-tree
training limits the depth d if possible, which motivates the
pursuit of O(d)-round sublinear protocols [22], [42].

Our improvement in communication is more prominent for
large n (and t), which suits “big-data” analytics over high-
dimensional feature vectors. Particularly, our experiments show
a decision tree over MNIST for recognizing handwritten digits,
a task that is commonly realized by neural networks nowadays.

II) Linear-time protocols can perform comparisons of all
nodes. An optimal design performs only the necessary compar-
isons. Note that each decision node compares a different client
attribute, denoted by an index. If the server learns the index, it
can infer the values of the client attributes since it knew where
the evaluation is up to. If the client learns the index, partial
information about the decision node is revealed. This explains
why prior protocols [22], [42] hide the decision nodes among
all possible nodes, including dummy ones, at each level during
tree evaluation, totaling in O(2d) complexity. It is unclear how
sublinear comparison can be supported without this overhead.

The first novelty of our design is that it uses the “bare
minimum” of 1-out-of-2 OT to determine which index to
compare at each level. This is achieved by our key management
techniques (which, interestingly, are inspired by OT protocols).

III) To hide the tree topology, we introduce an arguably op-
timal design that uses at most one dummy node for each level
(to make all paths take O(d) time). The prior best approach (for
linear-time GGG [24]) uses depth-padding, which separately
pads each leaf with dummies until reaching the tree depth d.
This increases the number of tree nodes to m̄ = O(m2).

Reusing dummy nodes for multiple evaluation paths might
further complicate the path evaluation. The sparse-tree proto-
col of Tueno et al. pushes the evaluation complexity to the GC,
e.g., extra AND-gates for multiplexing3, leaf-node checking,
or extra resharing steps. Notably, the GC we need just uses a
single comparison gate built from t AND-gates [26], which is
much simpler (while Table I simply marked both by d GC).

In summary, metaphorically, the server and client help each
other run through a forest blindfolded, yet with confidence, i.e.,
only deciding among two directions at each step.

IV) We also integrated a few techniques for making our
protocol more efficient and extensible. Our secret-sharing-
based design avoids expensive public-key operations (cf. [22]).
Apart from reducing time and communication, it also enables
a conceptually-easy extension for secure outsourcing.

Our outsourcing extension shifts almost all workloads to
two non-colluding clouds. It also allows multiple clients,
each holds part of the feature vector, to jointly evaluate a
decision tree without leaking their inputs to others. This is
non-trivial [12] since the clouds need to pinpoint the required
attribute from different data sources. Our protocol is also
reusable. Clients just need to share their features to the clouds
once for many different tree evaluations. This is especially
convenient when our protocol can also support random forest
evaluation from multiple tree owners. To our knowledge, this
is the first such protocol without heavyweight FHE/SHE [3].

V) Our experiments show that our protocols are twice
as fast as the prior best O(d)-round protocol [42]. We also
compare our performance with existing O(1)-round protocols
for different trees over different networks. Even being O(d)-

3

round protocols, ours remain competitive for deep trees or
high-dimensional feature vectors even in WAN.

VI) Finally, for privacy against malicious adversaries, we
extend our complete-tree protocol as a showcase (Appendix C),
by upgrading the sub-protocols to maliciously-secure variants
and supplementing appropriate zero-knowledge proofs.

II. PRELIMINARIES

A. Decision-Tree Classifiers

Let the client input be an n-dimensional feature vector
~x = (x1, . . . , xn) ∈ (Z+)n, and T be a decision tree with
m decision nodes. |a| denotes the bit length of the value a.
We denote the decision-tree evaluation result by v = T (~x). We
assume every node of the tree has either 0 or 2 children. Each
node has a unique index i. Node i refers to a node with index
i. The root node’s index i is 1. For each node i, kid0,i = 2i
denotes the index of its left child, kid1,i = 2i+ 1 denotes the
index of its right child. Since we traverse the tree based on a bit
denoting the comparison result, we assume a bit is implicitly
cast to an integer 0 or 1 when operated by {+,−,×}.
Each non-leaf node is also associated with a threshold yi,
and a client attribute (to be compared with yi) indexed by
ixi ∈ [1, n]. These form the node content. Evaluation starts
from the root, descends to the left or right branch based on
the test of a node (e.g., comparing the threshold yi and the
attribute xixi) until arriving at some leaf node storing T (~x).

Definition 1. Given the client’s input x and the server’s
decision tree T , a decision-tree evaluation protocol is correct if
the client always learns v = T (~x) after the protocol execution.

B. Secret Sharing (SS) and Oblivious Transfer (OT)

We use (2, 2)-additive secret sharing and denote the secret-
shared input by (xC , xS), where party C or S gets its share
xC or xS such that xC+xS = x over ZN for some integer N .
Each share itself does not reveal any information about x.

1-out-of-n OT, denoted by
(
n
1

)
-OT, is a protocol in which

a server/sender inputs n messages (m0, . . . ,mn−1) and a
client/receiver inputs an index i. The client learns only mi and
the server learns nothing about i.

(
n
1

)
-OT can be done by using

log n
(

2
1

)
-OT [35], [25]. OT extension [20], [5] “extends” a

small number of base OT’s requiring public-key operations to
a larger number of OT’s by using symmetric-key operations.
The base OT can be pre-computed to reduce the online cost.
The complexity of

(
n
1

)
-OT of an `-bit string with the improved

OT extension of Kolesnikov and Kumaresan [25] is O(λ+n`).

C. Garbled Circuit (GC) and Conditional OT (COT)

Yao’s garbled circuit [47] allows an evaluator with input x
to learn f(x, y) for a public function f represented as a
boolean circuit, while y is the input of the garbler, who learns
nothing. A key ingredient in GC is to let the evaluator obtains
(via OT) the input wire key. Several optimization techniques
such as free XOR [27] and half gates [48] are proposed to
reduce the communication and computational complexities.

A conditional OT (COT) considers a client with x and a
server with y and two messages (m0,m1). The client can only
get mb where b is the output by the condition Q(x, y). We will

set Q to be the “less than” predicate: Q(x, y) : b← (x < y).
The client can obtain mb = m1 if x < y; m0 otherwise,
but neither y, Q(x, y), nor m1−b. The server learns nothing.
We consider the following variant of COT (instantiated in
Appendix D, which may be of independent interest) on secret
shares: the two parties both hold secret shares of x and y
instead of x and y. Formally, suppose the server/sender inputs
are xs, ys,m0,m1, and the client/receiver inputs are xr, yr. The
protocol outputs ⊥ to the sender and m((xs+xr)<(ys+yr)) to the
receiver, where xs + xr and ys + yr refers to modular addition
that recovers the original values of x and y, respectively.

Our protocols only embed a GC-based secure comparison
and a

(
2
1

)
-OT in the COT. The

(
2
1

)
-OT can be run in parallel

with the GC. We use a variant of GC in which the evaluator
obtains the key of the output wire (decoding information is not
sent to the evaluator) without knowing the plaintext result.

III. SECURITY MODEL

Our privacy notion for private decision-tree evaluation is
similar to previous works [46], [42], [40]. We first consider
semi-honest adversaries. The adversary is assumed to follow
the protocol specification exactly but may try to learn more
information by extra local computation8. Throughout the paper,
we assume the adversary is taking static corruption strategy,
corrupting one of the two parties before protocol execution,
and learn its private input. We present the standard definition
of static semi-honest security in Appendix B-A. Like most
applied cryptography papers, we assume the honest party’s
hardware and software are not compromised. There are no
other trust assumptions, say, trusted hardware.

We also consider protocols in a stronger security model,
in which the adversary may deviate from the protocol specifi-
cation. See Section IV-D and Appendix C for details. Finally,
our outsourced protocol assumes two non-colluding servers.

The F-hybrid model. We describe our protocols in a “hybrid
model” where the two parties interact and use some secure
two-party protocols as sub-protocols. When constructing a pro-
tocol Π that uses a sub-protocol for securely computing some
functionality F , we consider that the parties run Π and use
“ideal calls” to a trusted party to compute F . Upon receiving
the inputs from the parties, the trusted party computes F
and sends all parties the corresponding output. After receiving
these outputs from the trusted party, the protocol Π continues.
By the sequential composition theorem [10], any protocol that
securely implements F can replace the ideal calls to F .

We consider two ideal functionalities: The ideal function-
ality F(n

1)-OT receives the sender input (m0, . . . ,mn−1) and
the receiver input i. It outputs ⊥ to the sender and mi to
the receiver. The ideal functionality FCOT receives the sender
inputs xs, ys,m0,m1 and the receiver inputs xr, yr. It outputs
⊥ to the sender and m((xs+xr)<(ys+yr)) to the receiver.

Leakage and Public Parameter. Same as previous protocols,
our protocol reveals some public parameters: dimension n
of the feature vector, an upper bound t on the bit-length to

8Model-inversion attacks are outside of our scope since they can be miti-
gated by various (non-cryptographic) orthogonal methods, e.g., rate-limiting.

4

TABLE III: Notations for (Privacy-Preserving) Tree Evaluation

~x client’s n attributes x1, . . . , xn

T (~x) decision-tree evaluation on ~x
Ti node i’s information with yi, ixi, and kidb,i or vi (and mski)
m number of decision nodes

yi ∈ Z2t threshold for node i ∈ [1,m] to be compared with xixi
ixi ∈ [1, n] index of attribute at node i

vi label of a leaf node i (a possible classification result T (~x))
d depth of the tree T

bj∈[d] decision bit (xixi
< yi) for some node i at level j

kidb,i ∈ Z
2d

index of left/right (b = 0/1) child of node i
b′dp permutation bit at level dp, 1 ≤ dp < d (see Fig. 4)

dskb,dp λ-bit keying material at level dp for the left/right node
mski λ-bit secret key for node i at level d′ (see Fig. 3)
T ′i shared (and encrypted) Ti

aC or aS client (C)’s or server (S)’s share of a
(e.g., ySdp ∈ Z2t+1 is server’s share (masking) of ydp at level dp)

[aC]S S’s share of aC (for our outsourced extension, see Section V-A)

represent an attribute, and an upper bound d on the tree depth.
Our sparse-tree protocol also leaks the upper bound on the
number of non-dummy internal nodes of the whole tree (see
Fig. 6), but not that of each level (cf., [42]).

IV. SEMI-HONEST TWO-PARTY PROTOCOL

Table III lists our notations. ~x = (x1, . . . , xn) is the client’s
attribute vector, yi is the threshold of node i, and v = T (~x) is
the decision-tree evaluation result. We suppose |x1| = · · · =
|xn| = |y| = t and |v| = d. We hide the attribute index ix in the
OT, so it is operated in Zn (shifted by 1), where |ix| = dlog ne.
Node index kidb,i should be in Z2d , so |kid| = d.

H is a key-derivation function (KDF), which outputs a
pseudorandom string of the desired length, and can be instanti-
ated using AES. We require H(k0⊕k1) to be indistinguishable
from random given H(k0),H(k1) for randomly chosen k0, k1,
which holds if we model H as a random oracle in the proof.

A. Complete-Tree Protocol

We first construct a protocol for a complete decision tree.
A non-binary or incomplete tree can be transformed into
a complete binary tree by increasing the depth and adding
dummy nodes. All leaf nodes in the subtree of dummy decision
nodes have the same dummy classification label.

We start with some technical highlights of our protocol
(with forward pointers to the relevant steps detailed in Sec-
tion IV-A5). Fig. 2 is a flow diagram of our approach.

1) Same level, same share: For each decision node i, the
server (2, 2)-secret-shares to the client threshold yi and the
index ixi of the client attribute to be compared (or “the index”).
The server-side shares ySdp and ixSdp are the same for each node
across the same level dp. Thus, the server simply knows the
(constant) shares “corresponding to” the path without knowing
the path taken. However, we need to ensure that the client can
only get the client-side share for one node per level on the
evaluation path, to be discussed in Section IV-A3.

At each level, the client rotates each attribute of the feature
vector by ixCdp, the server then retrieves the ixSdp-th attribute via(
n
1

)
-OT (Fig. 5: Step 2b). Intuitively, the server will get the

ixdp-th attribute of the feature vector. For server privacy, we use
the trick of reusing shares again, i.e., the client-side share of

GenClientTree

!
" -OT

Attribute Sel.

Base OT
Preprocess

Parse node

dp ≥ 𝑑

(Less Than)
Cond.-OT

Key Selection

dp ≥ 𝑑

ix#$
%𝑋& &'"

!

𝑥#$
%

Load share

dp++ dp++

𝑥#$
(, 𝑦#$

(𝐾), 𝐾", 𝑦#$
%

No No
Yes Yes

Start Start

Client Server

Sender Receiver

SenderReceiver

End End

Output 𝑣

𝐾*!" (𝑏#$
∗)

𝑇"(, … , 𝑇,#-"
(

dp:= 1

(𝑏#$.)

ix#$
(

(𝑦"(, ix"(, …, 𝑦,#-"
(, ix,#-"

()
which encrypted

(Rotated by)

Client Decrypt
left/right (𝑏$%

∗)
child node of 𝑇$%

'

dp:= 1
𝑇"(, … , 𝑇,#-"

(𝑇"%, … , 𝑇,#-"
% , 𝑏.

ServerClient

Fig. 2: Overview of Our (Complete-Tree) Protocol (the node
content and input/outputs are different for the sparse-tree case)

all attributes are the same for each level of traversal. The client
simply knows the client-side share of the attribute transferred,
without knowing which index the server is interested in.

2) Compare and Evaluate Together: From both shares of
the attribute and the threshold, both parties can then compare
them via COT (Fig. 5: Step 2c), which transfers a decision bit
(possibly flipped, see Section IV-A5) and one of the two keying
materials of the current level to the client. The client can then
locally derive the key to recover (the share of) the next node.
This merged comparison with path evaluation, while they are
separate sub-protocols in the framework of Kiss et al. [24].

3) Tree-Node Encryption and its Key Management: For
each node i, the server uses a one-time pad (OTP) to en-
crypt the client share of Ti, which is denoted by T ′i , via
T ′i ⊕H(mski), where H is a KDF of |T ′i | bits. We call mski
the node key. This encrypted tree (share) can be sent to the
client in advance. Again, this deviates from Kiss et al. [24].

We define msk1 ← 0λ, i.e., all zeros for the root (i = 1),
and assume T ′1 is not encrypted by H(0λ). At each level dp,
the server picks two random bitstrings dsk0,dp and dsk1,dp as
the keying materials. Collectively, they suffice for deriving a
unique key for each node. Specifically, we define mskkidb,i ←
mski⊕dskb,dp for all node i at level dp, b ∈ {0, 1}, i.e., dskb,dp
is re-used across half of all nodes at level dp. If node i at level
d′ is reachable by the evaluation path determined by decision
bits b1, . . . , bd′−1, it is encrypted by H(

⊕d′−1
dp=1 dskbdp,dp).

Fig. 3 depicts the keying materials. In each level, the client
can only obtain dskbdp,dp through conditional OT where bdp is
the decision bit a level dp. Throughout the protocol, the client
obtains dskb1,1, . . . , dskbd−1,d−1. Since the keying material for
each node key is uniquely determined by its path from the
root, all the one-time pads, i.e., the outputs of H(·), are all
different. Thus the client can only decrypt the nodes along the
path determined by b1, . . . , bd−1, where d is the tree depth.

4) Summarizing Our Tree Traversal/Evaluation: Each de-
cision node i consists of the node-specific threshold yi and

5

msk1

msk2

msk4

dsk0,2

msk5

dsk1,2

dsk0,1

msk3

msk6

dsk0,2

msk7

dsk1,2

dsk1,1

Fig. 3: Key Management (for the leftmost path): We set
msk1 ← 0λ, msk2 ← msk1 ⊕ dsk0,1, and msk4 ← msk2 ⊕
dsk0,2. The client can only obtain the keying material for a
branch to advance to the next level along the same branch,
e.g., without dsk1,1, node 6 is inaccessible even with dsk0,2.

1

2

4
0

5
1

0
3

6
0

7
1

1
1

2

5

b′2

4

1⊕ b′2

b′1
3

7
b′2

6
1⊕ b′2

1⊕ b′1

permute
level
dp = 2

T1 T2 T3 T4 T5 T6 T7 T1 T2 T3 T5 T4 T7 T6

(a) The case for b′1 = 0, b′2 = 1

T1 T2 T3 T4 T5 T6 T7 T1 T3 T2 T6 T7 T4 T5

(b) b′1 = 1, b′2 = 0: nodes at level 1 (and their subtrees) are permuted.

Fig. 4: At each level, permutation bit b′dp decides to flip or not.

the attribute index ixi. After receiving the encrypted nodes
T ′1 , . . . , T ′2d−1 from the server, the COT compares xix1 and y1

and let the client obtain the first decision bit b1 and dskb1,1.
The client can then “traverse” by decrypting the next node.
This process continues until reaching a leaf node. In this way,
the server learns neither the attribute nor the attribute index
used in the COT (which leaks information about the evaluated
decision nodes), but the client learns the evaluation path from
the decision bits. Below we discuss how to protect the latter.

5) Detailed Construction: Before the online inference pro-
tocol, the server runs GenClientTree (Algorithm 2) to generate
the encrypted decision tree share (and sends it to the client).

Randomizing the Decision Tree. To avoid leaking the evalua-
tion path, the server picks random bits {b′dp} for PermuteTree
(Algorithm 1), which permutes all subtrees at level dp where
b′dp = 1. The bits (b′1, . . . , b

′
d) solely held by the server deter-

mine the permuted index (Fig. 4) and whether the comparison
decision bit output by the conditional OT needs to be flipped.

Sharing the Decision Tree. The server picks random secret
shares9 ySdp, ixSdp, and computes yi−ySdp and ixi− ixSdp for each
decision node i at each level dp (except the leaves). The server
thus knows the inputs for the COT without knowing which
node is traversed. For the client share, the server encrypts it
as in Algorithm 2 (overviewed in Section IV-A3) such that the

9The operation over the secret shares of x, y is taken modulo by 2t+1, due
to our conditional OT instantiation (Lemma 1). For ix, the operation is carried
out over [1, n], similar to modulus operation.

Algorithm 1: PermuteTree

Input : T , Permutation bits ~b = (b′1, . . . , b
′
d)

Output: Permutation π(·)
1 Set π(1) = 1
2 for dp← 1 to d do
3 foreach node i at level dp do
4 π(kid0,i)← 2π(i) + b′dp // update π at kid0,i
5 π(kid1,i)← 2π(i) + 1− b′dp // update π at kid1,i

6 return π : [1, 2d+1 − 1]→ [1, 2d+1 − 1]

Algorithm 2: GenClientTree
Input : Server tree T
Output: Encrypted client share of the tree T ′

and all random choices of the server

1 (b′1, . . . , b
′
d)←$ {0, 1}d // server random choices

2 π ← PermuteTree(T , (b′1, . . . , b′d)) // Algorithm 1
3 msk1 ← 0λ // must traverse the root (no privacy)
4 for dp = 1 to d− 1 do // set T ′i , derive key material

5 ySdp←$Z2t+1 , ixSdp←$Zn // server share at lv. dp

6 dsk0,dp, dsk1,dp←$ {0, 1}λ // keying material
7 foreach node i at level dp do // same lv. same share

8 T ′i ← (yi − ySdp)||(ixi − ixSdp) // client share
9 mskkid0,i ← mski ⊕ dsk0,dp // left child key

10 mskkid1,i ← mski ⊕ dsk1,dp // right child key

11 foreach node i at level d do T ′i ← vi // label
12 foreach node i 6= 1 do T ′i ← T ′i ⊕H(mski) // OTP
13 Send (T ′1 , . . . , T ′2d−1) after applying π

client can only decrypt one node and hence one secret-shared
content per level, after obtaining the keys from the COT.

Selecting the Attribute at Decision Nodes. In the online
phase in Fig. 5, the client starts from dp = 1, obtains the shares
of threshold and attribute index yCdp, ixCdp (after decryption if
it is not the root), and secret-shares the attribute at ixdp to the
server through OT in Step 2b. Here, the client’s shares for all
attributes are identical (xCdp), so it does not need to know which
share is obtained by the server. Namely, the client computes
Xj ← xj+ixCdp

−xCdp for 1 ≤ j ≤ n in Step 2a, where xj is the
j-th client attribute. The inputs to the OT are then all rotated
by ixCdp. The server inputs ixSdp to get xSdp ← XixSdp

. Note that
XixSdp

= xixSdp+ixCdp
− xCdp = xixdp − xCdp, thus xCdp + xSdp = xixdp .

Traversing the Decision Tree. Both parties holding the secret
shares of the threshold and the attribute now engage in the COT
in Step 2c for Ke ← b∗||dske,dp where b∗ = e⊕ b′dp, which is
((xCdp + xSdp) < (yCdp + ySdp)) but possibly flipped by b′dp. The
client then traverses to the node kiddp+1 ← 2kiddp + b∗, and
decrypts its secret-shared content using the key mskdp+1 ←
mskdp ⊕ dskbdp,dp (Fig. 5: Step 2d). The process is iterated
until a leaf node is reached, and the client outputs the result.

Theorem 1 (Correctness). Assuming the correctness of the
underlying OT and conditional OT, if both the client and server
follow our two-party complete-tree protocol (Fig. 5), the client

6

Complete-Tree Online Protocol:
1) The client sets msk1 ← 0λ and kid1 ← 1.
2) for dp = 1 to d− 1 do

a) The client parses yCdp||ix
C
dp ← T ′dp.

The client picks xCdp←$Z2t+1 ,
• for j = 1 to n do sets Xj ← xj+ixCdp

− xCdp.
b) The client and the server invoke F(n

1)-OT:

• The client inputs (X1, . . . , Xn).
• The server inputs ixSdp and gets XixSdp

= xSdp.
c) Both parties invoke FCOT:
• The server inputs (xSdp, y

S
dp,K0,K1), where

K0 ← b′dp||dsk0,dp, K1 ← (1⊕ b′dp)||dsk1,dp.
• The client inputs (xCdp, y

C
dp).

d) The client parses Kbdp as b∗||dskbdp,dp and sets
• kiddp+1 ← 2kiddp + b∗,
• mskdp+1 ← mskdp ⊕ dskbdp,dp,

and decrypts T ′dp+1 ← T ′kiddp+1
⊕H(mskdp+1).

3) At last, the client outputs the classification v ← T ′d .

Fig. 5: Online Phase for Complete-Tree Evaluation

learns the classification results T (x) at the end.

Theorem 2 (Semi-honest Security). In the random oracle
model, the protocol in Fig. 5 securely implements FDT against
semi-honest adversaries in the (FCOT,F(n

1)-OT)-hybrid model.

The proofs can be found in Appendices A-A and B-B.

B. Sparse-Tree Protocol

Our sparse-tree protocol is obtained from slightly modify-
ing our complete-tree one (with the same flow in Fig. 2).

1) Hiding the Sparse Structure: A decision tree may not
be a complete tree and has a leaf at level d′ < d. We introduce
one dummy node at each level from dp = 3 to d (Fig. 6) to
hide the tree structure. If a leaf node is reached at some level
d′ < d during the evaluation, the client continues to traverse
the dummy nodes at level d′ + 1 to d. Note that we “reuse”
the dummy nodes instead of padding the tree everywhere. This
appears to inherently minimal, or one can observe that a path
is shorter than the depth d if the traversal finishes “too early.”
However, the resulting data structure is not a tree, so we need
to modify our complete-tree protocol accordingly.

Our new padding trick seems to require us to “sink” the
classification result to the deepest dummy node, but it may be a
descendant of more than one real leaf nodes. Instead, we come
up with a new way to get the classification result by storing vi
in all nodes, which is 0 for non-leaf and dummy nodes, or the
real classification value for leaf nodes. Tree evaluation adds up
all vi’s along the path, which leads to the classification result.
As other node content, these vi’s are revealed in secret shares.
We also set the threshold yi to 0 for all non-decision nodes,
so the dummy traversal after the real leaf always goes left.

To prevent the client from distinguishing the decision node,
leaf node, and dummy, each node i should have the same

Fig. 6: (Dotted) Dummy Nodes in the Sparse-Tree Protocol

TABLE IV: Node Structure for Our Sparse-Tree Protocol
(before secret sharing, mskCi is omitted): dp is the level of i

Node i label threshold index left child right child
Decision 0 yi ixi kid0,i kid1,i
(Real) Leaf vi 0 1 2m+ dp 0
Dummy 0 0 1 i+ 1 0

Algorithm 3: GenClientSparseTree
Input : Server Tree T , with vi if i is a leaf, or yi,

ixi, {kidb,i}1b=0 for a decision node
Output: Encrypted client share of the tree T ′

and all random choices of the server

1 (b′1, . . . , b
′
d)←$ {0, 1}d // to be used in Line 18

2 Sample a random permutation subject to π(0) = 0
π : {0, 1, . . . , 2m+ d− 1} → {0, 1, . . . , 2m+ d− 1}

3 for dp = 1 to d− 1 do // set up keys and materials
4 dsk0,dp←$ {0, 1}λ, dsk1,dp←$ {0, 1}λ
5 foreach node i at level dp do
6 if mskkid0,i is not null then // undefined left child
7 mskkid0,i ←$ {0, 1}λ // define node key
8 mskkid1,i ← mskkid0,i ⊕ dsk0,dp ⊕ dsk1,dp

9 for i = 2m+ 2 to 2m+ d− 1 do // connect dummies
10 Ti := (vi, yi, ixi, kid0,i, kid1,i)← (0, 0, 1, i+ 1, 0)

11 for dp = 1 to d do // prepare nodes of the same structure

12 ySdp←$Z2t+1 , ixSdp←$Zn // pick server share of y, ix,

13 vSdp, kid
S
0,dp, kid

S
1,dp←$Z2d // of label, child node IDs

foreach node i at level dp do
14 if i is a decision node then
15 Prepend vi = 0 to Ti // no label for non-leaf
16 else if Ti is a non-dummy leaf node then
17 Append (0, 1, 2m+ dp, 0) to Ti // after vi
18 Update Ti ← (vi − vSdp||yi − ySdp||ixi − ixSdp||

π(kidb′dp,i)− kidSb′dp,dp||
π(kid1⊕b′dp,i)− kidS1⊕b′dp,dp||mskkid0,i⊕dsk0,dp)

19 Set T ′π(1) ← T1 // reveal the root (and encrypt the rest)

20 for i = 2 to 2m+ d− 1 do T ′π(i) ← Ti ⊕H(mski)

21 Send (π(1), T ′1 , . . . , T ′2m+d−1, v
S ←

∑d
dp=1 v

S
dp)

structure. Table IV illustrates the content of each kind of node.
(A tree with m decision nodes has at most m+ 1 leaf nodes.)

Moreover, to hide any inference of the tree structure from
the node indices, we apply a random permutation π on them.
Correspondingly, each node i needs to include indices of the
child nodes kid0,i and kid1,i. Depending on the permutation
bit b′dp, the left and right child entries in Table IV would be
switched after applying π. This flips the child nodes explicitly
inside the node entry in contrast to the complete-tree case.

7

2) New Key Management: If we directly employ our key
management for complete trees, since the key for a node is
determined by all the keying materials on the path from the
root to itself, a dummy node will end up with conflicting
definitions of its key for being a child of two or more nodes.

Solving this conflict requires a slight change to our key
derivation. Our GenClientSparseTree (Algorithm 3) adopts
the following “hybrid” approach that additionally stores in
each node i the “helper” keying material mskCi , which is
determined by the node key mskkid0,i of its left child. Namely,
we first pick mskkid0,i , or we reuse the existing value if it has
been set. Then we set mskCi of node i to mskkid0,i⊕dsk0,dp. The
same-level-same-share principle remains here, i.e., the keying
materials to be transferred by COT for all left nodes (dsk0,dp),
and respectively all right nodes (dsk1,dp), are the same for a
given level dp. Finally, we set the node key mskkid1,i of the
right child to mskCi ⊕ dsk1,dp. The node key mskkidb,i can be
recovered from mskCi when COT transferred dskb,dp since the
node keys for left or right differ by ∆dp = dsk0,dp ⊕ dsk1,dp.

Since a right child can never be a dummy, it is never a (left)
child of some node other than its single parent. Meanwhile,
its left sibling cannot be a dummy since only one dummy
node is created as a child of a leaf node having no child nodes
originally. Consequently, the top-down assignment for the right
child nodes is always possible. Also, the node key of a left
child is always generated independently from other nodes. We
thus still maintain the property that all node keys of the whole
tree are unique. Even though the same helper material may be
assigned to an original leaf node and some dummy node at
the same level, they are OTP-ed by different node keys, the
client cannot figure it out since the client can decrypt at most
one node at each level as in our complete-tree protocol.

3) Construction: Algorithm 3 details the setup. Before the
online phase, the server first adds a dummy node at each level
that contains a decision node at its higher level. To hide the tree
structure, a random permutation is applied over the indices.
The encrypted content of a node also contains the secret share
of permuted child node indices and the helper keying material.

The evaluation of our sparse-tree protocol (Fig. 7) mostly
follows the complete-tree protocol, except it also utilizes the
appended entries (shares of indices/pointers and helper keying
materials). In COT, the client receives b∗ and the secret-
shared (permuted) index kidSdp. Combining kidSdp with the
client share kidCb∗,dp in the current node enables the client to
obtain the (permuted) index of the next node k̂id. Meanwhile,
with mskCdp = mskkid0,i ⊕ dsk0,dp for the current node i and
the keying material dskb,dp from COT, the client can obtain
mskkid0,i or mskkid1,i to decrypt the next node (Step 2d).

The sum of vi in all the traversed nodes equals the sum of
(d− 1) secret shares of 0 plus the secret-shared classification
result in the leaf. With the sum vS of all server shares of vi
from the offline phase, the client can recover the final result.

Theorem 3. Assuming the correctness of the underlying OT
and conditional OT, if both the client and server follow our
two-party sparse-tree protocol (Fig. 7), the client learns the
classification results T (x) at the end.

Theorem 4 (Semi-honest Security). In the random oracle

Sparse-Tree Online Protocol:
(blue parts are different from the Complete-Tree Protocol)

1) The client sets T ′1 ← T ′π(1).
2) for dp = 1 to d− 1 do

a) The client parses

vCdp||yCdp||ixCdp||kid
C
0,dp||kid

C
1,dp||mskCdp ← T ′dp.

The client picks xCdp←$Z2t+1 ,
• for j = 1 to n do sets Xj ← xj+ixCdp

− xCdp.
b) The client and the server invoke F(n

1)-OT:

• The client inputs (X1, . . . , Xn).
• The server inputs ixSdp and gets xSdp.

c) Both parties invoke FCOT:
• The server inputs (xSdp, y

S
dp,K0,K1), where

the server sets K0 ← b′dp||kid
S
0,dp||dsk0,dp and

K1 ← (1⊕ b′dp)||kid
S
1,dp||dsk1,dp.

• The client inputs (xCdp, y
C
dp).

d) The client parses Kbdp as b∗||kidSdp||mskSdp and sets

• k̂id← kidSdp + kidCb∗,dp,
• m̂sk← mskCdp ⊕mskSdp,

and decrypts T ′dp+1 ← T ′k̂id ⊕H(m̂sk).

3) The client sets vCd || · · · ← T ′d and vC ←
∑d

dp=1 v
C
dp.

The classification result is v ← vS + vC .

Fig. 7: Online Phase for Sparse-Tree Evaluation

model, the protocol in Fig. 7 securely implements FDT against
semi-honest adversaries in the (FCOT,F(n

1)-OT)-hybrid model.

The proofs can be found in Appendices A-B and B-C.

C. Performance Analysis and Comparison

The complete-tree protocol requires (2d−1) rounds. In our
protocols, the communication and computation costs involve
the encrypted tree and d instances of

(
n
1

)
-OT and COT. In

more detail, the server needs to encrypt (with OTP from AES)
and send (2d−1) nodes to the client, each of length (t+log n).
They can be sent in the offline phase. The client will decrypt d
nodes with d calls to H(·). At each level, they engage in

(
n
1

)
-

OT with output length t, and COT with output length (λ+1).
With (the public-key operations of) base-OT’s preprocessed,(
n
1

)
-OT’s can be carried out efficiently online [25], [5].

More concretely, the communication cost of each
(
n
1

)
-OT

with output length t is (4λ + nt) bits. The computation cost
for the client/server is n/1 hash function. A COT requires
a GC with t AND-gates, one

(
2
1

)
-OT with output length λ,

transmissions of two λ-bit hash values, and two (λ + 1)-bit
encrypted messages. The communication cost of GC with t
AND-gates and OT with output length λ is 7tλ bits and 2λ
bits, respectively. The computation cost of GC with half-gate
optimization is 2/4 hash function calls per AND-gate for the
client/server. Thus the cost of COT is (7t+ 8)λ+ 2 bits.

In the sparse-tree protocol, the server sends (2m+ d− 1)

8

TABLE V: Our Online/Offline Costs for Client/Server Side

(Approximated) Communication Cost Computation Cost

Online Complete: d(4λ+ nt) + (7t+ 8)λ Client: O((n+ t)d)
Sparse: d(4λ+ nt) + (7t+ 8)λ+ 8d Server: O(td)

Offline Complete: 2d+1(t+ logn) Client: −
Sparse: (2m+ 1)(t+ logn+ λ+ 3d) Server: O(2d)/O(m)

encrypted nodes, each (λ+ t+ 3d+ log n) long, to the client,
and the output length of the COT is (λ+d+1). The online and
offline costs are listed in Table V with small terms omitted.

D. Upgrading the Sub-protocols

Prior O(1)-round linear-time protocols [40], [46] provided
one-sided maliciously-secure versions, while the prior sublin-
ear protocols [22], [42] only considered semi-honest security.
Interactive evaluations [22], [42] may leak more information.
A malicious client could alter the attribute to be supplied or
the (secret-shared) tree it received in any round and possibly
inferring information on what attribute was being selected.

Fortunately, we could achieve privacy against a malicious
client/server by further replacing the GC with its maliciously-
secure version [5]. We provide an analysis in Appendix C.
Note that the “pure GC” approach [24] of Barni et al. [6] has
already suggested a generic way to achieve malicious security
for privacy by upgrading the OT (extension) to its maliciously-
secure version. The efficiency of such a defense mechanism
against a malicious attacker within GC will be much lower
than those tailor-made approaches over HE or homomorphic
commitments in general, e.g., [46], [40]. The general design is
routine, which extensively introduces zero-knowledge proofs
(ZKPs) and (signed) commitments. The tailored part is for
efficiency, e.g., coming up or using “compatible” ZKPs.

To limit the malicious client’s capability, the client should
commit to its feature vector ~x first and later proves that
it has been using the same committed ~x throughout the
protocol execution. Furthermore, we use ZKPs and signatures
as follows: the tree shares are signed via Sigsk(·) by the server.
In the online phase, if the decrypted tree shares are not in
the right form, or the signature verification fails, the client
aborts. To prove that all the tree shares fed into conditional
OTs are indeed generated by the server, the client ZKP-proves
that it possesses the corresponding server’s signatures, i.e.,
proving the statements described in Fig. 12 in Appendix C.
Efficient instantiations of the corresponding ZKPs are known.
For example, one can use the technique of verifiable rotation
of HE ciphertexts [18] to instantiate the second statement.

The attribute selection and conditional OT can be in-
stantiated using (maliciously-secure) garbled circuit separately
with ZKP and cut-and-choose technique [21], [29]. One can
also combine the attribute selection (including the feature
vector rotation), conditional OT, and signature verification
for each level in a single circuit. The garbled circuit takes
as input (~x, yCdp, ix

C
dp,Sigsk(ydp||ixdp||dp)) from the client and

(ySdp, ix
S
dp, b

′
dp,K0,K1, vk) from the server, where vk is the

public verification key corresponding to the private signing key
sk. It outputs the possibly flipped decision bit and Kb to the
client as in the complete-tree protocol. The circuit for attribute
selection is similar to that used by Tueno et al. [42], which

consists of XOR-gates for reconstructing the shared index, and
n equality gates and n multiplexers for picking the attribute.
A comparison gate with multiplexer can then be used to return
the permuted bit and the decryption key for the next node.

Looking ahead, in the outsourced setting, the clouds do
not collude and only receive information-theoretically secure
secret shares, which could also achieve privacy against mali-
cious adversary formalized in [4]. The clouds cannot learn if a
classification result changes because the leaf nodes containing
the label are freshly shared each time, as long as the client does
not collude with one of the clouds. Hence, the clouds cannot
infer extra information about the feature vector nor the decision
tree from information-theoretically secure secret shares.

V. OUTSOURCED PROTOCOL FOR JOINT INPUTS

Our basic protocols require the client and the model owner
to interact with each other directly. We consider securely
outsourcing evaluation for both parties as described below
by using two non-colluding cloud servers. The clouds do not
need to interact with the client or the model owner during
traversal after obtained the corresponding private inputs (for
once). Our outsourced protocol still hides which attribute is
being considered at each tree level from either cloud. These
features enable our extension to support multiple clients and
multiple owners (or contacting a certain client during traversal
already reveal something about the attribute index of interests).

The query, as a feature vector, can consist of attributes from
different clients (e.g., x1, x3 from client 1, and x2, x4, x5 from
client 2). We assume the index of each client attributes ({1, 3}
and {2, 4, 5}) in the “combined” feature vector ({xi}5i=1),
and the unique identifier connecting their vertically partitioned
attributes (e.g., when many hospitals hold different parts of
patient records) are publicly known. This combination is con-
ceptual. Each client can send the attributes in secret shares to
the clouds independently. Similarly, multiple model owners can
share their respective decision tree to the clouds independently,
possibly forming a random forest acting on the same query.

Our secret-sharing-based design also allows simple arith-
metics (additions and constant multiplications) over the shares
(e.g., the average of attributes for horizontally partitioned
data) by the clouds. Our outsourced protocol does not use
heavyweight tools such as multi-key homomorphic encryption.

A. Intuition: Secret-Sharing the Inputs to Two Clouds

In our base protocol (Algorithm 2), the client and the model
owner split their respective private inputs into two shares. One
may be tempted to use it as-is for outsourcing; namely, they
send their respective client shares to the first cloud, and their
respective model-owner shares to another cloud. The clouds
can then run our base protocol, with one acting solely as the
client and another acting solely as the model owner.

Such a trivial approach may work, but at most for one
time due to linkability issues because the shares (e.g., of the
tree) and random choices of each cloud never change. If a
cloud saw the same intermediate output again (e.g., after OT)
at a certain tree level in the second invocation, it can conclude
that the current query shares similarity with the previous one.
To ensure unlinkability even when one of the clouds colludes

9

Run “synchronized”
for each level

Shared Attributes Ԧ𝑥0

Shared Tree: 𝑇0

Shared Attributes Ԧ𝑥1

Shared Tree 𝑇1
𝑇0 Ԧ𝑥1

𝑣

Ԧ𝑥0 𝑇1

𝑣

PPDT

PPDT

Fig. 8: Two clouds with shares of the tree and clients’ attributes
run in parallel 2 instances of the 2-party protocol playing as the
tree-owner/server and the client, and receive a shared result.

with any client or model owner, both clouds must refresh
their secret shares for each query, so they can never re-use
any prior shares and see the same intermediate result after
their interaction. That is, for each query, each cloud runs
GenClientTree (Algorithm 2) over (2, 2)-secret sharing of T
(yi and ixi for all nodes i). Each cloud also generates a share
of the share of ~x to another cloud. Intuitively, due to the non-
colluding assumption, at least one cloud would provide a new
share to each invocation of the protocol, which breaks any
linkage across different invocations. Also, the client and the
model owner do not need to redistribute the shares every time.

For evaluation, the clouds run two instances of the two-
party evaluation protocol (in Section IV-A5) synchronously (in
level) but with opposite roles. Namely, each cloud executes the
evaluation protocol in Fig. 5 as a “client” using the share of
~x with the other cloud as the “owner.” For example, when a
client shares x to the clouds as [x]CS0 and [x]CS1 , cloud CS0

is going to further share it with CS1 in the form of [[x]CS0]S ,
denoting the owner role of CS1. We still keep the superscript S
notation while we refer to the model owner. (Strictly speaking,
both clouds are now servers of the prediction service). Even
though such preprocessing further splits their shares of tree
and attributes, they can obtain the required secret-shared
result without learning the attributes nor the tree during the
evaluation, a feature inherited from the stand-alone setting.

It would be nice if the outsourced extension can just run
two independent invocations of our basic protocol, named as
PPDT in Fig. 8, in a black-box manner. However, two parts in
the evaluation prevent us from doing so in a similar manner.

The first part concerns the attribute index. If the two
instances stay independent, each of them always works on a
random index, which is never the real index indicating the
attribute to be compared. This issue can be resolved if each
cloud also takes the share from the other instance of the
protocol as an input to make it “complete” (for the OT).

For example, when the first cloud CS0 plays a client, it has
the client share for sure. Meanwhile, this cloud also plays as a
server in the other instance and obtains a “server share” from
CS1 who treats CS0 as a “server.” Now, CS0 forms a single
“client share” by adding up both shares. Similarly, CS1 also
obtains one server share in an instance and one client share
from the other. CS1 adds them up as a single “server share.”

In short, each cloud forms the share expected by the
underlying protocol by adding up the two shares across two
instances. The second part concerns the inputs compared by the
conditional OT in a similar way. The same treatment applies.

Outsourced Protocol:
(CS1−s and CSs parallelly plays as client and server
respectively. All the variables are local, except those
marked in blue, which come from the other instance.)
The client sets mskC1 ← 0λ, kidC1 ← 1, T ′1

C ← [T ′0
CSs]C .

for dp = 1 to d− 1 do
1) The client parses [yCSs

dp]C ||[ixCSs

dp]C ← T ′dp
C .

2) The client picks [x
CS1−s

dp]C ←$Z2t+1 and sets
XC
j ← x

CS1−s

j+[ixCSsdp]C+[ix
CS1−s
dp]S

− [x
CS1−s

dp]C , ∀j ∈ [n].

3) The client and the server invoke F(n
1)-OT:

• The client inputs (XC
1 , . . . , X

C
n).

• The server inputs [ixCSs

dp]S + [ix
CS1−s

dp]C .

In the end, the server outputs [x
CS1−s

dp]S .
4) The client and server invoke FCOT:
• The server inputs ([xCSs

dp]C + [x
CS1−s

dp]S ,

[y
CS1−s

dp]S + [yCSs

dp]S ,K0,K1).
• The client inputs ([xCSs

dp]S + [x
CS1−s

dp]C ,

[y
CS1−s

dp]C + [yCSs

dp]C).

where K0 ← b′dp||dsk
CSs

0,dp, K1 ← (1− b′dp)||dsk
CSs

1,dp.
5) The client parses b∗||dskCb∗,dp ← Kbdp and sets

• kidCdp+1 ← 2kidCdp + b∗,
• mskCdp+1 ← mskCdp ⊕ dskCb∗,dp,

and decrypts T Cdp+1 ← [T CSs

kidCdp+1

]C ⊕H(mskCdp+1).

At dp = d, the client outputs [v]C ← T Cd .

Fig. 9: Evaluation Phase of Our Outsourced Protocol

B. Outsourced Complete-Tree Protocol

Delegation. The tree owner secret-shares the tree Ti = (yi||ixi)
or vi for all node i, while the client secret-shares its attributes
~x = (x1, . . . , xn) to the clouds. The shares are computed by
taking the respective modulo, e.g., shares of a decision node
Ti are [Ti]CS0 = [yi]

CS0 ||[ixi]CS0 = (ri||si) and [Ti]CS1 =
[yi]
CS1 ||[ixi]CS1 = (yi − ri||ixi − si) with ri ∈ Z2t , si ∈ Zn.

Cloud Preprocessing. Denote the clouds by CS0, CS1. They
invoke two slightly modified instances of the two-party proto-
col and play as the client (C) and server (S), respectively, i.e.,
CSs plays as client in instance s and server in instance (1−s).
In the instance that CSs plays as the server, CSs first runs
GenClientTree and sends to the counterpart (which plays as the
client C) the permuted tree share {[[Ti]CSs]C}2m+1

i=1 encrypted.

Cloud Online Phase. Both clouds play as client and server (in
parallel) in two instances of the online two-party evaluation
protocol (Fig. 5). We highlight in blue the parts obtained from
another instance (of GenClientTree or the evaluation protocol)
in Fig. 9. In the end, both send their local share of vi and result
[v]C they obtain as “client” to the user for reconstruction.

C. Security Analysis

Our outsourced protocol guarantees that the semi-honest
non-colluding clouds cannot learn extra information about the

10

decision tree, the feature vector, or the classification result.
At the end of the protocol, each cloud only outputs a secret
share of the classification result. In the multi-client setting, it
is up to the participants to decide whether the clouds should
send the secret shares of the classification result to a desig-
nated client. With minimal client involvement, our outsourced
protocol guarantees that only the designated client learns the
classification result without learning any other information
(e.g., other clients’ feature vectors, the decision tree model).

The security analysis of our outsourced protocol is similar
to the analysis of our basic two-party protocol. In a bit more
detail, the decision tree and client attributes are shared to two
clouds in the setup phase. If the clouds do not collude, the
distribution of the secret shares looks completely random to
them. In our outsourced protocol, as in our basic protocol, the
clouds only learn secret shares or permuted index. We can
reduce the security of the outsourcing protocol to the sub-
protocols (F(n

1)-OT, FCOT) similar to our basic protocols.

For multi-client queries, two or more clients can separately
contribute the shares of the client attributes. The clouds per-
form evaluation on freshly generated shares of the decision tree
and client attributes. The client does not need to re-share its
attribute for another round of evaluation and does not actively
participate in the online protocol execution. Thus, we do not
need to consider another client as an adversary especially. Even
if it shares its “secret” information to one of the clouds, the
leakage is confined to its own attributes since the cloud is
protected from knowing which nodes are being traversed. The
discussion for the security of multi-model evaluation is similar.

D. Performance Analysis

The online phase of the outsourced complete-tree protocol
requires 2d rounds of interaction. The clouds computation and
communication complexity is O(2d + (n + t)d). They work
as both server and client of the base protocol in parallel and
hence share similar workloads. The overall computation time
is similar to that of Section IV (when both clouds are as
powerful). Specifically, if λ = 128 and t = 64, the communi-
cation cost of the outsourced complete-tree protocol is around
2d−6 + (2−6n+ 14)d (1252) for d = 16, n = 20,m = 25d.

VI. EMPIRICAL EVALUATION

We empirically compare our protocols with the state-
of-the-art with different round-trip time (RTT) and band-
width (in bit/second) over local-area network (LAN, RTT:
0.1ms, 1Gbps), metropolitan-area network (MAN, RTT:
6ms, 100Mbps), and wide-area network (WAN, RTT: 80ms,
40Mbps) settings. We run tests for all protocols on a desktop
equipped with Ryzen 7 3700x running Ubuntu 18.04.4 LTS on
VMware Workstation 15 allocated with 4 cores and 16GB of
RAM. The times reported are averaged over 10 trials.

We set the security parameter λ to 128. We implement
our protocols using emp-toolkit [45], with semi-honest OT
extension and optimized GC. It achieves millions of 1-out-
of-2 OTs in a second, which we only require O(d(log n+ t))
OTs. In the benchmark, an

(
n
1

)
-OT is instantiated by log n(

2
1

)
-OT’s. Our COT is based on GC (see Appendix D), which

only requires a single “less-than” gate and a 1-out-of-2 OT;

TABLE VI: Online Time (ms) of Our Complete-Tree (CT)
Protocol and Tuneo et al. in the MAN (100Mbps/6ms RTT)
and WAN Settings (40Mbps/80ms RTT) for 64-bit attributes

Decision
n d m

Metropolitan Wide-Area Our
Tree [42] Our CT [42] Our CT Cloud
Nursery 8 4 4 0.30 0.14 2.01 0.97 0.86
Cancer 9 8 12 0.58 0.24 4.12 1.98 1.63
Housing 13 13 92 1.02 0.49 6.25 3.11 2.75
Spambase 57 17 58 1.32 0.61 8.53 4.12 3.98
Contagio 13 13 52 0.91 0.487 6.26 3.03 -

TABLE VII: Tree Parameters in Our Experiments

Decision #(Attributes) Tree Depth #(Nodes) #(Padded Nodes)
Tree n d m m̄ 2d

WINE 7 5 11 26 32
LINNERUD 3 6 19 47 64
BREAST 12 7 21 66 128
SYNTHETIC 200 8 255 255 256
DIGITS 47 15 168 1161 32768
DIABETES 10 28 393 6432 >2 · 108

BOSTON 13 30 425 6768 >10 · 108

MNIST 784 20 4191 23073 1048576

both could be run in 1 round simultaneously, yet it cannot
be supported via the API of emp-toolkit. The library supports
AES-NI acceleration. We use AES as the KDF and SHA-256
as the hash function. We chose elliptic-curve (lifted-)ElGamal
with 514-bit ciphertexts to instantiate HE used by the existing
protocols, e.g., the one of Joye–Salehi’s [22]. For the protocols
of Kiss et al. [24], we used their code [23]. In particular,
HE used by feature selection in HGH [24] is instantiated
by either Paillier encryption with ciphertext packing or DGK
encryption [17] with either 4096/2048-bit ciphertext.

A. Dataset and Decision-Tree Model

For comparing with the protocol of Tueno et al. [42], we
use their used datasets from the UCI machine learning reposi-
tory [19], which are nursery, cancer, housing, and spambase as
listed in Table VI. We use 1-hot encoding or label encoding
to represent categorical variables and scale up floating-point
numbers by multiplying a suitable value while preserving
accuracy. These information and n, d, t are known to the client.

For O(1)-round protocols surveyed by Kiss et al. [24],
we adapted their trained decision trees using their code [23]
and added two trees for higher-dimensional (n) vectors, one
shallow (SYNTHETIC) and one deep (MNIST), Roughly,
WINE (chemical analysis), LINNERUD (physical exercise per-
formance), and BREAST (cancer) are small trees, and DIGITS,
DIABETES, BOSTON (housing value), and MNIST are deep-
but-sparse trees. Table VII lists the tree parameters. Our
experiments aim to show their effects under different networks.

B. Comparison with O(d)-round Protocols

Both our protocols and Joye–Salehi’s [22] take 2d online
rounds. Our online communication cost (Fig. 10b) is compa-
rable (∼1KB) for small trees (d ≤ 7) and is at least an order
less for large trees (∼50KB for deep trees with the sparse-tree
protocol), without any exponential blow-up [22]. We did not
evaluate the computation time empirically since Joye–Salehi’s
needs O(2d+dt) HE operation while ours are symmetric-key.

11

Compared to the 4d-round protocol of Tueno et al. [42],
ours reduce the online communication cost by at least 3× for
large trees, while our offline overhead being less than 30% of
our online cost (using our sparse-tree or complete-tree protocol
depending on the tree structure). This is because our offline tree
sharing eliminated OAI for next-level nodes and GC-based tree
traversal. The saving in communication is plotted in Fig. 10.
Table VI listed the overall online computation time in detail,
showing that ours enjoys ∼50% saving. Ours are thus clear
winners among O(d)-round protocols. The last row and the
last column will be discussed in Section VI-D.

C. Comparison with Constant-round Protocols

Communication. Fig. 10 details the comparison in communi-
cation10, excluding OT-preprocessing of GGG/GGH and ours.
We start describing GGG [6], which can shift the major
communication cost to the offline phase, and hence features
a low online communication cost in general. However, the
feature-vector dimension dominates the online communication
cost due to its garbled selection network (for its nt 1-out-of-2
OTs). So, it will be overtaken by ours as n increases.

Using HE for path evaluation [40], the total communication
cost of GGH/HGH for deep-but-sparse trees is less than GGG,
but it loses advantage for dense trees (for sending O(m)
ciphertexts online11). GGH costs slightly more in online com-
munication but saves much more in offline cost than GGG [6].

Our sparse-tree protocol is a clear winner in offline commu-
nication. (Naturally, our complete-tree protocol suffers when
the tree is deep but sparse.) More concretely, it is >2 orders
of magnitude less than GGG/GGH (∼1.5 for HGH). We also
aim for a fast online phase (sublinear client-side computation
with only symmetric-key operations). The price is O(d) com-
munication rounds. For instance, ours suffer from >60·RTT
with ∼200KB online overhead for the BOSTON deep tree.

In general, our online cost lies between GGH and HGH,
except for WINE (too small a tree for ours to be competitive).
GGG is a clear winner in online communication, except for
large n. We can roughly treat DIGITS (n = 47) in our datasets
as a break-even point. A more precise treatment could be done
by synthesizing trees for varying n and d. However, we stress
that it is just for online communication but not the total online
time evaluated below. When we also consider the computation,
(n, d) alone does not determine who would be the winner.

Our advantages become prominent for trees process-
ing high-dimensional feature vectors (e.g., SYNTHETIC and
MNIST), which incur the smallest total (offline and online)
communication cost (5× saving for online). For tree depth
beyond 7, ours also enjoy the lowest total communication cost.

Runtime. After the microscopic evaluation, we consider the
online time for completing the protocol. Fig. 11 plots the online
runtime in three different network settings12. For the slowest
network, we removed LINNERUD, BREAST, and BOSTON,

10The focus is O(1)-round protocols. We included the online cost for O(d)-
round Joye–Salehi [22], but DIABETES and BOSTON are too large (108) for it.
We use our complete-tree protocol for SYNTHETIC since it is a complete tree.

11While HE supports single-instruction-multiple-data (SIMD), it only re-
duces the computation time and ciphertext size when amortized over multiple
invocations, but may not fit for prompt decision making over a single query.

12Offline times are mostly affected by the library and communication costs.

which share similar parameters as some others, and added
SYNTHETIC and MNIST, both for higher-dimensional vectors.
For small trees and small n, our protocols are less efficient than
GGG/GGH and perform similarly to HGH. For deep sparse
trees, the reported runtime for GGG increases significantly and
overtakes GGH/HGH. Our sparse-tree protocol becomes on par
with GGH and slightly better for DIGITS in the MAN setting.

In the LAN setting, we outrun all the others for almost all
tested trees. Our protocols run roughly an order slower when
the latency increases from 0.1ms to 6ms and from 6ms to
80ms. Even for WAN, we outrun GGG, GGH, HGH13, and
HGG when the trees operate over high-dimensional feature
vectors (SYNTHETIC and MNIST). Notably, we are still the
winner for DIABETES despite the low dimension (n = 10),
the online latency (d = 28), and our relatively higher online
communication cost. An explanation is that the effect of the
quadratic number of padded nodes (m̄) of GGG comes into
play, making our saving in the online computation time matters
much more. In short, ours are competitive for deep trees or
high-dimensional feature vectors.

We stress again that a holistic evaluation also considering
offline communication will make our advantages stand out.

Recommandations. The overall performance depends on the
client storage capacity, computational power, tree parameters,
and network environment.14 In some scenarios where network
latency is low (smart home, IoT), our protocol can save total
communication cost while providing rapid on-demand decision
tree classification (where the client devices are storage-limited
and inefficient for HE operations). Our protocols can also
efficiently handle trees with high-dimensional feature vectors
and support multi-client evaluation in the outsourced setting.

High Dimensionality in Decision Trees. Due to the “curse
of dimensionality,” it requires an exponentially-large data set
to train a good classification model. Feature selection tech-
niques are usually applied to reduce the feature dimension
before training the classifier. However, some data sets contain
thousands to million features (e.g., spam detection [30]), with
hundreds of them remaining after reduction for a reasonable
error rate [32]15. Existing distributed decision-tree training
frameworks train from a large volume of distributed high-
dimensional data (e.g., [1]) or produces (gradient boosted)
decision trees with a high-dimensional and sparse output space
(e.g., [37]) with controlled depth (e.g., 10).

A random-forest evaluation runs multiple (e.g., up to 100)
decision trees in parallel (where the RTT effect will not be
scaled up). Existing constant-round protocols will impose a
considerable storage requirement on the clients’ devices (when
their offline cost is too large). Our protocols strike a balance
between offline and online communication costs.

13HGH can reduce the offline communication cost (5×), but it uses HE and
incurs a larger online communication (>2×) cost than us. Moreover, feature
selection with HE requires O(n +m) online HE operations in which HGH
performs the worst in shallow trees operating over high-dimensional data.

14For instance, GGH performs better than HGH in MAN, and they have
similar performance in WAN (except for SYNTHETIC). HGH offers lower total
communication costs but has a higher online computation cost.

15This work [32] studies perceptron decision tree: each decision node is a
linear threshold unit that compares over a weighted sum of multiple features.

12

wine

Linnerud
breast

synthetic digits
diabetes

Boston
MNIST

10−1

102

105

108
O

ffl
in

e
C

os
t

(K
B

yt
es

)
GGG GGH HGH
OurC OurS

wine

Linnerud
breast

synthetic digits
diabetes

Boston
MNIST

101

102

103

104

105

O
nl

in
e

C
os

t
(K

B
yt

es
)

GGG GGH HGH
[22] [42] OurC
OurS

(a) Offline communication cost (b) Online communication cost

Fig. 10: Offline and Online Communication Cost (in different log scales): OurC/OurS refers to our complete-/sparse-tree protocol.

wine
Linnerud breast digits diabetes Boston

100

101

102

103

104

Ti
m

e
(m

ill
is

ec
on

ds
)

GGG HGG
GGH HGH
Ours

wine
Linnerud breast digits diabetes Boston

101

102

103

104

GGG HGG
GGH HGH
Ours

wine breast digits diabetes
MNIST

synthetic
102

103

104

105

106

GGG HGG
GGH HGH
Ours

(a) UCI datasets on LAN (1Gbps/0.1ms) (b) UCI datasets on MAN (100Mbps/6ms) (c) Selected tests on WAN (40Mbps/80ms)

Fig. 11: Online Runtime (in different log scales) in LAN/MAN/WAN (bandwidth/RTT) of Kiss et al. [24] and Our Sparse-Tree Protocol

D. Further Experiments

Application in Security. While the UCI repository [19] col-
lected many real-world data, they may not cover some of the
latest research from specific communities outside data science.
As a showcase, we implemented a recent decision-tree clas-
sifier for malicious PDF file detection [38], with 5000/5000
benign/malicious PDF files using the feature extraction tool
Mimicus [39] over the Contagio dataset [36]. The training is
done with the 13 (out of 136) most important features. The
average tree depth and the number of decision nodes are 13
and 52, respectively. For classification, the query is a feature
vector extracted from the PDF file, using 64-bit attributes as
our other experiments. We achieve 99.4% accuracy with 6-fold
cross-validation. Table VI reports the time needed.

Cloud Experiment. To evaluate our outsourcing extension,
we use Google Cloud Platform and create two e2.small (2GB
RAM) instances located at us-east1 (South Carolina) and
europe-west2 (London) with latency 88.5ms and bandwidth
220Mbps. While we assume the clouds have already received
shares of the feature vector and tree model from the client
and model owner, our experiment includes the preprocessing
needed to create a fresh share (e.g., the encrypted shared tree)
for each protocol invocation (the green box of Fig. 8).

Table VI shows the online computation time, which is
lower than that for the local execution (between the client and
model owner) in the WAN setting but not the MAN setting, but

it is not a failure because we support secure outsourcing with-
out requiring any computation of the model owner or the client
except initial sharing of their secret data (and recovering the
query result), while prior work [49] may stress on the saving
factor of the client computation without accounting for the time
needed by the clouds and their network communication. We
did not reimplement the existing works [31], [49] because they
achieve “the worst of both worlds” as discussed in Section I-A.

VII. CONCLUDING REMARKS

Machine learning is becoming more pervasive. Beyond the
pursuit of performance, the privacy of both the query and the
model is essential. It still takes a long time to process massive
neural networks in a privacy-preserving manner. The empirical
results confined their predictive power to simpler tasks.

We propose privacy-preserving protocols using lightweight
cryptographic tools for decision trees, which have been shown
useful for many classification and prediction tasks, ranging
from detecting cancer to detecting cyber attacks. Their com-
plexities are sublinear in the number of decision nodes, with
a much less online communication cost than previous ones,
and take advantage of preprocessing. They can also be easily
extended for secure outsourcing to two non-colluding clouds.

For future work, it would be interesting to consider security
against malicious adversaries while maintaining the same
efficiency level, say, by outsourcing to 3 or more servers.

13

ACKNOWLEDGMENT

The authors would like to thank the reviewers for the
thoughtful comments on enriching performance evaluation and
Marina Blanton for her comments on a related MPhil thesis.

This research is supported by the National Research Foun-
dation, Singapore under its Strategic Capability Research
Centres Funding Initiative, and the Research Grant Council,
University Grants Committee, Hong Kong under General Re-
search Fund (CUHK 14210319). Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the authors and do not reflect the views of National
Research Foundation, Singapore, and Research Grant Council,
Hong Kong.

REFERENCES

[1] F. Abuzaid, J. K. Bradley, F. T. Liang, A. Feng, L. Yang, M. Zaharia,
and A. S. Talwalkar, “Yggdrasil: An optimized system for training deep
decision trees at scale,” in NIPS, 2016.

[2] M. Y. Alhassan, D. Günther, Á. Kiss, and T. Schneider, “Efficient and
scalable universal circuits,” J. Cryptology, vol. 33, no. 3, pp. 1216–1271,
2020.

[3] A. Aloufi, P. Hu, H. W. H. Wong, and S. S. M. Chow, “Blindfolded
evaluation of random forests with multi-key homomorphic encryption,”
IEEE Trans. Dependable Sec. Comput. (TDSC), 2019, early Access.

[4] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in CCS, 2016.

[5] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in CCS,
2013.

[6] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A. Sadeghi, and
T. Schneider, “Secure evaluation of private linear branching programs
with medical applications,” in ESORICS, 2009.

[7] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO, 1991.

[8] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in NDSS, 2015.

[9] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-
preserving remote diagnostics,” in CCS, 2007.

[10] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” J. Cryptology, vol. 13, no. 1, pp. 143–202, 2000.

[11] S. S. M. Chow, “Privacy-preserving machine learning,” in Frontiers in
Cyber Security (FCS), 2018, invited paper for keynote talk.

[12] ——, “Can we securely outsource big data analytics with lightweight
cryptography?” in Security in Cloud Computing (SCC), co-located with
AsiaCCS, 2019, invited paper for keynote talk.

[13] S. S. M. Chow, J. Lee, and L. Subramanian, “Two-Party Computation
Model for Privacy-Preserving Queries over Distributed Databases,” in
NDSS, 2009.

[14] M. D. Cock, R. Dowsley, C. Horst, R. S. Katti, A. C. A. Nascimento,
W. Poon, and S. Truex, “Efficient and private scoring of decision trees,
support vector machines and logistic regression models based on pre-
computation,” IEEE TDSC, vol. 16, no. 2, pp. 217–230, 2019.

[15] G. Couteau, “New protocols for secure equality test and comparison,”
in ACNS, 2018.

[16] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure
comparison for on-line auctions,” in ACISP, 2007.

[17] ——, “Homomorphic encryption and secure comparison,” Int. J. Appl.
Cryptogr., vol. 1, no. 1, pp. 22–31, 2008.

[18] S. de Hoogh, B. Schoenmakers, B. Skoric, and J. Villegas, “Verifiable
rotation of homomorphic encryptions,” in PKC, 2009.

[19] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[20] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO, 2003.

[21] S. Jarecki and V. Shmatikov, “Efficient two-party secure computation
on committed inputs,” in EUROCRYPT, 2007.

[22] M. Joye and F. Salehi, “Private yet efficient decision tree evaluation,”
in DBSec, 2018.

[23] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider, Private
Decision Tree Evaluation (PDTE) Protocols, 2019, https://github.com/
encryptogroup/PDTE, last accessed on Sep. 12, 2020.

[24] ——, “SoK: Modular and efficient private decision tree evaluation,”
PoPETs, no. 2, pp. 187–208, 2019.

[25] V. Kolesnikov and R. Kumaresan, “Improved OT extension for trans-
ferring short secrets,” in CRYPTO, 2013.

[26] V. Kolesnikov, A. Sadeghi, and T. Schneider, “Improved garbled circuit
building blocks and applications to auctions and computing minima,”
in CANS, 2009.

[27] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP, 2008.

[28] ——, “A practical universal circuit construction and secure evaluation
of private functions,” in FC, 2008.

[29] B. Kreuter, abhi shelat, and C. Shen, “Billion-gate secure computation
with malicious adversaries,” in USENIX Security, 2012.

[30] C.-J. Lin, LIBSVM Data: Classification (Binary Class), 2019, https:
//www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.

[31] L. Liu, J. Su, R. Chen, J. Chen, G. Sun, and J. Li, “Secure and fast
decision tree evaluation on outsourced cloud data,” in ML4CS, 2019.

[32] W. Liu and I. W. Tsang, “Making decision trees feasible in ultrahigh
feature and label dimensions,” J. Mach. Learn. Res., vol. 18, pp. 81:1–
81:36, 2017.

[33] W. Lu, J. Zhou, and J. Sakuma, “Non-interactive and output expressive
private comparison from homomorphic encryption,” in AsiaCCS, 2018.

[34] P. Mohassel and S. S. Sadeghian, “How to hide circuits in MPC an
efficient framework for private function evaluation,” in EUROCRYPT,
2013.

[35] M. Naor and B. Pinkas, “Computationally secure oblivious transfer,” J.
Cryptology, vol. 18, no. 1, pp. 1–35, 2005.

[36] M. Parkour, Contagio Malware Dump, 2013, http://contagiodump.
blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html.

[37] S. Si, H. Zhang, S. S. Keerthi, D. Mahajan, I. S. Dhillon, and C. Hsieh,
“Gradient boosted decision trees for high dimensional sparse output,”
in ICML, 2017.

[38] C. Smutz and A. Stavrou, “Malicious PDF detection using metadata
and structural features,” in ACSAC, 2012.

[39] N. Srndic and P. Laskov, “Practical evasion of a learning-based classi-
fier: A case study,” in IEEE S&P, 2014.

[40] R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow, “Privacy-
preserving decision trees evaluation via linear functions,” in ESORICS
Part II, 2017.

[41] A. Tueno, Y. Boev, and F. Kerschbaum, “Non-interactive private deci-
sion tree evaluation,” in DBSec, 2020.

[42] A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private evaluation of
decision trees using sublinear cost,” PoPETs, no. 1, pp. 266–286, 2019.

[43] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” PoPETs, no. 3, pp. 26–49,
2019.

[44] B. Wang, M. Li, S. S. M. Chow, and H. Li, “A Tale of Two Clouds:
Computing on Data Encrypted under Multiple Keys,” in CNS, 2014.

[45] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient
MultiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

[46] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter, “Privately evaluating
decision trees and random forests,” PoPETs, no. 4, pp. 335–355, 2016.

[47] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in FOCS, 1986.

[48] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole - reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT
Part II, 2015.

[49] Y. Zheng, H. Duan, and C. Wang, “Towards secure and efficient
outsourcing of machine learning classification,” in ESORICS Part I,
2019.

14

http://archive.ics.uci.edu/ml
https://github.com/encryptogroup/PDTE
https://github.com/encryptogroup/PDTE
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
https://github.com/emp-toolkit

APPENDIX A
CORRECTNESS ANALYSIS

A. The Complete-Tree Protocol (Theorem 1)

Proof: We traverse the tree at each level in the same
way, so we just show that a single-step traversal is correct. At
level dp, the client has the secret shares of the current node
(yCdp||ix

C
dp). The server obtains via

(
n
1

)
-OT the share of the to-

be-compared attribute xdp from the rotated feature vector. Both
parties hold the correct share of attribute xdp and threshold ydp.
With a correct conditional OT, the client obtains b∗dp such that
b∗dp ⊕ b′dp = bdp = (xixdp < ydp), where b′dp is a random bit
picked by the server and used to permuted the tree, and the
corresponding key mskbdp,dp. The client sets the index of the
next node as 2kiddp + b∗dp. Since the left and right sub-trees
are permuted using b′v , the client can reach the correct node.

During traversal, the client can compute mskb1,1,mskb1,1⊕
mskb2,2, . . . ,

⊕d−1
dp=1 mskbdp,dp, which can decrypt the nodes

along the evaluation path determined by b1, . . . , bd−1. After
d iterations, the client thus obtains the correct evaluation.

B. The Sparse-Tree Protocol (Theorem 3)

Proof: The proof is similar to that of Theorem 1. We focus
on the differences below. For dp = 1, the client additionally
obtains from the COT kidS1 = kidSb1,1 and mskS1 = mskkidb1,1

.
In Step 2d, the client sets the (permuted) index of the next
node as k̂id← kidS1 + kidCb∗1 ,1. Note that the (permuted) index
of the left and right node is set to π(kid0,1) and π(kid1,1),
respectively. When b1 = 0, k̂id = kid′0,1 +π(kid0,1)−kidS0,1 =
π(kid0,1), which is the (permuted) index of the left node. When
b1 = 1, we have k̂id = kid′1,1 +π(kid1,1)− kidS1,1 = π(kid1,1),
which is the (permuted) index of the right node. In either case,
the client traverses the decision tree correctly.

The node keys for the left and right child nodes of all nodes
at level dp differ by ∆dp = dsk0,dp ⊕ dsk1,dp. Via COT, the
client obtains mskSdp = dskbdp,dp and can decrypt the next node
using (mskkid0,i ⊕ dsk0,dp)⊕mskSdp = mskkid0,i ⊕ b′dp∆dp.

Note that if the leaf node is located at level d′ < d, the
client will continue to traverse through the dummy nodes until
reaching a node at level d.

In the last step, the client obtains v =
∑d−1

dp=1(vCdp + vSdp).
If the leaf node is at level d′, vCdp + vSdp = 0 for dp > d′.
Therefore, v is the desired classification result.

APPENDIX B
SECURITY ANALYSIS

A. Security Definition

We use the simulation-based security definition for two-
party computation (2PC). A 2PC protocol Π computes a
function f = (f1, f2) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗.
For every input pair (x, y), the output is (f1(x, y), f2(x, y)).
The first (resp. second) party obtains f1(x, y) (resp. f2(x, y)).
Party i’s output is empty if fi(x, y) = ⊥.

In the semi-honest model, a protocol Π is secure if
whatever can be computed by a party in the protocol can
be computed in probabilistic polynomial time (PPT) from its

input and output only. This is formalized by requiring the
view of a party in a protocol execution to be simulatable
given only its input and output. We denote the view of
the party i during an execution of Π on input (x, y) by
ViewΠ

i (x, y) = (w, ri,mi
1, . . . ,m

i
t), where w ∈ (x, y) is the

input of i, ri is i’s internal random coin tosses, and mi
j denotes

the j-th message that i received for 1 ≤ j ≤ t.
Definition 2 (Semi-honest Model). Protocol Π securely com-
putes a deterministic function f = (f1, f2) in the presence of
static semi-honest adversaries if there exists PPT algorithms
Sim1,Sim2 producing computationally-indistinguishable (de-
noted by

c≡) views without taking the input of the counterparty:

{Sim1(x, f1(x, y))}x,y
c≡ {ViewΠ

1 (x, y)}x,y,
{Sim2(y, f2(x, y))}x,y

c≡ {ViewΠ
2 (x, y)}x,y.

We treat the problem of privacy-preserving decision tree
evaluation as a special case of 2PC as follows: the server
input is the node content of the decision tree, and the client
input is the attribute vector. The server’s output is ⊥ while
the client’s output is the decision tree evaluation on the
attribute vector. According to Definition 2, the server should
learn nothing about the client’s attribute vector, and the client
should learn nothing about the server’s decision tree except
the classification result. Unlike [28], [34], [2], we do not hide
the fact that a decision tree evaluation is going on.

B. The Complete-Tree Protocol (Theorem 2)

In the following proof, we first describe the intuition of why
our protocol is secure. Then, we describe how to construct a
simulator in the ideal world. We conclude by arguing why the
output of the simulator is indistinguishable from the output of
the semi-honest adversary in the real world.

Security of Client. The information learned by the server at
level dp is the secret share of a client attribute xj−xCdp through
F(n

1)-OT, which is independently and uniformly distributed
because of xCdp. The other message received by the server is
⊥ from FCOT in Step 2c.

In more detail, let AS be the semi-honest server in the
real world; the ideal-world simulator SS outputs a simulated
view as SimS(T ,⊥) = (T , r, ((r1,⊥), . . . , (rd−1,⊥))), where
T is the input decision tree, r, r1, . . . , rd−1 are uniform and
independent random strings from appropriate domains.

For ViewΠ
S (~x, T) = (T , r, ((xS1 ,⊥), . . . , (xSd−1,⊥))), this

real view is identically distributed as the simulated one. To see,
xSdp = xj−xCdp is uniformly distributed and independent of the
client’s input ~x, which is the same as rdp, for all dp ∈ [1, d−1].

Security of Server. In the offline phase, the client receives
“one-time-padded” secret shares of the decision tree T . The
one-time pads are derived via the random-oracle responses of
XOR of a subset of secret keys {dsk0,dp, dsk1,dp}dp∈[1,d−1].
In the online phase, at level dp, the client obtains ⊥ from
F(n

1)-OT and a secret key dskbdp,dp from FCOT. With all the
secret keys obtained so far, the client can decrypt a single
node of the encrypted decision tree at level dp+ 1. The client
is not able to decrypt more than one node at the same level

15

since it would require both the left and right keys in some
previous parent nodes, but the client can get either the left key
dsk0,dp or the right key dsk1,dp from FCOT in level dp. After
decryption, the client obtains secret shares of the node content,
containing the permuted index of the traversed node, as well as
the secret shared threshold, which leak no information about
the decision tree T . The client then obtains the secret share
of the comparison result b∗ from FCOT. With the share, the
client is able to obtain the permuted index of the next node
by traversing the randomized complete tree. Since the index is
permuted, it does not leak the structure of the decision tree.

In more detail, the ideal-world simulator SC outputs a
simulated view SimC(~x, T (~x)) as follows.

SimC picks (d− 1) random secret keys ˆdsk1, . . . , ˆdskd−1,
queries the random oracle on

⊕dp
i=1

ˆdski, and records the
response as rdp for all dp ∈ [1, d − 1]. SimC simulates the
encrypted secret shares of the decision tree by first setting all
nodes to be uniformly and independently distributed random
strings from the appropriate domain. Then, it chooses a random
leaf v′ and replaces it with rd−1⊕T (~x). For the output of FCOT

at each level dp, SimC simulates it as (b∗dp|| ˆdskdp), where b∗dp
is set according to the leaf-to-root path of the random leaf v′.

Let Q = {
⊕d′

dp=1 dskb,dp}b∈{0,1},d′∈[1,d−1] be the set of
random oracle queries made by the honest server in the real
protocol when generating the encrypted client share of the tree
T ′ in Algorithm 2. Let Good = {

⊕d′

dp=1 dskbdp,dp}d′∈[1,d−1]

be the set of random oracle queries made by the client when
it follows our complete-tree protocol in Fig. 5. The queries in
Good are the ones used by the server to encrypt the tree nodes
along the root-to-leaf path of the leaf v′. If the client does not
query the random oracle on inputs in Bad = Q\Good, then
the encrypted client tree shares not on the root-to-leaf path of
the leaf v′ are uniformly random from the clients’ view in the
real protocol, which are the same as SimC’s simulation above.

Conditioned on the above event, the rest of the simulated
view is also identically distributed as the real one. This is
because in the real protocol, at each level dp, the client
learns the permuted comparison result from FCOT, which
is independently and uniformly distributed. In the simulated
transcript, the simulator chooses a uniformly random leaf v′,
which also guarantees that the decision bit {b∗dp} at each level
is uniformly distributed. Similarly, the secret-shared contents
T Cdp = yCdp||ix

C
dp in each level dp ∈ [1, d−1] are independently

and uniformly distributed values and thus are distributed
identically in both the real transcript and the simulated one.

Finally, the probability that the client queries in the real
protocol elements in Bad is negligibly small if Bad is a negli-
gibly small subset of {0, 1}|dsk|. This can be ensured by setting
the length of dsk to be long enough, say, (|dsk| − d) > λ.
Note that if a node i′ is not in the root-to-leaf path of v′,
there must exists a level k that dskb̄k,k /∈ {dskbdp,dp}dp∈[1,d−1],

which is required for computing
(⊕d−1

dp=1 dskb′dp,dp

)
as input

to the random oracle for decrypting node i determined by
b′1, . . . , b

′
k(= b̄k), . . . , b′d−1. But dskb̄k,k is independently and

uniformly distributed from elements in {dskbdp,dp}dp∈[1,d−1].
Hence, the client cannot compute

⊕d−1
dp=1 dskb′dp,dp other than

making random guesses.

C. The Two-Party Sparse-Tree Protocol (Theorem 4)

Security of Client. This proof is similar to that for the
complete-tree case since the client contribution in the sparse-
tree protocol is the same as the complete-tree protocol.

Security of Server. In the sparse-tree construction, the key
required to decrypt a node is stored in the content of its parent
node such that one is not able to decrypt a node without
decrypting its parent node. The (base) decryption key of a node
is solely linked to their parent (which is also linked to previous
nodes). Here we applied random permutation on all nodes
for topology hiding. The client learns one of the (permuted
by π and b′) child indices after running FCOT while remains
oblivious of the other index. The same-level same-server-share
principle is also applied to the child indices separately so that
the server can remain oblivious of the client’s current node.
π(0) is used for padding leaf nodes or dummy nodes, for the
never-reaching right child of sinking nodes, and is a freshly
sampled node index. Furthermore, the client learns the number
of total nodes (with our padding) in the real protocol.

Given the tree meta-parameter, the simulator SimC samples
the designated number of nodes, T ′1 , . . . , T ′2m+d−1 (from the
domain of each node entry), similar to the complete-tree case.
It randomly chooses secret keys m̂sk1, . . . , m̂skd−1, queries the
random oracle on m̂skdp, and records the response as rdp for
all dp ∈ [1, d − 1]. The simulator randomly samples distinct
indices {kid∗1, . . . , kid

∗
d−2, kid

∗
d−1} (let π(1) ← kid∗1). Among

2m+d−1 nodes, the simulator replaces the (kid∗d−1)-th node
with rd−1⊕ (T (~x)⊕vS ||random bits) for some suitably-long
string random bits, which is now the target leaf node. So,
{kid∗1, . . . , kid

∗
d−1} is the node indices from the root to the

target leaf node. vS is computed as the “decrypted” sum of
all nodes’ vkid∗dp along the path using (rdp, kid

∗
dp). SimC sends

(π(1), T ′1 , . . . , T ′2m+d−1, v
S) to the adversary.

Similar to the complete-tree protocol, the simulator can
tweak kid, bdp and the key in FCOT to lead the client to the
target leaf. In more detail, the root node is in plaintext, the sim-
ulator supplies via the FCOT b||[(kid∗1||m̂sk1)⊕(kidCb,1||mskC1)]

where b is a random bit and (kidCb,1||mskC1) is the respective
part of T ′π(1). The simulator moves on to the next level and
can “decrypt” the next node using rdp+1,kid∗dp+1. Thus, the
simulator can simulate the view of the adversary at each level.
Let Good = {mskdp}dp∈[1,d−1] be the set of random oracle
queries made by the client when it follows our sparse-tree
protocol in Fig. 7. By a similar argument as the proof of
Theorem 2, the encrypted clients’ out-of-path tree shares are
uniformly random as the clients’ view in the real protocol. The
adversary’s view for normal decision nodes is indistinguishable
from the simulated view.

It remains to show that going into a dummy decision node
is indistinguishable from a real decision node. The dummy
(or leaf) nodes are padded to contain vi = 0, kid0,i = 2m +
d, kid1,i = 0. All are in shared form and encrypted by the
node’s key, which we have shown that the client can only learn
one node at each level. The indices kid’s are also permuted
and switched according to π and b′dp. The adversary cannot
distinguish between two cases better than making a random
guess on b′dp.

16

APPENDIX C
MALICIOUSLY-SECURE VERSION

Malicious adversaries can deviate from the protocol execu-
tion arbitrarily. The standard way of defining security in this
setting is to formalize an ideal process that involves a trusted
party who computes the protocol result directly. A protocol is
said to be secure if any adversary in the real protocol execution
can be simulated by a simulator in the ideal model.

Execution in the ideal model. In an ideal execution, the
two parties submit their inputs to the trusted party, who will
compute the desired output and send the outputs back. An
honest party just directs its true input for the computation to
the trusted party, while a malicious party may replace its input
with any other value of the same length. Let f = (f1, f2) be a
deterministic function, and Ai be a PPT adversary that corrupts
party i ∈ {1, 2}, the ideal execution of f on inputs (x, y) and
auxiliary input z toA, denoted by Idealf,Ai(z)(x, y), is defined
as the output pair of the honest party and Ai.

Execution in the real model. In the real model, the honest
party follows the instructions of the protocol Π to interact with
Ai, who can adopt any polynomial-time strategy. Let f and Ai
to be the same as defined above, and let Π be a 2PC protocol
for computing f . Then, the real execution of Π on inputs (x, y)
and auxiliary input z to Ai, denoted by RealΠ,Ai(z)(x, y), is
defined as the output vector of the honest party and Ai.

Security. Security is defined by requiring that adversaries
(often called simulators in this context) are able to simulate
the protocol execution in the real world.

Definition 3 (Malicious Model). A protocol Π is said to
securely compute f with abort in the presence of malicious
adversaries if, for every PPT adversary Ai in the real model,
there exists a PPT adversary Simi in the ideal model, where

{Idealf,Simi
(x, y)} c≡ {RealΠ,Ai

(x, y)} for i ∈ {1, 2}.

We upgrade our base protocol to equip it with security
against malicious adversaries. We highlight the parts for en-
forcing security against a malicious client in blue.

Algorithm 4 shows the modification to the encrypted tree
share. Each node additionally stores a signature from the server
on its level. The client can show it in the online evaluation
protocol in Fig. 12 to show the possession of valid tree
shares. The additional parts for malicious security for both
are highlighted in blue.

During the online phase, the client commits to the feature
vector and uses zero-knowledge proof to bind the two sub-
protocols and the committed feature vector, so the client cannot
modify its feature vector on-the-fly. The client also proves the
knowledge of signature on the tree shares it supplied to the sub-
protocols. By design, the client can only decrypt 1 node per
level, which prevents the client from using different shares. The
COT in which the client sends the first message as the receiver
is right after the previous OT in which the client sends the last
message as the sender. These two steps can be piggybacked
with a single zero-knowledge proof confirming the consistency
across these two sub-protocol invocations, but we separate it
into two ZKPs in Fig. 12 for clarity.

Algorithm 4: (Maliciously-Secure) GenClientTree
Input : Server tree T and signing key sk
Output: Encrypted client share of the tree T ′

and all random choices of the server

1 (b′1, . . . , b
′
d)←$ {0, 1}d // server random choices

2 π ← PermuteTree(T , (b′1, . . . , b′d)) // Algorithm 1
3 msk1 ← 0λ // must traverse the root (no privacy)
4 for dp = 1 to d− 1 do // set T ′i , derive key material

5 ySdp←$Z2t+1 , ixSdp←$Zn // server share at lv. dp

6 dsk0,dp, dsk1,dp←$ {0, 1}λ // keying material
7 foreach node i at level dp do // same lv. same share

8 yCdp ← yi − ySdp, ix
C
dp ← ixi − ixSdp // client share

9 T ′i ← (yCdp||ix
C
dp)||Sigsk(yCdp||ix

C
dp||dp)

10 mskkid0,i ← mski ⊕ dsk0,dp // left child key
11 mskkid1,i ← mski ⊕ dsk1,dp // right child key

12 foreach node i at level d do T ′i ← vi // label
13 foreach node i 6= 1 do T ′i ← T ′i ⊕H(mski) // OTP
14 Send (T ′1 , . . . , T ′2d−1) after applying π

Corrupted Server. The server’s view consists of transcripts
from

(
n
1

)
-OT (as a receiver) and conditional OT (as a sender).

It does not receive any output. When the two sub-protocols are
instantiated using maliciously-secure OT and GC, the views of
the server can be indistinguishably simulated since it receives
fresh randomness from

(
n
1

)
-OT. The server can only launch

attacks on the decision tree share or the input to conditional
OT, which the client obtains incorrect result.

Corrupted Client. The view of the client consists of the
encrypted decision tree share and transcripts of

(
n
1

)
-OT (as

a sender) and conditional OT (as a receiver). Similarly, the
client cannot infer extra information from the sub-protocols.
It obtains the permuted bit and a uniformly random key (one-
time-pad) for decrypting the next node from conditional OT.
The view is indistinguishable from that of the real protocol
when a uniformly random value is used. The client can modify
its attribute (inputs to the OT and conditional OT) or the
decision tree share (input to the conditional OT) on-the-fly
to alter the evaluation path. This only affects correctness. It
can only obtain a single meaningful result (the path keys to a
single leaf node) on its modified input by construction.

Correctness against Malicious Adversaries. Achieving cor-
rectness in the malicious setting without significantly changing
the protocol design appears to be non-trivial. As an example,
a recent study formalized the security model in the context of
secure neural-network training protocol [43], which considered
privacy against a single malicious adversary (in the 3-party
setting) [4]. It argues that for any two inputs of the honest
parties, the view of the adversary is indistinguishable. Even
with privacy in the malicious setting, this notion does not
provide correctness against malicious adversaries.

APPENDIX D
LESS-THAN-PREDICATE CONDITIONAL OT

Suppose the sender inputs are xs, ys,K0,K1, and the
receiver inputs are xr, yr such that x = xr + xs mod 2t+1,

17

(Maliciously-Secure) Complete-Tree Online Protocol:
1) The client sets msk1 ← 0λ and kid← 1.
2) The client picks xCdp←$Z2t+1 , dp ∈ [1, d− 1].

The client commits to its feature vector
~cx ← Com(~x;~r) and the secret shares
{cdp ← Com(xCdp; rdp)}dp∈[1,d−1].

3) for dp = 1 to d− 1 do
a) The client parses (yCdp||ix

C
dp)||σdp ← T ′dp.

If Vf(vk, (yCdp||ix
C
dp||dp), σdp) = 0, abort.

• for j = 1 to n do sets Xj ← xj+ixCdp
− xCdp.

b) Both invoke (maliciously-secure) F(n
1)-OT.

• The client inputs (X1, . . . , Xn) as the sender
and proves the knowledge of (σdp, ixCdp, dp,
xCdp, rdp, ~x, ~r) such that Xj’s are computed
honestly with respect to the commitments
above, i.e., (1) Xj = xj+ixCdp

−xCdp,∀j ∈ [1, n];
(2) σdp signs on (yCdp||ix

C
dp||dp).

• The server inputs j ← ixSdp as the receiver.
The server thus gets XixSdp

= xixSdp+ixCdp
− xCdp =

xixdp − xCdp = xSdp, where ixdp = π−1(kiddp) is the
index of the current node.

c) Both parties invoke (maliciously-secure) FCOT:
• The server inputs (xSdp, y

S
dp,K0,K1) as the

sender, where K0 ← b′dp||dsk0,dp and K1 ←
(1⊕ b′dp)||dsk1,dp.

• The client inputs (xCdp, y
C
dp) as the receiver.

The client proves in zero-knowledge that the two
inputs (xCdp, y

C
dp) for this COT are consistent with

respect to the prior OT and commitments, i.e.,
(1) σdp signs on (yCdp||ix

C
dp||dp) and (2) xCdp was

committed in Step 2.
d) The client parses Kbdp as b∗||dskbdp,dp, where bdp =

(xCdp +xSdp) < (yCdp + ySdp) and b∗ = bdp⊕ b′dp, sets
• kiddp+1 ← 2kiddp + b∗,
• mskdp+1 ← mskdp ⊕ dskbdp,dp,

and decrypts T ′dp+1 ← T ′kiddp+1
⊕H(mskdp+1).

4) At last, the client outputs the classification v ← T ′d .

Fig. 12: Online Phase for the Maliciously-Secure Version (with
differences from the semi-honest protocol highlighted)

y = yr + ys mod 2t+1 and x, y < 2t. The receiver will only
learn Kb where b = (x < y) while the sender learns nothing.

Lemma 1 ([15]). Let x = xr + xs mod 2t+1, y = yr + ys
mod 2t+1, zr = yr − xr mod 2t+1, zs = ys − xs mod 2t+1,
s.t. x, y < 2t. If x 6= y, (x < y) = cr ⊕ cs ⊕ (wr < 2t − ws),
where cr = (zr < 2t), cs = (zs < 2t), wr = zr mod 2t, and
ws = zs mod 2t.

From Lemma 1, a secure comparison protocol with shared
inputs can be constructed from a secure comparison protocol
with plain inputs, similar to garbled circuits. Below, we use
F(2

1)-OT to construct conditional OT for less-than predicate.

Let h be a hash function of λ-bit output and H be a KDF.

The sender and the receiver interact as follows.

1) The sender computes zs ← ys − xs mod 2t+1, cs ←
(zs < 2t), ws ← zs mod 2t.
The receiver computes zr ← yr − xr mod 2t+1, cr ←
(zr < 2t), wr ← zr mod 2t.

2) The sender and receiver use GC to perform secure integer
comparison with inputs ws and 2t − wr. The receiver
outputs the output label kb′ corresponding to the output
b′ = (ws < 2t − wr). Define k1 = k0 ⊕∆.

3) The sender and the receiver invoke F(2
1)-OT. The sender

picks k′0←$ {0, 1}λ, computes k′1 ← k′0 ⊕∆, and inputs
(k′cs , k

′
1−cs). The receiver inputs cr.

4) Let k∗0 = k0⊕k′0, and k∗1 = k∗0⊕∆. The receiver computes
k∗b ← kb′ ⊕ k′cs⊕cr , where b = (x < y).

5) The sender picks s ← {0, 1} and sets s′ ← s ⊕ cs.
The sender computes H0 ← h(ks′) and H1 ← h(k1−s′),
K ′0 ← H(k∗s) ⊕ Ks, and K ′1 ← H(k∗1−s) ⊕ K1−s. The
sender sends H0, H1,K

′
0,K

′
1 to the receiver.

6) The receiver computes h(kb′). If h(kb′) = H0, the
receiver sets s∗ ← cs, else if h(kb′) = H1, the receiver
sets s∗ ← 1− cs. Note that s∗ = s⊕ cr ⊕ cs⊕ b′ = s⊕ b.
The receiver outputs Kb ← H(k∗b)⊕K ′s∗ .

The protocol requires 1 communication round as the OT,
GC, and the transfer of H0, H1,K

′
0,K

′
1 can be done in parallel.

The following theorem shows that our protocol is correct.

Theorem 5. When the underlying GC is correct (i.e., the
parties obtain the intended outputs), if both the client and the
server follow our conditional OT protocol, the receiver learns
Kb where b = (x < y) at the end.

Proof: In Step 2, the receiver learns kb′ where b′ = (ws <
2t−wr) from GC. In Step 4, the receiver learns k′cr⊕cs through
OT. By XOR-ing both values, it has k∗b = (k0 ⊕ k′0) ⊕ (b′ ⊕
cr⊕cs)∆. In Step 6, the receiver computes s∗ based on h(kb′),
which equals s ⊕ b; when h(kb′) = H0, we have h(kb′) =
h(ks′) = h(ks⊕cs), which means b′ ⊕ s ⊕ cs = 0. Thus s∗ =
cr = cr ⊕ b′ ⊕ s ⊕ cs = s ⊕ b. Similarly, if h(kb′) = H1,
we have s∗ = 1 ⊕ cr = b′ ⊕ s ⊕ cs ⊕ cr = s ⊕ b. Therefore,
H(k∗b)⊕K ′s∗ = H(k∗b)⊕K ′s⊕b = H(k∗b)⊕H(k∗b)⊕Kb = Kb.

Theorem 6. Suppose the GC is secure in the semi-honest
model, the above conditional OT protocol securely implements
FCOT against semi-honest adversaries in the F(2

1)-OT-hybrid
model, with h and H being a secure hash function and KDF.

Proof: (Sketch) From Lemma 1, if x 6= y, it holds that
(x < y) = cr ⊕ cs ⊕ (wr < 2t − ws). The partial key kb′
obtained by the receiver from the GC reveals nothing about the
other party’s input, where b′ = (wr < 2t − ws). The message
k′cs⊕cr obtained by the receiver in the OT is a random string
(k′0 is random) and reveals nothing about the other message.
The two keys received by the receiver are then combined
and used to decrypt and obtain the correct conditional OT
message. Finally, the receiver can only “decrypt” one of the
two messages (K ′0,K

′
1) using the combined key (as input to

the KDF). The sender in FCOT acts as the garbler in GC and
the sender in F(2

1)-OT. It receives no output and hence can be
easily simulated.

18

	Introduction
	Related Works
	Technical Challenges and Our Contribution

	Preliminaries
	Decision-Tree Classifiers
	Secret Sharing (SS) and Oblivious Transfer (OT)
	Garbled Circuit (GC) and Conditional OT (COT)

	Security Model
	Semi-Honest Two-Party Protocol
	Complete-Tree Protocol
	Same level, same share
	Compare and Evaluate Together
	Tree-Node Encryption and its Key Management
	Summarizing Our Tree Traversal/Evaluation
	Detailed Construction

	Sparse-Tree Protocol
	 Hiding the Sparse Structure
	New Key Management
	Construction

	Performance Analysis and Comparison
	Upgrading the Sub-protocols

	Outsourced Protocol for Joint Inputs
	Intuition: Secret-Sharing the Inputs to Two Clouds
	Outsourced Complete-Tree Protocol
	Security Analysis
	Performance Analysis

	Empirical Evaluation
	Dataset and Decision-Tree Model
	Comparison with O(d)-round Protocols
	Comparison with Constant-round Protocols
	Further Experiments

	Concluding Remarks
	References
	Appendix A: Correctness Analysis
	The Complete-Tree Protocol (Theorem 1)
	The Sparse-Tree Protocol (Theorem 3)

	Appendix B: Security Analysis
	Security Definition
	The Complete-Tree Protocol (Theorem 2)
	The Two-Party Sparse-Tree Protocol (Theorem 4)

	Appendix C: Maliciously-Secure Version
	Appendix D: Less-than-Predicate Conditional OT

