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Abstract—Membership inference (MI) attacks affect user
privacy by inferring whether given data samples have been used
to train a target learning model, e.g., a deep neural network.
There are two types of MI attacks in the literature, i.e., these
with and without shadow models. The success of the former
heavily depends on the quality of the shadow model, i.e., the
transferability between the shadow and the target; the latter,
given only blackbox probing access to the target model, cannot
make an effective inference of unknowns, compared with MI
attacks using shadow models, due to the insufficient number
of qualified samples labeled with ground truth membership
information.

In this paper, we propose an MI attack, called BLINDMI,
which probes the target model and extracts membership seman-
tics via a novel approach, called differential comparison. The
high-level idea is that BLINDMI first generates a dataset with
nonmembers via transforming existing samples into new samples,
and then differentially moves samples from a target dataset to
the generated, non-member set in an iterative manner. If the
differential move of a sample increases the set distance, BLINDMI
considers the sample as non-member and vice versa.

BLINDMI was evaluated by comparing it with state-of-the-
art MI attack algorithms. Our evaluation shows that BLINDMI
improves F1-score by nearly 20% when compared to state-of-
the-art on some datasets, such as Purchase-50 and Birds-200, in
the blind setting where the adversary does not know the target
model’s architecture and the target dataset’s ground truth labels.
We also show that BLINDMI can defeat state-of-the-art defenses.

I. INTRODUCTION

Machine learning (ML), especially Deep Learning (DL),
has achieved, or even surpassed, human-level performance
on many critical areas, such as medical diagnosis [5], [6],
image and speech recognition [17], [20], [23], [51], self-
driving cars [3], and natural language translation [29]. Despite
this success, one major issue of DL models like deep neural
networks (DNNs) has been their vulnerability to a variety of
attacks [12], [38], [46], [47]. A type of privacy-related attack—
i.e., the focus of the paper—is the membership inference
(MI) attack [40], [41], [43], [49], whereby an adversary infers
whether a specific sample belongs to the training set of a given
learning model, defined as a membership. For example, an
adversary can infer whether a specific disease image from a
given hospital was used to train an artificial intelligent (AI)
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diagnostic system, thus potentially violating patients’ protected
health information (PHI) and Health Insurance Portability and
Accountability Act (HIPAA) provisions. For another example,
the inference of location data used in an AI recommendation
system may leak users’ past physical location, violating their
privacy.

The high-level intuition behind membership inference at-
tacks is that the output probability distributions of a DNN
model from, say for example, a Softmax layer, may vary be-
tween members and a non-members. While intuitively simple,
one major challenge to this idea is that an adversary, when
only given blackbox access (i.e., only having access to the
output probability distribution), needs to collect enough sam-
ples with output probabilities and labeled as either members
or non-members to classify a new data sample with unknown
membership. On one hand, many existing MI attacks—e.g.,
the DNN-based from Shokri et al. [43], the loss function-based
from Yeom et al. [49], and another DNN-based with feature
selections from Salem et al. [41]—all adopt an offline shadow
model trained from a surrogate dataset, that provides ground
truth information on whether a given sample is a member.
However, such shadow models differ from the real target model
and thus the output probability distributions, though being
similar, as noted by prior studies on model transferability [10],
[21], [50], are still different. Therefore if the shadow model
is drastically different from the target, the attack performance
will degrade significantly as shown by Salem et al. [41] and
as also confirmed by our own experiments.

On the other hand, researchers have also proposed MI
attacks without shadow models. For example, the unsupervised
and adversary binary attacks of Salem et al. [41] consider
a sample as a member if the probability of the predicted
class is larger than a threshold learned from one thousand
randomly generated samples. Another approach, the label-only
attack of Yeom et al. [49], infers membership by comparing
the ground truth against the predicted label. However, both
existing shadow-model-free attacks rely binary comparisons,
e.g., comparing the predicted probability or label with a
pre-determined threshold or the ground-truth label. Such a
“one-size-fit-all” inference cannot model the complex decision
boundary between members and nonmembers in the hyper-
dimensional space induced by an inference neural network
in shadow-model-dependent attacks. The root reason in lack-
ing such modeling ability goes back to the aforementioned
challenge: a powerful MI attack needs enough labeled output
probability distributions of members and non-members to learn
the decision boundary, but the ground truth information of
members and nonmembers for the target model is unavailable
given only blackbox access.
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In this paper, we propose a novel MI attack, called
BLINDMI, which probes the target model and then infers
membership directly from the probing results instead of
shadow models. BLINDMI exploits two insights: The first is
that although an adversary does not have both member and
nonmember labels of the target model, the adversary can easily
obtain one-class labels, i.e., nonmember labeled samples, by
producing newly-constructed samples that can be considered
as non-members with high probability given the very large
input space of possibilities. Such one-class semantics can be
learned by existing ML classifiers, like a one-class SVM, thus
leading to an MI attack defined as BLINDMI-1CLASS. This
BLINDMI-1CLASS serves as a baseline approach if we only
exploits the first insight of BLINDMI.

The second insight is that the removal of a non-member
from a dataset containing both members and non-members,
will move the entire set away from non-members in the
hyper-dimensional space, and conversely, the addition moves
it towards it. Therefore, assume that we have two datasets:
one is closer to nonmembers and the other to members.
If we move one sample from the latter to the former and
the distance between two sets decreases, the moved sample
can be considered a member; otherwise, if it increases, the
sample can be considered a non-member. This approach is
called differential comparison in this paper as it compares the
differential distance between two sets. One advantage of this
approach is that it only needs two small-size sets as opposed to
a considerable amount of data for a one-class classifier, while
achieving a comparatively higher inference performance.

Specifically, we design an attack, called BLINDMI-DIFF,
which performs differential comparison to infer membership.
Following upon the first insight, BLINDMI-DIFF obtains a
dataset with nonmembers. Then, BLINDMI-DIFF differentially
compares the dataset with a given set of data samples, called
a target dataset, following the second insight to remove
all the nonmembers from the target. The entire differential
comparison procedure is iterated until convergence, i.e., the
move of any samples between two sets only decreases the
distance. Then, the remaining samples in the target dataset are
considered as members.

We implement a prototype of BLINDMI1 including
BLINDMI-DIFF and BLINDMI-1CLASS. Our evaluation shows
that BLINDMI outperforms state-of-the-art membership infer-
ence attacks in terms of F1-score in different settings, e.g., even
when the adversary knows the target model’s exact architecture
and hyper-parameters. Furthermore, we evaluate BLINDMI
and other attacks under realistic assumptions following Bargav
et al. [25] to adjust the nonmember-to-member ratio in the
target dataset and show that even if the ratio is as high as
39, BLINDMI still has an over 50% F1-score as opposed
to below 30% of the state-of-the-art MI attacks. We also
test BLINDMI against existing defenses, including Adversarial
Regularization [36], MemGuard [26], Mixup + MMD [30]
and differential privacy [1], and show that BLINDMI can break
these defenses by achieving reasonable F1-score with different
privacy-utility budgets.

1The default version of BLINDMI and BLINDMI-DIFF, without specifica-
tion, is BLINDMI-DIFF with generated non-members, called BLINDMI-DIFF-
w/.

TABLE I. DIFFERENT THREAT MODELS AND THEIR ASSUMPTIONS.

output distr. model arch.& targets’ true labels
hyper-parameter

Blind (default) 3 7 7

Blackbox 3 7 3

Graybox 3 3 3

Graybox-Blind 3 3 7

II. OVERVIEW

In this section, we first present our threat model and
then describe overarching assumptions and principles used
throughout the paper.

A. Threat Model
Our threat model assumes an adversary trying to infer

whether each sample in a given input dataset, called the target
dataset, belongs to—i.e., is a member of—the training set of
a deep learning (DL) model, called the target model. The
adversary can probe the target DL model with samples to
obtain the probability distribution of output classes. There
are four different variations of the threat model based on the
adversary’s capability as described below and shown in Table I.
• Blackbox-Blind, or called Blind for short. The blind

setting only grants an adversary blackbox access to the
target model without details of its architecture, network
weights, or hyper-parameters. Further, the adversary does
not have ground truth class labels of the target dataset,
which usually takes a considerable amount of manual effort
sometimes even from specialized experts, e.g., a highly
trained ophthalmologist and retinal specialist in labeling the
existence of certain diseases for the EyePACS dataset.
• Blackbox. The blackbox setting is similar to the blind, but

assumes that the adversary has the ground-truth information
of all the samples in the target dataset via, e.g., manual
labelling. Note that some existing attacks, e.g., Yeom et
al. [49], only work if such ground-truth information is
available.
• Graybox. The graybox setting gives full knowledge to

the adversary in terms of the model details. Specifically,
except for the training data, the adversary knows almost
everything about the model, such as the architecture (e.g.,
VGG, ResNet, and DenseNet) and the hyper-parameters
used for training (e.g., learning rate and maximum number
of epochs). Note that the adversary cannot know the training
data (called a whitebox), because MI attacks are unnecessary
in such a setting.
• Graybox-Blind. The graybox-blind setting is similar to

the graybox one, but also assumes that the adversary does
not have ground-truth information of the target dataset.

Note that our default threat model setting is blind unless
otherwise noted, because the blind setting is the most strict and
practical for membership inference attack. We also adopted
other settings in comparison with prior works, e.g., blackbox
with Yeom et al. [49] and graybox(-blind) with Shokri et
al. [43] and Salem et al [41].

B. Problem Formulation and Notations
The attack problem considered in this paper is as follows:

given a target model, i.e., Fm (see recapitulation of notations
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TABLE II. NOTATIONS OF SYMBOLS IN THE PAPER

Notation Description

Starget The target dataset of membership inference attack
Fm The target DL model with m prediction classes

Sprob
target Sprob

target = {y = Fm(x)|x ∈ Starget}
Gprojection,k Gprojection,k : Rm → Rk

Sprob,k
target Sprob,k

target = {y′ = Gprojection,k(y)|y ∈ Sprob
target}

Snonmem A generated dataset with non-members of Fm

Sprob
nonmem Sprob

nonmem = {y = Fm(x)|x ∈ Snonmem}
Sprob,k
nonmem Sprob,k

nonmem = {y′ = Gprojection,k(y)|y ∈ Sprob
nonmem}
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Fig. 1. A High-level Idea of the Key, Atomic Step in Differential Compar-
isons. BLINDMI measures the distance d between Sprob,ktarget and Sprob,knonmem and
moves a sample from Sprob,ktarget to Sprob,knonmem. Then, BLINDMI recalculates the
distance d′ and compares d′ with d. If d′ is larger than d, BLINDMI considers
the moved sample as a nonmember; otherwise, BLINDMI considers it as a
member. This is an iterative process until convergence.

in Table II), with m classes and a target dataset Starget,
BLINDMI is tasked with inferring whether each sample in
Starget belongs to the training set of Fm. The adversary
will feed the set of samples Starget into Fm, obtain the
set of output probability distributions, i.e., Sprob

target, and then
applies a projection function Gprojection,k that converts all data
samples from m dimensions to k dimensions for inference.
The converted samples form into a new set called Sprob,k

target . One
example Gprojection,k is the selection of top three probabilities
in y ∈ Sprob

target plus the one corresponding to the ground truth
class.

Another important dataset is a generated dataset, Snonmem,
which is a reference dataset to determine whether sam-
ples in Starget are members. Elements in Snonmem are
all—or mostly—non-members of the target model training
dataset. Similarly, the adversary will also obtain Sprob

nonmem and
Sprob,k
nonmem for the comparison with Starget.

C. Differential Comparison Intuition
We now introduce the high-level idea, i.e., differential

comparison, in Figure 1. We depict two datasets, Sprob,k
nonmem

and Sprob,k
target , in the output probability distribution sub-space.

The curve dividing the space is the boundary between member
(right) and non-member (left). Sprob,k

nonmem is located more to-
wards the left because it consists exclusively of samples with
high probability of being non-members, while Sprob,k

target more or
less in the middle between members and non-members.

Intuitively, the idea of differential comparison is to move
one sample from Sprob,k

target to Sprob,k
nonmem. If the moved sample

is a non-member like Case (1) in Figure 1, Sprob,k
nonmem moves

TABLE III. DIFFERENT VARIATIONS OF BLINDMI

Variations Description

BLINDMI-DIFF differential comparison version
BLINDMI-DIFF-w/ (default) BLINDMI-DIFF with generated non-member set
BLINDMI-DIFF-w/o BLINDMI-DIFF without generated non-member set

BLINDMI-1CLASS one-class SVM version with generated non-
members as training set

further towards the left and Sprob,k
target to the right. Therefore,

the distance between Sprob,k
target and Sprob,k

nonmem increases from the
original d to d′. If the moved sample is a member like Case
(2), the distance will decrease from d to d′′since both sets are
now comprised of a mixture of samples. Such a change in
d can then be used to infer whether the moved sample is a
member.

While intuitively simple, the distance between Sprob,k
nonmem

and Sprob,k
target changes over time after each move. That is, what

we described in the previous paragraph is a key, atomic step of
differential comparison. In practice, this atomic step is repeated
until no more samples can be moved: The series of moves
with a fixed d is defined as one iteration. Then, differential
comparison will update d based on new Sprob,k

target and Sprob,k
nonmem

for another iteration until the distance d does not change across
iterations, called convergence.

There are two things worth noting here. First, differential
comparison moves one sample instead of removing it so as
to maximize the distance change. Removal of a sample only
changes the position of Sprob,k

target with regards to the decision
boundary in the hyper-dimensional space (like Figure 1); as
a comparison, moving the sample changes the positions of
both Sprob,k

target and Sprob,k
nonmem, thus improving the algorithm’s

sensitivity. Second, even after convergence, there may still
exist some nonmembers left in Sprob,k

target , i.e., the moving of
these samples does not increase the distance between Sprob,k

target

and Sprob,k
nonmem. This is a lower probability situation, as shown in

our evaluation of differential comparison’s performance, and
that this is as to be expected due to an inherent ambiguity
between members and non-members.

III. DESIGN

In this section, we describe a detailed design of BLINDMI.

A. Overall Attack Procedure
We now describe the overall procedure of BLINDMI in

Figure 2. BLINDMI takes target samples with unknown mem-
bership and outputs a membership result for each individual
sample. Specifically, BLINDMI first generates a non-member
dataset and then queries the target DNN model with the target
and the non-member datasets to obtain the output probabilities.
Then, BLINDMI applies a projection function to select certain
important features from the output probabilities. The next step
depends on different variations of BLINDMI. BLINDMI-DIFF
adopts differential comparison to classify members and non-
members in the target dataset; BLINDMI-1CLASS trains a one-
class model from the selected output probabilities of the non-
member and classifies samples in the target dataset using the
trained model. We list different variations of BLINDMI in
Table III. Both the BLINDMI-DIFF-w/ and BLINDMI-1CLASS
require a generated nonmember set as opposed to BLINDMI-

3



!
!"#$%&'&

()"*+, !

!
!"#$%&'&

(#)*+,+!

!
!"#$%

&'"()*!

!
!"#$%

&#'()*)""

!

Batch Mode

Incremental Mode

!
!!!!!!!!!!

"#"$%&%""

!

!
!

"#$%&'!

Target DNN
Projection 

function

Differential 
Comparison

!
!"#$%&'&

()"*+( "#!
!"#$%'&

"+,( #∪#!
!"#$%'&

!"+-%.#./+/#

!

!
!"#$%&'

"()* !

!
!"#$%&'

!"()%*#*+(+!

after convergence

non-members

members

Target 

Sample

Target DNN

prob

Projection 

function

prob,k !
!"#$%&'&

()"*+( "#!
!"#$%'&

"+,( #∪#$%&'()*+
!

!
!"#$%&'&

(#)*+,+!

Differential 
Comparison

OR

Input BlindMI-diff Output

iteration

!
!"#$%&'&

(#)*+,+!!
!"#$%

&#'()*)""

!

!
!!!!!!!!!!

"#"$%&%""

! Target DNN

One-class 
SVM

train

input

OR

BlindMI-oneclass

Target 

Sample

prob prob,k

{prob, k}

Fig. 2. Overall Attack Procedure of BLINDMI

TABLE IV. METHODS IN GENERATING NON-MEMBERS

Options Description

Sample transform Laplace, Sobel, Scharr, and Canny
Random perpetuation Gaussian or Salt Pepper noise
Random generation Random feature values
Cross domain Samples from a different domain

DIFF-w/o that does not require it. The default BLINDMI is
BLINDMI-DIFF-w/. We introduce BLINDMI-DIFF-w/o since
it may be hard to create an effective nonmember set in some
cases and the created set could be contaminated; at the same
time, we introduce BLINDMI-1CLASS more as a baseline to
separate the effectiveness of differential comparison and the
generation of a nonmember set.

Next, we introduce two different modes of BLINDMI:
batch and incremental. The batch mode takes and classifies
a batch of target samples iteratively and the incremental mode
takes one sample, adds to a previous batch, and then classifies
the target. It is worth noting that both modes give the same
inference results for given samples. They are designed to
handle different scenarios: The batch mode for a cluster of
samples and the incremental mode for each individual sample.

B. Dataset Preparation for Differential Comparison
In this subsection, we describe how to generate non-

members for a target model. There are two general directions
of non-member set generation: (i) generating new samples
or transforming existing ones and (ii) roughly separating a
set with existing samples into two with members and non-
members.

1) Generation of Non-members: Let us start from the first
direction. This is applicable if an adversary can probe the target
model with arbitrary samples. From a high-level perspective,
because the input space is usually much larger than the training
set, the adversary can generate a new sample, which is likely
not in the training set. We now discuss four generation methods
below and in Table IV.

• Sample Transformation. An adversary applies an operator,
e.g., Laplace, Sobel, Scharr, and Canny, on an existing

sample to obtain a new one. Take Sobel for example: the ad-
versary transforms an image to one emphasising edges. The
advantage of this method is that it usually preserves some
semantics, thus being effective to be distinguishable from
members. Additionally, the generated sample is stealthy as
all the operators are commonly used in image processing.
The down-side of this method is that many operators are
specific to the image domain.
• Random Perpetuation. An adversary adds random noises,

like Gaussian and Salt Pepper, to an existing sample for the
generation. This method is also effective as many semantics
are preserved, but less stealthy because one may detect noise
levels in the frequency domain.
• Random Generation. An adversary generates a sample

with random features. This method is less effective as the
generated samples, e.g., a random image, may not have any
semantics, and less stealthy as any human can easily spot
the generated sample as a noise.
• Cross-domain Samples. An adversary may adopt samples

from another domain, e.g., a celebrity face dataset for a
model trained with CIFAR-100. This is also effective but less
stealthy, because the probed samples are apparently from a
different domain.

Note that samples generated following Table IV are highly
likely non-members. Therefore, these samples can be used in
both BLINDMI-1CLASS and BLINDMI-DIFF, particularly the
training set of BLINDMI-1CLASS and the comparison set of
BLINDMI-DIFF.

2) Rough Sample Separation: We then describe the second
direction. This is applicable when the adversary does not
have free probing access to the target model, but only obtain
the output probability distribution of a limited dataset. This
scenario may happen if the adversary is only allowed to probe
samples from a certain source, e.g., disease images acquired
at a specific hospital. There are two different methods used
in such separation: (i) a clustering algorithm like k-means
and agglomerative clustering, and (ii) a separation based on
the highest probability score. The first method is to apply
clustering to roughly divide the target dataset into two, one
as members and the other as non-members. The second is to
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roughly select those with high probability score as members
and those with low as non-members. This generation is only
applicable to BLINDMI-DIFF, because the non-member set
may be noisy.

C. Probability Score Projection
We now discuss our probability score projection function

Gprojection,k, which applies on Sprob
target to obtain k different

elements. The high-level idea is that class types, e.g., a bird
vs. a tree, are less important features for an MI attack,
but the ranking of values in different classes determines the
membership. Based on this insight, we design three different
projection functions.
• All probability scores in an order. This projection function

ranks all probability scores from the largest to the smallest,
which removes the class information but only keeps the
relative values.
• Top-k probability scores. This projection function selects

the top-k probability scores to further remove some noisy
ones with small values.
• Top-k + Ground Truth Class. This projection function—

used in the blackbox setting—further includes the value
corresponding to the ground truth class.

D. Differential Comparison
In this section, we describe one key technique, i.e., differ-

ential comparison, in this paper. The first task is to calculate
the distance between two sets. Just like all general ML tasks,
it is hard to differentiate member and non-members directly in
the output probability distribution space. Therefore, BLINDMI
maps all probabilities to the Reproducing Kernel Hilbert Space
(RKHS) [4] and then calculates the distance between two
centroids in the kernel space. Specifically, our distance, based
on Maximum Mean Discrepancy (MMD) [18], is shown in
Equation 1.

D(Sprob,ktarget , S
prob,k
nonmem) =

∥∥∥∥∥∥ 1

nt

nt∑
i=1

φ(yi)−
1

nn

nn∑
j=1

φ(y′j)

∥∥∥∥∥∥
ν

(1)

where yi ∈ Sprob,k
target , y′j ∈ Sprob,k

nonmem, nt and nn are the size of
Sprob,k
target and Sprob,k

nonmem, ν is the dimension of the kernel space,
and φ is a feature space map k 7→ ν, e.g., a Gaussian kernel
function k(y, y′) = 〈φ(y), φ(y′)〉 = exp(−||y − y′||/(2σ2)).

The second task is to perform differential comparison
between two sets. There are two variations of differential com-
parison, single- and bi-directional, which defines the direction
in moving samples between two sets.

1) Single-directional Differential Comparison: This
method iteratively moves samples from Sprob,k

target to Sprob,k
nonmem,

compares the distance before and after move, and then
determines the moved sample’s membership. Details of the
method are shown in Algorithm 1. Lines 1–2 of Algorithm 1
prepare some initial variables and then Lines 3–14 are
the iterative algorithm. Specifically, Line 5 first calculates
the distance between two sets and Lines 6–12 go through
all the elements in Sprob,k

target . If the updated distance after
moving a sample (Line 7) is larger than the original (Line
8), BLINDMI-DIFF considers it as a non-member. After one
iteration, BLINDMI-DIFF updates Sprob,k

target (Line 13) and starts
the entire process again.

Algorithm 1 Single-directional Differential Comparison
Input: Sprob,knonmem, Sprob,ktarget
Output: Spred,nonmem, Spred,mem
1: Spred,nonmem ← empty
2: flag ← true
3: while flag do
4: flag ← false
5: d← D(Sprob,knonmem, S

prob,k
target)

6: for y ∈ Sprob,ktarget do
7: d′ ← D(Sprob,knonmem ∪ {y}, Sprob,ktarget − {y})
8: if d′ ≥ d then
9: Spred,nonmem ← Spred,nonmem ∪ y

10: flag ← true
11: end if
12: end for
13: Sprob,ktarget ← Sprob,ktarget − Spred,nonmem
14: end while
15: Spred,mem ← Sprob,ktarget

Algorithm 2 Bi-directional Differential Comparison
Input: Sprob,ktarget1, Sprob,ktarget2
Output: Spred,nonmem, Spred,mem
1: flag ← true
2: while flag do
3: flag ← false
4: d← D(Sprob,ktarget1, S

prob,k
target2)

5: for y ∈ Sprob,ktarget1 do
6: d′ ← D(Sprob,ktarget2 ∪ {y}, S

prob,k
target1 − {y})

7: if d′ ≥ d then
8: Sprob,ktarget1 ← Sprob,ktarget1 − {y}
9: Sprob,ktarget2 ← Sprob,ktarget2 ∪ {y}

10: flag ← true
11: d← d′

12: end if
13: end for
14: for y ∈ Sprob,ktarget2 do
15: d′ ← D(Sprob,ktarget1 ∪ {y}, S

prob,k
target2 − {y})

16: if d′ ≥ d then
17: Sprob,ktarget2 ← Sprob,ktarget2 − {y}
18: Sprob,ktarget1 ← Sprob,ktarget1 ∪ {y}
19: flag ← true
20: d← d′

21: end if
22: end for
23: end while
24: Spred,mem, Spred,nonmem ← Sprob,ktarget1, S

prob,k
target2

2) Bi-directional Differential Comparison: This method
works on a roughly divided two datasets, say Sprob,k

target1

and Sprob,k
target2, and moves samples in both directions, i.e.,

Sprob,k
target1 → Sprob,k

target2 and Sprob,k
target2 → Sprob,k

target1. More specifi-
cally, the method details are shown in Algorithm 2. BLINDMI-
DIFF first moves samples from Sprob,k

target1 to Sprob,k
target2 in Lines

5–13, and then Sprob,k
target2 to Sprob,k

target1 in Lines 14–22. Then,
BLINDMI-DIFF iterates the entire procedure until it converges.

Note that one major challenge here is to decide whether
Sprob,k
target1 or Sprob,k

target2 contains non-members, as those two sets
are symmetric and look the same. The intuition here is that the
average prediction confidence score of members is higher than
the one of non-members. Therefore, BLINDMI-DIFF compares
the average confidence score for a decision in the end.
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TABLE V. A DESCRIPTION OF DIFFERENT DATASETS USED IN THE EVALUATION.

Dataset # of classes Description Resolution # Epochs (target model) Training set (target model) Training set (shadow model) Target set

Adult 2 census income records N/A 100 16,280 16,280 32,560
EyePACS 5 retina images with diabetic retinopathy 150×150 (pre-trained + 15) or 150 10,000 10,000 20,000

CH-MNIST 8 histological images of colorectal cancer 64×64 (pre-trained + 15) or 150 2,500 2,500 5,000
Location 30 mobile users’ location check-in records N/A 100 2,505 2,505 5,010

Purchase-50 50 shoppers’ purchase histories N/A 100 10,000 10,000 20,000
Texas 100 inpatients stays in health facilities N/A 100 10,000 10,000 20,000

CIFAR-100 100 object recognition dataset 32×32 (pre-trained + 30) or 150 10,000 10,000 20,000
Birds-200 200 photos of birds species 150×150 (pre-trained + 15) or 150 5,894 5,894 11,788

E. Batch Division and Size Optimization
In this part, we discuss how BLINDMI divides the target

dataset into small batches with an appropriate size especially
when the size of nonmember dataset is small. The high-
level idea of determining the size is that BLINDMI needs to
maximize the distance change in differential comparison when
moving one sample. Specifically, BLINDMI starts from a batch
size consistent with the size of nonmember dataset. Such an
algorithm keeps BLINDMI sensitive while still maintaining a
small size of non-members.

IV. DATASETS, PRIOR ATTACKS AND IMPLEMENTATION

In this section, we describe the datasets used in the ex-
periments, target and shadow models, existing state-of-the-art
attacks, and our implementation of BLINDMI.

A. Datasets
We use eight datasets as shown in Table V to evaluate

BLINDMI on different application scenarios.
1) UCI Adult: UCI Adult, or Adult for short, has 48,842

records with census attributes, such as age, gender, education,
marital status, and working hours. The classification task is to
predict whether a person earns over $50,000 per year based
on given attributes. We follow a well-known preprocessing
method2 to obtain a target datasets with 32,560 records—half
are used as the training set of the target model and half as the
training set of the shadow model. The target dataset contains
all the samples.

2) EyePACS: The EyePACS dataset from Kaggle’s was
used for a Diabetic Retinopathy Detection challenge3. The
dataset includes 88,703 high-resolution retina images taken
under a variety of imaging conditions and each image has
a label ranging from 0 to 4, representing the presence and
severity of diabetic retinopathy. We adopt the preprocessing
method from Kaggle4. We select 10,000 random images as
the training set of the target model, 10,000 disjoint images as
the training set of the shadow model, and 20,000 images—i.e.,
10,000 members and 10,000 non-members—as the target set
for inference.

3) CH-MNIST: CH-MNIST [27] is a benchmark dataset of
5,000 histological images of human colorectal cancer including
8 classes of tissues. We obtain a version5 of CH-MNIST

2https://github.com/rupampatir/TrainingDataSynthesizer/blob/master/
classifiers/income/income classifier.py

3https://www.kaggle.com/c/diabetic-retinopathy-detection/data
4https://www.kaggle.com/ratthachat/aptos-eye-preprocessing-in-diabetic-

retinopathy
5https://www.tensorflow.org/datasets/catalog/colorectal histology

from TensorFlow Datasets, in which each image’s resolution
is 150×150. We resize all images to 64×64 to increase the
diversity of image resolution, and then randomly select two
sets of 2,500 images as training data of the target and the
shadow models. The target dataset has all 5,000 images, i.e.,
2,500 members and 2,500 non-members for the target model.
Note that due to the small size of CH-MNIST, the training sets
of shadow and target models have overlap.

4) Location: This dataset is from the publicly available set
of mobile users’ location “check-ins” in the Foursquare social
network6. We obtain a processed version of the dataset from
a prior work [43], which has 5,010 record with 446 binary
features and is clustered into 30 classes, each representing
a different geosocial type. The task is to predict the user’s
geosocial type given his or her record. We use the whole
dataset and randomly chose samples to create two sets, each
with 2,505 samples, to train the target model and the shadow
model respectively. There are overlapping samples in both
target and shadow models’ training sets since the dataset is
small.

5) Purchase-50: Purchase-50 dataset is from Kaggle’s “Ac-
quired Valued Shoppers Challenge”7 and contains purchase
histories of many shoppers. We obtain a simplified version with
197,324 records from R.Shokri et al. [43], where each record
contains 600 binary features representing whether the customer
has purchased an item. We cluster the dataset into 50 classes,
in which each class represented a different purchase habit. The
training datasets of target and shadow models are disjoint with
10,000 samples each; The target dataset has 20,000 samples,
i.e., 10,000 members and 10,000 nonmembers.

6) Texas hospital stays: Texas hospital stays, or Texas for
short, is the inpatient stays records in several health facilities
based on the Hospital Discharge Data released by Texas
Department of State Health Services from 2006 to 2009. We
follow the same preprocessing method and classification task
as prior work [43]. The training datasets of target and shadow
models are disjoint with 10,000 samples each; We also select
20,000 records for the target dataset, i.e., 10,000 members and
10,000 nonmembers.

7) CIFAR-100: CIFAR-100 is a popular benchmark dataset
that is used to evaluate image recognition algorithms. The
dataset has 60,000 images evenly distributed over 100 classes.
We randomly select two sets of 10,000 images evenly dis-
tributed over 100 classes as the training datasets of the target
model, and another disjoint 10,000 images as the training

6https://sites.google.com/site/yangdingqi/home/foursquare-dataset
7https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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TABLE VI. TARGET AND SHADOW MODELS’ ARCHITECTURE AND
HYPER-PARAMETER SETTING

Model arch. # of layers Target model Shadow model (blackbox)

Max. epochs LRN rate Max. epochs LRN rate

ResNet50 50 p∗+m∗∗ 5e−5 p+0.2m 5e−5

ResNet101 101 p+m 5e−5 p+0.3m 1e−4

VGG16 16 p+m 5e−5 p+0.6m 5e−5

DenseNet121 121 p+m 5e−5 p+m 1e−4

VGG19 19 p+m 5e−5 p+1.5m 5e−5

Standard CNN 2 m 5e−5 0.5m 1e−4

MLP [3–7] dense m 5e−5 [0.3–2]m 1e−4/5e−5

* p: the epoch of a pre-trained weight on the ImageNet dataset;
** m: the maximum epoch of target model for each dataset in Table V.

datasets of the shadow model. The target dataset has 20,000
images: 10,000 members and 10,000 nonmembers.

8) Caltech-UCSD Birds 200: Caltech-UCSD Birds
200 [48], or for short Birds-200, is an image dataset with
photos of mostly North American birds species. The dataset
has 11,788 images from 200 classes. In our experiments the
training dataset of target and shadow models each has 5,894
samples; The target dataset has 5,894 members and 5,894
nonmembers

B. Target and Shadow Models
In this part, we describe the architectures and hyper-

parameters of target and shadow models of our evaluation in
Table VI. We adopt seven different popular DNN architectures
with pre-set maximum epochs and learning rate. Note that
all popular DNNs, e.g., ResNet, VGG, and DenseNet, are
the standard architectures with pre-trained parameters from
ImageNet; we adopt the same standard CNN architecture
and hyperparameters as prior blackbox MI attack [43]; the
multilayer perceptron (MLP) model has at most seven dense
layers with size of 8192, 4096, 2048, 1024, 512, 256, and 128
and an additional Softmax layer. Now we describe how we
select and train target and shadow models.

• Target model. Given a dataset, we randomly select a
model architecture from the target model column of Table VI
and train the model with the specified hyperparameters.
• Shadow model (blackbox and blind settings). Given a

target model and a dataset, we randomly select and train a
model with the architecture and hyperparameters specified
in the shadow model column of Table VI.
• Shadow model (graybox and graybox-blind settings).

Given a target model and a dataset, we select the same
architecture and hyperparameters as the target model.

C. State-of-the-art Attacks
In this part, we describe state-of-the-art attacks in the

literature as shown in Table VII. We follow the descriptions in
prior work to implement each attack for the comparison with
BLINDMI. Generally speaking, there are two categories, those
without ground-truth labels and those with ground-truth labels.

1) Attacks without Ground-truth Labels: We describe three
prior attacks without ground-truth labels. Presumably, those
attacks work under all settings, but their performance are the
same, with or without ground-truth label information, i.e.,
under blind and blackbox settings.

TABLE VII. A LIST OF CONDITIONS OF BASELINE MI ATTACKS AND
DIFFERENT VARIATIONS OF BLINDMI

Attacks True labels Shadow Threat model Target Model Probes

NN [43] 7 3 all Target set
Top3-NN [41] 7 3 all Target set
Top1-Thre [41] 7 7 all Target set + 1,000 samples
Loss-Thre [49] 3 3 blk, gray Target set
Label-Only [49] 3 7 blk, gray Target set

Top2+True 3 3 blk, gray Target set

BLINDMI-DIFF-w/ 73 7 all Target set + 20 samples
BLINDMI-DIFF-w/o 73 7 all Target set
BLINDMI-1CLASS 73 7 all Target set + 1,000 samples

* 73: The approach works either with or without the condition, e.g., the ground
truth labels.

• Neural network (NN). The NN-based MI attack trains a
NN from all features from the output probability distribu-
tions of a shadow model. We follow both Shokri et al. [43]
and Salem et al. [41] for the implementation.
• Neural network with top three features (Top3-NN). This

MI attack proposed by Salem et al. [41] , which trains an NN
based on the top three features from the output probability
distributions of a shadow model.
• Threshold based on top one feature (Top1-Thre). This

MI attack, which is also proposed by Salem et al. [41] as
their Adversary Three, compares the top feature from the
output probability distribution with a threshold and classifies
the sample as member if the top feature is larger than the
threshold.

2) Attacks with Ground-truth Labels: We describe three
attacks that specifically require ground-truth labels: They may
or may not need a shadow model. That is, these attacks only
work under settings where ground-truth labels are available,
i.e., blackbox and graybox settings.
• Threshold based on a loss function (Loss-Thre). This

MI attack from Yeom et al. [49], which requires a
shadow model, computes a cross-entropy loss, loss =
−log(FT (x)y), where FT (x)y is the probability of the true
label y of the data sample x, and classifies x as a member if
loss is smaller than the average loss of all training samples
in the shadow model.
• Discrepancy between predicted and ground-truth class

(Label-Only). This MI attack from Yeom et al. [49], which
does not requires a shadow model, classifies a sample as a
member if the predicted class is the same as the ground-truth
one.
• Neural network with top two feature plus the feature with

ground-truth label (Top2+True). This MI attack is an im-
proved version of the NN attack from Shokri et al. [43] and
Salem et al. [41] with the consideration of the ground-truth
label. We add this attack as a baseline for the comparison
purpose.

D. Implemenatation
We implemented BLINDMI with 811 lines of code (LoC)

based on TensorFlow 2.1.0. Specifically, our implementations
of BLINDMI-1CLASS, BLINDMI-DIFF-w/, and BLINDMI-
DIFF-w/o are of 227, 261 and 323 Lines of Python 3.7
code respectively. The non-member generation module has 72
LoC, the differential comparison module 182 LoC. We also

7



implement prior attacks with 344 LoC. Our implementations
of BLINDMI and prior attacks are open-source and avail-
able at this anonymous repository: https://github.com/hyhmia/
BlindMI.

V. EVALUATION

We first introduce the evaluation metrics and several re-
search questions (RQs). Then, we show the performances of
MI attacks under different settings based on different RQs, and
explain what we learn from the results in details.

A. Evaluation Metrics, Experimental Setting and Research
Questions

We mainly use F1-score, the harmonic mean of precision
and recall, as our evaluation metrics, because F1-score rep-
resents a trade-off between precision and recall. Specifically,
Precision represents the ratio of real-true members predicted
among all the positive membership predictions made by an
adversary, and Recall demonstrates the ratio of true members
predicted by an adversary among all the real-true members.
We adopt the batch mode for BLINDMI in our experiments.
Following the prior work [41], in the Blind and Graybox-Blind
settings, we select the top three feature values for all variations
of BLINDMI; in the Blackbox and Graybox settings, we select
the top two feature values plus the value of the ground-truth
class. All the experiments are performed using the GeForce
RTX 2080 graphics cards (NVIDIA).

Our evaluation aims to answer the following RQs.
• RQ1 [All Settings]: What is the performance of all varia-

tions of BLINDMI compared with state-of-the-art MI attacks
under different settings?
• RQ2 [Blackbox Setting]: How does BLINDMI perform

under existing defenses against MI attacks?
• RQ3 [Blind Setting]: What is the performance of BLINDMI

for different quality and size of the non-member set?
• RQ4 [Blind Setting]: How do different initial classifiers and

kernel functions affect the performance of BLINDMI-DIFF?
• RQ5 [Blind Setting]: How long and how many moves and

iterations are needed for BLINDMI-DIFF to converge?
• RQ6 [Blackbox Setting]: What is the performance

of BLINDMI under different real-world settings, e.g.,
nonmember-to-member ratio and number of target model’s
classes?

B. RQ1: Attack Performance With Different Settings
In this subsection, we evaluate and compare the Precision,

Recall, and F1-score of BLINDMI and existing attacks in
Section IV-C. Our setting for this RQ is that the nonmember
dataset size of BLINDMI-DIFF-w/ is 20, the nonmember
dataset size of BLINDMI-1CLASS is 1,000, and BLINDMI-
DIFF-w/o does not need additional nonmembers. The target
dataset sizes depending on the problem domain are shown
in Table V. Each attack is performed ten times with a new
target and shadow model with different training datasets, model
architectures and hyperparameters each time. Then, we obtain
the average values of F1-score together with the standard error
of the mean among the ten attacks.

Table VIII shows the Precision, Recall and F1-score of
different attacks under four adversarial settings. The best per-
formances of all attacks under different settings are highlighted

with different colors (blue for recall, green for precision, and
red for F1-score.) Note that if the performance of a prior
attack, e.g., NN-based, is the same with and without ground
truth label, we only show the attack once under the blind
and graybox-blind settings. We do show BLINDMI multiple
times under different settings for ease of comparison. Next,
we introduce several observations from our experiments.

[Observation RQ1-1] BLINDMI significantly outperforms
state-of-the-art MI attacks under all settings in terms of F1-
score.

The first observation is that BLINDMI outperforms state-
of-the-art MI attacks under all settings: The reason is that
BLINDMI extracts membership semantics directly from the
target model via probing. Sometimes, the performance boost
is over 20%, e.g., for the Adult and BIRDS-200 datasets
under the blind setting. As a comparison, no single prior
attack dominates the performance in F1-score. Consider the
blind setting for example. Top1-Thre is the best for the
EyePACS dataset except for BLINDMI; NN is the best for
the CH-MNIST dataset except for BLINDMI; and Top3-NN
outperforms all methods for the Purchase-50. The reason is
that no prior attacks extract enough membership semantics as
BLINDMI does.

[Observation RQ1-2] The introduction of ground-truth la-
bels improves attack performance, but to a limited degree for
BLINDMI.

The second observation is about how the introduction of
ground-truth labels affects attack performance. The perfor-
mance boost is sometimes significant for prior attacks. Take
Purchase-50 for example. The best average F1-score under the
blind setting is 59.6%, but the average F1-score increases to
72.1%, a 12.5% increase, under the blackbox setting.

As a comparison, the best performance boost of BLINDMI
with the ground truth label is 2.9% for the EyePACS dataset.
That said, although ground-truth labels introduce additional
membership semantics, the semantics introduction is limited
in terms of F1-score improvement.

[Observation RQ1-3] Shadow model quality plays an im-
portant role in some existing attacks.

The third observation is about how different shadow models
affect the attack performance. First, BLINDMI does not need
a shadow model and therefore BLINDMI’s performance is the
same with or without shadow model. Second, the performance
of some existing attacks varies a lot given different shadow
models. Take the NN attack for BIRDS-200 under the blind
setting for example. The average F1-score is 58.3, but the
standard error is 15.0 with a confidence of 68.3%. That said,
the choice of shadow models is crucial in the performance of
existing attacks with shadow models.

[Observation RQ1-4] BLINDMI-DIFF-w/ performs the best
among all three variations in terms of F1-score, while
BLINDMI-DIFF-w/o does not need additional probes to the
target model.

Table VIII shows that BLINDMI-DIFF-w/ is the best com-
paring with BLINDMI-DIFF-w/o and BLINDMI-1CLASS. At
the same time, BLINDMI-DIFF-w/ does require 20 additional
probes to the target model to generate a non-member set. If
the adversary’s access to the target model is restricted to the
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TABLE VIII. PRECISION, RECALL, F1-SCORE (%) WITH STANDARD ERROR OF THE MEAN OF PRIOR ATTACKS AND BLINDMI UNDER FOUR DIFFERENT
ADVERSARIAL SETTINGS (BLUE INDICATES THE HIGHEST RECALL, GREEN THE HIGHEST PRECISION, AND RED THE HIGHEST F1-SCORE FOR EACH

SETTING).

Attack Metric Adult EyePACS CH-MNIST Location Purchase-50 Texas CIFAR-100 Birds-200

B
lin

d

NN
Precision 49.9 ± 0.30 56.6 ± 3.80 62.5 ± 0.62 68.9 ± 5.09 61.0 ± 1.64 62.5 ± 3.02 73.2 ± 12.1 95.1 ± 1.90

Recall 35.1 ± 10.1 90.5 ± 9.58 85.8 ± 8.22 93.6 ± 6.39 67.1 ± 19.9 99.8 ± 0.15 99.5 ± 0.28 53.5 ± 27.5
F1-Score 40.6 ± 7.32 69.1 ± 0.02 71.7 ± 3.53 78.4 ± 3.23 59.4 ± 11.9 76.7 ± 2.20 83.1 ± 3.53 58.3 ± 27.4

Top3-NN
Precision 49.8 ± 0.37 55.7 ± 3.69 62.1 ± 0.19 69.1 ± 4.98 61.0 ± 1.73 62.5 ± 2.80 70.3 ± 9.33 98.1 ± 0.08

Recall 20.2 ± 7.34 93.3 ± 6.58 84.8 ± 9.70 92.8 ± 7.17 67.6 ± 19.9 99.9 ± 0.08 99.6 ± 0.11 60.3 ± 23.1
F1-Score 26.7 ± 7.25 69.5 ± 1.04 70.9 ± 4.03 78.1 ± 3.39 59.6 ± 12.1 76.8 ± 2.07 81.7 ± 6.66 68.6 ± 21.3

Top1-Threshold
Precision 0.51 ± 0.23 99.9 ± 0.03 74.7 ± 24.9 14.1 ± 2.93 61.6 ± 12.1 0.34 ± 0.20 97.2 ± 1.70 99.9 ± 0.06

Recall 31.3 ± 13.6 55.2 ± 0.51 40.9 ± 13.7 63.7 ± 1.60 63.2 ± 1.97 24.6 ± 14.2 86.2 ± 3.55 57.9 ± 0.81
F1-Score 1.01 ± 0.44 71.1 ± 0.42 52.8 ± 17.6 22.7 ± 3.87 53.5 ± 7.26 0.67 ± 0.38 92.8 ± 1.72 71.4 ± 0.65

BlindMI-Diff-w/
Precision 50.0 ± 0.03 66.2 ± 2.80 65.4 ± 2.52 75.9 ± 1.44 66.0 ± 0.55 76.1 ± 1.06 90.7 ± 0.86 95.5 ± 0.08

Recall 90.4 ± 5.95 94.4 ± 3.35 88.8 ± 2.04 99.9 ± 0.08 95.2 ± 1.38 97.4 ± 1.64 97.4 ± 0.37 98.2 ± 0.26
F1-Score 64.2 ± 1.59 77.7 ± 0.80 75.1 ± 1.49 86.2 ± 0.90 78.0 ± 0.31 85.5 ± 0.80 93.9 ± 0.63 96.8 ± 0.09

BlindMI-Diff-w/o
Precision 50.5 ± 0.05 60.3 ± 1.26 63.3 ± 1.60 71.5 ± 0.87 61.7 ± 0.38 69.2 ± 4.09 86.1 ± 0.78 94.5 ± 0.24

Recall 84.2 ± 4.05 99.3 ± 0.10 92.4 ± 2.68 99.9 ± 0.04 99.5 ± 0.25 97.6 ± 1.83 98.9 ± 0.60 98.0 ± 0.80
F1-Score 62.7 ± 1.12 75.0 ± 1.40 75.1 ± 1.89 83.3 ± 0.57 76.2 ± 0.25 80.7 ± 2.37 92.1 ± 1.15 96.2 ± 0.26

BlindMI-1Class
Precision 49.9 ± 0.07 64.7 ± 2.41 59.0 ± 1.13 63.4 ± 0.44 61.1 ± 1.38 70.9 ± 1.11 83.5 ± 0.40 83.8 ± 11.9

Recall 56.5 ± 5.85 94.4 ± 0.01 94.8 ± 1.41 99.7 ± 0.27 98.1 ± 0.71 97.2 ± 2.07 98.9 ± 0.69 99.1 ± 0.60
F1-Score 52.6 ± 2.47 76.8 ± 1.70 72.8 ± 1.27 77.6 ± 0.33 77.1 ± 0.50 81.9 ± 0.07 90.6 ± 0.52 90.3 ± 6.77

B
la

ck
bo

x

Top2+True
Precision 49.8 ± 0.10 58.9 ± 1.45 62.4 ± 1.92 72.0 ± 3.56 62.3 ± 1.69 71.7 ± 1.95 69.4 ± 11.3 94.9 ± 3.55

Recall 59.6 ± 14.5 97.4 ± 2.53 95.3 ± 1.63 99.3 ± 0.74 71.1 ± 18.3 99.9 ± 0.05 99.9 ± 0.08 63.8 ± 35.9
F1-Score 52.1 ± 6.27 73.4 ± 0.41 75.4 ± 1.84 83.3 ± 2.24 62.9 ± 10.7 83.4 ± 1.29 80.9 ± 7.85 69.5 ± 25.6

Loss-Threshold
Precision 64.4 ± 2.07 58.5 ± 0.72 64.0 ± 1.45 54.1 ± 26.6 61.6 ± 3.20 79.4 ± 12.4 76.0 ± 8.08 98.4 ± 0.15

Recall 49.9 ± 0.04 99.9 ± 0.02 82.6 ± 8.06 66.3 ± 2.03 52.8 ± 23.3 63.1 ± 8.94 99.2 ± 0.64 57.6 ± 17.1
F1-Score 56.2 ± 0.77 73.8 ± 0.57 71.8 ± 4.01 47.7 ± 19.7 48.1 ± 18.6 69.6 ± 9.60 85.6 ± 5.09 71.2 ± 13.7

Label-Only
Precision 46.5 ± 3.04 57.2 ± 0.10 55.1 ± 1.90 60.3 ± 0.16 56.4 ± 0.08 66.3 ± 0.70 75.3 ± 0.47 76.1 ± 1.26

Recall 71.7 ± 9.54 99.9 ± 0.01 99.8 ± 0.10 99.3 ± 0.47 99.9 ± 0.04 99.9 ± 0.08 99.1 ± 0.47 99.9 ± 0.01
F1-Score 56.2 ± 5.28 72.8 ± 0.09 70.9 ± 1.54 75.3 ± 0.12 72.1 ± 0.07 79.7 ± 0.50 85.5 ± 0.47 86.4 ± 0.81

BlindMI-Diff-w/
Precision 50.0 ± 0.01 70.8 ± 3.23 64.0 ± 2.50 78.1 ± 1.03 66.7 ± 0.78 77.0 ± 0.53 91.0 ± 0.17 95.3 ± 0.49

Recall 97.0 ± 1.18 93.7 ± 0.47 97.9 ± 0.88 98.9 ± 0.93 99.8 ± 0.07 99.2 ± 0.54 98.9 ± 0.49 99.2 ± 0.59
F1-Score 66.0 ± 0.28 80.6 ± 1.90 77.2 ± 1.83 87.3 ± 0.70 79.9 ± 0.57 86.7 ± 0.37 94.8 ± 0.14 97.2 ± 0.03

BlindMI-Diff-w/o
Precision 50.0 ± 0.07 62.9 ± 0.10 62.3 ± 0.53 74.4 ± 0.61 63.6 ± 0.27 74.1 ± 1.62 88.2 ± 0.93 93.9 ± 0.50

Recall 90.1 ± 1.61 99.6 ± 0.17 92.1 ± 1.29 99.9 ± 0.01 99.5 ± 0.02 97.4 ± 1.83 98.8 ± 0.68 99.0 ± 0.76
F1-Score 64.2 ± 0.27 77.1 ± 0.13 74.3 ± 0.80 85.3 ± 0.39 77.6 ± 0.19 84.1 ± 0.42 93.2 ± 0.82 96.4 ± 0.09

BlindMI-1Class
Precision 50.0 ± 0.08 67.3 ± 2.38 62.5 ± 2.80 67.3 ± 1.66 64.4 ± 0.39 71.5 ± 1.57 90.8 ± 0.68 95.8 ± 0.53

Recall 69.9 ± 0.04 96.6 ± 0.62 96.2 ± 1.02 99.9 ± 0.03 99.0 ± 0.22 99.3 ± 0.06 97.6 ± 0.39 97.1 ± 1.88
F1-Score 58.3 ± 0.07 79.3 ± 1.44 75.6 ± 1.90 80.4 ± 1.19 78.0 ± 0.32 83.4 ± 1.03 94.0 ± 0.47 96.4 ± 0.33

G
ra

y-
B

lin
d

NN
Precision 50.2 ± 0.14 62.1 ± 0.82 62.2 ± 0.87 74.8 ± 1.14 64.2 ± 0.57 72.4 ± 1.75 90.4 ± 1.02 95.7 ± 0.56

Recall 64.1 ± 16.7 96.1 ± 2.23 90.2 ± 4.21 99.8 ± 0.04 96.4 ± 1.65 98.5 ± 1.22 96.2 ± 0.27 97.8 ± 0.05
F1-Score 54.3 ± 5.50 72.3 ± 0.08 73.5 ± 1.99 85.6 ± 0.71 77.0 ± 0.36 83.4 ± 0.83 93.2 ± 0.46 96.8 ± 0.28

Top3-NN
Precision 50.2 ± 0.21 60.7 ± 1.10 62.0 ± 0.77 75.0 ± 1.06 64.1 ± 0.47 72.0 ± 1.65 90.4 ± 0.86 89.9 ± 0.08

Recall 69.9 ± 25.7 97.5 ± 1.56 90.7 ± 3.87 99.9 ± 0.05 97.2 ± 1.14 99.1 ± 0.69 96.3 ± 0.15 96.8 ± 0.14
F1-Score 56.4 ± 9.27 74.8 ± 0.37 73.6 ± 1.80 85.7 ± 0.69 77.2 ± 0.34 83.4 ± 0.90 93.2 ± 0.80 93.2 ± 0.03

Top1-Threshold
Precision 0.51 ± 0.23 99.9 ± 0.03 74.7 ± 24.9 14.1 ± 2.93 61.6 ± 12.1 0.34 ± 0.20 97.2 ± 1.70 99.9 ± 0.06

Recall 31.3 ± 13.6 55.2 ± 0.51 40.9 ± 13.7 63.7 ± 1.60 63.2 ± 1.97 24.6 ± 14.2 86.2 ± 3.55 57.9 ± 0.81
F1-Score 1.01 ± 0.44 71.1 ± 0.42 52.8 ± 17.6 22.7 ± 3.87 53.5 ± 7.26 0.67 ± 0.38 92.8 ± 1.72 71.4 ± 0.65

BlindMI-Diff-w/
Precision 50.0 ± 0.03 66.2 ± 2.80 65.4 ± 2.52 75.9 ± 1.44 66.0 ± 0.55 76.1 ± 1.06 90.7 ± 0.86 95.5 ± 0.08

Recall 90.4 ± 5.95 94.4 ± 3.35 88.8 ± 2.04 99.9 ± 0.08 95.2 ± 1.38 97.4 ± 1.64 97.4 ± 0.37 98.2 ± 0.26
F1-Score 64.2 ± 1.59 77.7 ± 0.80 75.1 ± 1.49 86.2 ± 0.90 78.0 ± 0.31 85.5 ± 0.80 93.9 ± 0.63 96.8 ± 0.09

BlindMI-Diff-w/o
Precision 50.5 ± 0.05 60.3 ± 1.26 63.3 ± 1.60 71.5 ± 0.87 61.7 ± 0.38 69.2 ± 4.09 86.1 ± 0.78 94.5 ± 0.24

Recall 84.2 ± 4.05 99.3 ± 0.10 92.4 ± 2.68 99.9 ± 0.04 99.5 ± 0.25 97.6 ± 1.83 98.9 ± 0.60 98.0 ± 0.80
F1-Score 62.7 ± 1.12 75.0 ± 1.40 75.1 ± 1.89 83.3 ± 0.57 76.2 ± 0.25 80.7 ± 2.37 92.1 ± 1.15 96.2 ± 0.26

BlindMI-1Class
Precision 49.9 ± 0.07 64.7 ± 2.41 59.0 ± 1.13 63.4 ± 0.44 61.1 ± 1.38 70.9 ± 1.11 83.5 ± 0.40 83.8 ± 11.9

Recall 56.5 ± 5.85 94.4 ± 0.01 94.8 ± 1.41 99.7 ± 0.27 98.1 ± 0.71 97.2 ± 2.07 98.9 ± 0.69 99.1 ± 0.60
F1-Score 52.6 ± 2.47 76.8 ± 1.70 72.8 ± 1.27 77.6 ± 0.33 77.1 ± 0.50 81.9 ± 0.07 90.6 ± 0.52 90.3 ± 6.77

G
ra

yb
ox

Top2+True
Precision 50.0 ± 0.04 63.7 ± 1.53 62.8 ± 1.65 75.4 ± 0.85 65.1 ± 0.38 75.1 ± 0.28 90.6 ± 0.68 95.7 ± 0.48

Recall 96.8 ± 2.22 98.4 ± 1.38 93.4 ± 2.95 99.9 ± 0.04 98.3 ± 0.66 99.9 ± 0.01 97.3 ± 0.42 98.1 ±0.13
F1-Score 66.0 ± 0.50 77.3 ± 0.69 75.1 ± 2.03 86.0 ± 0.55 78.4 ± 0.25 85.7 ± 0.18 93.8 ±0.53 96.9 ± 0.18

Loss-Threshold
Precision 66.4 ± 2.38 96.0 ± 3.93 84.4 ± 4.83 77.2 ± 10.5 79.1 ± 5.41 75.4 ± 9.79 84.9 ± 8.05 75.4 ± 1.26

Recall 50.0 ± 0.07 64.1 ± 2.70 64.5 ± 2.07 75.6 ± 1.79 66.1 ± 0.85 79.5 ± 0.64 90.8 ± 3.06 98.2 ± 0.23
F1-Score 57.0 ± 0.84 76.8 ± 0.68 73.0 ± 2.90 75.9 ± 4.96 71.8 ± 2.70 76.5 ± 4.81 87.1 ± 3.39 85.3 ± 0.89

Label-Only
Precision 46.5 ± 0.30 57.2 ± 0.10 55.1 ± 1.90 60.4 ± 0.16 56.4 ± 0.08 66.3 ± 0.90 75.3 ± 0.47 76.1 ±1.26

Recall 71.7 ± 9.54 99.9 ± 0.01 99.8 ± 0.10 99.3 ± 0.47 99.9 ± 0.04 99.9 ± 0.08 99.1 ± 0.47 57.9 ± 0.81
F1-Score 56.2 ± 5.28 72.8 ± 0.09 70.9 ± 1.54 75.3 ± 0.12 72.1 ± 0.07 79.7 ± 0.50 85.5 ± 0.47 86.4 ± 0.81

BlindMI-Diff-w/
Precision 50.0 ± 0.01 70.8 ± 3.23 64.0 ± 2.50 78.1 ± 1.0 66.7 ± 0.78 77.0 ± 0.53 91.1 ± 0.17 95.3 ± 0.49

Recall 97.0 ± 1.18 93.7 ± 0.47 97.7 ± 0.88 98.9 ± 0.93 99.8 ± 0.07 99.2 ± 0.54 98.9 ± 0.49 98.2 ± 0.26
F1-Score 66.0 ± 0.30 80.6 ± 1.90 77.2 ± 1.83 87.3 ± 0.70 79.9 ± 0.57 86.7 ± 0.37 94.8 ± 0.14 97.2 ± 0.03

BlindMI-Diff-w/o
Precision 50.0 ± 0.07 62.9 ± 0.10 62.3 ± 0.53 74.4 ± 0.61 63.6 ± 0.27 74.1 ± 1.62 88.2 ± 0.93 93.9 ± 0.50

Recall 90.1 ± 1.61 99.6 ± 0.17 92.1 ± 1.29 99.9 ± 0.01 99.5 ± 0.02 97.4 ± 1.83 98.8 ± 0.68 99.0 ± 0.76
F1-Score 64.2 ± 0.27 77.1 ± 0.13 74.3 ± 0.80 85.3 ± 0.39 77.6 ± 0.19 84.1 ± 0.42 93.2 ± 0.82 96.4 ± 0.09

BlindMI-1Class
Precision 50.0 ± 0.08 67.3 ± 2.38 62.5 ± 2.80 67.3 ± 1.66 64.4 ± 0.39 71.5 ± 1.57 90.8 ± 0.68 95.8 ± 0.53

Recall 69.9 ± 0.04 96.6 ± 0.62 96.2 ± 1.02 99.9 ± 0.03 99.0 ± 0.22 99.9 ± 0.06 97.6 ± 0.39 97.4 ± 0.05
F1-Score 58.3 ± 0.07 79.3 ± 1.44 75.6 ± 1.90 80.4 ± 1.19 78.0 ± 0.32 83.4 ± 1.03 94.0 ± 0.47 96.4 ± 0.33
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target dataset, BLINDMI-DIFF-w/o is an alternative option as
opposed to BLINDMI-DIFF-w/.

[Observation RQ1-5] The variation of BLINDMI-1CLASS
is larger than the one of BLINDMI-DIFF.

Take Birds-200 for example. The best performance of
BLINDMI-1CLASS is higher than the one of BLINDMI-DIFF.
The reason is that the performance of ML classifier depends on
the training data: If many data samples lie along the decision
boundary, the one-class model can learn the membership
semantics and thus outperforms BLINDMI-DIFF.

C. RQ2: Defenses
In this subsection, we evaluate the performance of

BLINDMI against state-of-the-art defenses of MI attacks. Note
that we evaluate all the defenses under the blackbox setting
because some attacks only work under the blackbox but not
the blind setting. Now, we describe three general defense
directions and representative works in each direction below.
• Output probability alteration based on adversarial exam-

ple. Such a defense alters the output probabilities so
that it becomes hard for an adversary to infer membership
information. A representative approach in this category is
called MemGuard [26], which changes the output probability
distribution so that it looks like an adversarial example to
the inference model built by the adversary. We adopt the
original implementation of MemGuard.8

• Regularization-based fortification of ML model. Such a
defense fortifies existing ML models, especially DNN, via
regularization. Two representative approaches in this cate-
gory are MMD+Mix-up [30] (which include two previous
defenses, namely dropout [49] and L2-Regularizer [41])
and the adversarial regularization [36]. We implement our
own version of MMD+Mix-up and adopt an open-source
version of the adversarial regularization.9 Note that the
MMD+Mixup defense is adaptive with a regularizer based
on BlindMI, i.e., minimizing the cluster distance between
members and non-members during the training process.
As a comparison, the adversarial regularization is based
on the NN attack, because it requires that the MI attack
be differentiable with gradients while BlindMI is not. (If
we adopt a differentiable distance function in adversarial
regularization, adversarial regularization boils down to the
MMD+Mixup method.)
• Differential privacy-based protection. Such a defense adds

noise to the output to fool an adversary. A representative
approach in this category is DP-Adam [1] and we adopt an
open-source version of DP-Adam.10

Note that in our experiment, we adopt a dataset that is
at least included in the corresponding defense paper for our
evaluation. That is, we choose CH-MNIST for MemGuard and
DP-Adam, and CIFAR-100 for MMD+Mix-up and Adversar-
ial Regularization. Because these defenses adopted different
datasets in the paper and we follow what what adopted.

1) Attacks against MemGuard: We first evaluate the per-
formance of MemGuard under existing MI attacks. The utility-
loss budget is set up as [0, 0.1, 0.3, 0.5, 0.7, 1.0] for

8https://github.com/jjy1994/MemGuard
9https://github.com/NNToan-apcs/python-DP-DL
10https://github.com/tensorflow/privacy

MemGuard, which represents the percentage of altered outputs.
We show the evaluation results in Figure 3(a) and also make
the following observations.

[Observation RQ2-1] Attacks with ground-truth labels gen-
erally have a higher F1-score than those without when attack-
ing MemGuard.

Our first observation is that MemGuard is generally vul-
nerable to attacks that utilize ground-truth labels. For example,
the worst performing attacks are Top1-Threshold and Top3-
NN, which will likely remove the output probability of the
ground-truth labels. By contrast, the best performed attacks
are Label-only, Top2+True, and BLINDMI, which are all able
to utilize the ground-truth label information. The reason is that
although MemGuard alters the output probabilities, it does not
change the prediction class because MemGuard does not want
to influence the legacy performance of the model.

There are two more things worth noting. First, the perfor-
mance of NN is actually better than the one of Top3-NN. The
reason is similarly: NN adopts all the probability scores of the
output, which contains the one corresponding to the ground-
truth label for certain; by contrast, Top3-NN only adopts the
top three probability scores, which may not contains the one
corresponding to the ground-truth label.

Second, Top2+True performs better than Label-only when
the privacy budget is small, but then degrades quickly when
the privacy budget increases. The reason is that when the
budget is small, top two probability scores will provide some
membership information. When the budget increases, the top
two of more samples are altered, which affects the performance
of Top2+True.

[Observation RQ2-2] BLINDMI still outperforms all exist-
ing attacks even if the output probabilities were adversarially
altered.

Our second observation is that BLINDMI still performs the
best among all attacks. The underlying reasons are two-fold.
First, although adversarial examples are close to the decision
boundary, the decision boundary itself is a hyper-dimensional
manifold and the projection of members and non-members
on the manifold are still far from each other, thus being
distinguishable. Second, although MemGuard alters output
probability scores, sufficient information still exist, because
MemGuard does not change the prediction results.

2) Attacks against DP-Adam: In this part, we evaluate all
existing attacks against DP-Adam under the noise multiplier
as [0, 0.002, 0.004, 0.006, 0.008, 0.01]. The evaluation results
are shown in Figure 3(b) and we make the following observa-
tions.

[Observation RQ2-3] Attacks relying on binary comparison
tend to have a low F1-score against DP-Adam.

The reason behind this observation is that differential
privacy (DP) perpetuates the probability outputs so that the
boundary between members and non-members is blurred.
Therefore, the performances of Top1-Threshold and Loss-
Threshold are the worst. Consider Top1-Threshold for exam-
ple: It is hard to differentiate members and non-members based
on a single threshold of the highest output probability score
due to the perpetuation enforced by DP.

[Observation RQ2-4] BLINDMI has a higher performance
than Label-only regardless of when the privacy-utility budget
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is small or large, while Label-only attack degrades slower with
a mid-size budget.

The reason is that Label-only attack depends on the per-
formance gap of the target model on the training and testing
datasets. Such a gap persists with a mid-size budget, but starts
to shrink quickly for a large budget—and that is why Label-
only’s performance degrades finally with a large budget.

3) Attacks against MMD+Mixup: In this part, we evaluate
all the MI attacks against MMD+Mixup with different privacy-
utility budgets, i.e., the loss weight in the MMD as [0, 0.1, 0.5,
1, 2.5, 5]. Note that this budget controls the tradeoff between
privacy and utility: A larger privacy-utility budget increases
privacy protection, but at the same time decreases the model’s
utility. The evaluation results are in Figure 3(c)—BLINDMI
clearly outperforms all existing attacks. We also make the
following observation.

[Observation RQ2-5] Attacks selecting more probability
scores generally have a higher F1-score than those selecting
less when attacking MMD+Mix-up.

Specifically, Label-Only and Top1-Threshold are the worst
when comparing with other attacks. The reason is that
MMD+Mix-up also changes the target model’s performance
on the training dataset and therefore Label-Only and Top1-
Threshold are heavily affected. As a comparison, other attacks
also rely on the probability score of other classes, thus outper-
forming these two attacks.

4) Attacks against Adversarial Regularization: In this part,
we evaluate all the MI attacks against the Adversarial Regular-
ization [36] with different privacy-utility budget as [0, 0.3, 0.7,
1, 1.5, 2]. BLINDMI clearly outperforms all existing attacks
as shown in Figure 3(d). Now we describe our observations.

[Observation RQ2-6] Ground-truth Label plays an im-
portant role in defeating Adversarial Regularization and the
results depend on how such labels are used in the attack.

Specifically, Label-Only, Top2+True and BLINDMI, which
all adopt ground-truth labels, are the best three MI attacks
among all, while Loss-Threshold, which also adopts ground-
truth labels, is the worst. The reason is that Loss-Threshold
relies on the training data of a shadow model, which is
drastically different from a model trained with adversarial
regularization.

[Observation RQ2-7] Simple MI attacks, except for
BLINDMI, tend to have a better performance.

Specifically, Label-Only and Top1-Threshold performs
well compared with other attacks. The reason is that although
the adversarial regularization fortifies the model via regular-
ization, the output probability, especially the probability score
of the predicted class, still contains abundant information.

D. RQ3: Nonmember Set Quality and Size
In this subsection, we evaluate how different generation

methods and size of non-members affect the performance
of BLINDMI, particularly BLINDMI-DIFF and BLINDMI-
1CLASS. Without loss of generality, we use the EyePACS
dataset and the blind setting: the target dataset consists of
20,000 samples and the size of non-member datasets changes
from 20 to 10,000. Here are the settings used in the different
non-member generation methods:
• Sample transformation. We adopt the Sobel operator.

• Random perpetuation. We adopt Gaussian noise with the
mean value as zero and the variance as 0.001.
• Random generation. We adopt a uniform distribution in

generating feature values.
• Cross-domain sample. We adopt samples from CH-

MNIST.

We show our experiment results in Table IX and also make
the following observations.

[Observation RQ3-1] The performance of BLINDMI-DIFF
stays mostly stable with a little increase as opposed to a
big increase of BLINDMI-1CLASS as the size of nonmember
datasets increases.

Our first observation of RQ3 is on how the size of
nonmembers affects F1-score. The F1-score of BLINDMI-
DIFF is almost constant with around 1% boost as the size
increases from 20 to 10,000. As a comparison, the F1-score of
BLINDMI-1CLASS has between 5% and 12% increase except
for random generated non-members.

The reason is that BLINDMI-1CLASS adopts a learning
model, particularly one-class SVM, which needs some training
data to learn the underlying semantics. As a comparison,
BLINDMI-DIFF directly compares the distribution between the
target and the non-member, which is effective in extracting
membership semantics from just a few samples.

[Observation RQ3-2] The quality of sample transformation
is the best, while the random generation of non-members is the
worst among all four methods.

Our second observation is on how different nonmember
generation methods affect attack performance. Table IX shows
that sample transformation is the most effective method for
both BLINDMI-DIFF and BLINDMI-1CLASS. Since the dif-
ferences are relatively small, we perform two statistical tests,
i.e., (i) the Mann-Whitney U test and the P-value, and (ii) the
maximum mean discrepancy (MMD) tests, to demonstrate the
statistical significance.

First, the U test value and P-value are shown in Table X.
A large U test value and P-value indicates that two sets are
similar, indicating statistical insignificance. Random genera-
tion is significantly different from all three other methods;
Cross-domain sample selection is more similar to random
perpetuation than sample transformation.

Second, we show the MMD value with standard error
of the mean between generated samples and real-world non-
members. A smaller MMD value indicates that the gener-
ated samples are close to real-world nonmembers. Clearly,
nonmember generated by the sample transformation is the
closest to real-world nonmembers; those generated randomly
are the farthest—the MMD value is even larger than the one of
members. The reason is that random generated samples follow
a uniform distribution, which are far from the member and
non-member boundary.

E. RQ4: BLINDMI-DIFF with different classifiers and kernel
functions

In this subsection, we evaluate the performance of
BLINDMI-DIFF with different internal parameters, e.g.,
BLINDMI-DIFF with different kernel functions and BLINDMI-
DIFF-w/o with different initial separation classifiers. The per-
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(b) DP-Adam on CH-MNIST
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(c) MMD+Mix-up on CIFAR-100
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(d) Adversarial Regularization on CIFAR-100

Fig. 3. F1-Score of Different MI attacks, i.e., state-of-the-art and BLINDMI, against a Target Model together with Corresponding Defenses.

TABLE IX. F1-SCORE(%) OF BLINDMI-DIFF/BLINDMI-1CLASS WITH STANDARD ERROR OF THE MEAN OF WITH NONMEMBER DATASETS GENERATED
VIA DIFFERENT METHODS OF VARIED SIZE.

Method \ Size 20 50 100 200 1,000 10,000

Sample transform 77.7±0.80 / 72.9±1.82 78.1±0.99 / 74.4±1.43 77.9±1.58 / 75.6±1.55 78.2±0.87 / 76.3±1.67 78.4±1.01 / 76.8±1.70 78.7±0.63 / 77.5±1.31
Random perpetuation 77.5±1.37 / 66.4±1.20 77.9±0.92 / 72.1±1.30 77.6±1.44 / 73.1±1.07 78.0±0.85 / 73.5±0.70 77.6±0.42 / 74.5±0.88 78.2±0.30 / 75.7±0.69
Random generation 75.5±2.51 / 71.6±1.98 75.7±1.93 / 71.6±2.31 75.3±2.03 / 71.3±2.38 75.6±1.79 / 71.4±2.00 75.7±1.59 / 71.8±2.03 75.7±1.64 / 72.2±1.87
Cross domain 77.9±1.26 / 64.9±1.99 78.0±1.38 / 71.4±1.46 78.1±1.21 / 72.5±1.60 78.1±1.05 / 73.2±1.09 77.8±1.20 / 76.1±1.33 77.6±1.37 / 77.0±0.93

TABLE X. MANN-WHITNEY U TEST VALUE (P-VALUE) OF F-1 SCORES OF BLINDMI-DIFF/BLINDMI-1CLASS WITH NONMEMBER SETS VIA
DIFFERENT METHODS

Sample transform Random perpetuation Random generation Cross domain

Sample transform 18∗ (0.4678∗∗) / 18 (0.4678) – – –
Random perpetuation 7 (0.0455) / 7 (0.0463) 18 (0.4673) / 18 (0.4678) – –
Random generation 0 (0.0024) / 0 (0.0025) 0 (0.0023) / 7 (0.0461) 18 (0.4657) / 18 (0.4673) –

Cross domain 9.5 (0.0981) / 7 (0.0463) 13 (0.2328) / 18 (0.4681) 0 (0.0023) / 10.5 (0.1303) 18 (0.4673) / 18 (0.4678)

* : the larger the U value is, the more similar two datasets are.
** : a p-value less than 0.05 indicates statistical significance.

TABLE XI. MMD STATISTICAL TESTS OF BLINDMI-DIFF WITH
NONMEMBER DATASETS GENERATED VIA DIFFERENT METHODS (EACH
VALUE IS THE MMD WITH STANDARD ERROR OF THE MEAN BETWEEN
CORRESPONDING SAMPLES AND REAL-WORLD NON-MEMBERS IN THE

TEST DATASET.)

Sample trans Random perp Random generation Cross domain Training set

0.194 ± 0.009 0.438 ± 0.039 3.024 ± 1.024 0.225 ± 0.015 1.864 ± 0.022

formances of different kernel functions are in Table XII and
the ones of different classifiers in Table XIII.

[Observation RQ4-1] The Gaussian kernel outperforms
other kernels in most of the cases.

As shown in Table XII, the Gaussian kernel outperforms
other kernels in all the datasets of BLINDMI-DIFF-w/ and most
of the datasets of BLINDMI-DIFF-w/o (except for CH-MNIST
and CIFAR-100); the Laplacian kernel comes next due to its
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TABLE XII. F1-SCORE (%) WITH STANDARD ERROR OF MEAN FOR
DIFFERENT KERNEL FUNCTIONS OF BLINDMI-DIFF

Gaussian (default) Laplacian Linear Sigmoid Polynomial

D
IF

F-
w

/

Adult 64.2±1.59 60.3±0.38 40.7±0.20 51.1±0.41 58.4±1.02
EyePACS 77.7±0.80 67.3±0.31 71.8±0.93 72.8±0.87 73.9±0.88

CH-MNIST 75.1±1.49 73.1±0.92 72.4±0.53 71.3±0.71 72.7±1.20
Location 86.2±0.90 85.1±2.42 83.4±0.98 79.8±1.52 76.7±0.17

Purchase-50 78.0±0.31 68.9±0.50 75.8±0.61 71.1±1.05 66.0±0.99
Texas 85.5±0.80 83.6±0.47 81.2±0.29 80.9±0.49 81.9±1.72

CIFAR-100 93.9±0.63 93.3±0.79 87.9±1.09 86.9±1.02 90.1±0.83
Birds-200 96.8±0.09 91.9±1.32 95.7±1.06 94.4±1.31 93.9±0.96

D
IF

F-
w

/o

Adult 62.7±1.12 52.2±0.74 50.1±0.32 48.9±0.63 57.1±1.83
EyePACS 75.0±1.40 72.9±0.65 69.4±0.19 69.2±0.28 70.1±0.53

CH-MNIST 75.1±1.89 75.7±2.22 72.9±1.23 71.9±0.84 73.0±1.82
Location 83.3±0.57 81.2±1.89 76.4±0.67 77.4±2.15 72.1±0.08

Purchase-50 76.5±0.25 66.1±0.67 74.9±0.09 74.5±0.38 76.5±1.12
Texas 80.7±2.37 76.2±1.24 74.1±0.80 74.7±0.79 75.8±1.02

CIFAR-100 92.1±1.15 92.8±1.32 82.9±0.33 80.9±0.36 88.9±0.86
Birds-200 96.2±0.26 96.0±0.34 95.7±0.83 94.1±0.51 94.4±1.02

similarity to the Gaussian kernel (the former adopts L1-norm
and the latter L2-norm); the linear kernel, due to its simplicity,
performs the worst.

[Observation RQ4-2] The threshold classifier outperforms
other initial sample separation classifiers for BLINDMI-DIFF-
w/o.

We evaluate three initial sample separation classifiers. The
threshold classifier (“Threshold”) is a separation based on the
highest probability score, among which we select the 1,000
lowest ones as our nonmembers. The others are two different
clustering algorithm including K-means and Agglomerative
Clustering.

Table XIII shows that the “Threshold” is the worst for
initial F1-score but the best after BLINDMI-DIFF-w/o. The
reason is the “Threshold” only selects a few samples with a
high probability to be nonmembers. Since “Threshold” left out
many nonmembers, the initial F1-score is relatively low; at the
same time, a high quality nonmember set also helps BLINDMI-
DIFF-w/o to achieve a relatively good performance. The results
of K-means and Agglomerative Clustering are similar. The
initial F1-scores are higher than “Threshold”; however, since
there does not exist a set with high quality nonmembers or
members, the performance of BLINDMI-DIFF-w/ is relatively
lower.

We also show the precision, recall and F1-score of
BLINDMI-DIFF-w/ (with “Threshold” as the classifier) as the
number of iterations increases in Figures 4, 5, and 6. The
recall starts from a point that is very close to 1 and drops as
the number of iterations; by contrast, the precision increases
steadily together with the F1-score. It is worth noting that
the recalls of Adult and CH-MNIST drop the most compared
with other datasets because members are more similar to
nonmembers in target models trained from these two datasets.

F. RQ5: Number of Moves, Iterations, and Execution Time of
BLINDMI-DIFF

In this research question, we measure the time and the
numbers of moves and iterations of BLINDMI-DIFF to finish
the inference of the target dataset. Note that moves are atomic
steps in which BLINDMI moves a sample from Sprob,k

target to

TABLE XIII. F1-SCORE (%) WITH STANDARD ERROR OF MEAN FOR
DIFFERENT ROUGH SAMPLE SEPARATION CLASSIFIERS FOR

BLINDMI-DIFF-W/O.

Dataset
Threshold (default) K-means Agg. Clustering
initial + diff-w/o. initial + diff-w/o. initial + diff-w/o.

Adult 60.2±0.04 62.7±1.12 55.1±1.75 60.1±1.02 58.7±0.90 59.4±0.23
EyePACS 70.6±0.58 75.0±1.40 70.0±1.15 74.9±0.23 70.0±1.15 73.0±0.50

CH-MNIST 73.2±0.71 75.1±1.89 70.3±0.18 72.0±2.46 69.8±0.21 76.3±1.41
Location 76.9±0.00 83.3±0.57 74.2±0.43 82.2±4.84 70.6±0.86 81.3±0.06

Purchase-50 69.0±0.00 76.2±0.25 73.6±0.28 74.2±1.23 72.7±0.90 73.3±0.66
Taxes 68.9±0.03 80.7±2.37 71.4±0.33 77.0±1.51 70.6±0.49 79.4±1.47

CIFAR-100 68.8±0.13 92.1±1.15 82.9±1.01 87.7±0.98 81.1±3.20 86.2±4.20
Birds-200 71.4±0.03 96.2±0.26 92.9±0.77 93.5±0.23 94.7±0.99 96.1±0.37
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Fig. 4. Precision vs. # of moves per batch for BLINDMI-DIFF-w/o.
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Fig. 5. Recall vs. # of moves per batch for BLINDMI-DIFF-w/o.
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Fig. 6. F1-Score vs. # of moves per batch for BLINDMI-DIFF-w/o.
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TABLE XIV. EXECUTION TIME (SECOND) AND # OF MOVES AND # OF
ITERATIONS WITH STANDARD ERROR OF MEAN FOR BLINDMI-DIFF

Dataset
BlindMI-diff-w/. BlindMI-diff-w/o.

Time (s) Moves (#) Iter. (#) Time (s) Moves (#) Iter. (#)

Adult 494±23 63,124±616 7,012±98 2,530±28 202,407±694 405±14
EyePACS 224±16 44,838±858 2,818±14 751±31 94,247±448 120±9

CH-MNIST 73±11 12,181±386 983±29 293±28 25,061±429 30±2
Location 70±2 9,839±120 857±4 271±18 20,659±464 31±2

Purchase-50 370±6 48,943±373 4,336±114 1,215±45 97,243±761 127±3
Texas 313±5 47,428±903 3,086±65 781±4 67,379±746 110±7

CIFAR-100 238±15 41,128±358 3,051±101 984±59 104,006±310 168±9
Birds-200 183±18 30,261±647 2,067±25 842±68 70,109±325 107±2

Sprob,k
nonmem. Then, iterations are when BLINDMI updates the

distance between Sprob,k
target and Sprob,k

nonmem. The evaluation results
are shown in Table XIV.

[Observation RQ5-1] The execution time and the number of
moves and iterations depend on the size of the target dataset.

Our first observation is that the execution time and number
of moves and iterations depend on the size of the target
dataset. The larger the target dataset is, the longer time and
more moves and iterations it takes for BLINDMI-DIFF to
finish the inference. The reason is that the larger size of the
datasets increases the number of moves per interation, and thus
increases the potential time and numbers of iterations taken by
BLINDMI-DIFF.

[Observation RQ5-2] BLINDMI-DIFF-w/o takes signifi-
cantly longer time, and more moves, than BLINDMI-DIFF-w/.

Our second observation is that BLINDMI-DIFF-w/o is
generally slower than BLINDMI-DIFF-w. The reason is that
BLINDMI-DIFF-w/o adopts bi-directional differential compar-
ison: The moves are bi-directional and thus the number of
BLINDMI-DIFF-w/o is larger than BLINDMI-DIFF-w/.

[Observation RQ5-3] The total number of iterations de-
pends on the batch size.

Our third observation is that the batch size determines the
number of iterations: That is why BLINDMI-DIFF-w/ with a
batch size as 20 takes more iterations than BLINDMI-DIFF-
w/o with a batch size as 1,000. Specifically, when the batch
size is small, the number of batches is large, but the number
of iterations per batch does not differ much, leading to a large
number of iterations in total.

[Observation RQ5-4] The distance between two sets in-
creases as the number of moves per batch.

Our last observation is on the distance between two sets
vs. the number of moves per batch as shown in Figures 7
(BLINDMI-DIFF-w/) and 8 (BLINDMI-DIFF-w/o). Note that
only a move that increases the distance is a valid one between
two sets; otherwise, the sample is kept in the original set.

G. RQ6: BLINDMI with Different Configurations
In this subsection, we evaluate BLINDMI with different

configurations, including different nonmember-to-member ra-
tios (Bargav et al. [25]) and different prediction classes. The
evaluations are performed under the blackbox setting as many
attacks require ground-truth labels.

1) Different Nonmember-to-member Ratios: In this part,
we evaluate the F1-score of BLINDMI and existing attacks
when the nonmember-to-member in the target dataset changes.
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Fig. 7. Distance vs. # of iterations per batch for BLINDMI-DIFF-w/.
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Fig. 8. Distance vs. # of iterations per batch for BLINDMI-DIFF-w/o.

Specifically, we follow Bargav et al. [25] to adjust the
Nonmember-to-Member ratio r and measure the F1-score.
The underlying rational behind the introduction of r is that a
practical target dataset usually has a small number of members
and a large number of nonmembers. Our evaluation results
based on CIFAR-100 are shown in Figure 9.

[Observation RQ6-1] While the performance of all MI
attacks degrades as the nonmember-to-member ratio (r) in-
creases, BLINDMI is the slowest among all and significantly
outperforms existing attacks at a large r value.

This observation shows the practicability of BLINDMI
under real-world settings. All other attacks in the literature
drops logarithmically as r increases, while the performance
decrease of BLINDMI is stable. That is, the performance of
existing attacks drops below 50% when r is larger than 10,
while the performance BLINDMI is still above 50%, i.e.,
57.5% (35% than the state-of-the-art), when r equals to 39.

2) Different Prediction Classes: In this part, we evaluate
the F1-score of BLINDMI and all other attacks when the
number of classes in the target model increases. The exper-
iment settings are as follows. We divide the entire CIFAR-100
datasets into subsets with 2, 10, 50, 70, and 100 classes and
then launch MI attacks against target models trained from these
subsets. The F1-scores of these attacks are shown in Figure 10
and our observation is as follows.

[Observation RQ6-2] The performance of all MI attacks,
including BLINDMI, increase as the number of classes in the
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Fig. 9. F1-Score of Various Attacks vs. Nonmember-to-Member Ratio on
CIFAR-100.
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Fig. 10. F1-Score of Various Attacks vs. # of classes on CIFAR.

target model and this performance boost is more significant
when the number of classes is small.

Figure 10 shows a steady improvement of all MI attacks as
the number of classes. The reason is that when the dataset has
more classes, the target model tends to generalize less, thus
being more vulnerable to MI attacks. This can also explain
why target models trained on CIFAR-100 and Birds-200 are
more vulnerable compared to other datasets.

It is also worth noting that Top1-threshold performs the
worst among all the MI attacks when the number of classes
equals two, but the performance improves when the number
becomes 100. That is, the top one probability score contains
more information as the number of classes increases. We
believe that this may be due to the fact that when the total
probability is shared by more classes, one can infer more
membership information from the top probability.

VI. A DISCUSSION ON POTENTIAL DEFENSES

In this section, we discuss potential defenses. There are two
possible venues of defenses as we have seen in the literature.

• Limiting adversary’s access to the target model. The first
method is to limit the adversary’s access to the target model:
(i) restricting the number of probes and also which samples
can be probed, and (ii) providing only the predicted class
information as an output. The former will restrict BLINDMI
to BLINDMI-DIFF-w/o, which performs a little bit worse
than BLINDMI-DIFF-w/. The latter will reduce BLINDMI
to the Label-only attack in the blackbox setting.

• Improving the robustness of the target model. The second
method is to improve the model robustness to MI attacks via
different methods evaluated in Section V-C. The differential
privacy-based approach is likely the best method for de-
fending against BLINDMI in the literature. A combination
of existing attacks may also be possible and this is left as a
future work for our study.

VII. RELATED WORK

Machine learning is vulnerable to different privacy at-
tacks including model inversion [12], [13], membership in-
ference [43], property inference [2], [14], as well as model
and hyperparameter stealing [46], [47]. Our work studies
membership inference (MI) attacks. We describe related work
on MI attacks and defenses in Section VII-A and VII-B.

A. Existing Membership Inference (MI) Attacks
Membership inference attacks originate back to 2008,

when, Homer et al. [22] first proposed a MI attack on bio-
logical data, whereby an adversary could infer whether a data
sample belonged to a genome-based study knowing only parts
the genome and summary statistics. Then, in 2017, Shokri et
al. [43] proposed the first modern MI attack against deep neural
networks with a shadow model and a binary attack classifier.

Prior attack methods include the following. Salem et
al. [41] proposed several MI attacks. For example, the Top3-
NN attack of Salem et al., a variant NN Attack, picks the
top three largest values from all confidence scores to train
an MI classifier. For another example, the Top1-Threshold
attack of Salem et al. compares the top feature from the
output probability distribution with a threshold and classified
the sample as member if the top feature is larger than a
threshold. Similarly, Yeom et al. [49] also proposed two
attacks with the help of ground-truth labels: the first label-
only attack compares the ground truth label with predicted,
and the second loss-threshold attack computes cross-entropy
loss and compares the computed loss with the average loss of
all training samples. As a comparison, BLINDMI is an attack
that does not need a shadow model but also extracts complex
membership semantics via probing only. Our evaluation shows
that BLINDMI outperforms existing attacks under different
adversarial settings.

Researchers have also proposed theories on MI attacks.
Sablayrolles et al. [40] proposed an optimal strategy for MI
attacks using a probabilistic framework that consists of both
Bayesian learning and noisy training. They showed that opti-
mal attacks only depend on the loss function, and thus black-
box attacks could be as good as whitebox attack. BLINDMI
actually proves the effectiveness of blackbox attacks.

In addition to attacks on classification models, researchers
also have proposed MI attacks [19] on generative models [15]
and those [37] on federated learning. As a comparison,
BLINDMI is an attack on single classification models rather
than generative models or federated learning.

B. Existing Defenses
We now describe existing defenses of MI attacks [31],

[32], [36], [44], especially those on classification models. Note
that while existing defenses can prevent some existing MI
attacks with a reasonable performance, our evaluation shows
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that BLINDMI can still infer membership with a reasonable
F1-score, e.g., over 60%.

1) Regularization: Researchers have proposed to improve
privacy against MI attacks via different types of regularization.
For example, Salem et al. [49] demonstrated two effective
method of defending MI attacks, namely dropout and model
stacking. The former randomly deletes a fixed proportion of
edges in a fully connected neural network model to improve
model robustness; the latter constructs a target model with mul-
tiple different machine learning models stacked together. For
another example, Shokri et al. [43] adopted L2-norm standard
regularization with a polynomial in the model’s loss function
to penalize large parameters. Nasr et al. [36] introduced a
min-max game mechanism to train models with membership
privacy, which ensures indistinguishability between the pre-
dictions of a model on its training data and other data points
from the same distribution. This strategy acts as an adversarial
regularizer that generalizes the model. In addition, Li et al. [30]
proposed to close the generalization gap by matching the
training and validation accuracies. Specifically, they adopted
a new set regularizer, called the Maximum Mean Discrepancy,
between the softmax output empirical distributions of the
training and validation sets during training.

2) Adversarial Example: Another direction is to borrow
ideas from adversarial machine learning and generate an ad-
versarial example for the inference model controlled by the ad-
versary. For example, Jia et al. [26] introduced a new defense,
called MemGuard, by adding noise to confidence score output
from target models, thus fooling a binary classifier. Unlike
previous adversarial examples [8], [16], [28], [33]–[35], [39],
[45], MemGuard calculates the gradient of the loss function to
find an appropriate noise and guarantee the utility loss to be
zero.

3) Privacy Enhancement: Many differential privacy based
defenses [9], [11], [24] add noise to the objective function that
is used to learn a model or the gradients during optimizing the
objective function. Shokri et al. [42] designed a differential pri-
vacy method for collaborative learning of DNNs. Cao et al. [7]
showed that privacy-related data samples can be unlearned to
improve model privacy.

VIII. CONCLUSION

In this paper, we present a novel MI attack, called
BLINDMI, which adopts differential comparison moving sam-
ples in between two sets and making inference decisions. One
of the key insights used here is that, moving a member from a
mostly member dataset to a mostly non-member one will de-
crease the distance in feature space between two sets and vice-
versa. We implement three versions of BLINDMI, BLINDMI-
1CLASS (relying on one-class SVM), BLINDMI-DIFF-w/ (re-
lying on generation of nonmembers), and BLINDMI-DIFF-w/o
(relying on rough separations of members and non-members).
Our evaluation shows that BLINDMI outperforms existing
state of the art attacks, against not only a variety of DNN
architectures, but also against DNNs with state of the art
defenses deployed.
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