
FARE: Enabling Fine-grained Attack Categorization
under Low-quality Labeled Data

Junjie Liang1§, Wenbo Guo1§, Tongbo Luo2, Vasant Honavar1, Gang Wang3, Xinyu Xing1
1The Pennsylvania State University 2Robinhood, 3University of Illinois at Urbana-Champaign
{jul672, wzg13, vhonavar, xxing}@ist.psu.edu, irobert0126@gmail.com, gangw@illinois.edu

Abstract—Supervised machine learning classifiers have been
widely used for attack detection, but their training requires abun-
dant high-quality labels. Unfortunately, high-quality labels are
difficult to obtain in practice due to the high cost of data labeling
and the constant evolution of attackers. Without such labels, it
is challenging to train and deploy targeted countermeasures.

In this paper, we propose FARE, a clustering method to enable
fine-grained attack categorization under low-quality labels. We
focus on two common issues in data labels: 1) missing labels
for certain attack classes or families; and 2) only having coarse-
grained labels available for different attack types. The core idea
of FARE is to take full advantage of the limited labels while
using the underlying data distribution to consolidate the low-
quality labels. We design an ensemble model to fuse the results of
multiple unsupervised learning algorithms with the given labels
to mitigate the negative impact of missing classes and coarse-
grained labels. We then train an input transformation network
to map the input data into a low-dimensional latent space for
fine-grained clustering. Using two security datasets (Android
malware and network intrusion traces), we show that FARE
significantly outperforms the state-of-the-art (semi-)supervised
learning methods in clustering quality/correctness. Further, we
perform an initial deployment of FARE by working with a large
e-commerce service to detect fraudulent accounts. With real-
world A/B tests and manual investigation, we demonstrate the
effectiveness of FARE to catch previously-unseen frauds.

I. INTRODUCTION

Machine learning is widely used to build security appli-
cations. Many security tasks such as malware detection and
abuse/fraud identification can be formulated as a supervised
classification problem [31], [45], [64], [10], [36], [19], [17].
By collecting and labeling benign and malicious samples,
defenders can train supervised classifiers to distinguish attacks
from benign data (or distinguish different attack types).

A key challenge faced by these supervised classifiers is
that their training requires abundant high-quality labels. Many
supervised models, especially deep-learning models, are data-
hungry, requiring a large quantity of labeled data to achieve
a decent training outcome. In addition, the labels need to
have good coverage of all the attack types of interest. A
classifier cannot reliably detect a certain type of attack unless

§Equal contribution.

the defender knows the attack exists and has collected labeled
data for training.

Unfortunately, in practice, obtaining abundant high-quality
labels is difficult. This is particularly true for security appli-
cations, due to the high cost of data labeling and the evolving
nature of attacks. Data labeling is expensive because it requires
manual efforts. Unlike labeling images or text, investigating
new attack samples (e.g., new malware families) requires
substantial expertise, and often takes a longer time. As such,
only a small portion of data samples can be labeled manually.
Even for the labeled samples, the quality of the labels is often
far from satisfying. There are two common issues faced by
different security applications:

The first common issue is the missing classes in the la-
beled data. Take malware detection for example. The malware
ecosystem is constantly evolving with new malware families
appearing frequently over time [56]. As a result, the labeled
dataset might miss certain malware families. Using a dataset
with missing classes, the trained classifiers would have a hard
time detecting related malware.

The second common issue is coarse-grained labels. Due
to the lack of time or expertise of the analysts, the provided
labels often lack specificity or contain errors. For example,
for malware attribution, malware of different families may
be incorrectly labeled as the same family; For online abuse
classification, scrapers and trolls may be assigned to a generic
“abusive” label. In practice, coarse-grained labels pose a key
challenge to deploying timely and targeted countermeasures.
For example, different malware has different kill chains, and
scrapers and trolls should be given different penalties.

Proposed Solution. In this paper, we aim to enable fine-
grained attack categorization using low-quality labels. The
goal is to discover the clustering structures in the data to
assist human analysts to derive high-quality labels. We propose
FARE, a semi-supervised method to address the issues of
both missing classes and coarse-grained labels in poorly-
labeled datasets. At the high-level, FARE’s input is a dataset
where only a small portion of the data is labeled, and the
labels are of a low-quality. After running FARE, it outputs
the clustering assignment for all the data samples. The data
samples are expected to be either correctly clustered under the
known labels or form new groups to represent the new labels.
By correctly recovering the clustering structures in the input
dataset, FARE provides the much-needed support for human
analysts to generate high-quality labels.

The core idea of FARE is to take full advantage of the
limited labels while using the underlying data distribution to

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24403
www.ndss-symposium.org

consolidate the low-quality labels. More specifically, we design
an ensemble model to fuse the results of multiple unsupervised
learning algorithms with the given labels. This helps to miti-
gate the negative impact of missing classes and coarse-grained
labels, and reduce the randomness of the learning outcome.
Based on the fused labels, we design an input transformation
network by extending the basic idea of metric learning [26].
The network maps the input data into a low-dimensional latent
space, which makes it easier to identify fine-grained clusters.

Experimental Evaluation. We evaluate FARE with two
popular security applications: malware categorization and net-
work intrusion detection. We use existing datasets of 270,000
malware samples and 490,000 network events to perform
controlled experiments. More specifically, by omitting different
classes or merging data labels, we simulate different scenarios
where only limited low-quality labels are available. We com-
pare FARE with the state-of-the-art semi-supervised learning
algorithms as well as unsupervised algorithms. Our results
show that FARE significantly outperforms existing methods
when there are missing classes or coarse-grained labels in the
data, and maintains a comparable performance when the data
labels are correct. We find that most existing methods have the
implicit assumption that the classes in the labels are complete,
and thus perform poorly when this assumption is violated. In
addition, we show that FARE is less sensitive to the variations
of datasets, and the ratio of available labels. This confirms
the benefits of fusing unsupervised learning results with given
labels to increase system stability. Finally, we show that the
computational overhead of FARE is comparable to commonly-
used clustering algorithms.

Testing on a Real-world Service. We work with an industrial
partner to test FARE in their production environment to detect
fraudulent accounts in a large e-commerce service. As the ini-
tial testing, we apply FARE to a sample of 200,000 active user
accounts. The dataset only has 0.5% of confirmed fraudulent
account labels, and 0.1% of confirmed trusted account labels.
Through an A/B test, we show that FARE helps to discover
previously-unseen fraudulent accounts. By initiating two-factor
re-authentication requests to the detected accounts, we find
0% of them can successfully re-authenticate themselves, con-
firming a low false-positive rate. Further manual investigation
reveals new attack types such as accounts exploiting mistagged
prices for bulk product purchasing.

In summary, this paper makes three key contributions.

• We propose FARE to address the problem of low-
quality data labels, a common challenge faced by
learning-based security applications. We introduce a
series of new designs to enable fine-grained attack cat-
egorization when the labeled data has missing classes
or coarse-grained labels.

• Through experiments, we demonstrate existing semi-
supervised and unsupervised methods are not capable
of handling such low-quality labels. We show that
FARE significantly outperforms existing methods in
recovering the true clustering structure in the data.

• We tested FARE in a real-world online service system.
We demonstrate the usefulness of FARE to analyze
and categorize fraudulent accounts.

To facilitate future research, we release the code of FARE,
and the malware and intrusion datasets used in this paper1.

II. BACKGROUND AND PROBLEM SCOPE

We start by describing the background of three key security
applications and the problems caused by missing-classes or
coarse-grained labels. Then, we discuss our problem scope and
assumptions.

A. Security Applications

Malware Identification and Classification. Researchers have
used machine learning methods to identify malware from
benign software (i.e., identification) and classifying malware
into specific families (i.e, attribution) [1], [81], [56], [82].
Most existing works focus on the supervised learning setting
(in which a fully and correctly labeled malware dataset is
available) and have demonstrated promising performance of
machine learning models. However, the problem becomes
more challenging in semi-supervised learning or unsupervised
learning settings when labels are incomplete. Labels are in-
complete for two main reasons. First, malware evolution: one
malware family could evolve into hundreds or even thousands
of malware variants in a short period of time [73]. Second,
labeling malware usually requires manual efforts from domain
experts, which is a time-consuming process.

Network Intrusion Detection. Existing network intrusion
detection systems can be categorized into rule-based system
and anomaly-based system [65], [47], [51], [15], [38]. Rule-
based systems detect a known attack by matching the attack
with the existing patterns stored in the knowledge base. These
systems are usually accurate on well-studied intrusions but
can fail to detect previously-unseen attacks. Anomaly-based
systems rely on unsupervised machine learning to detect out-
of-distribution samples. In practice, security platforms often
combine both systems for a better outcome. However, it is still
plausible for attackers to adapt their behaviors to evade such
detection systems. Identifying and characterizing such evasion
attacks requires manual investigations from domain experts,
which again is a time-consuming process.

Fraudulent Account Detection. Online service providers face
serious threats from fraudulent accounts that are created for
malicious activities (e.g., spam, scam, illegal content scraping,
and opinion manipulation) [14], [13], [68], [75], [71], [23],
[33]. A recent report shows that fraudulent credit card accounts
affected more than 250,000 U.S. consumers [27]. Similarly,
detecting fraudulent accounts has been a cat-mouse game. The
defenders are struggling with labeling new types of fraudulent
accounts as they change their behaviors to evade detection.

B. Problem Scope and Assumptions

A common challenge faced by these security applications
is data labeling. While the data labeling problem also exists
in other application domains (e.g., image analysis and natural
language processing), we argue that two characteristics of
security applications make the problem more concerning. First,
unlike labeling images, labeling security data requires domain
expertise to perform in-depth manual analysis (and thus more

1https://github.com/junjieliang672/FARE

2

https://github.com/junjieliang672/FARE

time consuming). Second, attacker behavior shift is a norm
in the security domain, which puts higher pressure on labeling
data in a timely fashion. In practice, security analysts can only
label a small subset of samples among a large volume of data.
Below, we discuss two critical issues:

Missing Classes. The first issue is that the labeling is often
incomplete, which means not all the incoming data samples
have a label. Even for the labeled samples, it is difficult to
guarantee that the labels perfectly cover all the attack cate-
gories. Take malware for example, it is unrealistic to assume
that the security analysts are aware of all the malware families
in the wild. As such, a common practice is to conservatively
leave the previously unseen families as unlabeled data. With
unlabeled data and missing classes, the trained classifier will
have a bad performance when deployed in practice.

Coarse-grained Labels. Another common situation is that
analysts mistakenly group data from several classes into one
class, due to the lack of knowledge or time for in-depth
analysis. For example, given several malware families under
one parent family, an analyst who is only aware of the parent
family could label all child families as the parent class. Worse,
it is also possible for inexperienced analysts to assign two
different malware families under the same family. Similarly,
in online services, different attacks (scrapers, spammers, trolls)
may be assigned to the same generic “abuse” label.

Fine-grained labels are the key to deploying effective
countermeasures [21]. For example, different malware fam-
ilies usually have different kill chains (from malware de-
livery to exploitation, command & control, and data exfil-
tration/encryption). Knowing the fine-grained malware label
allows defenders to use targeted countermeasures to disrupt the
kill chain before the damage is made. Similarly, in large online
services, different abusive accounts require different types of
penalties. For example, network throttling and CAPTCHA can
be effective against automated scrapers, but are ineffective
against trolls controlled by real users.

Problem Definition. Given a dataset with n true classes, we
define the two problems as the following.

• Missing classes: labels are completely missing for nc
classes. For the remaining n−nc classes, only a small
portion of their samples have labels available.

• Coarse-grained labels: ng original classes are labeled
as one union class. For these n−ng +1 classes, only
a small portion of their samples are labeled.

Our goal is to recover the true clustering structure of the
input data by leveraging the limited low-quality labels. After
processing the input dataset, we aim to 1) determine there are
n clusters in the dataset; and 2) correctly assign all the data
samples (including the unlabeled samples) to the n clusters.

Note that, our output is the clusters of data samples, but
these clusters do not yet have “labels” (i.e., what type of attack
each cluster represents). In practice, human analysts will then
inspect the output clusters to assign labels (i.e., determining
the attack type). This can be done by referencing the known
labels or manually analyzing a small number of samples per
cluster (see Section §VI and Appendix-F for more details). By
recovering the correct clustering structures, we empower the

human analysts to discover the previously missing classes and
fine-grained sub-classes.

In this paper, we focus on recovering the true clustering
structure. The human labeling part is out of the scope of this
paper (i.e., potential user studies are future works).

Assumptions. We assume the given labels of the known
classes are correct (n−nc classes in the missing class setting,
and n− ng + 1 classes in the coarse-grained label setting). In
other words, we assume a small number of samples for the
well-known classes are labeled correctly in the input dataset.

C. Possible Solutions and Limitations

Before introducing our system design, we first briefly
discuss the possible directions and their limitations.

The most straightforward direction is to ignore the low-
quality labels and directly train a supervised classifier on the
available labeled training data [1], [32], [44]. However, with
limited and low-quality labels, a supervised classifier faces
challenges to learn the accurate decision boundary of the
true classes. More importantly, supervised classifiers cannot
handle new classes that are not part of the labeled data. To
detect new classes, an augmentation method is to use the
prediction probability (or confidence) of the classifier [34].
Intuitively, a low prediction probability could indicate the input
sample is from a new class. However, this approach has major
limitations. First, confidence score is known to be unreliable
on out-of-distribution (OOD) samples. A classifier could easily
misclassify OOD samples with high confidence [30], [34].
Second, confidence score cannot group on new samples, which
is inconvenient for the subsequent labeling process.

An opposite direction is to ignore any given labels and
apply unsupervised clustering [28], [20] or clustering ensem-
ble methods [67] to the training data. This direction could
avoid misleading information introduced by the low-quality
labels. However, as is shown later in Section §IV, without the
guidance of any labels, unsupervised methods are less effective
compared to those that can leverage the given labels.

A more promising direction is to apply a semi-supervised
learning methods [59], [6]. Semi-supervised learning could
leverage both the given labels and unlabeled data to learn a
more accurate clustering structure of the true classes. Unfor-
tunately, existing semi-supervised learning methods rely on a
strong assumption. That is, there are (at least) a few labeled
samples available in all the classes in the training set. In other
words, they do not assume missing classes or coarse-grained
labels in the training set. As is shown later in Section §IV,
their performances are significantly jeopardized when there is
a violation of this assumption.

Finally, a related direction is (generalized) zero-shot learn-
ing methods (GZSL/ZSL), which can be used to identify pre-
viously unseen classes in the testing data [60]. These methods
treat the training data as the first task and try to transfer the
learned model from the first task to the second task (i.e., testing
data). GZSL/ZSL methods assume the testing data contains
unseen classes (that do not exist in the first task). However,
to enable successful knowledge transfer, GZSL/ZSL methods
require well-labeled training samples in the first task. Also,

3

G. labels 1 1 2 - -

K-means 3 2 1 4 1

DBSCAN 2 1 1 1 3

DEC 2 3 2 2 1

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

G. labels 1 0 - - 0 - - - - -

K-means 0 0 0 0 0 0 0 0 1 0

DBSCAN 0 0 0 0 1 1 0 1 0 0

DEC 0 1 1 0 0 0 0 1 0 0

!" !# !$!%

Table A: Neighborhood models. Table B: Neighborhood relationships.

{!'}
{)'*}
{+,}

Input Trans. Net

-"
-#
-$
-%

K-means
Clustering

{)'*}

……
…

Clusters

Human
analyst

!"
!#
!$
!%
!.

!.

-.

-"
-#
-$
-%
-.

Classes

!"
!#
!$
!%
!.

!"
!#
!$
!%
!.

Fig. 1. The overview of FARE. The colors on the dots indicate the given labels (top) and the final clustering results (bottom). Dots of the same color have
the same label; the transparent dot represents an unlabeled sample. The numbers in Table A refer to the cluster indexes. The 0s and 1s in Table B represent the
neighborhood relationship. “-” stands for “not available”. “G. Labels” is short for “Given Labels”.

they need well-labeled side information (e.g., in image classi-
fication tasks, side information are shared and nameable visual
properties of objects). These requirements make GZSL/ZSL
methods not suitable to solve our problem: (1) we assume the
training labels are limited; (2) most security applications do
not have well-defined notions for “side information”. We have
provided a brief supporting experiment in Appendix-B.

III. METHODOLOGY OF FARE

We design a system FARE to address the labeling problems
mentioned above. FARE is short for “Fain-grained Attack
Categorization through Representation Ensemble”. In the fol-
lowing, we first explain the intuitions behind the system
design, followed by the technical details of each component.
Finally, we describe an unsupervised version of FARE.

A. Overview of System Design

In Figure 1, we provide an example to explain the work-
flow. The input of FARE is a set of data samples (i.e., feature
vectors). Their labels are incomplete or contain errors. In this
example, we have 5 data samples. We use different colors to
distinguish the given labels of these samples (x1 and x2 have
the same “red” label; x3 has the “blue” label; and x4 and x5

are not labeled yet).

The given labels of the inputs contain errors. More specif-
ically, the true labels of the 5 samples are shown on the
rightmost side of Figure 1. There should be 4 ground-truth
classes. Their true grouping is: {x1}, {x2}, {x3, x4}, {x5}.

Under this setting, x1 and x2 represent the coarse-grained
label problem; x4 and x5 represent the missing class problem.
After FARE processes the input data, our goal is to recover
the true grouping of the 5 samples. After that, human analysts
could inspect the clusters and assign the labels accordingly.
In this example, x1 and x2 are correctly split into two fine-
grained classes (“red” and “yellow”). x3 and x4 are grouped
under the “blue” class. x5 then forms a new class “green”.

To achieve this goal above, we design FARE to process
the datasets with three key steps. In step Ê, we mitigate the
uncertainties of the labels using an ensemble method. The idea
is to fuse the results of multiple unsupervised algorithms with
the given labels, to use the underlying data distribution to
consolidate the labels. In step Ë, we transform the input space
into a more compressed hidden space to represent the data
distribution. The low-dimensional space allows us to perform
accurate data clustering. In step Ì, we perform a K-means
clustering on the compressed data to identify the underline
cluster structures of the input data. Finally, we defer to human
analysts to assign labels to the output clusters. The clusters

produced by FARE could help human analysts identify missing
classes and the fine-grained classes.

Augmenting Labels with Unsupervised Learning Results.
In step Ê, we consider the given labels untrustworthy due
to the missing classes and the coarse-grained labels. To
consolidate the given labels, the only available information
source is the data samples themselves. As such, we propose
to use multiple unsupervised learning algorithms to extract
the underlying data distributions (manifolds) to mitigate the
uncertainty of the original labels.

More specifically, we fuse the labels from M different
sources. Among them, one source is the given labels, and
the other M − 1 sources are different unsupervised clustering
algorithms. The reason to use multiple clustering algorithms
is to reduce biases. Existing clustering algorithms intrinsically
make assumptions about the data distribution, and they work
well only when such an assumption is satisfied (e.g., K-means
assumes data are represented in Euclidean space). However,
in practice, we cannot validate these assumptions without
trial-and-error. For this reason, we apply multiple clustering
methods and fuse their results. In this way, the system is
less sensitive to the assumption made by certain clustering
method (validated in Section §IV). In addition, clustering
algorithms can be sensitive to hyper-parameters. To minimize
such influence, we apply each clustering algorithm multiple
times with different hyper-parameters and each setting has its
own row. After clustering, the results from each model2 are
shown in Table A in Figure 1.

To fuse the labels from the M sources, we need to find a
uniform way to represent the clustering results. We solve this
problem by constructing a neighborhood relationship table,
which is Table B in Figure 1. In this table, each column
represents a pair of input samples; each row represents either
a clustering algorithm (row-2 to row-4) or the original given
labels (row-1). This table describes the pair-wise relationship
between all pairs of input samples.

Given a clustering algorithm, if a pair of input samples are
grouped into the same cluster, we set their relationship value as
1 (0 otherwise). Similarly, for the original given labels, if the
two samples share the same label, we set their relationship
value as 1. If they have different labels, we set the value
to 0. If at least one sample in the pair is unlabeled, we set
their relationship as “not available” (“-”). The neighborhood
relationship table makes it possible to fuse the results across
algorithms because we don’t need to align the specific clusters
to the specific labels. Instead, all the algorithms share the same

2For simplicity, in the example of Figure 1, we only apply each clustering
algorithm once with one set of hyper-parameters.

4

format that captures the pair-wised relationships of the input
data samples. For convenience, we refer to each row in this
table as a neighborhood model. In Figure 1, we have M = 4
neighborhood models.

To merge the results of M neighborhood models, we
introduce a hyper-parameter {πm}Mm=1 to represent the weight
of each model. A higher weight means the model is more
important. In Section §III-D, we describe how to calculate πm
via a validation set.

Input Transformation. In the next step Ë, we transform
the input samples and labels into low-dimensional vectors as
an accurate representation of the input data space. This low-
dimensional space allows us to cluster the input data into fine-
grained clusters. Given the neighborhood relationship table
{ymij }Mm=1, and the model weights {πm}Mm=1, we train an input
transformation network to transforms an input xi to a hidden
representation hi. The network is trained to achieve two goals.
First, we want to transform the inputs into more separable
representations while preserving the pair-wise neighborhood
relationships. In other words, the hidden representation still
reflects the original data distribution, but should make these
samples easier to cluster. Second, the transformation function
will project the high dimensional input to a lower-dimensional
Euclidean space. As mentioned in Section §VII, traditional
clustering methods suffer from the curse of dimensionality. A
low-dimensional space enables more efficient clustering.

Note that this input transformation network is different
from traditional unsupervised auto-encoder [46] that are used
to compress the original inputs. The key difference are two-
folds. First, auto-encoder is unsupervised, while FARE’s trans-
formation network utilizes both unlabeled and labeled samples.
Second, auto-encoder is trained for input reconstruction. FARE
is trained to contrast different samples to learn a more sepa-
rable space, which benefits later clustering.

Final Clustering. In the final step Ì, we simply apply the
K-means algorithm on the hidden representations to generate
more fine-grained clusters. We choose K-means with the
following considerations. First, K-means works particularly
well if Euclidean distance. The input transformation in the
previous step has mapped inputs to a Euclidean space. Second,
other candidate algorithms such as DBSCAN are not suitable
because their assumptions do not match well with the hidden
representations or they do not rely on the notion of distance
(e.g., density-based algorithms) for clustering. The main task
in this step is to determine the final number of clusters K. In
the following, we will discuss our method in detail.

B. Technical Details

In this section, we present the technical details of each
component in FARE. We start by defining key notations. Given
an input dataset X = {XY ,XU}, where XY corresponds to
the labeled samples set and XU denotes the set of unlabeled
samples. Within the dataset, each sample x ∈ Rp×1 is a p
dimensional vector. If the sample has a label, the label is
represented by an integer value, indicating the corresponding
sample’s class. We use {·} as an abbreviation for {·}Mm=1.

Ensemble of Neighborhood Models. In Ê of Figure 1, we
compute the ensemble of labels from multiple unsupervised

algorithms and the given labels. We define a set of M
neighborhood models (denoted as M), and each model is
used to decide a set of pair-wise neighborhood relationships
of samples in X . As shown in Figure 1 Table A, one of the
neighborhood models is the given labels and the other M − 1
neighborhood models are the clustering algorithms.

For each neighborhood model in M, we then decide the
pair-wise neighborhood relationships for samples in X . Given
a pair of samples (xi, xj), the neighborhood relationship
captured by the mth model is denoted as ymij . As mentioned
in Section §III-A, ymij = 1 if the two samples are clustered
into the same cluster (0 otherwise) by the mthmodel . For the
“given labels”, the same rule applies (but if either input is in
the unlabeled set XU , ymij is unavailable).

To aggregate the neighborhood relationships from all the
models inM, we set weights πm on each neighborhood model.
To calculate this πm, we first define a priori pm for each model.
This pm is also a hyper-parameter (configuration details are
in Section §III-D). After deciding the value of {pm}, we then
calculate {πm} by normalizing {pm} using a softmax function:
πm = epm∑

m∈M epm .

Input Transformation Network. The input transformation
network aims to transform the input samples into a low-
dimensional hidden space to identify the underlying clusters.
Based on {ymij } and {πm}, we want to learn a network
f to map any input sample x from X to h in a hidden
space. As discussed in Section §III-A, the hidden space should
(1) maintain an accurate representation of the neighborhood
relationships of the input samples, and (2) make it easier to
perform clustering.

To achieve these goals, we first apply a metric learning
loss to train the transformation network. Metric learning [79],
[69] transforms the input samples into hidden representations
while keeping the sample distance (i.e., the relative distance
between pair-wise of samples) consistent with that in the
input space. Mathematically, given a pair of samples xi,xj ,
and neighborhood relationship yij , a typical pair-wise metric
learning loss has the following form [26]:

L̃(xi,xj) = yijd
2
ij + (1− yij)(α− dij)2+ , (1)

where (·)+ is short for max(0, ·) and dij is the distance of
the hidden representations of xi and xj . This loss function
ensures that the distance of xi and xj is minimized in the
latent space if they are neighbors (i.e., belonging to the same
cluster). Oppositely, we maximize their distance up to a radius
defined by α > 0, such that dissimilar pairs contribute to the
loss function only when their distance is within this radius.

With this metric learning loss, we learn the hidden repre-
sentation of the input samples such that inputs from the same
class have a smaller distance than those from different classes.
This makes the hidden representations from different classes
more separable. Another benefit is that metric learning converts
the samples into representations in the Euclidean space, where
the Euclidean distance can be used as the distance function.
To be specific, we define the distance function of xi,xj in the
hidden space as follows:

dij = d(xi,xj) = ‖hi − hj‖2 . (2)

5

Here, hi = f(xi) is the hidden representation of xi. It should
be noted that we only need to define distance function in
the hidden space since the neighborhood relationships of the
original input samples have already been captured by yij .

We can integrate the multiple sets of neighborhood rela-
tionships into the loss function in Equation (1). To be specific,
given a sample pair xi,xj , their neighborhood relations {ymij },
and the model weights {πm}, the loss function of this sample
pair is defined as follows:

L(xi,xj) =
∑
m∈M

πmδ
m
ij L̃(xi,xj |m)

=
∑
m∈M

πmδ
m
ij

[
ymij d

2
ij + (1− ymij)(α− dij)2+

]
.

(3)

This loss function also handles the special cases when ymij is
“unavailable” for (incomplete) given labels. We introduce an
indicator δmij : if ymij is unavailable, we set δmij = 0 (and 1
otherwise).

The loss function in Equation (3) has the form of total
probability [52], where πm can be taken as the priori of
each neighborhood model. The final loss can be calculated
by integrating the individual loss obtained from each set of
neighborhood relationships obtained from each neighborhood
model. In other words, this loss function only minimizes (or
maximizes) the distance between a pair of samples in the
hidden space when most of the neighborhood models agree that
they are neighbors (or non-neighbors). The loss over the entire
dataset (i.e., X) is computed by averaging the loss on each
sample pair plus a regularization term on model parameters:

L =
1

|X |2
∑

xi,xj∈X
L(xi,xj) + λ ‖θ‖2 , (4)

where |X | is the number of samples in X , θ represents the
parameters of f , and λ controls the regularization strength.

Our network is a Multilayer Perceptron (MLP) with multi-
ple hidden layers and one output layer. We set the output layer
to have a much lower dimensionality than the original input
(i.e., h ∈ Rq×1, where q << p). We train this network by
minimizing the loss function in Equation (4) with the training
algorithm introduced in Section §III-D. Appendix-A lists the
exact network architectures used in this paper.

Final Clustering with K-means. Given the latent represen-
tations h, we apply K-means to categorize these samples into
K different clusters. Technically, K-means has two steps: 1)
initializing the cluster centers and allocate each data point to its
nearest center; 2) updating each cluster center using the mean
feature vector of the data points in the corresponding cluster.
The update procedure iterates between these steps until the
change of cluster centers between two consecutive iterations
is below a certain threshold. More formally, in the first step,
the cluster that a given point xi belongs to is solved by:

ci = argmin
k

‖hi − sk‖22 , (5)

where sk is the feature vector for cluster center k.

On the second step, let Sk denotes the set of data points
in cluster k, then the cluster center sk is updated using:

sk =
1

|Sk|
∑

xi∈Sk

hi . (6)

Number of Clusters. The performance of K-means depends
on the choice of K. In this paper, we select K under the
guidance of silhouette coefficients, a popular unsupervised
clustering evaluation metrics that is used to determine the
degree of separation between clusters [61]. Formally, let ai be
the mean distance between sample xi ∈ Sci and all other data
points in the same cluster ci and bi be the minimum value of
mean distance between xi and all other data points in cluster k
(k 6= ci) across all k = 1, ...,K. Then the silhouette coefficient
of sample xi is defined as:

Sili =
bi − ai

max{ai, bi}
, if |Sci | > 1 . (7)

For cases where |Sci | = 1, we simply set Sili = 0. Given
the Sili of each sample, the silhouette coefficient of a clus-
tering results with K clusters (i.e., Sil(K)) is defined as the
maximum value of S̃ilk across all clusters, where S̃ilk is the
mean silhouette coefficients over the Sili of all samples within
cluster k. The final choice of K is then determined by the value
with the largest Sil(K).

C. Unsupervised Extension of FARE

While FARE is designed to take low-quality labels as
inputs, it can be extended to an unsupervised version (with-
out taking any labels). Recall that FARE obtains M sets
of neighborhood relationships (one from given labels and
M − 1 from clustering algorithms). When the “given labels”
are completely unavailable, FARE can work with the M − 1
clustering algorithms to obtain the neighborhood relationships.
In this way, we can use FARE as an unsupervised method.

In comparison with the existing clustering methods, the
advantage of FARE is it fuses the neighborhood relationships
from multiple models. We expect FARE to be less sensitive to
the variations in input data distribution and hyper-parameters,
and thus produce more reliable results. We will validate this
intuition in Section §IV.

D. Training Strategy and Hyper-parameters

We apply Adam optimizer to minimize the loss function
in Equation (4) and set its learning rate as 0.001. Technical
details of this optimization technique can be found in [41].

Neighborhood Models. We select three different cluster-
ing methods: K-means [28], DBSCAN [20], and DEC [78].
The rationale behind these choices is as following: K-means,
DBSCAN, DEC, and DAGMM are four existing clustering
methods that have been applied to different security applica-
tions. DAGMM is designed for anomaly detection but not for
multi-classes clustering tasks. As such, we use the other three
methods for FARE. These methods are reasonably diversified
to meet our needs. As mentioned before, we apply the selected
methods with different hyper-parameters and form M − 1
neighborhood models in total. The choice of M and clustering
parameters is further discussed in Appendix-A.

6

Hyper-parameters. We define the following hyper-
parameters in FARE: the distance radius α, the neighborhood
model weight {pm}, and the regularization coefficients λ. In
this paper, we fixed α = q, where q is the output dimension
of f , and set λ to a small value 0.01. The most important
hyper-parameter is the neighborhood model weights {pm}.
Empirically, we find that it is useful to use different weights for
the supervised neighborhood model (i.e., the “given labels”)
and the unsupervised models. However, among the M − 1
unsupervised models, we can simply use the same weight to
reduce the complexity of parameter tuning while still getting
comparable results. For simplicity, in this paper, we set pm = 1
for all the M − 1 clustering models, and only tune a single p1
to adjust the weight for the “given labels”. To determine p1,
we use a validation set during training. That is, we set the p1 as
the optimal value from [1, 10] that yields the highest adjusted
mutual information (AMI) on the labeled validation samples.
AMI is our evaluation metric, explained in Section §IV-A.
More details about the hyper-parameters are in Appendix-A.

Computational Overhead. Compared with existing cluster-
ing algorithms, FARE has introduced a few additional steps.
However, the computational overhead of FARE is comparable
to existing clustering algorithms. We will provide the empir-
ical evaluation in Section §IV-C, and discuss the asymptotic
complexity in Section §VI.

IV. EVALUATION

We evaluate the effectiveness of FARE on two security
applications: malware categorization and network intrusion
detection. We focus on four key aspects: 1) validating our
design choices, 2) comparing FARE with the state-of-the-art
semi-supervised and unsupervised algorithms, 3) evaluating
the computational overhead of FARE, and 4) evaluating the
sensitivity of FARE to label quality. Later in Section §V, we
will describe our experience deploying and testing FARE in a
real-world online service to detect fraudulent accounts.

A. Experimental Setup

Malware Categorization. We choose a malware dataset with
270,000 samples3. The dataset contains 6 different classes,
including one benign class of 150,000 samples and five mal-
ware classes of 120,000 samples. For malware classes, the
number of samples per class ranges from 15,000 to 37,500.
We construct the training set by randomly selecting 70% of
samples and used the rest of the samples as the testing set.
20% of labeled samples randomly selected from the training
set are held out for validation. Note that we split data randomly
instead of splitting temporally [56] because we are perform-
ing data clustering to identify fine-grained malware families
instead of performing prediction tasks. In this dataset, each
sample is represented as a vector of 100 features, indicating
the sandbox behavior of the corresponding software.

Network Intrusion Detection. We select the widely used
KDDCUP dataset [37]. Each sample is a vector of 120 features,
representing the corresponding network traffic behaviors (See
[70] for the detailed feature description). While this dataset
is not new, it provides an opportunity to evaluate FARE on
highly imbalanced data. In this paper, we selected a subset

3The dataset [2] is collected and shared by a security company.

with 9 classes, one of which has 97,278 normal network traffic
and the rest 8 classes represent 8 types of intrusions.4 Our
selected dataset has 493, 346 samples. Note that the selected
classes cover 99.8% of the samples in the dataset. We remove
the remaining 0.2%, because they will be treated as noise by
most learning algorithms. We randomly split the dataset into
training and testing set with a ratio of 70:30, and randomly
pick 20% of the labeled training samples as the validation set.

Evaluation Metric. The output of FARE is a set of clusters.
To assess the clustering quality, we use a commonly used
metric called Adjusted Mutual Information (AMI) [74], which
measures the correlation between a cluster assignment and the
ground truth labels. In addition, we also consider the traditional
accuracy metric to provide a different perspective.

Note that the accuracy metric has some known limitations
to evaluate clustering algorithms. First, different clustering
algorithms may produce different numbers of clusters. To
compute the accuracy, we need to align clusters to labels. In
this paper, given a cluster, we assign the cluster’s label as the
most prevalent ground-truth label within this cluster. Second,
the accuracy metric is sensitive to data distribution across
classes [74]. For example, if one class is significantly bigger
than all other classes (i.e., the benign class in network intrusion
detection), then producing one big cluster may trivially get
high accuracy.

For this reason, we use AMI as the primary metric. We
only report accuracy for selective experiments as reference
(e.g., Table I). To compute AMI, the first step is to draw the
contingency table where each element represents the number of
overlapped samples in each cluster and the ground truth class.
Then we can compute the mutual information [42] between
the clustering results and ground truth labels based on the
contingency table. Finally, the AMI is obtained by normalizing
the mutual information. AMI takes values from [−1, 1], and A
higher value indicates a better performance. The key advantage
of AMI (compared to the accuracy metric) is AMI normalizes
the results of different cluster sizes and is not easily biased
by large clusters. The detailed explanation on how to calculate
AMI and its advantage over accuracy is in Appendix-C.

Baseline Methods. We mainly compare FARE with two
popular semi-supervised methods MixMatch [6] and Lad-
der [59] that have been used for security applications. The two
systems are proposed recently (in 2015 and 2019 respectively),
and have been highly cited. We also include a supervised
deep neural network (DNN) as the baseline. However, our
preliminary evaluation quickly reveals that these algorithms,
when applied end-to-end, perform poorly under missing classes
or coarse-grained labels. We have presented the detailed results
in Appendix-B. For example, most of their AMIs would fall
under 0.6 when the training set misses the labels for 2+ classes
or has 2+ classes sharing a union label. The reason is that none
of these algorithms assume there are missing classes or coarse-
grained labels in the training data. As a result, they all set the
number of final classes as the number of given labels (or seen
classes), and only classify samples to known classes.

In order to fairly compare FARE with existing baseline

4We preserved the top-8 intrusion classes ranked by the number of samples:
neptune (107,201), smurf (280,790), backscatter (2,203), satan (1,589), ip
sweeping (1,247), port sweeping (1,040), warezclient (1,020), teardrop (979).

7

algorithms, we need to adapt existing algorithms to work under
missing classes and coarse-grained labels. More specifically,
we slightly amend existing algorithms with the same last step
of FARE: the final clustering component and mechanism to
determine the number of clusters (step Ì in Figure 1). For each
experiment setup, we first run the existing baseline algorithms
on the training data to train their networks. For all three
baseline algorithms, the last hidden layer of their networks can
output a latent vector of the original input. Instead of using the
latent vectors for classification, we run the same the K-means
clustering on these latent vectors (step Ì in FARE) to identify
the fine-grained clusters. In this way, these baseline algorithms
can perform better under missing classes and coarse-grained
labels. We denote the amended version of MixMatch, Ladder,
and DNN as MixMatch+, Ladder+, and DNN+, respectively,
and use them as our baselines for evaluation.

In addition to semi-supervised baselines, we also compare
the unsupervised version of FARE with the base clustering
algorithms (DBSCAN, Kmeans, and DEC) and existing en-
semble clustering algorithms (CSPA and HGPA [67]).

Note that we did not include GZSL/ZSL methods as main
baselines considering the different assumptions and problem
setups (see Section §II-C). We only presented a brief exper-
iment in Appendix-B to run our methods against two GZSL
methods (i.e., OSDN [4] and DEM [80]). The results confirm
that GZSL methods do not work well in our setup.

Training, Validation, and Testing. At a high level, we use the
training set to identify the final clusters and their centroids. We
use the validation set for parameter turning during the training
process. The testing data is used to test the quality of the final
clusters: for each testing sample, we compute its latent vector
and assign it to the nearest cluster based on its distance to the
cluster centroids. If not otherwise stated, AMIs/Accuracy are
calculated based on testing data for performance evaluation.

More specifically, for FARE, we use the training set to
construct the neighborhood models to form the ensemble,
learn the parameters for the input transformation network,
and identify the centroids for the final clusters. We use the
validation set to select the weight for the “ given labels”
(i.e., p1) and determine the number of final clusters K. For
baseline algorithms (i.e., MixMatch+, Ladder+, and DNN+),
we follow a similar process (but do not need to train the
ensemble component).

B. Experimental Design

We design the four experiments to evaluate the effective-
ness of FARE from different aspects. First, we validate the
ensemble method used in FARE by comparing its performance
with the individual base clustering algorithms and existing
ensemble clustering methods. Second, we quantify the advan-
tage of FARE over three baselines in the “missing classes”
setting. Third, we run FARE and baselines in the “coarse-
grained labels” setting. Finally, we evaluate the robustness of
FARE to other factors such as the ratio of available labels and
the number of neighborhood models.

Experiment I: Comparing with Unsupervised Methods.
In this experiment, we want to examine if the ensemble
of multiple clustering algorithms indeed introduces benefits.

Recall that FARE takes the ensemble of M neighborhood
models. By default, we set M = 151 where one neighborhood
model is the “given labels”, and the other 150 neighborhood
models are contributed by three clustering algorithms (K-
means, DBSCAN, and DEC). More specifically, by varying the
hyper-parameters for each clustering algorithm, each algorithm
contributes to 50 neighborhood models (150 in total). For
the unsupervised version of FARE (Section §III-C), we set
M = 150 by excluding the model from the “given labels”.

In this experiment, we first compare the unsupervised
version of FARE with the individual clustering algorithms and
the ensemble clustering methods CSPA and HGPA. Given an
evaluation dataset, we first remove the labels, and apply the
unsupervised version of FARE and the individual clustering
algorithms (i.e., K-means, DBSCAN, and DEC) to the dataset.
We then apply CSPA and HGPA on top of the 150 neighbor-
hood models. Note that both HGPA and CSPA encountered
out-of-memory issues when being applied to the full datasets
(due to their O(n2) memory consumption). As such, we run
both methods on 10% of randomly sampled data points. To
ensure a fair comparison, we produce one set of result for
Unsup. FARE on the same 10% of the training dataset.

Next, to explore the benefits of using (partial) labels, we
then use 1% of the original label to train FARE, and compare
it with the unsupervised FARE. For each setting, we repeat
the experiment 50 times. Note that DBSCAN and ensemble
clustering cannot be used to classify testing data. As such, for
this experiment, we report their training AMI and Accuracy.
Finally, to evaluate the computational cost of FARE, we also
record the overall training time of each method.

Experiment II: Missing Classes. This experiment focuses on
the end-to-end performance of FARE under the missing classes
setting. More specifically, we construct training datasets that
mimic the scenarios where a certain number of classes are
missing in the given labels. For each dataset, we randomly
selected nc classes and marked all the training samples in these
classes as “unlabeled samples”. For the rest of the classes, we
only keep 1% of labeled samples for each class and mark the
remaining samples as “unlabeled”.

In this experiment, we vary nc to examine its influence
upon the system performance. To make sure our results are not
biased by the choice of missing classes, we randomly select
the classes to mark as “missing”. For a given nc, we randomly
select nc classes as missing classes for 10 times. This generates
10 training sets for each nc. In total, we have |nc| × 10
training sets. On each training set, we run FARE, and our
baselines (i.e., DNN+, MixMatch+, and Ladder+) and compute
the testing AMI. In addition, we also want to examine the
capability of each algorithm in recovering the actual number
of classes. We use K to denote the final number of clusters.
Finally, we compute the mean and standard deviation of testing
AMI and K under each nc setting (across 10 training datasets).
In addition to AMI, accuracy metric is also calculated (for
selective settings) in Appendix-C.

Experiment III: Coarse-grained Labels. This experiment
is an end-to-end evaluation of FARE under the coarse-grained
label setting. Suppose a dataset originally contains n class,
we randomly selected ng classes and merged their training
samples into a union label. For the rest of the classes, we also

8

TABLE I. PERFORMANCE COMPARISON BASED ON MEANS AND STANDARD DEVIATIONS OF AMIS, ACCURACY, AND RUNTIME. “Unsup. FARE”
REPRESENTS THE UNSUPERVISED VERSION OF FARE. SINCE NEITHER CSPA NOR HGPA SCALE TO THE FULL DATASET, WE REPORT THEIR RESULTS AND

THAT OF Unsup. FARE ON 10% OF TRAINING SET.

Dataset MALWARE Network Intrusion
Metric AMI Accuracy Runtime (s) AMI Accuracy Runtime (s)

Full
Training set

FARE 0.87± 0.01 0.97± 0 434.05 0.98± 0 1± 0 8, 943.08
Unsup. FARE 0.74± 0 0.81± 0.01 432.12 0.78± 0 0.99± 0 8, 942.52

Kmeans 0.47± 0.12 0.51± 0.04 26.99 0.39± 0.18 0.64± 0.12 16.30
DBSCAN 0.69± 0.03 0.77± 0.02 174.63 0.38± 0.1 0.66± 0.04 8, 918.36

DEC 0.37± 0.09 0.47± 0.07 342.42 0.64± 0.12 0.85± 0.04 725.58

10%
Training set

Unsup. FARE 0.72± 0.01 0.80± 0.01 77.33 0.76± 0 0.98± 0 1, 801.74
CSPA 0.5± 0.04 0.61± 0.06 176.29 0.36± 0.11 0.64± 0.08 2, 013.77
HGPA 0.57± 0.03 0.69± 0.05 90.1 0.4± 0.09 0.79± 0.06 1, 804.82

only keep 1% of the labeled training samples in each class and
mark the remaining samples as “unlabeled”. With this setup,
the training set only has in total n− ng + 1 classes, and each
class has 1% data labeled.

We vary ng to examine its influence on the system perfor-
mance. For each ng , we also randomly sample different classes
to merge into the union class for 10 times and construct 10
training sets. In total, we have |ng|×10 training sets. We then
run FARE and baselines on each training set and calculate
the mean and standard deviation for the testing AMI and K.
Similar to before, the accuracy metric is also reported (for
selective settings) in Appendix-C.

Note that here we only consider the setting where the
chosen classes are merged into one union label. In Appendix-E,
we have included additional experimental results for multiple
union labels. The overall conclusion is consistent, and thus the
results for multiple union labels are omitted here for brevity.

Experiment IV: Algorithm Sensitivity. Finally, we examine
the sensitivity of FARE and Unsup.FARE to the number of
unsupervised neighborhood models M ′ = M − 1. For FARE,
we fix nc = bn/2c or ng = bn/2c and labeled data ratio as
1%. We randomly select M ′ =10, 20, 50, and 100 from the
pool of 150 neighborhood models (used in Experiment I–III)
to generate the ensemble. We run FARE and Unsup.FARE
10 times for each M ′ and record the mean AMIs.

We also tested the algorithm sensitivity to other factors
such as the ratio of available labels, the output dimension of
the transformation network q, and the number of true classes in
a dataset. By default, the ratio of available labels is 1% and
q = 32. We experimentally tested different ratio and q, and
found the algorithm performance was not sensitive to neither
factors. In addition, our security datasets only have up to 6
and 9 classes respectively. So we further tested FARE on an
image dataset with more classes (i.e., 43), and confirmed that
FARE still performed well. Due to space limit, we present the
detailed results in Appendix-G and Appendix-H.

C. Experiment Results

FARE vs. Base Clustering Algorithms. Table I shows the
AMI and accuracy of FARE (both supervised and unsupervised
versions) and other individual clustering algorithms. First, we
observe that the mean AMI and accuracy of the unsupervised
FARE (i.e., Unsup. FARE) are consistently higher than all
other clustering methods on both datasets. The performance
of individual clustering methods varies on different datasets.
This validates our hypothesis that existing clustering methods
have different assumptions on the data distribution and work

well only when the data distribution matches the assumptions.
With the ensemble of multiple unsupervised models, Unsup.
FARE performs consistently better. Note that Unsup. FARE
has lower standard deviations, indicating its results are more
stable across different training rounds. In addition, Unsup.
FARE significantly outperforms K-means. This means, if we
apply K-means without the input transformation network, the
performance will suffer. Note that the DEC algorithm uses
an auto-encoder to transform the inputs. The higher AMI of
unsupervised FARE over DEC confirms the advantage of our
data transformation function over the state-of-art auto-encoder.

Supervised FARE is performing better than unsupervised
FARE. For example, on the network intrusion dataset, the AMI
is boosted from 0.68 to 0.98. Recall that in this experiment,
supervised FARE only takes 1% of the labels. This confirms the
benefits of combining supervised learning (even with limited
labels) and unsupervised results.

FARE vs. Existing Clustering Ensemble Methods. As
shown in Table I, FARE and Unsup. FARE both outperform
existing clustering ensemble methods CSPA and HGPA in
terms of AMI and Accuracy. There are two possible reasons.
First, FARE aggregates clustering ensembles with the given
labels, and the labels bring in performance gains. Second,
CSPA and HGPA struggle under high-dimensional input space.
In comparison, FARE’s input transformation network projects
the inputs into a lower-dimensional space with well-defined
distance, which makes clustering more effective.

Computational Overhead. Table I also shows the training
time for each algorithm. We observe that both FARE and
Unsup.FARE adds only a small fraction of the runtime on
top of the existing clustering algorithms. Since the different
neighborhood models are independent, we can parallelize their
clustering process. As a result, the performance bottleneck is
introduced by the slowest clustering algorithm in the ensemble.
In our case, the slowest algorithm on the malware dataset is
DEC, and the slowest algorithm on the intrusion dataset is
DBSCAN. As shown in Table I, the added overhead by FARE
and Unsup.FARE is considerably small, while the gains on
AMIs are significant, which is a worthy trade-off. Since all
of the base clustering algorithms are widely used in both
academia and industry as benchmark clustering methods, we
argue that the computational cost introduced by our design
does not jeopardize its usage in practice. Later in Section §VI,
we have further discussions on the computational cost. Table I
also shows Unsup.FARE are faster than CSPA and HGPA
on 10% of the training dataset. This is because our method
avoids the expensive cluster alignment step in CSPA and
HGPA. Instead, we use pair-wise relationships to fuse the

9

0 2 4
nc

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AM
I

FARE MixMatch+ Ladder+ DNN+

(a) Malware categorization.

0 1 4 7
nc

0.2

0.4

0.6

0.8

1.0

AM
I

FARE MixMatch+ Ladder+ DNN+

(b) Intrusion detection.

Fig. 2. The performances of FARE and the baselines in the missing classes
settings. We show the mean AMI and the standard deviation. nc is the number
of missing classes.

base clustering results. In addition, we support batch-learning,
which further reduces the memory and computational cost.

Performance under the Missing Class Setting. As shown
in Figure 2, when there is no missing class in the training
data (i.e., nc = 0), the performance of all the systems are
fairly comparable on both datasets. Recall that the training
dataset only has 1% of labeled samples. With limited labels,
the supervised learning method do not outperform the semi-
supervised methods. Then as the number of missing classes
nc increases, the baseline methods start to exhibit inconsistent
and degraded performances. For example, when nc = 4 in
Figure 2(a), and nc = 7 in Figure 2(b), it means 4 out of
6 classes are missing in the malware datasets, and 7 out of
9 classes are missing in the network intrusion dataset. The
average reduction of baseline performances is around 50.5%.
The worst AMI is even lower than 0.25. There are two possible
reasons. First, existing algorithms are highly dependent on the
assumption that the labeled classes are complete (i.e., at least
a few labeled samples are expected to be available in each
class). When this assumption is no longer held in the training
data, their performances suffer. Another explanation is that
existing methods cannot correctly recover the data manifolds
of the unlabeled classes in the training set [24]. Without such
information, they cannot make correct decisions on testing
samples from these unlabeled classes. As nc increases, we
notice that the standard deviations of AMIs also increase for
baselines. This indicates that the choices of the missing classes
also have an impact on the baseline methods’ performance.

In comparison, FARE demonstrates a much higher AMI
across all the settings. As shown in Figure 2, the number
of missing classes only have a small impact on FARE. For
example, in Figure 2(b), the AMI of FARE only decreases from
0.97 to 0.83 when nc increase from 0 to 7. On average, FARE
has a reduction of 15.4% of AMI across the two datasets. The
results confirm the benefits of using the ensemble of unsu-
pervised learning results when the given labels have missing
classes (i.e., low-quality labels). The ensemble component of
FARE helps to extract useful information (i.e., data manifolds)
of the missing classes. The standard deviations of FARE are
also consistently lower than those of the baseline methods.
This again confirms the benefit of the ensemble in reducing
FARE’s sensitivity to the choice of missing classes.

Table II (the left half) shows the final number of classes
identified by FARE and other baselines. The ground-truth
number of classes is 6 and 9 for malware and intrusion
datasets, respectively. As we increase the number of missing

0 2 4
ng

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AM
I

FARE MixMatch+ Ladder+ DNN+

(a) Malware categorization.

0 1 4 7
ng

0.2

0.4

0.6

0.8

1.0

AM
I

FARE MixMatch+ Ladder+ DNN+

(b) Intrusion detection.

Fig. 3. The performances of FARE and baselines in the coarse-grained
label setting. We show mean AMI and standard deviation. ng is the number
of classes in the union class.

classes nc, we can see that the baseline algorithms are more
likely to underestimate the true number of classes on both
datasets. In contrast, FARE successfully recovers the true
number of classes in the malware dataset regardless of the
severity of missing classes. For the network intrusion dataset,
while not being able to identify the true number of classes,
FARE has a lower estimation error. It should be noted that
even when nc = 0, none of the baseline methods can correctly
recover the true number classes for the intrusion dataset. We
suspect this is due to the class imbalance issue. In the intrusion
dataset, the top three classes take 98.5% of samples, which
makes it difficult for the clustering methods to identify the
minor classes. Interestingly, as the number of missing classes
increases, FARE is approaching the true number of classes
(possibly because the given labels become less influential).
Together with the results in Figure 2, we conclude that without
missing classes, FARE is comparable to the supervised and
semi-supervised baselines. When there are missing classes in
the given labels, FARE demonstrates significant advantages.

Performance under the Coarse-grained Label Setting.
Figure 3 shows the performance of each method under the
coarse-grained label settings. We observe that the performance
of baseline methods reduces dramatically as ng increases
(i.e., lower AMI and higher standard deviation). This means
existing methods lack the capability in dealing with the coarse-
grained labels. On the contrary, coarse-grained labels only have
a minor impact on FARE. The average AMI reduction is only
8.2% across all the settings. The standard deviations are low
for FARE, indicating that FARE is robust to the choices of
classes in the union label.

Table II (the right half) presents the number of final classes
identified by each method under the coarse-grained label set-
tings. For the malware dataset, we have the same observation
as before: FARE correctly recovers the true number of classes
regardless of the degree of coarse-grained labels while other
baseline algorithms cannot. For the intrusion dataset, however,
the observation is quite different. On the one hand, neither
FARE nor the baseline methods can estimate the true number
of classes correctly. On the other hand, unlike the baseline
methods that occasionally overestimate the true number of
classes, FARE consistently underestimates it. For example,
when ng = 7, the number classes estimated by FARE is only
4. We speculate that this is caused by the compound effect
introduced by coarse-grained labels and the extreme class
imbalance. Recall that in the intrusion dataset, the top 3 classes
count for 98.5% of the samples. The coarse-grained label

10

TABLE II. THE NUMBER OF CLUSTERS K DISCOVERED BY FARE AND THE BASELINE ALGORITHMS UNDER DIFFERENT SETTINGS. N REPRESENTS THE
GROUND-TRUTH NUMBER OF CLASSES IN EACH DATASET.

Methods
Num. of missing classes (nc) Num. of mistaken grouped classes (ng)

Malware (N = 6) Intrusion (N = 9) Malware (N = 6) Intrusion (N = 9)
0 2 4 0 1 4 7 2 4 1 4 7

FARE 6± 0 6± 0 6± 0 6± 0 6± 0 8± 1.25 10± 1.89 6± 0 6± 0 5± 0 5± 0.47 4± 0
MixMatch+ 6± 0 4± 0 4± 0 5± 0.47 4± 0 6± 1.69 5± 1.41 5± 0 4± 0 5± 0.47 5± 0.47 7± 1.25

Ladder+ 4± 0 4± 0 5± 0 5± 0 6± 2.44 6± 0 7± 2.36 4± 0 5± 0.47 5± 0.47 7± 2.05 16± 3.77
DNN+ 6± 0 5± 0.82 4± 0 5± 0.92 6± 0 6± 0 4± 0 5± 0 5± 5.44 5± 0.47 6± 1.7 15± 2.49

TABLE III. MEAN AMIS AND STANDARD DEVIATIONS OBTAINED BY VARYING M ′ IN FARE AND Unsup.FARE.

Neighb. Models M ′ 10 20 50 100 All (150) 10 20 50 100 All (150)

FARE
Dataset Malware Intrusion

nc = bn/2c, 1% labels 0.68± 0.09 0.73± 0.01 0.76± 0.01 0.75± 0.01 0.75± 0 0.89± 0.10 0.88± 0.11 0.88± 0.08 0.89± 0.05 0.89± 0.05
ng = bn/2c, 1% labels 0.74± 0.04 0.75± 0 0.74± 0 0.74± 0 0.74± 0 0.90± 0.05 0.90± 0.05 0.90± 0.05 0.90± 0.05 0.90± 0.05

Unsup.
FARE

Dataset Malware Intrusion
labels are not used 0.60± 0.08 0.71± 0.01 0.74± 0.01 0.74± 0.01 0.74± 0 0.83± 0.05 0.79± 0.02 0.79± 0.03 0.78± 0.00 0.78± 0.00

can lead to misguided data manifold, and highly imbalanced
classes undermine the effectiveness of the clustering ensemble.
When both issues are presented, FARE is less effective. In
summary, for the general coarse-grained label setting, FARE
significantly outperforms the baseline methods in terms of
clustering quality and estimating the number of classes. When
the classes are extremely imbalanced, FARE and other base-
lines are less effective in estimating the true number of classes.

Sensitivity to the Number of Neighborhood Models. Ta-
ble III shows the results of FARE and Unsup.FARE with
different number of neighborhood models M under the missing
class/coarse-grained label settings. We vary the M ′ = M − 1
neighborhood models from clustering algorithms. We can
observe that the performance of FARE is robust with respect
to the number of neighborhood models. As we add more
neighborhood models to the ensemble, the mean AMI is
increasing and the standard deviation is decreasing, but only by
a small margin. This means with 20 or even 10 neighborhood
models, the performance of FARE is already good. Similar to
FARE, Unsup.FARE is also not sensitive to M ′.

V. REAL-WORLD TEST: FRAUD DETECTION

Following the controlled experiments, we next describe
our experience of the initial deployment and testing of FARE
in collaboration with a real-world online service JD.com.
Company JD.com is a large e-commerce service with hundreds
of millions of active users. We work together to apply FARE
to identify the fine-grained classes of fraudulent accounts,
especially the previously-unknown types of fraud. As the initial
testing effort, we apply FARE on an internal dataset of 200,000
active users. Below, we describe our testing methodology, and
key observations and discoveries.

Dataset from Company JD.com. The dataset contains
200,000 active users randomly sampled from the e-commerce
site database. Each user is represented as a 264-dimensional
feature vector. The feature vector is encoded using their
internal feature engineering method. As the specific details of
the feature engineering process are not revealed to us (which is
confidential information), we only provide a high-level descrip-
tion here. The features are extracted from three different types
of information: 1) product information (e.g., product brand and
product category), 2) shipping information (e.g., shipping ad-
dress and carrier information), and 3) purchasing information
(e.g., price, amount, discounts, and time).

The dataset has a very small portion of labels, including
0.5% of confirmed fraudulent users, and 0.1% of trustworthy

TABLE IV. GROUP-A REPRESENTS THE FRAUDULENT ACCOUNTS
IDENTIFIED BY FARE; GROUP-B REPRESENTS THE CONFIRMED

LEGITIMATE USERS. WE RECORD THE LOGIN ATTEMPT RATE (LAR) AND
THE AUTHENTICATION PASS RATE (APR) FOR BOTH GROUPS.

Group 1-day 1-week 1-month
(LAR, APR) (LAR, APR) (LAR, APR)

A: FARE-detected (20.9%,0.0%) (25.3%,0.0%) (39.3%,0.0%)
B: Confirmed-legit. (22.1%, 100%) (27.9%, 100%) (30.9%, 100%)

users. The remaining 99.4% of users are unlabelled. First,
0.5% of the accounts are labeled as “fraudulent”. This label
is based on JD.com’s customer service department — they
have received complaints on these 0.5% accounts who were
conducting fraudulent activities in the last two months (with
further confirmations from the security team). About 0.1% of
remaining users accounts are labeled as “trusted” since they are
associated with company JD.com’s enterprise partners or VIP
customers. This dataset represents the common challenges we
described before: only a small portion of labels are available
and the labels are likely to be coarse-grained and biased.

A/B Test Experiments. Using this dataset, our goal is to
pinpoint the unlabeled users who also conducted fraudulent
activities in the past two months but have not yet been
complained by online retailers through the customer service.

To validate whether FARE can truly identify those ac-
counts, we design an A/B test experiment for two groups of
users. Group-A is the fraudulent accounts that FARE identified
from the unlabeled user sets, and Group-B is the labeled
trustworthy users. For both groups of users, we revoke their
sign-in cookies, and force them to re-enter their passwords,
and use their registered phone numbers to perform two-factor
authentication through SMS code. Then, we keep monitoring
the login activities of both groups of users for one month after
the forced re-login. During the monitoring period, we record
the login attempt rate (LAR) as well as the authentication pass
rate (APR). Here, the LAR indicates the percentage of the users
who have correctly entered their passwords when performing
log-in. The APR specifies, among users who attempted the
log-in, the percentage of sign-in sessions with the correct two-
factor authentication code.

The rationale behind the A/B experiment is that attackers
behind the fraud campaigns usually purchase a large corpus of
fake accounts from third-party vendors to conduct malicious
activities. When the third-party vendors create these fake
accounts for sale, they needed to register the accounts by
using the phone numbers under their control. When selling
these accounts, the third-party vendors would provide the
account names and passwords so that the buyers can log in

11

to these accounts. However, if JD.com forces a two-factor
authentication after the account delivery, the buyers would not
be able to receive the SMS code tied to each of the accounts,
and thus cannot use these accounts to continue their campaigns
to snatch coupons, promote illegitimate products, or write fake
reviews. It should be noticed that while re-authentication is a
powerful tool, it cannot be excessively used. When blindly
triggering re-authentication to all users, it could jeopardize
normal users’ experience and significantly increase the burden
of the customer service department. This is because legitimate
users may sometimes change their phone numbers and forgot
to update their online profiles. Even if such normal users only
take a small portion, considering the hundreds of millions of
active users in JD.com, the absolute number is still very large.
They can easily overwhelm the customer service if the re-
authentication is triggered at the same time.

A/B Experiment Results. While our controlled experiments
in Section IV-C have shown FARE’s good performance, we
still want to stay conservative in this initial real-world testing.
Specifically, we want to suppress the potential false positives
of FARE since false positives disrupt the customer service’s
daily operations. As a result, JD.com permitted us to initialize
SMS re-authentication for an entire cluster of users only if this
FARE-identified cluster contains at least 5% of the already-
confirmed fraudulent accounts. While this approach may sig-
nificantly under-report the fraudulent accounts identified by
FARE, we believe it is the right trade-off for the initial testing.
For the other clusters (e.g., those that contain fraudulent labels
but do not meet the 5% threshold), they are still valuable for
further analysis, but are excluded from the A/B test.

Under this guideline, FARE revoked 2,000 unlabeled sign-
in sessions and initialized the corresponding re-authentication
through SMS. In Table IV, we show the LAR and APR
of each group across three different time windows – one
day, one week, and one month. We can observe that for
the confirmed trusted users (Group-B), the return sign-in rate
across a month is 30% with a 100% of success rate for passing
the SMS re-authentication. On the contrary, for the FARE-
detected fraudulent users (Group-A), the return rate is about
10% higher, but the success rate of SMS re-authentication is
0%. This implies that the users FARE detected are highly likely
to be the fake accounts associated with fraudulent activities.

Manual Analysis and Observations. In addition to our A/B
experiment, we also devote efforts to manual examinations.
We focus on accounts that failed the SMS re-authentication
and analyzed their history logs. While we are not allowed to
provide the precise numbers and statistics of the discovered
fraudulent activities, we want to provide qualitative results
regarding our key findings.

First, for many clusters of the newly identified fraudulent
accounts, accounts in each cluster usually have the same login
time and come from the same or similar sets of IP addresses.
This implies the user accounts in the same cluster are likely
conducted by a single entity using automated programs. Sec-
ond, we find that certain groups of fraudulent users would
heavily apply coupons on their purchases. For almost all of
their purchased items, they applied an abnormal amount of
coupons to significantly reduce the purchasing price. More im-
portantly, users in the same group even share the same physical
shipping addresses. These clusters are likely to represent the

organized efforts to (automatically) collect coupons, purchase
products in bulk, and then resell them with higher prices.
Third, we also discover fraudulent clusters that regularly buy
products from certain retailers and leave positive reviews. More
importantly, after leaving the positive reviews, these accounts
then file product returns and get a refund. We suspect these
accounts are colluding with the retailers for promoting their
products. Fourth, by analyzing the historical activities of these
fraudulent accounts, we were surprised to discover that many
products have mistagged prices. For example, some products
owned by the e-commerce site were mistagged with a low
price for weeks without being noticed by the product team.
The fraudulent accounts have been exploiting these mistagged
prices to subside their purchases. These mistagged prices are
previously unknown to JD.com. JD.com has started to actions
to perform systematic detection of mistagged prices.

VI. DISCUSSION

Post-clustering Processing. The goal of FARE is to cate-
gorize the input dataset into fine-grained clusters, and help
the analysts to derive high-quality labels. After FARE is
applied, the post-processing is to either align the obtained
clusters with the known classes in the “given labels” or
assign them with new labels. Two strategies can be applied
to accomplish these tasks. The first strategy is to manually
analyze samples in a given cluster to assign meaningful labels.
For example, the analysts can identify a small number of
representative samples (e.g., based on centrality) in a given
cluster for in-depth analysis. We argue that, by producing high-
quality clusters, FARE saves analysts’ time who only need
to investigate a smaller number of representative samples. To
further save manual efforts, analysts might take the second
strategy, which is to align clusters with the given labels. For
each cluster that contains given labels, we can compute a
matching score (i.e., # of matched samples

of total samples in the cluster) and find the label
with the highest matching score. The analyst can set a cut-off
threshold (e.g., 0.9): if the highest matching score is above this
threshold, the cluster stays with the existing label. Appendix-F
shows a running example. The second strategy, while efficient,
should be applied carefully (e.g., to well-known classes only)
since the given labels are not entirely trustworthy.

Computational Complexity. In Section §IV, we show that
FARE only introduces a small computational overhead on top
of the clustering algorithms. Here, we compare the asymptotic
complexity of FARE and with those of the (semi-)supervised
baselines. Specifically, the computational complexity of FARE
is O(max{IdBd|θd|K, pN2, IiMB2

i |θi|}), where N is the
number of samples. Id, Bd, and |θd| represents the number of
training iteration, batch size, and model parameters of DEC.
Similar, Ii, Bi, and |θi| represents the number of training
iteration, batch size, and parameters of input transformation
model (see Appendix-D for the derivation).

The computational cost of the (semi)-supervised baselines
are: MixMatch – O(IB2A |θ|), Ladder and DNN – O(IB |θ|),
where A is the number of data augmentation rounds in Mix-
Match. When pN2 < max{IdBd|θd|K, IiMB2

i |θi|}, similar
to MixMatch, the complexity of FARE is also quadratic to
the batch size B. A practical example is the malware dataset
in Section §IV, where the average run time of MixMatch
(i.e., 400.33s) is similar to FARE (i.e., 434.05s). For a very

12

large scale dataset with an ultra-high dimensionality, FARE
may be slower than semi-supervised learning methods due
to the high cost of DBSCAN. However, recent research has
proposed accelerate DBSCAN through parallel computing [29]
or GPU [25]. These strategies can also be applied to further
accelerate FARE for very large-scale datasets. With the above
analysis, we can conclude that the computational cost of FARE
is acceptable. Our real-world deployment in Section §V also
confirms that practicality of running FARE in production.

Hyperparameters. FARE has the following hyper-parameters:
the number of neighborhood model M , the hyper-parameter
inherited from contrastive learning (the output dimension of
input transformation net q, the distance radius α and the
regularization coefficients λ), the hyper-parameters inherited
from base clustering algorithms, and the hyper-parameters
introduced by our design (K and p1). As discussed in Sec-
tion §III-D, we set λ to a small value and select the K and p1
based on the AMIs computed on a validation set. For M , as
shown in Section §IV, FARE can achieve a good performance
with merely 10 unsupervised neighborhood models. Appendix-
G shows that FARE is also robust to the subtly changes in
the distance radius α and the output dimension q. For the
hyper-parameters of clustering algorithms, existing works have
provided suggested default setting [11].

Online Setup. While primarily designed for offline analysis,
FARE can also be used in an online fashion. As is elaborated
in Section §III-A, FARE processes a dataset with three steps.
After the first two steps, FARE could learn a transformation
function. Using this function to map each data sample into
a low-dimensional space, FARE then employs K-means to
assign data to the corresponding category. This clustering
step could be done incrementally. Therefore, it introduces
only lightweight computation and offers the possibility of
performing online clustering. In our current design, the first
two steps are more computationally intensive than the third
step. Therefore, it is challenging to update the transformation
function in an online fashion. However, this does not hinder
the online usage of FARE.

After learning a transformation function, even without
frequently updating it, FARE could still perform clustering
accurately. Take our current deployment in the real-world
online service J as an example. In order to capture the
distribution/covariate shift [58], [8], we retrain and update
our transformation function weekly. We observe that this
setup does not jeopardize FARE’s efficacy, which implies the
feasibility of FARE’s online usage. However, we admit that the
retraining cycle could vary for different applications because
of the variation in the data dynamics. This work will leave the
in-depth online usage exploration as part of future work.

Adversarial Attacks. As an machine learning algorithm,
FARE could be vulnerable to adversarial manipulations such as
poisoning attacks and adversarial evasion attacks. Researchers
have explored data poisoning attacks on unsupervised learning
algorithms. To the best of our knowledge, existing attacks
target a specific learning algorithm (e.g., hierarchical clus-
tering [9] or graph-based clustering [16]), which are not
directly applicable to our algorithm yet. For adversarial eva-
sion, attackers may leverage transferability and use adversarial
examples generated from a supervised classifier to attack our
method. However, transferability relies on the assumption that

supervised classifiers on the same problem/data share similar
decision boundaries. In our case, FARE is trained with both
labeled and unlabeled data and uses the ensemble of multiple
algorithms, which may produce different cluster boundaries
(compared with those of the classifier). In addition, generating
realizable adversarial malware example is a challenging task.
It requires the adversarial example to be an executable binary
that preserves the original malicious functions. We leave the
evaluation of FARE’s adversarial robustness to future research.

Corrupted Labels. In our current threat model, we assume
the provided labels are either missing or coarse-grained. In
Appendix-I, we further tested FARE under corrupted training
labels (i.e., samples mislabeled to the wrong classes). The
results show that FARE’s performance slightly drops as more
labels are corrupted. In practice, there are potential ways to
mitigate the negative effect of corrupted labels. For example,
we could measure the discrepancy between the given labels and
the unsupervised clustering results based on the neighborhood
relationship table. If the difference is unusually large, defend-
ers should further inspect the labels or conservatively apply the
unsupervised version of FARE. We defer the implementation
and evaluation of this idea to future work.

Limitations and Future Works. Our work has a few
limitations. First, we mainly choose clustering algorithms that
are already widely used in the security domain. Some of the
clustering algorithms indeed have drawbacks. For example, we
show that DBSCAN, in certain settings, becomes the computa-
tional bottleneck for FARE. As future work, we want to explore
alternative clustering algorithms that can further accelerate
the system. Second, our system could still under-estimate the
number of true classes when the data is extremely imbalanced.
Future work may investigate other solutions such as down-
sampling large clusters and then run FARE alternatively. Third,
we apply the same weight for all the unsupervised models in
the ensemble to simplify the parameter tuning. It is possible
to further improve FARE’s performance by designing a fine-
tuning strategy for the weights of these unsupervised models.
Fourth, we mainly evaluate the impact of missing classes and
coarse-grained labels in separate experiments. Due to the space
limit, we have added a brief experiment (in Appendix-E) where
both labeling issues are present in the same training dataset.
Finally, we tested and demonstrated FARE’s effectiveness on
three security applications (and one image classification task
in Appendix-H). As part of future work, we will validate our
system’s generalizability to other (non-)security applications.

VII. RELATED WORK

Supervised Learning Methods. Traditional supervised learn-
ing methods such as Support Vector Machines (SVMs) and
random forests have long been used to classify malware [43],
[64], [5], [22], [50], detect network intrusions [48], [39], [18],
[63], and identify fraudulent accounts [7], [54], [72]. Recently,
deep learning models have been used for similar purposes [1],
[32], [44]. As is shown in Section §IV, the effectiveness of
these methods decreases significantly under low-quality labels.

Semi-supervised Learning Methods. SSL can be trained
with partially labeled data. They are usually composed of an
unsupervised component and a supervised component. The
unsupervised component projects an input sample x to a

13

hidden representation h and the supervised component predicts
its label y from the hidden representation h [24], [3]. Related
semi-supervised systems include Ladder [59], MixMatch [6],
and ODDS [31]. ODDS uses data augmentation techniques to
train a bot detector with limited labels, but it primarily works in
a binary classification setting (and thus does not meet our need
for attack categorization). Ladder [59] is applied for network
intrusion detection, and MixMatch [6] has been tested mainly
on image datasets. As is shown in Section §IV, low-quality
labels in the training data would significantly jeopardize the
performance of semi-supervised methods.

Unsupervised Learning Methods. Clustering algorithms
such as K-means [28] and DBSCAN [20] have been applied to
identity and group malware samples [76], [12], [40], network
intrusion events [49], [15], and fraudulent accounts [57],
[62]. However, these methods are not good at handling high-
dimensional inputs due to the “curse of dimensionality” [83].
To overcome this challenge, more advanced techniques such as
DEC [78], [53] and DAGMM [84] use deep neural networks
to learn a desired low-dimensional representation of original
inputs before applying the clustering method. To improve
the stability of clustering, clustering ensemble methods are
proposed, which combine the clustering outputs from mul-
tiple (weak) base models using some consensus functions.
For example, CSPA and HGPA [67], [77] are two popular
clustering ensemble methods. CSPA utilizes the probability of
two data points co-locating in the same cluster as the consensus
measure; HGPA represents the outputs from the base clusters
as a hyper-graph and converts the clustering task into a hyper-
graph partitioning problem. Without the guidance of labels,
unsupervised learning methods are usually outperformed by
semi-supervised learning methods.

Zero-shot Learning Methods. ZSL and GZSL have been
recently used in network intrusion detection tasks [60]. These
methods transfer the knowledge learned from one task to a
second task [24] and can be used to classify previously unseen
classes in the testing set. This is done by learning a feature
mapping function based on the well-labeled data of the first
task (training set), and transform the inputs of the second task
(testing set) through the mapping function. As is discussed in
Section §II-C, due to the need of rich training labels and “side
information” to construct the feature mapping, ZSL/GZSL
methods are not suitable for our problem.

VIII. CONCLUSION

This paper introduces FARE, a new method to derive
accurate and robust clustering results for security applications
under low-quality label data. By computing an ensemble of
“given labels” and multiple supervised learning results, we
use a transformation network to transform input samples
into a low-dimensional space for fine-grained clustering. We
evaluate FARE with both controlled experiments (for malware
classification and network intrusion detection) and real-world
deployment and testing (for fraudulent account detection).
We demonstrate the benefits of FARE over existing semi-
supervised methods and its usefulness in practice.

ACKNOWLEDGMENT

We thank anonymous reviewers for their constructive com-
ments and suggestions. This work was supported in part by

NSF grants CNS-2030521 and CNS-1717028.

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in Proc. of NDSS, 2014.

[2] A. Authors, “Malware dataset,” 2019, https://1drv.ms/u/s!
AgWFTItaV0h8jLAcx9dRzqIlMvUWtg?e=O3Gj5q.

[3] S. Becker and G. E. Hinton, “Self-organizing neural network that
discovers surfaces in random-dot stereograms,” Nature, 1992.

[4] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc.
of CVPR, 2016.

[5] K. Berlin, D. Slater, and J. Saxe, “Malicious behavior detection using
windows audit logs,” in Proc. of AI & Security Workshop of CCS, 2015.

[6] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” in Proc. of NeurIPS, 2019.

[7] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, 2011.

[8] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning under
covariate shift.” Journal of Machine Learning Research (JMLR), 2009.

[9] B. Biggio, S. R. Bulò, I. Pillai, M. Mura, E. Z. Mequanint, M. Pelillo,
and F. Roli, “Poisoning complete-linkage hierarchical clustering,” in
Proc. of SPR and SSPR, 2014.

[10] Y. Boshmaf, D. Logothetis, G. Siganos, J. Leria, J. Lorenzo, M. Ri-
peanu, and K. Beznosov, “Integro: Leveraging victim prediction for
robust fake account detection in osns,” in Proc. of NDSS, 2015.

[11] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al.,
“API design for machine learning software: experiences from the scikit-
learn project,” in ECML-PKDD Workshop: Languages for Data Mining
and Machine Learning, 2013.

[12] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proc. of ACM workshop
on Security and privacy in smartphones and mobile devices, 2011.

[13] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in Proc. of
USENIX NSDI, 2012.

[14] Q. Cao, X. Yang, J. Yu, and C. Palow, “Uncovering large groups of
active malicious accounts in online social networks,” in Proc. of CCS,
2014.

[15] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge,” Com-
puter Communications, 2012.

[16] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci, M. An-
tonakakis, and N. Vasiloglou, “Practical attacks against graph-based
clustering,” in Proc. of CCS, 2017.

[17] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust pdf malware
classifiers,” in Proc. of USENIX Security, 2020.

[18] R. Chitrakar and C. Huang, “Selection of candidate support vectors in
incremental svm for network intrusion detection,” computers & security,
2014.

[19] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-
wide code representations for binary diffing,” in Proc. of NDSS, 2018.

[20] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proc. of KDD, 1996.

[21] FireEye, “M-trends reports: Insights into today’s breaches and cyber
attacks,” 2020, https://content.fireeye.com/m-trends/rpt-m-trends-2020.

[22] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifi-
cation: A survey,” Journal of Information Security, 2014.

[23] N. Z. Gong, M. Frank, and P. Mittal, “Sybilbelief: A semi-supervised
learning approach for structure-based sybil detection,” IEEE Transac-
tions on Information Forensics and Security, 2014.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

14

https://1drv.ms/u/s!AgWFTItaV0h8jLAcx9dRzqIlMvUWtg?e=O3Gj5q
https://1drv.ms/u/s!AgWFTItaV0h8jLAcx9dRzqIlMvUWtg?e=O3Gj5q
https://content.fireeye.com/m-trends/rpt-m-trends-2020

[25] M. Gowanlock, C. M. Rude, D. M. Blair et al., “Clustering throughput
optimization on the gpu,” in Proc. of IPDPS, 2017.

[26] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proc. of CVPR, 2006.

[27] B. Harkness, “Dealing with fraud and identity theft,” 2019, https://www.
creditcardinsider.com/learn/fraud-identity-theft/.

[28] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,”
Journal of the Royal Statistical Society. Series C, 1979.

[29] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan, “Mr-
dbscan: an efficient parallel density-based clustering algorithm using
mapreduce,” in Proc. of ICPADS, 2011.

[30] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” in Proc. of ICLR,
2017.

[31] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,
“Throwing darts in the dark? detecting bots with limited data using
neural data augmentation,” in Proc. of IEEE S&P, 2020.

[32] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proc. of BIONETICS, 2016.

[33] J. Jia, B. Wang, and N. Z. Gong, “Random walk based fake account
detection in online social networks,” in Proc. of DSN, 2017.

[34] H. Jiang, B. Kim, M. Guan, and M. Gupta, “To trust or not to trust a
classifier,” in Proc. of NeurIPS, 2018.

[35] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in Proc. of ICML, 2018.

[36] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in Proc. of USENIX Security, 2017.

[37] KDDCup, “Network intrusion data,” 1999, https://www.kdd.org/
kdd-cup/view/kdd-cup-1999/Data.

[38] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, 2019.

[39] D. S. Kim, H.-N. Nguyen, and J. S. Park, “Genetic algorithm to improve
svm based network intrusion detection system,” in Proc. of AINA, 2005.

[40] J. Kinable and O. Kostakis, “Malware classification based on call graph
clustering,” Journal in computer virology, 2011.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, 2004.

[43] M. Kruczkowski and E. N. Szynkiewicz, “Support vector machine for
malware analysis and classification,” in Proc. of WIIAT, 2014.

[44] S. Kudugunta and E. Ferrara, “Deep neural networks for bot detection,”
Information Sciences, 2018.

[45] P. Laskov and N. Šrndić, “Static detection of malicious javascript-
bearing pdf documents,” in Proc. of ACSAC, 2011.

[46] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, 2015.

[47] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for
building intrusion detection models,” in Proc. of IEEE S&P, 1999.

[48] H. Li, X.-H. Guan, X. Zan, and C.-Z. HAN, “Network intrusion
detection based on support vector machine,” Journal of Computer
Research and Development, 2003.

[49] Z. Li, Y. Li, and L. Xu, “Anomaly intrusion detection method based
on k-means clustering algorithm with particle swarm optimization,” in
Proc. of ICM, 2011.

[50] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning
aided android malware classification,” Computers & Electrical Engi-
neering, 2017.

[51] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” in
Proc. of NDSS, 2018.

[52] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[53] C. K. Ng, F. Jiang, L. Y. Zhang, and W. Zhou, “Static malware

clustering using enhanced deep embedding method,” Concurrency and
Computation: Practice and Experience, 2019.

[54] X. Niu, L. Wang, and X. Yang, “A comparison study of credit
card fraud detection: Supervised versus unsupervised,” arXiv preprint
arXiv:1904.10604, 2019.

[55] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors
and dynamic neural networks in python with strong gpu acceleration,”
PyTorch, 2017.

[56] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classification
across space and time,” in Proc. of USENIX Security, 2019.

[57] C. Phua, V. Lee, K. Smith, and R. Gayler, “A comprehensive sur-
vey of data mining-based fraud detection research,” arXiv preprint
arXiv:1009.6119, 2010.

[58] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset shift in machine learning. The MIT Press, 2009.

[59] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-
supervised learning with ladder networks,” in Proc. of NeurIPS, 2015.

[60] J. Rivero, B. Ribeiro, N. Chen, and F. S. Leite, “A grassmannian
approach to zero-shot learning for network intrusion detection,” in Proc.
of ICONIP, 2017.

[61] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, 1987.

[62] A. S. Sabau, “Survey of clustering based financial fraud detection
research,” Informatica Economica, 2012.

[63] T. Shon, Y. Kim, C. Lee, and J. Moon, “A machine learning framework
for network anomaly detection using svm and ga,” in Proc. of IEEE
SMC information assurance workshop, 2005.

[64] C. Smutz and A. Stavrou, “Malicious pdf detection using metadata and
structural features,” in Proc. of ACSAC, 2012.

[65] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Proc. of IEEE S&P, 2010.

[66] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German
Traffic Sign Recognition Benchmark: A multi-class classification com-
petition,” in Proc. of IJCNN, 2011.

[67] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions,” Journal of machine learning
research (JMLR), 2002.

[68] G. Stringhini, P. Mourlanne, G. Jacob, M. Egele, C. Kruegel, and
G. Vigna, “Evilcohort: Detecting communities of malicious accounts
on online services,” in Proc. of USENIX Security, 2015.

[69] J. L. Suárez, S. Garcı́a, and F. Herrera, “A tutorial on distance metric
learning: Mathematical foundations, algorithms and software,” arXiv
preprint arXiv:1812.05944, 2018.

[70] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Proc. of CISDA, 2009.

[71] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson, “Trafficking
fraudulent accounts: The role of the underground market in twitter spam
and abuse,” in Proc. of USENIX Security, 2013.

[72] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, “Online
human-bot interactions: Detection, estimation, and characterization,” in
Proc. of Weblogs and Social Media Workshop of AAAI, 2017.

[73] P. Vibert, “The rapid evolution of the ransomware
industry,” 2019, https://www.cybersecurity-review.com/articles/
the-rapid-evolution-of-the-ransomware-industry/.

[74] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: Variants, properties, normalization and
correction for chance,” Journal of Machine Learning Research, 2010.

[75] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers,” in
Proc. of USENIX Security, 2014.

[76] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
Proc. of Asia Joint Conference on Information Security, 2012.

[77] X. Wu, T. Ma, J. Cao, Y. Tian, and A. Alabdulkarim, “A comparative
study of clustering ensemble algorithms,” Computers & Electrical
Engineering, 2018.

15

https://www.creditcardinsider.com/learn/fraud-identity-theft/
https://www.creditcardinsider.com/learn/fraud-identity-theft/
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
https://www.cybersecurity-review.com/articles/the-rapid-evolution-of-the-ransomware-industry/
https://www.cybersecurity-review.com/articles/the-rapid-evolution-of-the-ransomware-industry/

0 2 4
nc

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AM
I

FARE MixMatch Ladder DNN

(a) Malware categorization.

0 1 4 7
nc

0.2

0.4

0.6

0.8

1.0

AM
I

FARE MixMatch Ladder DNN

(b) Intrusion detection.

Fig. 4. FARE vs. baselines in missing classes.

0 2 4
ng

0.2
0.3
0.4
0.5
0.6
0.7
0.8

AM
I

FARE MixMatch Ladder DNN

(a) Malware categorization.

0 1 4 7
ng

0.2

0.4

0.6

0.8

1.0
AM

I
FARE MixMatch Ladder DNN

(b) Intrusion detection.

Fig. 5. FARE vs. baselines in coarse-grained labels.

[78] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in Proc. of ICML, 2016.

[79] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance metric
learning with application to clustering with side-information,” in Proc.
of NeurIPS, 2003.

[80] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model
for zero-shot learning,” in Proc. of CVPR, 2017.

[81] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware an-
droid malware classification using weighted contextual api dependency
graphs,” in Proc. of CCS, 2014.

[82] Z. Zhu and T. Dumitraş, “Featuresmith: Automatically engineering
features for malware detection by mining the security literature,” in
Proc. of CCS, 2016.

[83] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsupervised
outlier detection in high-dimensional numerical data,” Statistical Anal-
ysis and Data Mining: The ASA Data Science Journal, 2012.

[84] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in Proc. of ICLR, 2018.

APPENDIX-A. IMPLEMENTATION AND HYPER-PARAMETER.

We implemented FARE with the PyTorch [55] package.
We implemented K-means and DBSCAN with the APIs in
the scikit-learn package[11]. We adopted the hyper-
parameters suggested by scikit-learn package for K-
means and DBSCAN. The network architecture of DEC is the
same as other DNNs, which are specificied as the following.
(1) Network Structure: we used an MLP with the architecture
of “input dimension-500-500-2000-32” with Tanh activation
for each layer. We also adopted a weight decay with the
strength of 0.01 as the regularization. (2) Minibatch size:
we created two trunks of minibatch samplers sampling from
unlabeled and labeled data. Supervised DNN only uses the
labeled sampler. MixMatch and Ladder utilize both samplers
to ensure each batch contains both unlabeled and labeled data.
The batch size of labeled and unlabeled sampler is 64 and 128
respectively. (3) Training epochs: the maximum training epoch
is 1000. We used an early-stopping mechanism: we stop when
either the loss on the validation set increases in two consecutive
epochs, or the loss decrease on the training set is below 0.01
in two consecutive epochs. These DNNs were trained with the
Adam optimizer, with the learning rate of 0.001.

TABLE V. MEAN AMIS AND STANDARD DEVIATION OF FARE AND
GENERALIZED ZERO-SHOT LEARNING METHODS (GZSL).

Label Condition nc = bn/2c, 1% labels ng = bn/2c, 1% labels
Dataset Malware Intrusion Malware Intrusion
FARE 0.75± 0 0.89± 0.05 0.74± 0 0.90± 0.05
OSDN 0.64± 0.09 0.40± 0.35 0.63± 0.06 0.63± 0.39
DEM 0.01± 0.01 0.00± 0 0.00± 0 0.00± 0

TABLE VI. DEMONSTRATION OF CONTINGENCY TABLE. COLUMN 2-4
REPRESENTS THE COUNTS OF OVERLAPPING SAMPLES BETWEEN EACH

PREDICTED CLUSTER AND TRUE CLASS. COLUMN 5 AND ROW 4 SUMS UP
THE SAMPLES IN PREDICTED CLUSTERS AND TRUE CLASSS.

Predictions
Labels Class 1 Class 2 Class 3 Sums

Cluster 1 960 18 2 980
Cluster 2 20 0 0 20

Sums 980 18 2 1000

Regarding the hyper-parameters of FARE, first, we ran
DEC, k-means, and DBSCAN 50 times with the hyper-
parameters introduced above. Together with the “given labels”,
we constructed in total M = 151 neighborhood models. Then
we set the distance radius α = 32, and the regularization coef-
ficients λ = 0.01. For the weight of the “given labels” p1, we
applied the selection mechanism introduced in Section §III-D
and set it as 10 in the malware dataset and {1, 7, 10} in the
network intrusion dataset (1 is used in ng/nc = 7, 7 is used
for ng/nc = 4 and ng = 1, and the rest are 10). Finally,
for the input transformation network, we used the same set of
hyper-parameters as that of the semi-supervised baselines.

APPENDIX-B. BASELINES PERFORMANCE.

FARE vs. Semi-supervised Baselines. Figure 4 and 5 shows
the comparison between FARE and the baselines’ original im-
plementations. The AMIs of the baselines decrease drastically
as nc and ng increases. The worst AMI is even lower than 0.1.
The results indicate that, without further adaptation, none of
the baselines can handle missing classes/coarse-grained labeled
data. As thus, we amended all baselines in our evaluation.

FARE vs. Generalized Zero-shot Learning. We compared
FARE with two representative GZSL methods OSDN [4] and
DEM [80], under the low-quality label setups. For the missing
class setting, we fixed nc = bn/2c for each dataset and
kept 1% labeled training sample in each known class. We
ran FARE, OSDN, and DEM on the constructed training set
and compared their testing AMIs. For the coarse-grained label
setting, we fixed ng = bn/2c for each dataset and followed the
same procedure. In both experiments, we ran each method 10
times. Note that DEM requires side information (i.e., shared
semantic properties) about the connection between the training
and testing sets. Since our datasets do not provide such side
information, we set to provide random information to DEM.
As shown in Table V, FARE significantly outperforms OSDN
and DEM in both setups. This is because GZSL requires rich
training samples from the known classes. However, in our
setting, we only have 1% of labels in known classes. We can
also observe that without meaningful side information, DEM
completely fails in our task. This result shows that GZSL
methods are not suitable for our setup. As such, we do not
consider them as the baselines in our experiments.

16

TABLE VII. ACCURACY COMPARISON ON SELECTED MISSING
CLASSES AND COARSE-GRAINED LABEL SETTINGS.

Dataset MALWARE Network Intrusion
Label Setting nc = 2 ng = 2 nc = 4 ng = 4

FARE 0.92± 0.03 0.88± 0.02 1± 0 0.99± 0
MixMatch+ 0.92± 0.03 0.89± 0.01 0.97± 0.01 0.96± 0.01

Ladder+ 0.86± 0.05 0.87± 0.01 0.97± 0.02 0.95± 0.02
DNN+ 0.88± 0.06 0.88± 0.02 0.98± 0 0.98± 0

TABLE VIII. FARE VS. BASELINES IN TWO UNION CLASSES SETTING.

Dataset MALWARE (N = 6) Network Intrusion (N = 9)
Metric AMI K AMI K

FARE 0.74± 0 6± 0 0.95± 0.01 7± 0.82
MixMatch+ 0.48± 0.05 4± 0 0.56± 0.30 5.33± 0.47

Ladder+ 0.64± 0.08 4± 0 0.55± 0.28 6.33± 0.47
DNN+ 0.45± 0.06 4± 0 0.59± 0.42 4± 0

APPENDIX-C. AMI VS. ACCURACY.

We use a concrete example to explain the AMI metric
and show its advantage over the accuracy metric. Given a
highly imbalanced dataset of 1000 samples of three classes,
class-1 has 980 samples, class-2 has 18 samples, and class-
3 has 2 samples. Suppose a clustering method (denoted as
Method A.) categorized the samples into 2 clusters with the
contingency table shown in Table VI. Method A. wrongly
categorized all the samples from class 2 and 3 into cluster-1,
and mistakenly assigned 20 samples from class 1 into cluster-
2. Given this contingency table, we can compute the AMI by
using the function API in scikit-learn [11], i.e., −0.003.
The mathematical details about AMI can be found in [74]. We
can also compute the accuracy as 960/1000 = 0.96. Despite
making serious mistakes, Method A still has an extremely high
accuracy. In contrast, AMI is not biased towards the large
class and provides a more reasonable score (i.e., a negative
score). This is because AMI not only considers the clustering
correctness of samples in each class, but more importantly
adjusts the score based on the cluster size.

Next, we use real experiment results to discuss the dif-
ference between AMI and Accuracy. Table VII shows the
accuracy of different algorithms under missing-classes and
coarse-grained labels. We have two observations. First, FARE
is still better than (or at least comparable with) the three
baselines under the accuracy metrics. Second, the accuracy
metric looks high for all the algorithms, especially for the
network intrusion dataset. The reason is that the network
intrusion dataset has a dominating benign class, and the highly
imbalanced classes lead to misleading accuracy results. For this
reason, we used AMI as the primary metric in the paper.

APPENDIX-D. TIME COMPLEXITY OF FARE.

The computational cost of FARE comes from three aspects.
The first part comes from the bases clustering methods. The
base clustering algorithms are independent and thus can be
run in parallel. As such, the computation bottleneck is the
slowest algorithm among DEC (O(IdBd|θd|K) [78], k-means
(O(IkKNp)) [28], and DBSCAN (O(pN2)) [20]. That is,
max{O(IdBd|θd|K), O(IkKNp), O(pN2)}, where Id and Bd
represents the number of training iterations, and the batch
size. |θd| is the number of parameters in the DEC model.
IK and K are the number of training iterations and the
number of clusters k-means. N is the total number of sam-
ples, and p is the dimension of the input space. Given that

TABLE IX. DECISION MATRIX FOR LABEL ALIGNMENT.

Prediction Matching Score Conf. Assignment
Class1 Class2 (Conf.≥ 0.9)

Cluster1 0.9 0.1 0.9 Class1
Cluster2 0.4 0.6 0.6 New Class
Cluster3 0.05 0.95 0.95 Class2
Cluster4 0.1 0.9 0.9 Class2

1 10 25 60
% of Label per Class

0.2
0.3
0.4
0.5
0.6
0.7
0.8

AM
I

FARE MixMatch+ Ladder+ DNN+

(a) Malware categorization.

1 10 25 50
% of Label per Class

0.2

0.4

0.6

0.8

1.0

AM
I

FARE MixMatch+ Ladder+ DNN+

(b) Intrusion detection.

Fig. 6. The performance of FARE and baselines under the missing class
setting (i.e., nc = bn/2c) with different ratios of available labels.

IKK << N in most cases, this complexity can be represented
as O(max{IdBd|θd|K, pN2}). The second part comes from
computing the neighborhood relationship and training the
transformation network. In each iteration, FARE derives the
neighborhood relationship for each base method with a cost
of O((Bi)

2), and updates the network parameters with the
cost of O(|θi|). As such, the time complexity of this part is
O(IiM(Bi)

2|θi|), where Ii and Bi is the number of training
iteration and batch size, |θi| is the number of parameters of
the transformation network. The third part is introduced by
the final k-means clustering. In total, FARE’s computational
complexity is O(max{IdBd|θd|K, pN2, IiMB2

i |θi|}).

APPENDIX-E. ADDITIONAL EXPERIMENTS.

Multiple Union Classes. We compared FARE with the
amended baselines in a coarse-label setting with two union
classes. Specifically, we randomly selected 6 classes from the
malware and intrusion dataset and relabeled them into two
union classes. Together with the remain original classes, the
training set has in total n − 4 classes. We still only used
1% of the labels for each class. We ran each method 10
times with different random seeds. As shown in Table VIII,
FARE achieves significantly higher AMIs and lower standard
deviations than all the amended baselines on both datasets. In
addition, FARE could identify the true number of classes on
the malware dataset and has lowest estimation errors on the
intrusion dataset. This result demonstrates that FARE could
generalize its effectiveness in multiple union class settings.

Setup w/ both Missing Classes and Coarse-grained Labels.
We tested FARE under a setting with both missing classes
and coarse-grained labels. Specifically, we randomly selected
4 classes from both datasets, relabeled 2 of them as a union
class, and eliminated the labels of the rest. In this way, we
constructed a training set with n − 3 classes. Similarly, we
preserved 1% labels in each class and ran FARE 10 times.
The results AMI and K are: (0.76± 0, 6± 0) on the malware
dataset, and (0.92±0.06, 5.67±2.36) on the intrusion dataset.

APPENDIX-F. CLASS-CLUSTER ALIGNMENT.

We use an example to explain the strategy of post-
clustering analysis introduced in Section §VI. Suppose we

17

TABLE X. MEAN AMIS AND STANDARD DEVIATIONS OBTAINED BY VARYING THE α AND q IN FARE.
Label Condition nc = bn/2c, 1% labels ng = bn/2c, 1% labels

q and α 8 16 32 (Our choice) 64 8 16 32 (Our choice) 64
Malware 0.76± 0.05 0.78± 0.02 0.75± 0 0.74± 0.06 0.74± 0 0.75± 0 0.74± 0 0.74± 0
Intrusion 0.89± 0.05 0.86± 0.02 0.89± 0.05 0.89± 0.06 0.87± 0 0.87± 0 0.90± 0.05 0.85± 0.04

TABLE XI. THE PERFORMANCE OF FARE UNDER DIFFERENT PERCENTAGES OF CORRUPTED LABELS.

Dataset
Noisty Label Percentage x

0 10 25 50 75
AMI Accuracy AMI Accuracy AMI Accuracy AMI Accuracy AMI Accuracy

Malware 0.87± 0.01 0.97± 0 0.83± 0.01 0.96± 0.01 0.81± 0.01 0.96± 0.01 0.79± 0.03 0.82± 0.05 0.73± 0.01 0.74± 0
Network Intrusion 0.98± 0 1± 0 0.94± 0.03 0.99± 0 0.84± 0.05 0.99± 0 0.75± 0.02 0.98± 0 0.75± 0.01 0.98± 0

1 10 25 60
% of Label per Class

0.2
0.3
0.4
0.5
0.6
0.7
0.8

AM
I

FARE MixMatch+ Ladder+ DNN+

(a) Malware categorization.

1 10 25 50
% of Label per Class

0.2

0.4

0.6

0.8

1.0
AM

I

FARE MixMatch+ Ladder+ DNN+

(b) Intrusion detection.

Fig. 7. The performance of FARE and baselines under the coarse-grained
label setting (i.e., ng = bn/2c) with different ratios of available labels.

have the clustering result of a dataset, we first compute the
matching score of between every cluster-class pair, constructed
a decision matrix in Table IX. Then, we obtain the confidence
score for each cluster (i.e., the maximum matching score
among all known classes). Finally, we set the threshold as 0.9
and assigned the clusters to the known classes, accordingly. As
we can observe from the assignment (column 5 in Table IX),
we set cluster 2 as an unknown (possibly new) class, because
its confidence is below the threshold. In addition, both cluster
3 and 4 are assigned to class 2. This indicates that class 2
represents a coarse-grained label.

APPENDIX-G. HYPER-PARAMETER SENSITIVITY

Sensitivity to Ratio of Available Labels. We evaluate the
impact of the ratio of available labels: For the missing class
settings, we fixed nc = bn/2c for each dataset, and then varied
the ratio of labeled samples in the training data as 1%, 10%,
25%, and 50% to construct 4 groups of training sets. We ran
each method by sampling the missing classes 10 times and
reported testing AMIs. For the coarse-grained label settings,
we fixed ng = bn/2c for each dataset and followed the same
procedure. In both experiments, we set the number of clusters
K to the corresponding ground-truth number.

Figure 6 and Figure 7 show the results. The performances
of all the methods are quite consistent with respect to different
ratios of available labels. This result indicates that FARE is
not sensitive to the raito of labeled samples. Also, the results
show that 1% labeled data is enough for FARE to achieve a
high AMI — the extra information provided by the clustering
ensemble has helped to boost the performance.

Sensitivity to the Latent Dimensionality. We also tested the
sensitivity of FARE to the output dimension of the transfor-
mation network q, and the distance radius α. As mentioned in
Section §III-D, α = q, and thus we changed them together. We
used the above setups (i.e., nc = bn/2c and ng = bn/2c) with
1% labels and 151 neighborhood models. We set the α (and
q) as 8, 16, 32, and 64, and ran FARE 10 times per setting. As

0 10 20 30
nc

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AM
I

FARE MixMatch+ Ladder+ DNN+

(a) Missing class.

0 10 20 30
ng

0.3

0.4

0.5

0.6

0.7

0.8

AM
I

FARE MixMatch+ Ladder+ DNN+

(b) Coarse-grained label.

Fig. 8. Performance comparison of FARE and baselines under missing class
and coarse-grained label settings on the GTSRB dataset.

shown in Table X, subtly varying α and q in a certain range
does not affect the performance of FARE.

APPENDIX-H. FARE ON DATASET WITH MORE CLASSES.

In Section §IV, we demonstrated the effectiveness of FARE
on two security datasets with 6 and 9 classes, respectively.
Here, we further tested it on an image dataset with more
classes. we used a traffic sign recognition dataset called
GTSRB [66] which has 39,209 training samples and 12,630
testing samples. The dataset has 43 classes, each of which
represents a type of traffic sign (e.g., stop sign, speed limit).
We followed the same missing-class and coarse-grained label
setups as other experiments. For each labeled class, we ran-
domly selected 10% training samples as labeled data, and set
nc and ng as 0, 10, 20, and 30. For each setup, we ran FARE
and the baselines (DNN+, MixMatch+, and Ladders+) 10 times
and reported the testing AMIs. In Figure 8, we observe similar
results as those on the malware and intrusion dataset. FARE
is comparable with the baselines on the original dataset, and
outperforms the baselines when handling low-quality labels.
This result confirms the advantage of FARE over other methods
under a large number true classes.

APPENDIX-I. FARE UNDER CORRUPTED LABELS.

We tested FARE under corrupted labels (which can be
caused by either random labeling errors or poisoning attacks).
Specifically, we considered a setup without missing classes
and coarse-grained labels. By following the setup in [35], we
randomly sampled x% of the labeled samples and relabeled
each sample with a wrong class randomly selected from the
known classes. Here, we set x =10, 25, 50, 75. For each x, we
ran FARE on the corrupted training data 10 times and reported
the testing AMIs. As shown in Table XI, the performance of
FARE is still reasonably good, even when x = 75. This is
again because the clustering ensemble mitigates the negative
influence of incorrect labels. However, compared to the clean
label setting (Table I), the performance drops as more labels
are corrupted. The corrupted labels indeed impose a negative
influence upon FARE. In Section §VI, we have discussed the
potential solutions to alleviate the negative impact.

18

	Introduction
	Background and Problem Scope
	Security Applications
	Problem Scope and Assumptions
	Possible Solutions and Limitations

	Methodology of FARE
	Overview of System Design
	Technical Details
	Unsupervised Extension of FARE
	Training Strategy and Hyper-parameters

	Evaluation
	Experimental Setup
	Experimental Design
	Experiment Results

	Real-world Test: Fraud Detection
	Discussion
	Related work
	Conclusion
	References

