
Favocado: Fuzzing the Binding Code of JavaScript
Engines Using Semantically Correct Test Cases

Sung Ta Dinh∗, Haehyun Cho∗, Kyle Martin†, Adam Oest‡, Kyle Zeng∗, Alexandros Kapravelos†, Gail-Joon Ahn∗§,
Tiffany Bao∗, Ruoyu Wang∗, Adam Doupé∗, and Yan Shoshitaishvili∗

∗Arizona State University, †North Carolina State University, ‡PayPal, Inc., §Samsung Research
∗{tdsung, haehyun, zengyhkyle, gahn, tbao, fishw, doupe, yans}@asu.edu

†{kdmarti2, akaprav}@ncsu.edu, ‡{aoest}@paypal.com

Abstract—JavaScript runtime systems include some special-
ized programming interfaces, called binding layers. Binding
layers translate data representations between JavaScript and
unsafe low-level languages, such as C and C++, by converting data
between different types. Due to the wide adoption of JavaScript
(and JavaScript engines) in the entire computing ecosystem,
discovering bugs in JavaScript binding layers is critical. Nonethe-
less, existing JavaScript fuzzers cannot adequately fuzz binding
layers due to two major challenges: Generating syntactically and
semantically correct test cases and reducing the size of the input
space for fuzzing.

In this paper, we propose Favocado, a novel fuzzing approach
that focuses on fuzzing binding layers of JavaScript runtime
systems. Favocado can generate syntactically and semantically
correct JavaScript test cases through the use of extracted semantic
information and careful maintaining of execution states. This
way, test cases that Favocado generates do not raise unintended
runtime exceptions, which substantially increases the chance of
triggering binding code. Additionally, exploiting a unique fea-
ture (relative isolation) of binding layers, Favocado significantly
reduces the size of the fuzzing input space by splitting DOM
objects into equivalence classes and focusing fuzzing within each
equivalence class. We demonstrate the effectiveness of Favocado
in our experiments and show that Favocado outperforms a state-
of-the-art DOM fuzzer. Finally, during the evaluation, we find 61
previously unknown bugs in four JavaScript runtime systems
(Adobe Acrobat Reader, Foxit PDF Reader, Chromium, and
WebKit). 33 of these bugs are security vulnerabilities.

I. INTRODUCTION

The use of JavaScript has expanded beyond web browsers
into the entire computing ecosystem as a general-purpose pro-
gramming language. As a result, JavaScript engines are embed-
ded in a variety of commercial software (e.g., Adobe Acrobat
and Node.js). JavaScript engines often provide important func-
tionality through a binding layer, which is usually implemented
in unsafe languages such as C and C++. While the JavaScript
engines are being heavily studied, fuzzed, and hardened, their
binding layers are frequently overlooked. This is exemplified

by the introduction of multiple JavaScript fuzzers over the past
few years, none of which could be used to fuzz binding code
in non-browser environments [24, 27, 29, 34, 37, 40, 41, 55, 56].
However, due to the complexity in the implementation of
binding layers in JavaScript engines, vulnerabilities in these
layers are not rare [11]. Therefore, there is a pressing need
to design JavaScript fuzzers to efficiently fuzz JavaScript code
and effectively find bugs in these binding layers.

Even without considering the binding layers, it is difficult
to effectively fuzz JavaScript engines in the first place. Re-
searchers found that for fuzzing JavaScript engines, the quality
of the initial fuzzing input (i.e., seeds) greatly impacts the
fuzzing performance [44]. This is because JavaScript engines
do not directly consume the user-provided JavaScript code.
These engines will parse user input into an abstract syntax tree
(AST) and then process the tree. User inputs that cannot be
transformed into an AST are easily rejected. Hence, JavaScript
test cases generated by fuzzers that are unaware of JavaScript
specifications are likely to be malformed and rejected before
being processed.

To generate syntactically correct JavaScript code as test
cases, modern JavaScript engine fuzzers use context-free gram-
mars [8, 24, 29, 37, 57] or existing semantically correct test
cases [27, 40, 55, 56]. However, only being syntactically correct
is not enough for JavaScript engines to process a test case, as
many JavaScript statements have interdependent relationships.
Failing to capture such relationships will lead to generating
semantically incorrect code that raises runtime exceptions
when being processed. While no JavaScript fuzzers generate
fully semantically correct code as test cases, some fuzzers can
generate test cases in a semantic-aware manner [27, 40, 56].
However, the percentage of rejected test cases that are gen-
erated by these semantic-aware fuzzers is still a significant
problem.

Unfortunately, existing fuzzers are likely to have a difficult
time generating test cases that can adequately fuzz JavaScript
binding layers. As shown in Listing 1, a typical JavaScript test
case that triggers the execution of binding code once involves
at least two steps: (1) Creating the object and (2) setting a
property of the object or calling a function of the object.
Due to the excessive number of JavaScript exceptions that
randomly generated test cases raise, it is practically impossible
for existing fuzzers to generate legitimate JavaScript code that

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24224
www.ndss-symposium.org

1 var cb = this.getField("CheckBox");
2 cb.checkThisBox(0,true);

Listing 1: An example JavaScript test case that triggers the
execution of binding code to check a checkbox.

covers both steps. Not to mention, generating a sequence of
such snippets to execute binding code multiple times.

Another challenge for effectively fuzzing the binding layer
is the enormous input space. There are many object types that
are accessible with JavaScript through the binding layer as a
Document Object Model (DOM) (e.g., in Chromium, there are
more than 1,000 DOM binding objects). Each DOM object
may have a multitude of methods and properties, some of
which may require hard-to-satisfy arguments such as other
DOM objects. Creating all objects to enumerate all properties
and manipulate all methods is simply infeasible. An effective
fuzzer that adequately fuzzes JavaScript binding code should
be aware of the unique features of this layer when generating
test cases. With this embedded awareness built in, a fuzzer can
optimize test case generation by reducing the size of the input
space.

One unique feature of the JavaScript binding layer is the
relative isolation of different DOM objects. Intuitively, differ-
ent DOM objects (e.g., for Adobe Acrobat, spell.check()
in its spell module and Net.HTTP.request() in its
Net.HTTP module) in the binding layer are implemented
as separate native modules, unless an object defined in
one module can be used by code in another module. A
JavaScript test case that calls spell.check() before
Net.HTTP.request() is essentially equivalent to another
test case that calls the two methods in reverse order. We may
define a DOM objects relation where an object can use another
object as a value to its properties or a parameter to its methods.
Based on the relations between DOM objects, we may divide
the entire input space into equivalence classes. In our ex-
ample, spell.check() and Net.HTTP.request() will
fall into different equivalence classes. Object-relation-aware
fuzzers may only mutate DOM objects within each equivalence
class. This greatly reduces the size of the input space. Existing
JavaScript fuzzers are not aware of the isolation of different
DOM objects, which makes them unsuitable for adequately
fuzzing the JavaScript binding layer.

In this paper, we propose a novel fuzzing approach, co-
denamed Favocado, that focuses on finding vulnerabilities in
the binding layers of JavaScript engines. Favocado tackles the
aforementioned challenges by (1) generating syntactically and
semantically correct test cases to eliminate runtime exceptions
and (2) generating object-relation-aware test cases to signifi-
cantly reduce the large input space.

Generating semantically correct test cases. Favocado col-
lects semantic information of binding interfaces by an-
alyzing existing JavaScript API references and Inter-
face Definition Language (IDL) files. IDL files define
interfaces within binding code that are accessible to
JavaScript. Additionally, Favocado manages states during
mutation to ensure the following correctness in semantics:
All generated JavaScript statements may only access ob-
jects, properties, and methods that are currently available

(e.g., Favocado is able to generate JavaScript statements
that do not access previously deallocated objects).

Reducing the size of the input space. Favocado excavates
relations between binding objects from the collected se-
mantic information. Then it separates all binding objects
into multiple equivalence classes based on their relations.
Finally, Favocado focuses on fuzzing JavaScript binding
layer by each equivalence class.

To demonstrate the generality and effectiveness of Favocado,
we thoroughly evaluate our prototype with different types of
binding objects (PDF, Mojo, and DOM). These binding objects
are implemented in four different JavaScript runtime systems
(Adobe Acrobat Reader, Foxit PDF Reader, Chromium, and
WebKit). During our evaluation, Favocado finds 61 previously
unknown bugs, which includes 33 severe security vulnerabili-
ties. Our evaluation results show the effectiveness of Favocado,
which outperforms the state-of-the-art DOM fuzzer, Domato.

Contributions. This paper makes the following contributions:

• We propose Favocado, a novel approach for fuzzing
binding layers of JavaScript engines. Favocado generates
semantically correct JavaScript test cases based on ex-
tracted semantic information and tracking states mutation.
Favocado also reduces the input space by being aware of
relations between DOM objects.

• We implement a prototype of Favocado and thoroughly
evaluate it against real-world binding code in four differ-
ent JavaScript runtime systems (Adobe Acrobat Reader,
Foxit PDF Reader, Chromium, and WebKit) to demon-
strate the effectiveness of Favocado. We also compare
Favocado against Domato and show that Favocado out-
performs Domato.

• We responsibly analyzed and disclosed all bugs found by
Favocado that include 33 security vulnerabilities. By the
time of writing, 13 bugs have been assigned CVE entries
during the responsible disclosure process.

To foster further research, we open source the prototype of
Favocado that we developed as part of our research. The
repository is at https://github.com/favocado/Favocado.

II. BACKGROUND

In this section, we present the background of the JavaScript
binding code fuzzing problem. We will introduce JavaScript
binding code, the terms used in the paper, as well as previous
related work on fuzzing JavaScript engines and the binding
code.

A. Binding Code

JavaScript is a dynamic high-level programming language
interpreted by JavaScript engines (e.g., Chrome V8, Spider-
Monkey, and Chakra). Currently, the use of JavaScript is not
limited in implementing interactive web pages; it is also used
as a general-purpose programming language in both browsers
and many software systems (e.g., Adobe Acrobat Reader).
For example, applications such as Adobe Acrobat, Blink, and
PDFium utilize JavaScript engines to provide dynamic/inter-
active content through JavaScript code embedded in PDF
documents. Because JavaScript cannot be used to directly
implement low-level functionalities (e.g., memory management

2

https://github.com/favocado/Favocado

JavaScript

JS Runtime System

JS Engine Binding Code

Fig. 1: Binding code is used to extend functionalities
of JavaScript by translating data representations between
JavaScript and native code.

and file access), those functions are implemented in unsafe
languages (e.g., C and C++) in JavaScript engines to enable
the extensive use.

To use such additional functionalities, JavaScript runtime
systems have binding code, which is a native component
of JavaScript engines as shown in Figure 1. Binding code
translates data representations: It creates and maps necessary
data types between JavaScript and native code. Native func-
tions implemented in binding code provide JavaScript objects
by defining them through an interface definition language
(IDL). When JavaScript creates such objects, binding code
dynamically generates corresponding native data formats and
types them with JavaScript variables. Then scripts can call
native functions or control data of native components. For
example, in browsers, the DOM is a programming interface
for controlling HTML documents (web pages). The DOM
provides DOM objects as a programming interface so that
JavaScript can easily manipulate the structures and styles of
a document and its elements. On the other hand, the DOM
internally implements logical data structures of a document
and functions in a low-level language that defines how a
document can be accessed and changed by JavaScript. How-
ever, unfortunately, during the translation process, type-, and
memory-safety features of JavaScript cannot be interpreted.
Binding code is implemented in low-level unsafe languages
and vulnerabilities are not rare [11].

A vulnerability in binding code can be a serious secu-
rity threat because “JavaScript is everywhere.” As an ex-
ample, PDFium is a PDF document rendering module of
Chrome browser and Foxit PDF reader, which is bound with
V8 engine to support customizing PDF documents through
JavaScript code embedded in PDFs. If there exists an ex-
ploitable JavaScript binding bug within a PDF reader, then
not only is the standalone application vulnerable but also web
browsers and other PDF readers that include this binding code
as a component. Therefore, binding code must execute the
translation process with rigorous principles to prevent security
violations which frequently happens and makes JavaScript
code exploitable [11].

To detect security flaws in binding layers, many research
works have been proposed [11, 12, 22, 33, 35, 36, 53, 54]. They
have focused on bugs that occur when binding code omits
necessary checks, violates data translation rules, and mis-
handles exceptions through various static analysis approaches
and a dynamic bug detector. However, these solutions have
limited applications and scopes, and thus, are limited in

finding vulnerabilities only within their scopes. On the other
hand, albeit fuzzing has been proven practical for discovering
vulnerabilities in software, existing JavaScript fuzzers are not
practical in terms of fuzzing binding code.

B. Terminology

Throughout this paper, we use the term semantics/semantic
information of binding code to refer to static type signatures
of all methods and objects in binding code that JavaScript
can access to. In addition, we use the term semantically
correct test case to refer to JavaScript statements that use (1)
correct semantic information of binding code and (2) valid
language semantics in the execution context (i.e., correctly
using previously defined variables based on their types). For
example, the Line 2 of Listing 1 is semantically correct
because the cb variable is pointing to the CheckBox type
object that has the checkThisBox method. Also, it uses the
correct types of arguments for calling the method.

C. Fuzzing JavaScript Engines

Due to the high severity of vulnerabilities in JavaScript
runtime environments, a number of research work have at-
tempted to fuzz JavaScript engines for finding vulnerabili-
ties [24, 27, 29, 34, 37, 40, 41, 55, 56]. For fuzzing JavaScript
engines, most research work have focused on generating
syntactically valid JavaScript test cases [24, 29, 37, 41, 55].
Despite their successful fuzzing efforts, they did not consider
JavaScript semantics, and thus, could not generate test cases
effectively—many test cases merely end up as JavaScript
runtime errors [27, 56]. Skyfire [56] was proposed to generate
test cases through the probabilistic context-sensitive grammar
that defines syntax features and semantic rules by learning
from existing samples. CodeAlchemist [27] was proposed to
generate semantically-aware JavaScript code by using small
code blocks collected from a large corpus. Unfortunately, there
is no JavaScript engine fuzzer that can generate semantically
correct test cases all the time.

Recently proposed JavaScript engine fuzzers tried to reduce
the input space. DIE [40] has proposed two mutation strategies,
structure-preserving mutation and type-preserving mutation.
They, also, reduce the input space by utilizing known proof
of concept (PoC) exploits or existing test cases. Montage [34]
showed its outperformed efficacy by leveraging a neural net-
work language model (NNLM) to generate test cases based on
code fragments of previously reported vulnerabilities, similar
to DIE. Their (DIE and Montage) design choice allowed them
to overcome the fundamental limitation of other JavaScript
engine fuzzers: simply producing generic test cases is not
really effective to find vulnerabilities in JavaScript engines
because of the huge search space.

D. Fuzzing the Binding Code of JavaScript Runtime Systems

While many research projects have been attempting to fuzz
the core of JavaScript engines for discovering vulnerabilities,
the binding code area of JavaScript engines has not been
extensively explored yet in the context of fuzzing. A couple
of fuzzers such as Domato and DOMFuzz (deprecated) have
been used for fuzzing the Document Object Model (DOM)
which is a widely used programming interface (binding code)

3

in browsers for accessing a document on the web from
JavaScript [21, 45].

Domato revealed some severe vulnerabilities from DOM
objects of web browsers. However, it relied on manual de-
velopment of a grammar, detail specifications for invoking
each method and assigning objects to properties of each object,
to generate test cases. Therefore, Domato cannot avoid huge
manual efforts to create a grammar file for fuzzing each
binding code (they implemented a grammar file for fuzzing
DOM objects with 5.6K+ LoC). Additionally, Domato lacks
the ability to generate semantically correct test cases. We
need a binding code fuzzer that can perform semantically
correct fuzzing and can minimize manual efforts for extracting
complete semantics of targeted binding code so that it can be
used for fuzzing any binding code in a general manner.

E. JavaScript Engine Fuzzers for Binding Code.

JavaScript engine fuzzers such as DIE [40] and Mon-
tage [34] utilize PoCs of known vulnerabilities and regression
test cases because such PoCs or test suite are specially de-
signed for exploiting specific features of a JavaScript engine.
Therefore, by utilizing them, fuzzers can effectively generate
test cases for exploring distinct and complex execution paths.
However, for finding bugs in binding code, we need to test
a series of various JavaScript statements setting properties
and invoking APIs with correct semantics, which does not
require complex syntactics or code patterns learned from test
suites. Thus, generating test cases syntactically similar to
such existing PoC exploits is not an effective way to find
vulnerabilities in binding code.

CodeAlchemist [27], a state-of-the-art semantics-aware
fuzzer, proposed an approach to create more semantically
valid test cases. However, their evaluation results showed that
only less than 20% of test cases which have more than 5
statements executed without raising any runtime error [27].
We provide experimental results regarding the availability of
CodeAlchemist as a binding code fuzzer in Section V-B.

On the other hand, mutational fuzzers using context-free
grammars such as Superion [57] and Nautilus [8] requires well-
developed grammars. Therefore, those fuzzers have the same
limitations as the existing binding code fuzzers.

III. OVERVIEW

Fuzzing JavaScript engine and binding code faces two ma-
jor challenges: (1) generating semantically correct test cases,
and (2) reducing the size of the input space. These challenges
are not unique to fuzzing JavaScript engines. In fact, they are
prevalent in fuzzers for programs that take highly structured
test cases as input. In this section, we first describe these
challenges in detail for fuzzing binding code. We then discuss
why they must be tackled (Section III-A) and provide a high-
level overview of how Favocado addresses these challenges
(Section III-B).

A. Requirements for Fuzzing Binding Code

1) Semantically Correct Test Cases: First of all, for fuzzing
binding code of JavaScript engines, we should have complete
semantics of targeted binding code. Fuzzing binding code

Java
Script

Source code Abstract Syntax Tree

Syntax
Parser

Execution Context

Execution
Store
Load

Fig. 2: JavaScript engines first parse source code to an AST.
Then, they execute it, managing the execution context infor-
mation dynamically.

with JavaScript code requires allocating (define) a binding
object, assigning a specific value to a property, and calling a
method with correct-type arguments. Therefore, without accu-
rate semantic information of targeted binding code, we cannot
generate test cases for fuzzing binding code. Also, we need
an automated approach that constructs semantic information
of targeted binding code to avoid manual development.

Next, generating syntactically valid test cases is not only a
prerequisite but we also need to generate semantically correct
test cases for maximizing the effectiveness of fuzzing against
binding code. We note that semantically correct test cases stand
for JavaScript statements that have valid semantics of targeted
binding code (e.g., correct use of method names, argument
types, and return type of binding code) as well as valid runtime
semantics (e.g., correct use of previously defined variables
and objects based on their types). Invalid test cases, which
cause runtime errors (syntax, reference, type, and range errors)
in the middle of execution, seriously impede the progress
of fuzzing. Unfortunately, state-of-the-art JavaScript engine
fuzzers introduce high error rates of test cases [27, 34, 40, 45].
Also, Domato, a binding code fuzzer leveraging context-free
grammars, cannot consistently generate semantically correct
test cases [21].

Figure 2 illustrates how a JavaScript engine executes
JavaScript code. To execute JavaScript code, JavaScript en-
gines first generate an Abstract Syntax Tree (AST) by parsing
the source code through a syntax parser. If the syntax of the
code is not correct, it will not generate AST or execute the
source code. Then, the JavaScript engine starts to execute the
code within the execution context that controls the scope of
the code and contains up-to-date information of the current
program state. The JavaScript engine dynamically manages the
execution context. If a statement accesses a variable that is
out of the scope or an object that has been deallocated, the
JavaScript engine raises a runtime error and stops executing
the code.

We should generate and execute JavaScript statements
including method calls for fuzzing binding code because each
bug in binding code can only be discovered by executing
a series of JavaScript statements accessing binding objects.
Hence, a fuzzer needs to input many JavaScript statements

4

interface INTERFACE_NAME {
 const unsigned long value = 12345;
 attribute Node node;
 void func(long argument, ...);
};

IDL files

Class: Doc
Method: addIcon
 Parameters:
 cName — The name of the new object
 icon — The Icon object to add

API references

Binding_objects["object"] = {
 "properties": {
 "prop1":{
 "read_only":"None", "type": "boolean"
 }
 },

"methods":{
"func":[{

"exception":0, "num_arg":1,
"args":{"arg0":"DOMString"},
}],

},
"has_parent":1,
"p_typename":"parent_object_type"

}

Semantic Information Test case Generator (fuzz.js)

fuzz
.js

Generate test cases

obj method (args).

Execute test cases

Fuzzing: run fuzz.js

Semantic
information

Context
information

Statement
formats

∞

Fig. 3: The overview of Favocado. After extracting semantic information of binding objects, Favocado starts to fuzz binding
code inside the target JavaScript runtime system with syntactically and semantically correct test cases.

at once as a basic testing unit for fuzzing. If a test case
contains a semantically incorrect statement, the test case has
to stop executing and retire—fuzzers cannot evaluate the test
case where security vulnerabilities may exist because of such
invalid JavaScript statements. Consequently, to achieve highly
effective fuzzing on JavaScript binding code, it is critical to
prevent runtime errors by carefully generating semantically
correct JavaScript statements that do not transgress the exe-
cution context.

2) Reducing the Size of the Input Space: A large input
space severely hinders the effectiveness of fuzzing. Thus,
we need to reduce the size of the input space of binding
code [34, 40]. Recent JavaScript engine fuzzers utilize existing
test cases or PoC exploits of previous vulnerabilities to learn
their syntax so that they can reduce the input space and quickly
traverse complex execution paths [27, 34, 40]. The input space
of binding code is huge, but our goal is not only covering deep
execution paths. When fuzzing binding code, we need to focus
on generating various method call sequences and changing
arguments and properties of binding objects, which is more
important than exploring deep execution paths. Therefore, we
do not leverage an existing test suite or PoCs of previous
vulnerabilities for reducing the input space similar to the recent
JavaScript engine fuzzers.

B. Our Approach

Our goal is to achieve the two requirements discussed in
Section III-A.

Favocado first parses semantic information from the In-
terface Definition Language (IDL) files or API references.
For constructing complete semantic information of targeted
binding code, Favocado parses IDL files when source code
is available. If source code is not publicly opened, we need
to use API reference manuals (e.g., JavaScript for Acrobat
API reference [7]). By parsing IDL files or API references,
Favocado obtains semantic information of binding objects
(their methods with arguments, and their properties), which
include exact types and possible values (discussed in Sec-
tion IV-A). Extracted semantic information can directly be
used for generating test cases.

Next, Favocado generates a JavaScript file (a test case
generator) with the semantic information of binding code and

starts fuzzing by executing the test case generator on a target
JavaScript runtime system. The test case generator randomly
selects a JavaScript statement format among predefined state-
ment formats that include statements defining objects, calling
methods, assigning values to properties, and so forth as shown
in Figure 5. It, then, uses the semantic information of binding
code and context information of a fuzzing process (i.e., the
runtime semantics of test cases such as a list of previously
defined variables with their types) to complete a statement,
preventing unexpected runtime errors. As an example, when
Favocado constructs a statement such as car.drive(man),
Favocado checks whether the man object has been properly
defined or not. In addition, even though Favocado knows that
the object has been previously defined, it checks whether
the object is still alive and accessible. This is because, for
example, runtime errors can occur when a statement accesses
an object after invoking a method that deallocates the object
such as removechild. If the object was deallocated by such
methods, Favocado creates the object again and executes the
constructed statement, thus avoiding a runtime error. It also
remembers the variable name pointing to the newly defined
object for later use. We discuss our test case generation
mechanism in detail in Section IV-B.

Furthermore, Favocado divides an input space to increase
the effectiveness of fuzzing binding code. Specifically, to deal
with the large input space, Favocado randomly selects several
binding objects for a single fuzzing process to focus only on
them and runs multiple fuzzing instances concurrently. When
Favocado selects binding objects, it considers relationships of
objects so that objects related to each other can be fuzzed
together (discussed in Section IV-B).

In summary, Favocado can fuzz any type of binding code
in a general manner with syntactically and semantically correct
test cases, preventing runtime errors (not wasting any test case,
except for when it is intentionally generating erroneous state-
ments for finding bugs). It is worth noting that the design of
Favocado is not limited to fuzzing binding code of JavaScript
engines. We believe our approach can also be used for fuzzing
binding code of the other scripting languages.

IV. DESIGN

In this section, we describe the design of Favocado.
Favocado consists of two parts: (1) semantic information

5

construction (Section IV-A) and (2) dynamic error-safe test
case generator (Section IV-B). Figure 3 illustrates the overview
of Favocado design: After extracting semantic information
of binding objects, it starts fuzzing binding code inside a
target runtime system, dynamically generating syntactically
and semantically correct test cases.

A. Semantic Information Construction

Favocado relies on the semantic information extracted from
either IDL files or JavaScript API references of software sys-
tems. Specifically, Favocado parses the following information.

(1) Binding object names. Favocado records a name of each
object, and a name of a parent object if the object has a
parent to check whether an object has inherited methods
or properties.

(2) Binding object methods. Favocado obtains each
method’s name and all arguments’ exact types to
generate a valid method call statement. Also, Favocado
checks whether or not a method can raise an exception
to handle it. A return type of a method is decided as
well.

(3) Binding object properties. Favocado parses a name,
type, and possible string values (if a type of property is a
string) of each property. Furthermore, it checks whether
a property is read-only.

Listing 2 shows an example of extracted semantic informa-
tion. The HTMLDialogElement object has two properties
and three methods. Also, this object has a parent object:
HTMLElement. Types of the two properties are boolean
and DOMString. The close method has one argument
of which type is DOMString. Additionally, we notice that
the showModal method does not have an argument, but it
throws an exception if a certain condition is unmet. Therefore,
Favocado should dynamically handle this exception through
the try–catch statement. Otherwise, the fuzzing process can
stop because of the exception. This semantic information is
used directly to generate a test case while fuzzing.

Before fuzzing, Favocado finds binding objects related
each other using type information of method arguments, re-
turn values, and properties. To this end, Favocado analyzes
the extracted semantic information. If an object is used as
an argument of a method, a return type, or a type of a
property in another object, Favocado records them so that
they can be fuzzed together (discussed in Section IV-B).
An example of related binding objects is shown in List-
ing 3. Favocado discovered the ImageCapture object is
related to Blob, ImageBitmap, MediaStreamTrack,
and PhotoCapabilities objects because these objects
are return types of the ImageCapture object’s methods.
Also, the Crypto object has ArrayBufferView and
SubtleCrypto objects as related objects because they are
used as an argument of a method and a type of a property,
respectively.

B. Dynamic Test Case Generator

The test case generator is a JavaScript file that dynamically
generates and executes JavaScript statements inside a target
system. This design enables us to actively handle runtime

1 Binding_objects["HTMLDialogElement"] = {
2 "properties":
3 {
4 "open":
5 {
6 "read_only":"None", "type":"boolean"
7 },
8 "returnValue":
9 {

10 "read_only":"None", "type":"DOMString"
11 }
12 },
13 "methods":
14 {
15 "close":
16 {
17 "exception":0, "numarg":1,
18 "args":{"arg0":"DOMString"},
19 },
20 "showModal":
21 {
22 "exception":1, "numarg":0,
23 "args":{},
24 },
25 "show":
26 {
27 "exception":0, "numarg":0,
28 "args":{},
29 }
30 },
31 "has_parent":1,
32 "p_typename":"HTMLElement"
33 }

Listing 2: An example of extracted semantic information of
the HTMLDialogElement object. Favocado generates a
test case while fuzzing binding code by using this semantic
information.

1 "ImageCapture":
2 [{
3 "Blob", "ImageBitmap", "MediaStreamTrack", "

PhotoCapabilities"
4 }]
5

6 "Crypto":
7 [{
8 "ArrayBufferView", "SubtleCrypto"
9 }]

Listing 3: An example of related objects discovered by
Favocado.

errors while fuzzing so that we can perform fuzzing binding
code without losing a generated test case. 40% of test cases
generated by state-of-the-art JavaScript engine fuzzers may
lead to runtime errors, which prevent fuzzers from exploring
corresponding execution paths where vulnerabilities may exist.

Dividing an input space into equivalence classes. In fuzzing,
a large input space not only increases the time to generate
a test case, but also hinders fuzzer’s capability of exploring
deep execution paths [34, 40]. This also applies to fuzzing
JavaScript binding code. There are numerous DOM objects in
each JavaScript runtime system. For example, in Chromium,
there are more than 1,000 DOM objects. Each DOM object
may have a multitude of methods and properties, some of
which may require hard-to-satisfy arguments such as other

6

Initialize all objects

while (1) {
 Select a statement format
 Complete the selected format
 Log the complete statement
 try {
 Execute the statement
 } catch (error) {
 Continue the loop
 }
}

fuzz.js1

2

4
3

6
5

8
7

10
9

11

Fig. 4: The execution flow of the test case generator. After ini-
tializing all objects targeted in a test case generator, Favocado
starts fuzzing targeted binding objects.

DOM objects. Therefore, fuzzing all combinations of all DOM
objects (and their properties and methods) is simply infeasible.

We notice a unique feature in JavaScript binding layers:
the isolation among DOM objects. Different DOM objects
(e.g., for Adobe Acrobat, spell.check() in the spell
module and Net.HTTP.request() in the Net.HTTP mod-
ule) in the binding layer are implemented as separate native
modules. A test case that invokes spell.check() before
Net.HTTP.request() is equivalent to another test case
that invokes the two methods in reverse order. We define a
DOM objects relation where an object uses another object
as a value to its properties, a parameter to its methods, or
a return type of its methods. For example, Listing 3 shows
that Crypto object is related to ArrayBufferView (a
return type of getRandomValues method in Crypto) and
SubtleCrypto (a property of Crypto). ImageCapture
object has four related objects. Based on the relation between
DOM objects, we may divide the entire input space into
equivalence classes. Favocado then only mutate and fuzz DOM
objects within each equivalence class. This way, the size of the
input space is significantly reduced.

Favocado analyzes the extracted semantic information to
identify the relationships of binding objects. Once fuzzing
started, Favocado randomly selects binding objects based on
the analysis result and generates test cases for them.

Test case generator. Favocado creates the test case generator
(fuzz.js) that executes on a JavaScript runtime system,
fuzzing binding objects. In the test case generator, the semantic
information of binding objects, statement formats, and pre-
defined JavaScript statements for initializing binding objects
are included. We could not completely automate generating
the statements for initializing some binding objects in each
JavaScript runtime system. This is because many objects can
be initialized easily without difficulty, but some binding objects
require environment-specific data such as IP addresses, specific
data formats such as image files, or have dependencies on
other objects to initialize them, which cannot be generated
from the semantic information and thus cannot be automated.
We note that Domato [21] also manually implemented DOM
objects initialization statements for fuzzing. To balance fuzzing
performance and engineering efforts in this paper, we leave the

Semantic information

obj method (args).var =

Statement formats

var obj = new obj(args)
obj.prop = value
var variable = obj.method_with_return(args)
obj.method_without_return(args)
for(var i=1; i++; i<n) { statements }
array[index] = value
obj.__proto__ = obj;
obj.__defineSetter__(prop, func)
obj.__defineGetter__(prop, func)
obj.prototype.method()
function(args) { statements }

 Context information

obj methods argsproperties
… … … …

variable name type
… …

1
2

4
3

6
5

8
7

10
9

11

Fig. 5: An example of generating a test case. Favocado selects a
statement format and completes it by leveraging the semantic
information of targeted binding code. Also, it manages the
context information to avoid unexpected runtime errors.

automated binding object initialization as future work. In ad-
dition, for providing context information of a fuzzing process,
there is a list of allocated variables in a test case generator. This
data structure holds information on available variable names
with their types. A test case generator dynamically maintains
the context information to prevent unexpected runtime errors
such as reference and type errors (except for intentionally
generating erroneous statements, for example, where Favocado
tries to trigger bugs by using different types).

Favocado executes a test case generator as illustrated in
Figure 4. It first initializes all binding objects that are going
to be fuzzed via the predefined statements. It also stores the
names of variables that reference initialized binding objects
and their types as context information. After this initializa-
tion process, our test case generator goes into the while
loop where it starts fuzzing targeted binding objects through
JavaScript statements dynamically generated.

Favocado randomly selects targeted binding objects. The
number of binding objects should be decided heuristically but
related objects must be selected together. Also, the duration
of fuzzing the selected binding objects needs to be decided
heuristically. In our evaluation, we managed the total number
of objects, including related objects, for which Favocado
generates test cases less than 6.

Generating test cases. When Favocado generates a JavaScript
statement, it randomly selects a statement format from the

7

list shown in Figure 5. Our statement formats contain basic
forms to use binding objects (defining an object, assigning a
value to a property, and calling a method) as well as forms to
use prototype objects. Also, Favocado can generate iterative
statements, arrays, and functions dynamically.

Once a format is selected, Favocado completes a selected
statement format by using the semantic and context infor-
mation. For example, when a format shown in Figure 5 is
selected, Favocado randomly picks a binding object and checks
whether the object is available through the eval API which
will return an error if the object is not available. If the
object is unavailable (because Favocado invoked a method that
deallocates the object before making this statement), Favocado
replaces the variable name of this object from the context
information after initializing the object again. Favocado, thus,
can prevent reference errors by not accessing objects which do
not exist.

Next, Favocado randomly selects a method and its argu-
ments. Basically, Favocado sets proper values for arguments,
but, it randomly sets wrong types to find type confusion bugs
in binding code. This principle also applies to when Favocado
uses the other statement formats. To take another example,
when creating a statement such as “obj.prop = value”,
Favocado intentionally can set a wrong type to the value so
that value has a different type from the prop. In addition,
Favocado tests the other types of bugs by intentionally setting
wrong values (e.g., values go beyond the possible range) and
previously freed objects. It is worth noting that Favocado can
prevent unexpected runtime errors by finding and assigning
correct types but it randomly makes runtime errors on purpose
for finding bugs such as type confusion bugs. Lastly, Favocado
prepares a variable to store a return value from the selected
method by creating a new variable.

Generating functions in test cases. When Favocado generates
a function while fuzzing, it fills the function body by randomly
picking and completing statement formats. A return statement
of a function can return either nothing or a value. When a
return statement returns a value, a type of the return value can
be the same type of properties of targeted objects in the test
case generator so that functions generated by Favocado can be
used to set properties of targeted objects. For example, when
Favocado generates a function, if the HTMLDialogElement
object shown in Listing 2 is the only targeted object in the test
case generator, Favocado inserts a return statement that returns
either a Boolean type or a DOMString type object because
properties of the targeted object have only the two possible
types.

V. EVALUATION

In this section, we first evaluate the latest semantics-aware
JavaScript engine fuzzer, CodeAlchemist, to test how many
semantically correct test cases using binding objects could be
generated. We, then, evaluate the effectiveness of Favocado
based on its ability to find distinct bugs in various types of
binding code and JavaScript runtime systems.

Q1. Are existing JavaScript engine fuzzers sufficient to fuzz
JavaScript binding code?

Q2. Can Favocado discover new vulnerabilities in real-world
JavaScript runtime systems?

Q3. Can Favocado be applied to fuzzing different types of
binding code in JavaScript runtime systems?

Q4. How does Favocado compare to state-of-the-art JavaScript
fuzzers that can fuzz binding code?

A. Experimental Setup

Implementation. Favocado consists of two modules: (1) the
IDL/API reference parser in Python and (2) the main fuzzing
controller in Python and JavaScript. For implementing the
parser, we modified a publicly available IDL parser.1. The
parser parses and stores the semantic information of binding
code in JavaScript data types. Also, we implemented an API
reference parser for parsing the Acrobat API Reference in
Python [7] for fuzzing PDF binding objects of the Adobe
Acrobat Reader and Foxit Reader which are closed-source
applications.

After extracting the semantic information of binding code,
the main fuzzing controller analyzes relationships between
binding objects. It, then, randomly picks binding objects
based on the relationships and creates a test case generator,
as a JavaScript file, that contains the semantic information
of selected binding objects as well. The test case generator
runs on a JavaScript runtime system, fuzzing targeted binding
objects.

Targeted JavaScript Runtime Systems. To evaluate the
effectiveness of Favocado, we selected 4 targets as follows:

T1. Adobe Acrobat Reader (PDF): It uses the AcroJS en-
gine that contains binding code to support customizing
of PDF files through JavaScript code.

T2. Foxit PDF Reader (PDF): It contains the V8 JavaScript
engine to support PDF files that embed JavaScript code.

T3. Chromium (Mojo and DOM): An open-source browser
using the V8 JavaScript engine. We performed fuzzing on
Mojo and DOM binding objects of the Chromium browser
with Favocado.

T4. WebKit (DOM): A browser engine used by the Safari
browser. It uses the JavaScriptCore engine. We conducted
fuzzing on DOM objects of the WebKit engine.

Our 4 targets are currently used by a very large number of
users. In addition, they have been tested rigorously by security
analysts because their vulnerabilities can directly be a threat
to users. Therefore, we believe that previously unknown and
distinct bugs found by Favocado can represent the effectiveness
of Favocado’s bug-finding ability.

Counting distinct bugs. The ultimate way to measure the
performance of a fuzzer is showing the number of distinct
bugs [32]. Because we evaluated Favocado with the most
recent version of target systems, all bugs found by Favocado
were previously unknown ones (there is no ground truth).
Therefore, to prevent overcounting distinct bugs, we manually
analyzed all crashes that occurred while fuzzing target pro-
grams. We counted a distinct bug only if an instruction pointer
address (where a crash occurred) was different from the others
and a unique series of minimized JavaScript statements caused
a crash. We reported all distinct bugs to vendors with our

1https://chromium.googlesource.com/chromium/src/tools/idl parser/+/
884cd8ee4e59bc46d72f300de217215f81a5af72/idl parser.py

8

https://chromium.googlesource.com/chromium/src/tools/idl_parser/+/884cd8ee4e59bc46d72f300de217215f81a5af72/idl_parser.py
https://chromium.googlesource.com/chromium/src/tools/idl_parser/+/884cd8ee4e59bc46d72f300de217215f81a5af72/idl_parser.py

Breakdown of Runtime Errors
Success Rate Fail Rate Syntax Error Reference Error Type Error

28.24% 71.76% 1.76% 34.80% 63.44%

TABLE I: Evaluation results of the modified CodeAlchemist as
a PDF binding object fuzzer. Only 28.24% of test cases could
run without causing a runtime error, resulting in 0 crashes.

analysis reports. Also, we verified that there were no instances
of misclassification through our manual inspection of every
PoC that we reported to vendors.

B. Evaluation of CodeAlchemist

Before evaluating Favocado, we performed experiments
using a state-of-the-art JavaScript engine fuzzer, CodeAl-
chemist, in order to examine its suitability as a binding code
fuzzer. CodeAlchemist is the latest semantics-aware generative
JavaScript engine fuzzer that focuses on generating more
semantically valid test cases using code blocks disassembled
from a large corpus [27]. We, especially, evaluated how many
semantically correct test cases using PDF binding objects can
be generated by CodeAlchemist.

To this end, we first provided syntactically and semantically
valid JavaScript code using PDF binding objects as seeds.
(CodeAlchemist used regression tests from repositories of the
four major JavaScript engines, and test code snippets from
Test262 [1]) The PDFs were collected from Mozilla’s PDF.js
test suite [4] which contains over 600 PDF files embedding
JavaScript code that uses various PDF binding objects for
testing PDF rendering engines. Also, we collected PDFs from
Virustotal [6] where we can find numerous malicious PDFs
that use PDF binding objects. Because JavaScript test cases
using PDF binding objects are not prevalent, we had to find
code snippets from malicious PDFs for providing more seeds.
In total, we collected 22,180 PDFs. We, then, refined the
collected JavaScript samples by using the Esprima [2], which
resulted in 4,450 valid JavaScript code snippets. In addition,
we used 4,197 V8 regression test suite samples [5] as seeds.
Consequently, we prepared 8,647 valid JavaScript snippets as
seeds.

We set CodeAlchemist with the default parameters as in the
repository. However, the dynamic analysis step to determine
types will not be able to recognize PDF binding objects defined
by PDF Readers. Therefore, to provide CodeAlchemist the
best possible chance of utilizing the seeds that exercise PDF
binding objects, we modified CodeAlchemist’s dynamic anal-
ysis module to recognize these objects as a generic JavaScript
object type. We accomplished this by implementing a proxy
tarpit [48] for each PDF binding object. We generated 100K
JavaScript test cases through CodeAlchemist configured for
fuzzing PDF binding code and each test case was embedded
into a pdf file.

We loaded the 100K PDF files, each of which embeds a
test case generated by CodeAlchemist, on the Adobe Acro-
bat Reader v2019.012.20040. Experimental results are shown
in Table I. Only 28.24% of test cases succeeded to execute
without causing a runtime error but could not make a crash.
About 71% of test cases could not execute completely mostly

because of reference errors and type errors (these bugs are
98.24%)—because of CodeAlchemist’s inability to generate
semantically correct test cases.

C. Favocado on PDF Binding Objects

JavaScript in PDF files is widely used to customize docu-
ments. We selected two PDF viewers (Adobe Acrobat Reader
v2019.012.20040 and Foxit Reader v9.5) that implement PDF
binding objects embedded in a JavaScript engine. Both PDF
readers are closed-source programs, and thus, we could not
directly parse IDL files. Therefore, we parsed the Adobe API
reference [7] for building the semantic information of PDF
binding objects so that we can start fuzzing them. It is worth
noting that there was no openly available API reference docu-
ments for the Foxit reader. We, thus, had to use the semantic
information extracted from the Adobe API reference [7] for
the Foxit reader.

Adobe Acrobat Reader. For fuzzing Adobe Acrobat Reader,
we used 8 virtual machines (VMs)—2 cores and 4GB of
memory for each VM (1 fuzzing process executes on each
VM). We set Favocado to select less than 6 objects (not
including the related objects) and generate test cases only
for each group of selected objects. We ran the test case
generator by setting it to change targeted objects if no crash
has been found up to 100K JavaScript statements. This fuzzing
campaign continued for 2 weeks.

In total, we found 39 distinct bugs within just 2 weeks.
Among them, 18 bugs are exploitable ones that can cause a
serious security problem such as an arbitrary code execution as
shown in Table III. Also, 11 vulnerabilities have become CVE
entries by the time of writing. The vendor acknowledged that
the impact of those vulnerabilities is “critical.”

Foxit Reader. We, also, performed fuzzing on PDF objects
against another PDF viewer—Foxit reader—for 3 days. Except
for the fuzzing duration, we employed the same setting as we
used for fuzzing Adobe Acrobat Reader. Even though not all
test cases generated by Favocado were semantically correct
(because we used the semantic information extracted from the
Adobe API reference for the Foxit reader), we found 3 distinct
use-after-free vulnerabilities in the Foxit reader.

D. Favocado on Mojo and DOM Objects of Chromium

To evaluate the effectiveness of Favocado for other binding
objects, we prepared and performed fuzzing on Mojo and
DOM binding objects in Chromium v84.0.4110.0 with Fav-
ocado. We used the same environment as we used for fuzzing
PDF binding objects except for the process of extracting the
context information.

DOM binding objects. Because Chromium is an open-source
browser, we parsed IDL files that defines interfaces of DOM
and constructed the semantic information of them. We, then,
let Favocado run for 2 weeks on 8 VMs. As a result of fuzzing,
we found 6 distinct bugs including 2 security vulnerabilities.

Mojo binding objects. Mojo is a platform-agnostic library that
enables Inter Process Communication (IPC) between processes
implemented in multiple programming languages. Chromium
implements the Mojo library and provides Mojo binding
objects to JavaScript.

9

We first modified the Mojom Parser2 to parse and con-
struct the semantic information of Mojo binding objects that
Favocado can process. Because the Chromium browser has
implemented the dedicated Mojom parser, we did not use our
IDL parser even though IDL files for Mojo are available. We,
then, conducted fuzzing with Favocado for 1 week on 8 VMs.
Consequently, Favocado discovered 2 distinct bugs including
an exploitable use-after-free vulnerability.

E. Favocado on DOM Objects of WebKit

Domato fuzzer has discovered around 40 vulnerabilities
from DOM binding objects of the WebKit within 2 years [21].
Even with this long-term fuzzing campaign, we performed
fuzzing on DOM objects of the most recent version of the
WebKit browser engine v2.28 as of when we conducted this
evaluation, rather than evaluating Favocado against an old
version of the WebKit. This fuzzing campaign lasted for 4 days
on 8 VMs with the same evaluation setup used for fuzzing the
other JavaScript runtime systems.

While fuzzing DOM objects of WebKit for 4 days, Fav-
ocado discovered 3 new distinct bugs. All of these bugs are
exploitable security vulnerabilities.

F. Comparison with Domato

To demonstrate the effectiveness of Favocado, we com-
pared it with Domato, a state-of-the-art binding code fuzzer
using manually developed context-free grammars. To this end,
we used Favocado and Domato for fuzzing the newest version
of Adobe Acrobat Reader v2020.009.20067 as of when we
started this evaluation. This version contained patches for
fixing bugs that we had reported.

To evaluate Domato, we implemented a grammar file for
PDF binding objects. Especially, we constructed the grammar
only for the Field and Doc objects because all bugs that
we found from Adobe Acrobat Reader v2019.012.20040 are
related to these objects. We note that this setting based on our
fuzzing results helps Domato to find bugs more effectively
by reducing the input space a lot—by generating test cases
only for those objects. We let Domato to run for 1 week on
8 VMs, fuzzing the binding objects. We, then, started another
fuzzing campaign with Favocado for 1 week. For making a fair
comparison, we only let Favocado to fuzzing for the Field
and Doc binding objects. In addition, we did not count bugs
found by Favocado if the bugs are the same one that we already
discovered in the previous version of Adobe Acrobat Reader.

Domato discovered 1 use-after-free vulnerability, while
Favocado discovered 6 distinct bugs including the one found by
Domato. Furthermore, we check the error rate of test cases that
Domato generated: 65.36% of test cases successfully executed
(around 34% of test cases caused runtime errors). This compar-
ison result demonstrates that Favocado outperforms the state-
of-the-art binding code fuzzer in terms of finding distinctive
vulnerabilities.

2 The Mojom Parser. https://chromium.googlesource.com/chromium/src/
mojo/+/refs/heads/master/public/tools/mojom

Breakdown of Runtime Errors
Success Rate Fail Rate Syntax Error Ref. Error Type Error

Chromium 90.92% 9.08% 6.55% 18.97% 74.48%
WebKit 90.75% 9.25% 6.31% 21.81% 71.87%

TABLE II: Runtime errors that Favocado’s test cases raised
while fuzzing binding object of Chromium and WebKit.

1 x = {}
2

3 x.toString = function(){
4 this.flattenPages(0);
5 return "center";
6 }
7

8 textfield = this.addField("Field", "text", 0,
[0,0,800,800]);

9 textfield.alignment = x

Listing 4: Minimized JavaScript snippet for triggering a use-
after-free vulnerability (CVE-2019-8211) on Adobe Acrobat
Reader.

G. Runtime errors of Favocado

Favocado dynamically generates JavaScript statements
based on the semantic information extracted from binding
code and the context information maintained while fuzzing to
prevent unexpected runtime errors. However, when Favocado
generates statements calling a method and assigning a value to
a property of a method, Favocado randomly triggers runtime
errors by intentionally using different types of objects, values
out of range, etc. for finding vulnerabilities. We set Favocado
to have 20% chance of generating such erroneous statements
as default.

We measured how many runtime errors occurs while
fuzzing binding objects on Chromium and WebKit. To this end,
we created 100,000 JavaScript statements for each browser
through Favocado and monitored execution results of them.
Table II shows the experimental results. Overall, about 10%
of JavaScript statements caused runtime errors and most of
them are type errors.

H. Case Study

To illustrate how Favocado finds vulnerabilities in binding
code, we introduce four real-world vulnerabilities discovered
by Favocado. Given JavaScript snippets are minimized test
cases that Favocado generated while fuzzing each target.

CVE-2019-8211. Listing 4 shows a minimized JavaScript
snippet that can trigger a use-after-free bug on Adobe Acrobat
Reader v2019.012.20035.

Favocado first defined an object x. It, then, assigned
a function to the toString method of the x object. To
this end, on Line 4–5, Favocado defined a function where
flattenPages API is called with an argument 0. This
API call enforces all Field objects on page 0 of a PDF
file will be deallocated. After calling the API, the custom
toString function returns a string “center.” Favocado
knew that toString should return a string type. Moreover,
Favocado made the return statement because the alignment

10

https://chromium.googlesource.com/chromium/src/mojo/+/refs/heads/master/public/tools/mojom
https://chromium.googlesource.com/chromium/src/mojo/+/refs/heads/master/public/tools/mojom

No. Target JavaScript Runtime System Type Exploitable Impact Status

1 Adobe Acrobat Reader v2019.012.20040 Use-after-free 3 High CVE-2019-8211
2 Adobe Acrobat Reader Use-after-free 3 High CVE-2019-8212
3 Adobe Acrobat Reader Use-after-free 3 High CVE-2019-8213
4 Adobe Acrobat Reader Use-after-free 3 High CVE-2019-8214
5 Adobe Acrobat Reader Use-after-free 3 High CVE-2019-8215
6 Adobe Acrobat Reader Use-after-free 3 High CVE-2019-8220
7 Adobe Acrobat Reader Use-after-free 3 High CVE-2019-16448
8 Adobe Acrobat Reader Use-after-free 3 High CVE-2020-3792
9 Adobe Acrobat Reader Use-after-free 3 High Reported

10 Adobe Acrobat Reader Untrusted pointer dereference 3 High CVE-2019-16446
11 Adobe Acrobat Reader Heap out-of-bound write 3 High CVE-2020-9594
12 Adobe Acrobat Reader Heap out-of-bound read 3 Moderate Reported
13 Adobe Acrobat Reader Uninitialized heap memory use 3 Moderate Reported
14 Adobe Acrobat Reader Uninitialized heap memory use 3 Moderate Reported
15 Adobe Acrobat Reader Uninitialized heap memory use 3 Moderate Reported
16 Adobe Acrobat Reader Type confusion 3 High CVE-2019-8221
17 Adobe Acrobat Reader Type confusion 3 High *Fixed
18 Adobe Acrobat Reader Type confusion 3 High *Fixed
19 Adobe Acrobat Reader Null pointer dereference 7 Low Reported
... Adobe Acrobat Reader Null pointer dereference 7 Low Reported
39 Adobe Acrobat Reader Null pointer dereference 7 Low Reported
40 Adobe Acrobat Reader v2020.009.20067 Use-after-free 3 High CVE-2020-9722
41 Adobe Acrobat Reader Use-after-free 3 High Reported
42 Adobe Acrobat Reader Heap overflow 3 High Reported
43 Adobe Acrobat Reader Heap out-of-bout read 3 Moderate Reported
44 Adobe Acrobat Reader Uninitialized heap memory use 3 Moderate Reported
45 Adobe Acrobat Reader Null pointer dereference 3 Moderate Reported
46 Foxit Reader v9.5 Use-after-free 3 High Reported
47 Foxit Reader Use-after-free 3 High Reported
48 Foxit Reader Use-after-free 3 High Reported
49 Chromium (Mojo) v84.0.4110.0 Use-after-free 3 High Reported
50 Chromium (Mojo) Null pointer dereference 7 Low Reported
51 Chromium (DOM) v84.0.4110.0 Heap overflow 3 High CVE-2020-6524
52 Chromium (DOM) Security check fail 3 Moderate Reported
53 Chromium (DOM) Null pointer dereference 7 Low Reported
... Chromium (DOM) Null pointer dereference 7 Low Reported
56 Chromium (DOM) Null pointer dereference 7 Low Reported
57 WebKit v2.28 Use-after-free 3 High Reported
58 WebKit Heap out-of-bound Write 3 High Reported
59 WebKit Heap out-of-bound Read 3 Moderate Reported
60 WebKit Null pointer dereference 7 Low Reported
61 WebKit Null pointer dereference 7 Low Reported

*Fixed = The vendor silently fixed a bug after we reported it.

TABLE III: Distinct bugs found by Favocado. We have performed fuzzing on 4 different JavaScript runtime systems. As a result,
Favocado found 61 distinct bugs. Among 61 distinct bugs, there are 33 exploitable vulnerabilities. The high impact implies that
it can lead attackers to have arbitrary code execution on a target system. Bugs that have the moderate impact can be used with
other bugs for information leakage or arbitrary code execution. The low impact bugs can cause a crash but cannot be exploited
for other attacks other than the denial-of-service attack.

property of the Field object must have one of specific string
values (i.e., left, right, or center).

After allocating a new text field object on Line 8, the
JavaScript engine called the toString method of the x
object, which was customized by Favocado, to cast the type
of x to a string type object because the alignment prop-
erty is a string type. At this moment, the text field object
had been deallocated by calling the flattenPages API.
Therefore, when the JavaScript engine assigned the return
value of the customized toString function, a use-after-free
error occurred. This case clearly demonstrates the effectiveness
of semantically correct JavaScript statements that Favocado
generates for finding bugs.

Type confusion vulnerability in PDF binding objects. The
JavaScript snippet shown in Listing 5 triggers a crash using

1 myColor = this.getColorConvertAction();
2 myColor.convertProfile = this.bookmarkRoot;
3

4 this.bookmarkRoot.remove();
5 this.colorConvertPage(0, [myColor], []);

Listing 5: Minimized JavaScript snippet for triggering a type
confusion vulnerability on Adobe Acrobat Reader.

a type confusion vulnerability on Adobe Acrobat Reader
v2019.012.20035. On Line 1, getColorConvertAction
API returns a colorConvertAction object. Next, Fav-
ocado generated a JavaScript statement that assigns the
bookmarkRoot property to the convertProfile prop-
erty of the colorConvertAction object. Types of the two
properties are different: The bookmarkRoot property is the

11

1 smsRcv_A = new blink.mojom.SmsReceiverPtr();
2 Mojo.bindInterface(blink.mojom.SmsReceiver.name,

mojo.makeRequest(smsRcv_A).handle);
3

4 smsRcv_B = new blink.mojom.SmsReceiverPtr();
5 Mojo.bindInterface(blink.mojom.SmsReceiver.name,

mojo.makeRequest(smsRcv_B).handle);
6

7 smsRcv_A.receive()

Listing 6: Minimized JavaScript snippet for triggering a use-
after-free vulnerability on Chromium.

Bookmark object type and the convertProfile is a string
type. Therefore, the assignment should not have been allowed
but executed without causing a runtime error. Consequently,
calling the remove method of the bookmarkRoot on Line 4
resulted in deallocation of the colorConvertAction
object created on Line 1. And, on Line 5, calling the
colorCovertPage API caused a crash because the second
argument—the myCololr variable—was deallocated.

Even though a crash occurred on Line 5 (the implemen-
tation of the colorCovertPage API did not check the
liveness of arguments), the root cause of this vulnerability
is the assignment of a wrong type on Line 2. Favocado
intentionally generated the statement to find a type confusion
bug but the JavaScript engine did not raise a runtime error,
as we discussed in Section IV-B. As this case shows, it is
necessary and important to not only generate semantically
correct test cases but also examine possible bugs through
generating erroneous statements when fuzzing binding code.

Use-after-free vulnerability in Mojo binding objects.
Listing 6 is a JavaScript snippet that triggers a use-
after-free vulnerability in the mojo binding objects of
Chromium v84.0.4110.0. On Line 1–2, Favocado allocated a
SmsReceiverPtr object and bound it as an interface in
order to receive data. On Line 3–4, Favocado allocated a new
SmsReceiverPtr object (smsRcv_B) and replaced it with
the previous interface (smsRcv_A) by calling the same API
(Mojo.bindInterface), which resulted in deallocation
of the previous interface in the binding code (in the native
code). However, in the execution context that the JavaScript
engine manages, the object was still alive and accessible.
Consequently, accessing the deallocated object on Line 7 could
raise a use-after-free bug.

This case illustrates that Favocado is able to find vulnera-
bilities that misrepresentations of binding objects between the
JavaScript engine and the binding code can cause. Even though
the object had been deallocated by the binding code, in the
perspective of Favocado, the Line 7 was a semantically cor-
rect JavaScript statement. If the object (smsRcv_A) was not
accessible, Favocado would never have called the receive
API because it always checks whether or not every object used
in a statement is accessible in JavaScript side (except for when
it generates erroneous statements).

CVE-2020-9594. Favocado found a heap out-of-bound write
vulnerability in the Adobe Acrobat Reader v2019.012.20035.
The minimized JavaScript statements generated by Favocado
are shown in Listing 7. The JavaScript code snippet simply
assigns specific values to the properties of the button field

1 f = this.addField("test", "button", 0,
[200,0,0,-50]);

2 f.borderStyle = border.d;
3 f.borderColor = color.blue;
4 this.zoom = 3179;
5 f.borderWidth = 2147483647;
6 this.pageNum = 0;
7 this.scroll(25);

Listing 7: Minimized JavaScript snippet for triggering a
heap out-of-bound write vulnerability (CVE-2020-9594) on
Adobe Acrobat Reader.

object after allocating it on Line 1. In the following lines,
Favocado simply assigns randomly generated values to various
properties of the button field object. Favocado, then, calls the
scroll API with an integer argument on Line 7.

Because the Adobe Acrobat Reader is a closed-source
program, we could not find the exact root cause of this
vulnerability within our limited analysis time but the vendor
acknowledged that this vulnerability can cause arbitrary code
execution. This case shows the importance of chaining together
a multitude of semantically correct statements that creates and
manipulates an object to find JavaScript binding bugs.

I. Summary

In summary, as shown in Table III, we found 61 new
and distinct bugs from 4 different JavaScript runtime systems
within short fuzzing campaigns (from just 3 days to 2 weeks
for each target). This result clearly demonstrates our approach,
Favocado, can play an important role to find bugs in binding
code of various JavaScript runtime systems.

VI. DISCUSSION

In this section, we discuss the limitations of Favocado and
future work.

Implementation detail. There are several limitations in the
current implementation of Favocado to enable fully automated
fuzzing on binding code of JavaScript engines.

First off, even though we implemented and used a parser
that can extract the semantic information of binding code from
API references (e.g., Acrobat API Reference [7]), we could not
completely avoid manual effort to construct the semantic infor-
mation of binding code that Favocado can process. Specifically,
we added missing data and wrong values that our parser failed
to parse. Also, we need to manually implement the JavaScript
statements for initializing some binding objects especially for
some binding objects that require environment-specific data.
although a lot of binding objects can be initialized directly.
We leave the complete semantic information construction from
API references and automated binding object initialization as
future work.

Feedback-driven fuzzing. One disadvantage of Favocado is
the redundancy of test cases, which stems from the random
mutation strategy. Albeit Favocado showed the noticeable
effectiveness with a random mutation strategy, we believe
that we can improve it by adopting feedback-driven ap-
proaches such as the coverage-guided fuzzing for generating

12

test cases. DIE, Nautilus, and Superion showed that mutational
approaches combined with code coverage feedback for gener-
ating highly structured inputs can increase the effectiveness
of fuzzing [8, 40, 57]. However, incorporating such feed-back
driven approaches for fuzzing binding code, while generating
semantically correct test cases, is an open research question
that we need to explore.

Minimizing test cases for analyzing crashes. The test case
generator of Favocado itself is a JavaScript program that
runs on a JavaScript runtime system, fuzzing binding code.
Unlike existing JavaScript engine and binding code fuzzers,
which deliver a series of JavaScript statements and evaluate it
repeatedly, a fuzzing session started by Favocado continues
until it finds a crash or stops the fuzzing for changing a
test case generator. Therefore, the total amount of JavaScript
statements that need to be analyzed for finding minimized
test cases is substantial. In this work, we used on an open-
source JavaScript test case reducer such as Lithium [3] to
find minimized test cases, which is fairly effective but a time-
consuming manual analysis for each crash is inevitable. We
need an automated approach for analyzing test cases so that
the entire fuzzing process can be more efficient.

Fuzzing binding code in other scripting languages. In
this paper, we proposed Favocado as a JavaScript binding
code fuzzer and demonstrated its effectiveness through various
evaluations. Even though we focused on JavaScript binding
code, we believe that our approach can be applied to fuzzing
binding code of the other scripting languages such as Perl
and Python. Favocado does not rely on a specific feature of
JavaScript, it rather is designed for fulfilling the requirements
for fuzzing binding code in general as we discussed in Sec-
tion III-A. Therefore, extending our approach to the other
scripting languages would be straightforward.

VII. RELATED WORK

Fuzzing has been one of the most active research ar-
eas in the security field. For enhancing the effectiveness of
fuzzing, each fuzzer capitalizes different strategies. Rebert et
al. [44] proposed seed selection methods and demonstrated
how we can choose the best seeds by mathematically rea-
soning them. A lot of fuzzers obtains control flow graphs,
states of program, and coverage information through dynamic
tracing or static analysis and leverage them to identify flow-
dependent data fields or to generate inputs that can explore
new execution paths [9, 10, 13, 14, 17, 20, 23, 30, 38, 42, 49, 59].
Also, security researchers have been leveraging symbolic ex-
ecution, concolic execution, and taint tracking methods to
solve complex constraints so that fuzzers can explore deep
execution paths in programs and identify specific parts of
inputs that affect execution paths [16, 18, 25, 28, 43, 51, 60, 61].
Moreover, there have been many proposed approaches to tackle
challenges in fuzzing operating systems such as the non-
determinism and complex data structures by leveraging specific
hardware components, hypervisors or static/dynamic analysis
methods [15, 19, 26, 31, 39, 46, 50, 52, 58]. On the other hand,
Neuzz [47] utilized neural network models to predict branching
behaviors of programs, and then, it predicts critical locations
of program inputs so that it can perform more mutations on
such critical locations to achieve high edge coverage.

A common limitation of those fuzzers is the lack of
ability to generate syntactically and semantically correct input.
Therefore, many fuzzers proposed to overcome the limita-
tion and to enable effective fuzzing programs which require
highly structured input such as JavaScript. Generating well-
formed (syntactically valid) input is the first requirement
for fuzzing such programs. Domato [21] and jsfunfuzz [45]
generate test cases by using manually developed context-free
rules. Superion [57] and Nautilus [8] leveraged code coverage
feedback and context-free grammars together to improve the
effectiveness of fuzzing. Superion and Nautilus showed that
the coverage-guided input generation approach using context-
free grammars allows us to explore deep and wide execution
paths with highly structured input. However, these fuzzers
based on manually developed grammars are lacking in the
capacity to generate semantically correct cases. In contrast
to them, Favocado is designed to generate syntactically and
semantically correct test cases to enable very effective fuzzing
on binding code without using manually developed grammars.

There are JavaScript engine fuzzers that focused on uti-
lizing existing test suites and PoC exploits of previous vul-
nerabilities to enable. Montage [34] is a JavaScript engine
fuzzer guided by a neural network language model (NNLM). It
transforms abstract syntax trees (ASTs) of existing JavaScript
test cases into a sequence of AST subtrees so that they can
be trained by a NNLM. DIE [40] proposed two mutation
strategies: structure-preserving mutation and type-preserving
mutation. They collected JavaScript files including previous
vulnerabilities’ exploits and used them as seeds. Favocado
prioritizes constructing new combinations of APIs with various
arguments and new access patterns to targeted binding objects,
rather than leveraging known vulnerabilities and existing test
suites.

To enable semantics-aware fuzzing, Skyfire [56] was pro-
posed to generate well-structured test cases through the proba-
bilistic context-sensitive grammar that specifies syntax features
and semantic rules learned from existing samples. CodeAl-
chemist [27] also focused on generating semantics-aware test
cases through code blocks disassembled from a large corpus
to correctly use variables based on their types. Albeit they
showed better performance in resolving semantic errors than
the other fuzzers, they could not achieve generating semanti-
cally correct test cases over semantics-aware ones. Meanwhile,
Favocado can continuously perform fuzzing targeted binding
objects through semantically correct test cases, which led us
to discover a lot of high-impact security vulnerabilities.

VIII. CONCLUSION

In this paper, we propose Favocado, a JavaScript binding
code fuzzer, that can generate semantically correct test cases.
Favocado first extracts the semantic information of binding
objects by parsing IDL files or API references. Then, Favocado
selects binding objects based on their relationships for fuzzing
them only on a single fuzzing session. Once fuzzing started,
Favocado generates and executes test cases based on the ex-
tracted semantic information as well as the context information
that Favocado dynamically manages. Through our evaluation,
we demonstrated the importance of semantically correct test
cases and the effectiveness of Favocado: within not a long
fuzzing campaign, we have discovered 61 previously unknown

13

security vulnerabilities in 4 different JavaScript runtime sys-
tems (3 different types of binding code).

ACKNOWLEDGMENT

We would like to express our gratitude to the anonymous
reviewers for their thoughtful reviews and our shepherd, Cor-
nelius Aschermann.

This material is based upon work supported in part by the
National Science Foundation (NSF) under grant 1651661 and
2000792, the Defense Advanced Research Projects Agency
(DARPA) under agreement number HR001118C0060 and
FA875019C0003, the Army Research Office and accomplished
under MURI grant number W911NF-17-1-0370, the Office of
Naval Research (ONR) KK1847, the Institute for Information
& communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No. 2017-0-00168, Auto-
matic Deep Malware Analysis Technology for Cyber Threat
Intelligence), and a grant from the Center for Cybersecurity
and Digital Forensics (CDF) at Arizona State University.

Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of United States Government
or any agency thereof.

REFERENCES

[1] ECMAScript Language test262, https://v8.github.io/test262/website/
default.html.

[2] Esprima: ECMAScript parsing infrastructure for multipurpose analysis,
https://esprima.org.

[3] Lithium: An automated testcase reduction tool, https://github.com/
MozillaSecurity/lithium.

[4] PDF.js: A general-purpose, web standards-based platform for parsing
and rendering PDFs, https://mozilla.github.io/pdf.js/.

[5] V8 Testing, https://v8.dev/docs/test.
[6] VirusTotal, https://www.virustotal.com/.
[7] JavaScript for Acrobat API Reference, May 2015, https:

//www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/
AcrobatDC js api reference.pdf.

[8] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “NAUTILUS: Fishing for Deep Bugs with Grammars,”
in Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[9] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: Fuzzing with Input-to-State Correspondence,” in Pro-
ceedings of the 2019 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[10] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS), Dallas, TX, Oct.–
Nov. 2017.

[11] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan,
“Finding and preventing bugs in javascript bindings,” in Proceedings
of the 38th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2017.

[12] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” in Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, CA, Dec.
2008.

[13] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

[14] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
towards a desired directed grey-box fuzzer,” in Proceedings of the 25th
ACM Conference on Computer and Communications Security (CCS),
Toronto, Canada, Oct. 2018.

[15] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing,” in Proceedings of
the 2018 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2018.

[16] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[17] P. Chen, J. Liu, and H. Chen, “Matryoshka: fuzzing deeply nested
branches,” in Proceedings of the 26th ACM Conference on Computer
and Communications Security (CCS), London, UK, Nov. 2019.

[18] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-Level Constraint Solv-
ing for Hybrid Fuzzing,” in Proceedings of the 26th ACM Conference
on Computer and Communications Security (CCS), London, UK, Nov.
2019.

[19] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” in
Proceedings of the 24th ACM Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[20] J. De Ruiter and E. Poll, “Protocol State Fuzzing of TLS Imple-
mentations,” in Proceedings of the 24th USENIX Security Symposium
(Security), Washington, D.C., Aug. 2015.

[21] I. Fratric, Domato: A DOM fuzzer, (accessed Mar 19, 2020), https:
//github.com/googleprojectzero/domato.

[22] M. Furr and J. S. Foster, “Checking type safety of foreign function
calls,” in Proceedings of the 26th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Chicago,
IL, Jun. 2005.

[23] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path sensitive fuzzing,” in Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2018.

[24] T. Guo, P. Zhang, X. Wang, and Q. Wei, “Gramfuzz: Fuzzing testing
of web browsers based on grammar analysis and structural mutation,”
in Proceedings of the 2nd International Conference on Informatics &
Applications (ICIA), Lodz, Poland, Sep. 2013.

[25] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations,”
in Proceedings of the 22nd USENIX Security Symposium (Security),
Washington, D.C., Aug. 2013.

[26] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in Proceed-
ings of the 24th ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[27] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-Aware
Code Generation to Find Vulnerabilities in JavaScript Engines,” in
Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[28] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to Fuzz from Symbolic Execution with Application to Smart
Contracts,” in Proceedings of the 26th ACM Conference on Computer
and Communications Security (CCS), London, UK, Nov. 2019.

[29] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in Proceedings of the 21st USENIX Security Symposium (Security),
Bellevue, WA, Aug. 2012.

[30] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang, “Instrim:
Lightweight instrumentation for coverage-guided fuzzing,” in Proceed-
ings of the 2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[31] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[32] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, Canada, Oct. 2018.

[33] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S. McKin-
ley, “Jinn: synthesizing dynamic bug detectors for foreign language

14

https://v8.github.io/test262/website/default.html
https://v8.github.io/test262/website/default.html
https://esprima.org
https://github.com/MozillaSecurity/lithium
https://github.com/MozillaSecurity/lithium
https://mozilla.github.io/pdf.js/
https://v8.dev/docs/test
https://www.virustotal.com/
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/AcrobatDC_js_api_reference.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/AcrobatDC_js_api_reference.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/AcrobatDC_js_api_reference.pdf
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato

interfaces,” in Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Toronto,
Canada, Jun. 2010.

[34] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A Neural Network
Language Model-Guided JavaScript Engine Fuzzer,” in Proceedings of
the 29th USENIX Security Symposium (Security), Boston, MA, Aug.
2020.

[35] S. Li and G. Tan, “Finding bugs in exceptional situations of JNI
programs,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS), Chicago, IL, Nov. 2009.

[36] ——, “Finding reference-counting errors in Python/C programs with
affine analysis,” in Proceedings of the European Conference on Object-
Oriented Programming 2014 (ECOOP‘14), Uppsala, Sweden, Jul.–Aug.
2014.

[37] MozillaSecurity, funfuzz, (accessed Mar 2, 2020), https://github.com/
MozillaSecurity/funfuzz.

[38] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2019.

[39] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing {OS} Fuzzer
Seed Selection with Trace Distillation,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, Aug. 2018.

[40] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing JavaScript
Engines with Aspect-preserving Mutation,” in Proceedings of the 41th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2020.

[41] J. Patra and M. Pradel, “Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data,” TU
Darmstadt, Department of Computer Science, Tech. Rep. TUD-CS-
2016-14664, 2016.

[42] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: fuzzing by pro-
gram transformation,” in Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2018.

[43] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” in Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb.–Mar. 2017.

[44] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in Proceedings of
the 23rd USENIX Security Symposium (Security), San Diego, CA, Aug.
2014.

[45] J. Ruderman, Releasing jsfunfuzz and DOMFuzz, (accessed Mar 2,
2020), http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-
domfuzz.

[46] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in
Proceedings of the 26th USENIX Security Symposium (Security), Van-
couver, BC, Aug. 2017.

[47] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program smoothing,” in Proceedings of
the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[48] P. Snyder, C. Taylor, and C. Kanich, “Most Websites Don’t Need to
Vibrate: A Cost-Benefit Approach to Improving Browser Security,” in
Proceedings of the 24th ACM Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[49] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,” in
Proceedings of the 23rd ACM Conference on Computer and Commu-
nications Security (CCS), Vienna, Austria, Oct. 2016.

[50] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz, “PeriScope: An Effective
Probing and Fuzzing Framework for the Hardware-OS Boundary,”
in Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[51] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proceedings of
the 2016 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2016.

[52] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani,
and Z. Qian, “Charm: Facilitating dynamic analysis of device drivers
of mobile systems,” in Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

[53] G. Tan and J. Croft, “An Empirical Security Study of the Native Code
in the JDK,” in Proceedings of the 17th USENIX Security Symposium
(Security), San Jose, CA, Jul.–Aug. 2008.

[54] G. Tan and G. Morrisett, “ILEA: Inter-language analysis across Java
and C,” in Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and applications (OOPSLA),
Montreal, Canada, Oct. 2007.

[55] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolu-
tionary interpreter fuzzer using genetic programming,” in Proceedings
of the 21st European Symposium on Research in Computer Secu-
rity(ESORICS), Heraklion, Greece, Sep. 2016.

[56] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Proceedings of the 38th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2017.

[57] ——, “Superion: Grammar-aware greybox fuzzing,” in Proceedings of
the 41st International Conference on Software Engineering (ICSE),
Montréal, Canada, May 2019, pp. 724–735.

[58] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing file
systems via two-dimensional input space exploration,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[59] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[60] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical Con-
colic Execution Engine Tailored for Hybrid Fuzzing,” in Proceedings of
the 27th USENIX Security Symposium (Security), Baltimore, MD, Aug.
2018.

[61] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send Hardest Problems
My Way: Probabilistic Path Prioritization for Hybrid Fuzzing,” in
Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2019.

15

https://github.com/ MozillaSecurity/funfuzz
https://github.com/ MozillaSecurity/funfuzz
http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-domfuzz
http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-domfuzz

	Introduction
	Background
	Binding Code
	Terminology
	Fuzzing JavaScript Engines
	Fuzzing the Binding Code of JavaScript Runtime Systems
	JavaScript Engine Fuzzers for Binding Code.

	Overview
	Requirements for Fuzzing Binding Code
	Semantically Correct Test Cases
	Reducing the Size of the Input Space

	Our Approach

	Design
	Semantic Information Construction
	Dynamic Test Case Generator

	Evaluation
	Experimental Setup
	Evaluation of CodeAlchemist
	Favocado on PDF Binding Objects
	Favocado on Mojo and DOM Objects of Chromium
	Favocado on DOM Objects of WebKit
	Comparison with Domato
	Runtime errors of Favocado
	Case Study
	Summary

	Discussion
	Related work
	Conclusion
	References

