Reinforcement Learning-based Hierarchical Seed
Scheduling for Greybox Fuzzing

Jinghan Wang, Chengyu Song, Heng Yin
University of California, Riverside
jwangl31@ucr.edu, {csong, heng}@cs.ucr.edu

Abstract—Coverage metrics play an essential role in greybox
fuzzing. Recent work has shown that fine-grained coverage
metrics could allow a fuzzer to detect bugs that cannot be covered
by traditional edge coverage. However, fine-grained coverage
metrics will also select more seeds, which cannot be efficiently
scheduled by existing algorithms. This work addresses this prob-
lem by introducing a new concept of multi-level coverage metric
and the corresponding reinforcement-learning-based hierarchical
scheduler. Evaluation of our prototype on DARPA CGC showed
that our approach outperforms AFL and AFLFAST significantly: it
can detect 20% more bugs, achieve higher coverage on 83 out of
180 challenges, and achieve the same coverage on 60 challenges.
More importantly, it can detect the same number of bugs and
achieve the same coverage faster. On FuzzBench, our approach
achieves higher coverage than AFL++ (Qemu) on 10 out of 20
projects.

I. INTRODUCTION

Greybox fuzzing is a state-of-the-art testing technique that
has been widely adopted by the industry and has successfully
found tens of thousands of vulnerabilities in widely used
software. For example, the OSS-Fuzz [20] project has found
more than 10,000 bugs in popular open-sourced projects like
OpenSSL since its launch in December 2016.

As shown in greybox fuzzing can be modeled

as a genetic process where new inputs are generated through
mutation and crossover/splice. The generated inputs are se-
lected according to a fitness function. Selected inputs are then
added back to the seed pool for future mutation. Unlike natural
evolution, due to the limited processing capability, only a few
inputs from the seed pool will be scheduled to generate the
next batch of inputs. For example, a single fuzzer instance can
only schedule one seed at a time.

The most common fitness function used by off-the-shelf
fuzzers like American Fuzzy Lop (AFL) [55] is edge coverage,
i.e., inputs that cover new branch(es) will be added to the
seed pool, as its goal is to achieve higher edge coverage of
the code. While most fuzzers are coverage-guided (i.e., use
new coverage as the fitness function), recent research has
shown that the genetic process can also be used to discover

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual

ISBN 1-891562-66-5

https://dx.doi.org/10.14722/ndss.2021.24486
www.ndss-symposium.org

Instrumented
Program

1

Seed
Selection

Seed Mutation —V*)

Fitness
Function

Seed
Scheduling

Seed Pool

Fig. 1: Overview of greybox fuzzing

a diversity of program properties by using a variety of fitness
functions [26], [32], [34].

An important property of a fitness function (e.g., a coverage
metric) is its ability to preserve intermediate waypoints [32].
To better illustrate this, consider flipping a magic number
check a = Oxdeadbeef as an example. If a fuzzer only
considers edge coverage, then the probability of generating
the correct a with random mutations is 232. However, if the
fuzzer can preserve important waypoints, e.g., by breaking
the 32-bit magic number into four 8-bit number [25], then
solving this checking will be much more efficient since the
answer can be generated from a sequence as Oxef, Oxbeef,
Oxadbeef, and Oxdeadbeef. This check can also be solved
faster by understanding distances between current value of a
and the target value [12]-[14], [18]], [42]. More importantly,
recent research has shown that many program states cannot be
reached without saving critical waypoints [30]], [45].

Wang et al. [45] formalize the ability to preserve inter-
mediate waypoints as the sensitivity of a coverage metric.
Conceptually, a more sensitive metric would lead to more
program states (e.g., code coverage). However, the empirical
evaluation of [45]] shows that this is not always the case. The
reason is that, a more sensitive coverage metric will select
more seeds, which could cause seed explosion and exceed the
fuzzer’s ability to schedule. As a result, many seeds may never
be scheduled or be scheduled without enough time/power to
make a breakthrough [9]].

In this work, we aim to address the seed explosion prob-
lem with a hierarchical scheduler. Specifically, fuzzing can
be modeled as a multi-armed bandit (MAB) problem [49],
where the scheduler needs to balance between exploration and
exploitation. With a more sensitive coverage metric like branch
distance, exploitation can be considered as focusing on solving
a hard branch (e.g., magic number check), and exploration can

be considered as exercising an entirely different function. Our
crucial observation is that when a coverage metric C; is more
sensitive than C;, we can use C; to save all the intermediate
waypoints without losing the ability to discover more program
states; but at the same time, we can use C; to cluster seeds
into a representative node and schedule at node level to achieve
better exploration. More specifically, the scheduler will choose
a node first, and then choose a seed in that node. Based on
this observation, we propose to organize the seed pool as a
multi-level tree where leaf nodes are real seeds and internal
nodes are less sensitive coverage measurements. The closer
a node is to the leaf, the more sensitive the corresponding
coverage measurement is. Then we can utilize the existing
MAB algorithms to further balance between exploitation and
exploration.

To validate our idea, we implemented two prototypes: one
AFL-HIER based on AFL and the other AFL++-HIER based
on AFL++. We performed extensive evaluation on the DARPA
Cyber Grand Challenge (CGC) dataset [10] and Google
FuzzBench [21] benchmarks. Compared to AFLFAST [9],
AFL-HIER can find more bugs in CGC (77 vs. 61). AFL-HIER
also achieved better coverage in about 83 of 180 challenges
and the same coverage on 60 challenges. More importantly,
AFL-HIER can find the same amount of bugs and achieve the
same coverage faster than AFLFAST. On FuzzBench, AFL++-
HIER achieved higher coverage on 10 out of 20 projects than
AFL++ (Qemu).

Contributions. This paper makes the following contributions:

e We propose multi-level coverage metrics that bring a
novel approach to incorporate sensitive coverage metrics
in greybox fuzzing.

e We design a hierarchical seed scheduling algorithm to
support the multi-level coverage metric based on the
multi-armed bandits model.

e We implement our approach as an extension to AFL and
AFL++ and release the source code at https://github.com/
bitsecurerlab/aflplusplus-hier.

e We evaluate our prototypes on DARPA CGC and Google
FuzzBench. The results show that our approach not only
can trigger more bugs and achieve higher code coverage,
but also can achieve the same coverage faster than existing
approaches.

II. BACKGROUND

A. Greybox Fuzzing
illustrates the greybox fuzzing process in more

detail. Given a program to fuzz and a set of initial seeds, the
fuzzing process consists of a sequence of loops named rounds.
Each round starts with selecting the next seed for fuzzing from
the pool according to the scheduling criteria. The scheduled
seed is assigned to a certain amount of power that determines
how many new test cases will be generated in this round.
Next, test cases are generated through (random) mutation and
crossover based on the scheduled seed. Compared to blackbox
and whitebox fuzzing, the most distinctive step of greybox
fuzzing is that, when executing a newly generated input, the
fuzzer uses lightweight instrumentations to capture runtime
features and expose them to the fitness function to measure the

“quality” of a generated test case. Test cases with good quality
will then be saved as a new seed into the seed pool. This step
allows a greybox to gradually evolve towards a target (e.g.,
more coverage). The effectiveness and efficiency of greybox
fuzzing depend on the following factors.

Algorithm 1: Greybox Fuzzing Algorithm

Input: target program P, set of initial seeds S°
Output: unique seed set S™,

bug-triggering seed set S”
Data: seed s and test case [

1 Function Main (P, S°):

2 S* S0

3 SY 0

4 while frue do

5 s < SelectNextSeedToFuzz (5*)
6 s.power <— AssignPower ()

7 while s.power > 0 do

8 s.power <— s.power — 1

9 I <+ MutateSeed (s)

10 status < RunAndEval ()
11 if status is Bug then

12 | SV« SYU{I}

13 else if status is NewCovExplored then
14 | S*« S*uU{l}

15 else

16 | continue // drop I

17 end

18 end

19 PayReward (s)
20 end
21 End

Test case measurement. As a genetic process, the fitness
function of the fuzzer decides what kind of program prop-
erties the fuzzer can discover [32]]. While fuzzing has been
successfully applied to many different domains in recent years
with different fitness functions, the most popular one is still
code coverage (i.e., a test case that triggers new coverage will
be saved as a new seed). However, coverage measurements
can be diverse. Notably, AFL [55] measures the edge coverage
of test cases. More precisely, it maintains a global map where
the hashed value of an edge (i.e., the pair of the current basic
block address and the next basic block address) is used as an
indexing key to access the hit_count of the edge, which
records how many times it has been taken so far. The hit counts
are bucketized into small powers of two. After a test case
completes its execution, the global hit_count map will be
updated according to its edges, and it will be selected as a
new seed if a new edge is found or the hit count of one edge
increases into a new bucket. As we can see, this measurement
does not consider the order of edges and can miss interesting
seeds is the hash of a new edge collides with the hash of an
already covered edge [19].

Seed scheduling criteria. The limited processing capability
makes it essential to prioritize some seeds over others in
order to maximize the coverage. For example, AFL [55]
prefers seeds with small sizes and short execution time to
achieve a higher fuzzing throughput. Furthermore, it maintains

https://github.com/bitsecurerlab/aflplusplus-hier
https://github.com/bitsecurerlab/aflplusplus-hier

a minimum set of seeds that stress all the code coverage
so far, and focus on fuzzing them (i.e., prefers exploitation).
AFLFAST [9] models greybox fuzzing as a Markov chain and
prefers seeds exercising paths that are rarely exercised, as
high-frequency paths tend to be covered by invalid test cases.
LIBFUZZER [39]] prefers seeds generated later in a fuzzing
campaign. Entropic [7] prefers seeds with higher information
gains.

Seed mutation strategy. The mutation strategy decides how
likely a new test case could trigger new coverage(s) and be
selected as a new seed. Off-the-shelf fuzzers like AFL and
LIBFUZZER use random mutation and crossover. Recent work
aims to improve the likelihood by using data-flow analysis
to identify which input bytes should be mutated [18]], [37],
[52], by using directed searching [[12], [13], [40], [42], and by
learning the best mutation strategies [11]], [29].

Fuzzing throughput. Fuzzing throughput is another critical
factor that decides how fast a fuzzer can discover new cov-
erage. AFL [55] uses the fork server and persistent mode to
reduce initialization overhead, thus improving the throughput.
Xu et al. [51]] proposed new OS primitives to improve fuzzing
throughput further. FirmAFL [57] uses augmented emulation
to speed-up fuzzing firmware. Because high throughput is
the key factor that allows greybox fuzzers to beat whitebox
fuzzers in practice, one must pay special attention to the
trade-off between throughput and the above three factors
(coverage measurement, scheduling algorithm, and mutation
strategy). That is, improvements of the above three factors
at the cost of throughput may unexpectedly result in worse
fuzzing performance.

B. Multi-Armed Bandit Model

The multi-armed bandit model offers a fundamental frame-
work for algorithms that learn optimal resource allocation
policies over time under uncertainty. The term “bandit” comes
from a gambling scenario where the player faces a row of slot
machines (also known as one-armed bandits) yielding random
payoffs and seeks the best strategy of playing these machines
to gain the highest long-term payoffs.

In the basic formulation, a multi-armed bandit problem is
defined as a tuple (A, R), where A is a known set of K arms
(or actions) and R*(r) = P[r|a] is an unknown but fixed
probability distribution over rewards. At each time step ¢ the
agent selects an arm ay, and observes a reward r; ~ R%. The
objective is to maximize the cumulative rewards 2;1 T

Initially, the agent has no information about which arm is
expected to have the highest reward, so it tries some randomly
and observes the rewards. Then the agent has more information
than before. However, it has to face the trade-off between
“exploitation” of the arm that is with the highest expected
reward so far, and “exploration” to obtain more information
about the expected rewards of the other arms so that it does
not miss out on a valuable one by simply not trying it enough
times.

Various algorithms are proposed to make the optimal
trade-off between exploitation and exploration of arms. Upper
Confidence Bound (UCB) algorithms [S] are a family of

bandit algorithms that perform impressively. Specifically, they
construct a confidence interval to estimate each arm’s true
reward, and select the arm with the highest UCB each time.
Notably, the confidence interval is designed to shrink when the
arm with its reward is sampled more. As a result, while the
algorithm tends to select arms with high average rewards, it
will periodically try less explored arms since their estimated
rewards have wider confidence intervals.

Take UCBI1 [2], which is almost the most fundamental one,
as an example. It starts with selecting each arm once to obtain
an initial reward. Then at each time step, it selects arm a that

maximizes Q(a) + C X \/% where Q(a) is the average
reward obtained from arm «a, C' is a predefined constant that is
usually set to V2, N is the overall number of selections done
so far, and n, is the number of times arm a has been selected.

Seed scheduling can be modeled as a multi-armed bandit
problem where seeds are regarded as arms [49], [54]. However,
to make the fuzzer benefit from this model, such as maximizing
the code coverage, we need to design the reward of scheduling
a seed carefully.

III. MULTI-LEVEL COVERAGE METRICS

In this section, we discuss what are multi-level coverage
metrics and why they are useful for greybox fuzzing.

A. Sensitivity of Coverage Metrics

Given a mutation-based greybox fuzzer, a fuzzing cam-
paign starts with a set of initial seeds. As the fuzzing goes
on, more seeds are added into the seed pool through mutating
the existing seeds. By tracking the evolution of the seed pool,
we can see how each seed can be traced back to an initial
seed via a mutation chain, in which each seed is generated
from mutating its immediate predecessor. If we consider a bug
triggering test case as the end of a chain and the corresponding
initial seed as the srart, those internal seeds between them
serve as waypoints that allow the fuzzer to gradually reduce
the search space to find the bug [32].

The coverage metric used by a fuzzer plays a vital role
in creating such chains, from two main aspects. First, if the
chain terminates earlier before reaching the bug triggering test
case, then the bug may never be discovered by the fuzzer.
Wang et al. [45] formally model this ability to preserve critical
waypoints in seed chains as the sensitivity of a coverage metric.
For example, consider the maze game in Listing [T} which is
widely used to demonstrate the capability of symbolic execu-
tion of exploring program states. In this game, a player needs
to navigate the maze via the pair of (x,y) that determines a
location for each step. In order to win the game, a fuzzer has
to try as many sequences of (x,y) pairs as possible to find the
right route from the starting location to the crashing location.
This simple program is very challenging for fuzzers using edge
coverage as the fitness function, because there are only four
branches related to every pair of (x, y), each checking against a
relatively simple condition that can be satisfied quite easily. For
instance, five different inputs: “a,” “u,” “d,” “1,” and “r” are
enough to cover all branches/cases of the switch statement.
After this, even if the fuzzer can generate new interesting

1
%

char maze[7][11] = {
"—t——t—t",
|
|

" [#1",
"=+,
" [I IS
"I,
" | ",
"—t"};

int x =1, y = 1;

for(int i = 0; i < MAX_STEPS; i++){

switch (steps[i]){

case 'u’: y——; break;
case 'd’: y++; break;
case 'I’: x——; break;
case 'r’: X++; break;
default:

printf ("Bad step!"); return 1;
}
if (mazely][x] == "#"){

printf ("You win!");

return 0;

}

if (mazely][x] !'= * 7){
printf ("You lose.")
return 1;

s

}
}

return 1;

Listing 1: A Simple Maze Game

inputs that indeed advance the program’s state towards the
goal (e.g., “dd®), these inputs will not be selected as new
seeds because they do not provide new edge coverage. As a
result, it is extremely hard, if not impossible, for fuzzers that
use the edge coverage to win the game [3]].

On the contrary, as we will show in if a fuzzer
can measure the different combinations of = and y (e.g., by
tracking different memory accesses via x(maze + y + x)
at line 10), then reaching the winning point will be much
easier [3], [45]. Similarly, researchers have also observed
that the orderless of branch coverage and hash collisions can
cause a fuzzer to drop critical waypoints hence prevent certain
code/bugs from being discovered [[19], [27]], [30].

The second impact of a coverage metric has on creating
seed chains is the stride between a pair of seeds in a chain.
Specifically, the sensitivity of a coverage metric also deter-
mines how likely (i.e., the probability) a newly generated test
case will be saved as a new seed. For instance, it is easier
for a fuzzer that uses edge coverage to discover a new seed
than a fuzzer that uses block coverage. Similarly, as we have
discussed in it is much easier to find a match for an 8-
bit integer than a 32-bit integer. Bohme et al. [9] model the
minimum effort to discover a neighbouring seed as the required
power (i.e., mutations). Based on this modeling, a more
sensitive coverage metric requires less power to make progress,
i.e., a shorter stride between two seeds. Although each seed
only carries a small step of progress, the accumulation of them
can narrow the search space faster.

While the above discussion seems to suggest that a more
sensitive coverage metric would allow fuzzers to detect more

bugs, the empirical results from [45] showed this is not
always the case. For instance, while memory access coverage
would allow a fuzzer to win the maze game (Listing [I)), it
did not perform very well on many of the DARPA CGC
challenges. The reason is that, a more sensitive coverage metric
will also create a larger seed pool. As a result, the seed
scheduler needs to examine more candidates each time when
choosing the next seed to fuzz. In addition to the increased
workload of the scheduler, a larger seed pool also increases the
difficulty of seed exploration, i.e., trying as many fresh seeds as
possible. Since the time of a fuzzing campaign is fixed, more
abundant seeds also imply that the average fuzzing time of
each seed could be decreased, which could negatively affect
seed exploitation, i.e., not fuzzing interesting seeds enough
time to find critical waypoints.

Overall, a more sensitive coverage metric boosts the capa-
bility (i.e., upper bound) of a fuzzer to explore deeper program
states. Nevertheless, in order to effectively utilize its power and
mitigate the side effects of the resulting excessive seeds, the
coverage metric and the corresponding seed scheduler should
be carefully crafted to strike a balance between exploration
and exploitation.

B. Seed Clustering via Multi-Level Coverage Metrics

The similarity and diversity of seeds, which can be mea-
sured in terms of the exercised coverage, drive the seed
exploration and exploitation in a fuzzing campaign. In general,
a set of similar seeds gains less information about the program
under test than a set of diverse seeds. When a coverage metric
measures more fine-grained coverage information (e.g., edge),
it can dim the coarse-grained diversity (e.g., block) among
different seeds. First, it encourages smaller variances between
seeds. Second, it loses the awareness of the potential larger
variance between seeds that can be detected by a more coarse-
grained metric. For instance, a metric measuring edge coverage
is unaware of whether two seeds exercise two different sets
of basic blocks or the same set of basic blocks but through
different edges. Therefore, it is necessary to illuminate seed
similarity and diversity when using a more sensitive coverage
metric.

Clustering is a technique commonly used in data analysis
to group a set of similar objects. Objects in the same cluster
are more similar to each other than to those in a different
cluster. Inspired by this technique, we propose to perform seed
clustering so that seeds in the same cluster are similar while
seeds in different clusters are more diverse. In other words,
these clusters offer another perspective that allows a scheduler
to zoom in the similarity and diversity among seeds.

Based on the observation that the sensitivity of most
coverage metrics for greybox fuzzing can be directly compared
(i.e., the more sensitive coverage metric can subsume the less
sensitive one), we propose an intuitive way to cluster seeds—
using a coarse-grained coverage measurement to cluster seeds
selected by a fine-grained metric. That is, seeds in the same
cluster will have the same coarse-grained coverage measure-
ment. Moreover, we can use more than one level of clustering
to provide more abstraction at the top level and more fidelity
at the bottom level. To this end, the coverage metric should
allow the co-existence of multiple coverage measurements. We
name such a coverage metric a multi-level coverage metric.

Fig. 2: A multi-level coverage metric that measures function
coverage at top-level, edge coverage at mid-level, and ham-
ming distance of comparison operands at leaf-level. The root
node is a virtual node only used by the scheduler.

C. Incremental Seed Clustering

With the multi-level coverage metric in place, if a test
case is assessed as exercising a new coverage (feature) by
any of the measurements, it will be retained as a new seed
and put in a proper cluster as described in
Generally, except for the top-level measurement M that
directly classifies all seeds into different clusters, the following
lower-level measurement M; (i = 2,--- ,n) works on each of
the clusters generated by M;_ separately, classifying seeds in
it into smaller sub-clusters, which is named incremental seed
clustering.

In more detail, given a multi-level coverage metric as
shown in a test case exercising any new function,
edge, or distance coverage will be assessed as a new seed.
Then the root node starts the seed clustering. It will find from
its child nodes an existing My node that covers the same
functions as the new seed, or create a new Mp node if the
desired node does not exist. Next, the seed clustering continues
in a similar way that puts the new seed into a Mg node with
the same edge coverage. Finally, a child Mp node of the Mg
node is selected to save the new seed according to its distance
coverage.

Terms used in the algorithm are defined as follows.

Definition III.1. A coverage space 1" defines the set of
enumerable features we pay attention to that can be covered
by executing a program.

Some typical coverage spaces are:

e [', is the set of all program functions.

e I'; is the set of all program blocks.

e I'; is the set of all program edges. Note that an edge is
a transition from one block to the next.

It is worth mentioning that in real-world fuzzers such as
AFL, the coverage information is recorded via well-crafted
hit_count maps. Consequently, the features are signified
by entries of the maps.

Definition IIL2. A coverage metric C' : (P x I) — T*
measures the execution of a program P € P with an input

I € I, and produces a set of features that are exercised by it
at least once, denoted as M € I'* .

Since coverage metric is mainly characterized by the cov-
erage space I', it can be simplified with the coverage space.
Some typical coverage metrics are:

e (' measures the functions that are exercised by an
execution.

e (' measures the blocks that are exercised by an execu-
tion.

e (', measures the edges that are exercised by an execution.

Finally, we give the definition of a multi-level coverage
metric.

Definition IIL3. A coverage metric C™ : (P x I) —
(T%,...,I) consists of a sequence of coverage metrics
(C1h,...,Cy). It measures the execution of a program P € P
with an input I € Z, and produces a sequence of measurements

(M, ..., M,).

A multi-level coverage metric combines multiple metrics at
different levels to assess a seed. As a result, it relies on lower-
level coverage measurements to preserve minor variances
among seeds so that there will be more abundant seeds in
a chain. This helps to reduce the search space of finding bug
triggering test cases. Meanwhile, it allows a scheduler to use
upper-level measurements to detect major differences among
seeds. Note that when n = 1, it is reduced to a traditional
single level coverage metric.

D. Principles and Examples of Multi-level Coverage Metrics

To further illustrate how a multi-level coverage metric
works, we propose some representative examples. We first
discuss some principles for developing an effective multi-level
coverage metric C" ~ (Cy,...,C,,) for fuzzing a program P.

1) Principles: Through the incremental seed clustering, all
seeds are put into a hierarchical tree that lays the foundation
of our hierarchical seed scheduling algorithm, which will be
described in However, the scheduling makes sense only
when a node at an upper level can have multiple child nodes
at lower levels. This indicates that the cases where if a set of
seeds are assessed to be with the same coverage measurement
M;, all following measures M;;1,..., M, will also be the
same should be excluded. Motivated by this fundamental
requirement, the main principle is that measurements generated
by a less sensitive metric should always cluster seeds prior
to more sensitive ones. Here, we use the same definition of
sensitivity between two coverage metrics as in [45]].

Definition II1.4. Given two coverage metrics C; and C;, we
say C; is “more sensitive” than Cj, denoted as C; =5 Cj, if

(i) VP € P, vjl,fg S I, CZ(P,Il) = C/L'(P’IQ) —
Cj(P,Il) = Cj(P,IQ), and

(ii) AP € P, 3]1,[2 S I, Cj(P,Il) =
Ci(P, 1) # C;(P, I1)

C;(P,1,) A

Specifically, take the multi-level metric in [Figure 2| as an
example. Seeds in the same Mg clusters must have the same
function coverage. However, since Mg is more sensitive than

Algorithm 2: Seed Selection Algorithm

Input: test case
Output: return a status code indicating whether
triggers a bug or covers new features
Data: program being fuzzed P,
existing seed set S*,
existing feature set M*,
current working cluster cc,
map from feature sets to sub clusters cc.map,
coverage metric C" ~ (Cq,...,Cy)
coverage measurements (M, -, M,,)
Result: put I in a proper cluster if it is a new seed
1 Function RunAndEval (I):

2 <M1,...,Mn>(—
RunWithInstrument (P, I,C™)

3 if bug triggered then

4 | return Bug

5 end

6 Mt «— MyU---UM,

7 if M!* C M* then

8 | return Known

9 else

10 M* «— M* U M?

1 foreach i € {1,...,n} do

12 next_cc < cc.map|M;)

13 if next_cc = NULL then
14 \ next_cc < new_cluster()
15 end

16 move [into next_cc

17 cc.map|[M;] + next_cc

18 cc + next_cc

19 end

20 return NewCovExplored

21 end
22 End

M, these seeds are likely to have different edge coverage,
resulting in multiple different sub-clusters. However, if we use
MEg to cluster seeds prior to Mp, since seeds with the same
edge coverage must also have the same function coverage, it is
impossible further to put them into different sub- My clusters.
As a result, each Mg node will have only a single Mg node,
making the clustering useless.

As discussed in [45]], > is a partial order, so it is possible
that two metrics are not comparable. To solve this problem,
we propose a weaker principle: given two non-comparable
coverage metrics, we should cluster a seed with the metric
that will select fewer seeds before the one that will select more
seeds.

2) Examples: Following the above principles, we propose
two multi-level coverage metrics as examples. Both examples
use three-level clustering that works well in our evaluation.

The top-level metric in both examples is Cp, which
measures the function coverage. The middle-level metric is
edge coverage Cg. Functions invoked are essential runtime
features that are commonly used to characterize an execution,
and edge coverage is widely used in fuzzers such as AFL and
LIBFUZZER. Notably Cgp >=,Cp.

The most important one is the bottom-level metric, which
is the most sensitive one. In this work, we mainly evaluated a
bottom-level metric called distance metric Cp. It traces con-
ditional jumps (i.e., edges) of a program execution, calculates
the hamming distances of the two arguments of the conditions
as covered features, and treats each observed new distance of
a conditional jump as new coverage. Unlike C'r or Cr that
traces control flow features, C'p focuses on data-flow features
and actively accumulates progress made in passing condition
checks for fuzzing.

To understand whether our approach can support different
coverage metrics (fitness functions), we also evaluated another
coverage metric called memory access metric C4. As the
name implies, this metric traces all memory reads and writes,
captures continuous access addresses as array indices, and
treats each new index of a memory access as new coverage. C'4
pays attention to data flow features and accumulates progress
made in accessing arrays that might be long. To distinguish
memory accesses that happen at different program locations,
the measurement also includes the address of the last branch.
However, since not all basic blocks contain memory accesses,
C4 is not directly comparable to C'r using sensitivity. How-
ever, we observe that C'4 can generate much more seeds than
Cg, so C'4 comes after C'g and its measurement M 4 stays at
the bottom level.

IV. HIERARCHICAL SEED SCHEDULING

This section discusses how to schedule seeds against hier-
archical clusters generated by a multi-level coverage metric.

A. Scheduling against A Tree of Seeds

Conceptually, a multi-level coverage metric C" ~
(C1---C,,) organizes coverage measurements (M;) and seeds
as a tree, where each node at layer (or depth) i € {1,--- ,n}
represents a cluster represented by M; and its child nodes at
layer 7+ 1 represent sub-clusters represented by M, ;. At leaf-
level, each node is associated with real seeds. Additionally, at
layer O is a virtual root node representing the whole tree. To
schedule a seed, the scheduler needs to seek a path from the
root to a leaf node.

Exploration vs Exploitation. The main challenge a seed
scheduler faces is the trade-off between seed exploration
(trying out other fresh seeds) and exploitation (keep fuzzing
a few interesting seeds to trigger a breakthrough). On the one
hand, fresh seeds that have rarely been fuzzed may lead to
surprisingly new coverage. On the other hand, a few valuable
seeds that have led to significantly more new coverage than
others in recent rounds encourage to focus on fuzzing them.

Organizing seeds in a tree with hierarchical clusters facil-
itates a more flexible control over the seed exploration and
exploitation. Specifically, fuzzers can focus on a single cluster
in which seeds cover the same functions at the first layer and
then try out many (sub-)clusters with seeds exercising different
edges at the second layer. Alternatively, fuzzers can also try
out seeds exercising different groups of functions, then only
pick seeds covering some specific edges.

In this work, we explore the feasibility of modeling the
fuzzing process as a multi-armed bandit (MAB) problem [49],
[54] and using the existing MAB algorithms to balance
between exploitation and exploration. After trying several
different MAB algorithms, we decide to adopt the UCBI
algorithm [2], [S]] to schedule seeds, since it works the best
empirically, despite being one of the simplest MAB algorithms.
As illustrated by function SelectNextSeedToFuzz ()
in starting from the root node, our scheduling
algorithm selects the child node with the highest score, which
is calculated based on the coverage measurements, until reach-
ing the last layer to select among leaf nodes that are associated
with real seeds. Because all seeds have the same coverage
at the leaf level, we scheduling them with round robin for
simplicity.

At the end of each round of fuzzing, nodes along the
scheduled path will be rewarded based on how much progress
the current seed has made in this round, e.g., whether there
are new coverage features exercised by all the generated test
cases. In this way, seeds that perform well are expected to have
increased scores for competing in the following rounds, while
seeds making little progress will be de-prioritized.

Note that a traditional MAB problem assumes a fixed
number of arms (nodes in our case) so that all arms can get
an estimation of their rewards at the beginning. However, our
setup breaks this assumption since the number of nodes grows
as more and more seeds are generated. To address this issue,
we introduce a rareness score of a node, so that each new
node will have an initial score to differentiate itself from other
new nodes. We will discuss seed scoring in more detail later

in [STV-B

It is also worth mentioning that a recent work Ecofuzz [54]
proposed using a variant of the adversarial multi-armed bandit
(AMAB) model to perform seed scheduling. However, it
can not solve the seed exploration problem caused by more
sensitive coverage metrics, as it attempts to explore all existing
seeds at least once. Moreover, we have also experimented with
the EXP3 algorithm that aims to solve the AMAB problem;
but it performed worse than UCBI in our setup.

Algorithm 3: Seed Scheduling Algorithm

Input: seed set S
Output: return the seed to fuzz
Data: the tree 7" with n layers
current working tree node cx
1 Function SelectNextSeedToFuzz (5):
T < S.tree
cx < T.root
foreach i € {1,--- ,n} do
children < cx.child_nodes
CT < argmaxgecchildren>SCoOre (X)
end
s + cx.next_seed()
return s
End

e R N R W N

—
=

B. Seed Scoring

How to score seeds directly affect the trade-off between
exploration and exploitation. First, for exploitation, seeds that
have performed well recently should have high scores as they
are expected to make more progress. Second, for exploration,
the scoring system should also consider the uncertainty of
rarely explored seeds. We extended the UCBI1 algorithm [2],
[5] to achieve a balance between exploitation and exploration.
From a high level, our scoring method considers three aspects
of a seed: (1) its own rareness, (2) easiness to discover new
seeds from this seed, and (3) uncertainty.

In order to discuss this in more detail, let us first define
some terms more formally. First, we define the hit count of
a feature F' € I'; at level [as the number of test cases ever
generated that cover the feature.

Definition IV.1. Let P be the program under fuzzing, I be
the set of all test cases that have been generated so far. The
hit count of a feature F is num_hits|[F] = |{I € T : F €

As observed in [9], features that are rarely exercised by test
cases deserve more attention because they are not likely to be
exercised by valid inputs. The rareness of a feature describes
how rarely it is hit, which is the inverse of the hit count.

Definition IV.2. The rareness of a feature F is rareness|[F| =
1
num_hits[F]

Before describing how we calculate the reward of a round
of fuzzing, we first define the feature coverage of fuzzing seed
s at round t.

Definition IV.3. Let P be the program under fuzzing, L be
the set of test cases generated at round t via fuzzing seed s.

We denote the feature coverage at level Cy, 1 € {1,--- n} as
feovls,l,t] ={F : F e C(P,I)VI € I;,}

Next, we describe how we calculate the reward to the
seed just fuzzed after a round of fuzzing. An intuitive way
is to count the number of new features covered as the reward.
However, we quickly noticed that this does not work well. As
the fuzzing campaign goes on, the probability of exercising
new coverage is dramatically decreased, indicating that a seed
can hardly obtain new rewards. Consequently, the mean reward
of seeds may quickly decrease to zero. When we have many
seeds with minor variances near zero, the UCB algorithm
cannot properly prioritize seeds. Moreover, under the common
observation that infrequent coverage features deserve more
exploration than others, seeds that can lead to inputs that
exercise rare features are definitely more valuable, even if they
do not cover new features. Motivated by these observations,
we take the rareness of the rarest feature that is exercised by all
generated inputs as the reward to the schedule seed. Formally,
for a seed s that is fuzzed at round ¢, its fuzzing reward w.r.t.
coverage metric C is

max

SeedReward(s,l,t) = pefix
€ fecov|s,l,t

(rareness[F]) (1)

Based on the seed reward, we compute the reward to a

cluster by propagating seed rewards to clusters scheduled at
upper levels. More formally, let (a',...,a" a"*!) be the
sequence of nodes (in the seed tree) selected at round ¢, where
a"*! is the seed node for s and a; is coverage measurements
for the corresponding clusters. Since scheduling node a' affects
the following scheduling of nodes a!*!,.-- a™ at lower
layers, the reward of node al as feedback consists of the seed
reward regarding coverage levels [,l + 1,--- ,n as illustrated

in Note that we use the geometric mean here since
it can handle different scalars of the involved values with ease.

Reward(al,t) _n—l +\1/ H SeedReward(s, k,t) (2)

I<k<n

Right now, we are able to estimate the expected perfor-
mance of fuzzing a node using the formula of UCBI1 [2f], [5].
Formally, the fuzzing performance of a node a is estimated as

FuzzPerf(a) = Q(a) + U(a) 3)

Q(a) is the empirical average of fuzzing rewards that a
obtains so far, and U(a) is radius of the upper confidence
interval.

Unlike UCB1 which calculates (@) using the arithmetic
mean of the rewards that node a obtains so far, we use the
weighted arithmetic mean instead. More specifically, during
the fuzzing, the rareness of a feature is decreasing as it is
exercised by more and more test cases. As a result, even the
same fuzzing coverage can lead to different fuzzing rewards
for mutating a seed: the reward of an earlier round might be
significantly higher than that of a later round. To address this
issue, we introduce a discount factor as weight in order to
favor newer rewards rather than older ones. More formally,
given a node a that is selected for round ¢, we update its
weighted mean at the end of round ¢ in such a way that we
progressively decrease the weight to the previous mean reward
in order to give higher weights to newer rewards as illustrated

in [Equation 4

Nla,t]—1
Reward(a,t) + w x Qa,t’) x > w?
=0
Qa,t) = Nlayt]—1 - @)
1+wx > wp
p=0

Nla,t] denotes the number of times that node a has been
selected so far at the end of round ¢, ¢’ is the last round at which
node a was selected, and w is the discount factor. Note that
the smaller w is, the more we ignore the past rewards. When
w is set to 0, all the past rewards are ignored. To study how
w affects the fuzzing performance, we conduct an empirical
experiments (§V-F). Based on the results, we empirically set
w to 0.5 in our evaluation.

U(a) is the estimated radius factoring in the number of
times a has been selected. In addition, we also consider the
number of seeds that a contains based on the insight that
nodes with more seeds should be scheduled more for seed

exploration. More formally, given a seed a and its parent o/,
we calculate U(a) as

Ula) = C x \/ ;[5/]] x \/ IO%V]E;[]”/])

Y'[a] denotes the number of seeds in the cluster of node a,
and N[a| denotes the times a has been selected so far. C' is a
pre-defined parameter that configures the relative strength of
exploration and exploitation. In particular, a larger C' results
in a relatively wider radius in which encourages
exploring fresh nodes that have been fuzzed fewer times. This
can help a fuzzer get out of code regions that are too hard to
solve. On the contrary, a smaller C' indicates that the empirical
average of fuzzing rewards gets weighted more, thus promoting
nodes that have recently led to good progress. As a result,
the fuzzer will focus on these nodes and is expected to reach
more new code coverage. To further demonstrate how it affects
the fuzzing performance, we fuzz the CGC benchmark with
different values of C' and show the results in Based on
the results, we set C' to 1.4 in our evaluation.

The fuzzing performance estimated by based
on fuzzing coverage is limited by what can be observed. This

limitation can impact seeds that have never been scheduled
and seeds that exercise rare features themselves but usually
lead to inputs that exercise high-frequency features (e.g., for a
program with rigorous input syntax checks, random mutations
usually lead to invalid paths, hence lowering the reward).
To mitigate this limitation, when evaluating a seed, we also
consider features that it exercises. Particularly, we calculate the
rareness of a seed via aggregating the rareness of features that
it covers. More formally, let P be the program under fuzzing,
given a seed s, its rareness regarding M;, l € {1,--- ,n} is

Y Feci(Ps) rareness?[F)
{F:FeC/(Ps)}

(6)

SeedRareness(s,l) =

Note that here we take quadratic mean rather than, e.g.,
arithmetic mean because it preserves more data diversity. The
rareness of a node a' measured by M, is completely decided
by its child seeds as they share the same coverage regarding
M. Let {a',--- ;a™, a™"!) be the sequence of nodes selected
at round ¢, where a"*! is the leaf node representing a real
seed s, then at the end of round ¢ the rareness of node a' is
updated as

Rareness(a') = SeedRareness(s, 1) @)

Notably, we update the rareness score of seeds and nodes
lazily for two reasons. First, it reduces the performance over-
head. Second, it can lead to overestimating the rareness of a
node that has not been fuzzed for a long time, so that seed is
more likely to be scheduled.

In addition to updating the rareness of a node picked in
the past round, we also calculate the rareness of each new
node similarly. As discussed previously, this makes each new

node have an initial score to differentiate itself from other new
nodes before its reward is estimated.

Finally, we have the score of a node a via multiplying its
rareness and estimated fuzzing performance together as shown
in This score is the one used in to
determine which nodes will be picked and which seed will be
fuzzed next.

Score(a) = Rareness(a) x FuzzPerf(a) 3)

V. EVALUATION

Our main hypothesis is that our multi-level coverage metric
and hierarchical seed scheduling algorithm driven by the MAB
model can achieve a good balance between exploitation and
exploration, thus boosting the fuzzing performance. To validate
our hypothesis, we implemented two prototypes AFL-HIER
and AFL++-HIER, one based on AFL [55]] and the other based
on AFL++ [17], and evaluated them on various benchmarks
aiming to answer the following research questions.

e RQ1 Can AFL-HIER/AFL++-HIER detect more bugs than
the baseline?

e RQ2 Can AFL-HIER/AFL++-HIER achieve higher cover-
age than the baseline?

e RQ3 How much overhead does our technique impose on
the fuzzing throughput?

e RQ4 How well does our hierarchical seed scheduling
mitigate the seed explosion problem caused by high
sensitive of coverage metrics?

e RQS5 How do the hyper-parameters affect the performance
of our hierarchical seed scheduling algorithm?

e RQ6 How flexible is our framework to integrate other
coverage metrics?

A. Experiment Setup

1) Benchmarks: The first set of programs are from DARPA
Cyber Grand Challenge (CGC) [10]. These programs are
carefully crafted by security experts that embed different
kinds of technical challenges (e.g., complex I/O protocols
and input checksums) and vulnerabilities (e.g., buffer over-
flow, integer overflow, and use-after-free) to comprehensively
evaluate automated vulnerability discovery techniques. There
are 131 programs from CGC Qualifying Event (CQE) and
74 programs from CGC Final Event (CFE), a total of 205.
CGC programs are designed to run on a special kernel with
seven essential system calls so that competitors can focus
on vulnerability discovery techniques. In order to run those
programs within a normal Linux environment, we use QEMU
to emulate the special system calls. Unfortunately, due to
imperfect simulation, some CGC programs fail to be run
correctly. We also cannot handle programs that consist of
multiple binaries, which communicate with each other through
pre-defined inter-process communication (IPC) channels. As
a result, we can only successfully fuzz 180 CGC programs
(or binaries, in other words). We fuzz each binary for two
hours and repeat each experiment 10 times to mitigate the

effects of randomness. Each fuzzing starts with a single seed
“123\n456\n789\n”. We chose this initial because the
initial seed affects the fuzzing progress a lot: seeds that are
too good may make most code covered at the beginning if
the program is not complex, while poor ones may make the
fuzzing get stuck before reaching the core code of the program.
These two cases both will make the fuzzing reach the plateau
early, and fail to show the performance differences between
our approach and other fuzzers. The seed we chose showed
a good capability to reveal performance differences between
fuzzers.

The second benchmark set is the Google FuzzBench [21]
that offers a standard set of tests for evaluating fuzzer perfor-
mance. These tests are derived from real-world open-sourced
projects (e.g., libxml, openssl, and freetype) that are widely
used in file parsers, protocols, and font operations. For this
dataset, we used the standard automation script to run the
benchmarks, so each benchmark uses the seeds provided by
Google.

2) Implementations: For evaluation over the CGC dataset,
we used a prototype built on top of the code open-sourced by
Wang et al. [45], which is based on AFL QEMU-mode, for
its support for binary-only targets and its emulation of CGC
system calls. For evaluation over the FuzzBench dataset, we
used a prototype built upon the AFL++ project [17] (QEMU-
mode only), for its support of persistent mode and higher
fuzzing throughput.

3) Baseline Fuzzers: For AFL-based prototype, we choose
three fuzzers as the baseline for comparison: the original
AFL [55], AFLFAST [9], and AFL-FLAT [45]. AFL-FLAT is
configured with edge sensitivity Cr and distance sensitivity
Cp (see for more details), but uses the power sched-
uler from AFLFAST instead of our hierarchical scheduler. As
discussed in the performance of greybox fuzzing is
mainly affected by four factors: seed selection, seed schedul-
ing, mutation strategies, and fuzzing throughput. We made all
fuzzers use the same mutation strategy to reflect the benefit of
our approach, and ran the experiments ten times to minimize
the impact of randomness [24]. We also ran all fuzzers in the
QEMU mode so they can have similar fuzzing throughput,
which also makes it easier to assess AFL-HIER’s performance
overhead. Comparisons with AFL and AFLFAST aim to show
the overall performance improvement of AFL-HIER; and com-
parison with AFL-FLAT aims to show the necessity/benefit of
our scheduler (i.e., increasing the sensitivity of the coverage
metric alone is not enough).

For AFL++-based prototype, we choose two fuzzers as the
baseline{l} the original AFL++([17] and AFL++-FLAT. We ran
all fuzzers in the QEMU-mode and enabled persistent mode
for better throughput

4) Computing Resources: All the experiments are con-
ducted on a 64-bit machine with 48 cores (2 Intel(R) Xeon(R)
Platinum 8260 @2.40GHz), 375GB of RAM, and Ubuntu
18.04. Each fuzzing instance is bound to a core to avoid
interference.

'We are working with Google to provide a more thorough comparison with
other fuzzers.

2The version is 2.68c which our prototype is built on.

afl-hier
afl-flat
aflfast

afl
58

—_

—
60 62 64

—

66 68 70 72 74
number of crashed binaries

(a) Number of crashed CGC binaries.

76 78 80

o]
(=)

~
w

~
o

o
w

(=)}
o

w
o

number of crashed binaries
w
w

45 —— afl

20 —0— aflfast
afl-flat

35 —4— afl-hier

305 10 20 30 40 50 60 70 80 90 100 110 120

time to crash (min)

(b) Number of CGC binaries crashed over time.

Fig. 3: Crash detection on CGC benchmarks.

B. RQ 1. Bug Detection

* In experiments with CGC benchmarks, AFL-HIER
crashes more binaries and faster. Especially, it crashes the
same number of binaries in 30 minutes, that AFLFAST
crashes in 2 hours.

In this experiment, we evaluate fuzzers’ capability of de-
tecting known bugs embedded in the CGC binaries.
shows the number of crashed CGC binaries across ten rounds
of trials. Note that since each binary supposedly only has one
vulnerability, this number equals the total number of unique
crashes. On average, AFL crashed 64 binaries, AFLFAST
crashed 61 binaries, and AFL-FLAT crashed 62 binaries. In
contrast, AFL-HIER crashes about 77 binaries on average,
which is about 20% more binaries in the 2-hour fuzzing
campaign. AFL-HIER also performed much better when we
look at the lower and upper bound: its lower bound of crashes
(74) is always higher than the upper bound of all other
fuzzers. Notably, these vulnerabilities are carefully designed
by security experts to highly mimic real-world security-critical
vulnerabilities.

shows the pairwise comparisons of CGC binaries

TABLE I: Pairwise comparisons (row vs. column) of uniquely
crashed on CGC benchmark.

AFL AFLFAST AFL-FLAT AFL-HIER

AFL - 8 16 5
AFLFAST 3 - 13 5
AFL-FLAT 11 13 - 1
AFL-HIER 17 22 18 -

10

uniquely crashed by a fuzzer across ten rounds of trails.
As we can see, the added (distance) sensitivity C'p allows
AFL-FLAT and AFL-HIER to crash a considerable amount of
binaries that edge sensitivity (i.e., AFL and AFLFAST) cannot
crash. However, due to the seed explosion problem, AFL-FLAT
could not efficiently explore the seed pool; so it also missed
many bugs AFL and AFLFAST can trigger. In contrast, AFL-
HIER can achieve a good balance between exploration and
exploitation: it crashed more unique binaries and missed much
less.

Next, we measured the time to first crash (TFC) and show
the accumulated number within a 95% confidence of binaries
crashed over time in As shown in recent studies [6]],
[22], TFC is a good metric to measure the performance of
fuzzers. The x-axis presents the time in minutes, and the y-
axis shows the number of crashed binaries. As shown in the
graph, AFL-HIER stably crashed about 20% more binaries than
other fuzzers from the beginning to the end. Notably, AFL-
HIER crashed the same number of binaries in 30 minutes as
AFLFAST did in 120 minutes; and crashed the same number of
binaries in 40 minutes as AFL did in 120 minutes. In contrast,
AFLFAST was lagging behind AFL and AFLFAST in most of
the time and only surpassed AFLFAST after 100 minutes. This
result showed that our hierarchical scheduler not only can find
many unique bugs but also can efficiently explore the search
space.

C. RQ 2. Code Coverage

* Results on CGC binaries demonstrate that AFL-HIER
generally achieved more code coverage and achieved the
same coverage faster. Specifically, AFL-HIER increases the
coverage by more than 100% for 20 binaries, and achieves
the same coverage in 15 minutes that AFLFAST achieves in
120 minutes for about half of the binaries. On FuzzBench,
AFL++-HIER achieved higher coverage on 10 out of 20
projects.

CGC Benchmark. In this experiment, we first measured the
edge coverage achieved by fuzzers using QEMU (i.e., captured
during binary translation) on CGC binaries.

illustrates the mean code coverage increase of

AFL-HIER over other fuzzers for the 180 CGC binaries, after
2 hours of fuzzing. The curve above 0% means AFL-HIER
covered more and the curse below 0% means AFL-HIER
covered less. The x-axis presents the accumulated number of
binaries within a 95% confidence, and the y-axis shows the
increased coverage in logarithmic scale. For example, there
are about 20 binaries for which the code coverage is increased
by at least 100%, and about 45 binaries for which the code
coverage is increased by at least 10%. After 2 hours of fuzzing,
AFL-HIER achieved more coverage for about 90 binaries than
other fuzzers and achieved the same coverage for 50 binaries.
Among about 30 binaries on which AFL-HIER achieves less
coverage, on half of them the difference is lower than 2%; and
only on five of them the difference is greater than 10%. This
result shows that our approach can cover more or similar code
on most binaries besides detecting more bugs.

illustrates how fast AFL-HIER can achieve the

same coverage as other fuzzers in two hours. The dashed lines

200%
50%

—— afl-hier vs afl
—&— afl-hier vs aflfast
10% afl-hier vs afl-flat
2%
0%
2%
-10%
-50%
-200% §
0 20 40 60 80 100 120 140 160 180
number of binaries

(a) Mean coverage increase. For X binaries, AFL-HIER
achieves at least Y% more coverage than other fuzzers. A curve
towards upper-right indicates that AFL-HIER outperforms the
other more significantly.

120l "
100
g 80—~ afl-hier vs afl
% 60 —o— afl-hier vs aflfast
£ afl-hier vs afl-flat
= 40
20 LS
"'.

o

0 20 40 60 80 100 120

number of binaries

140 160 180

(b) Time to coverage. For X binaries, AFL-HIER achieved
the same coverage in Y minutes, as the other fuzzer achieved
in 2 hours (solid line). A curve in solid line towards the
lower right with its counterpart in dashed line towards lower

left indicates a more statistical significance of that AFL-HIER
achieve coverage faster than the opponent.

100

n

2 80

@©

f=

3 60

kS

5 40

g —— afl-hier vs afl

2 20 —&— afl-hier vs aflfast
0 afl-hier vs afl-flat
0 10 20 30 40 50 60 70 80 90 100 110 120

time (min)

(c) Better coverage. After X minutes of fuzzing, AFL-HIER
achieves more coverage than other fuzzers for Y binaries. An
curve towards upper left indicates that AFL-HIER achieves
better coverage than the opponent more significantly.

Fig. 4: Coverage improvement on the CGC benchmarks.

(on the right-hand-side after hitting 120 min) show for the
cases where baseline fuzzers achieved more final coverage
in two hours. The x-axis shows the accumulated number of
binaries within a 95% confidence, while the y-axis shows
the time in minutes. We can see that for about half of the
total 180 binaries, AFL-HIER achieved the same coverage in
15 minutes as baseline fuzzers did in 2 hours. Moreover, for
about 110 binaries, AFL-HIER achieves the same coverage in
half an hour; and for about 130 binaries, AFL-HIER achieves
the same coverage in one hour. Similar to TFC (time to first
crash), this result also shows that our approach can achieve
the same coverage faster, indicating it can balance exploration
and exploitation well.

shows the number of binaries for which AFL-

HIER achieved more coverage than other fuzzers over time.

11

The x-axis represents the time in minutes and the y-axis shows
the accumulated number of binaries within a 95% confidence
that AFL-HIER won on coverage. We can observe that after
10 minutes, AFL-HIER already won for about 40 binaries over
AFL and AFLFAST. After 1 hour, it further increased the gap by
winning for more than 70 binaries. Overall, AFL-HIER steadily
won for more and more binaries throughout the process of the
2-hour fuzzing campaign. This indicates that AFL-HIER can
continuously make breakthroughs in new coverage for binaries
when other fuzzers plateaued.

FuzzBench. Next, we compare AFL++-HIER with two base-
line fuzzers (AFL++ and AFL++-FLAT) on Google FuzzBench
benchmarks. shows the mean coverage (with confi-
dence intervals) over time during 6-hour fuzzing campaign
The y-axis presents the number of covered edges and the x-axis
represents time. Please note that the x-axis is in logarithmic
scale, as recent work suggests the required efforts to achieve
more coverage grow exponentially [6]. Meanwhile, the Vargha-
Delaney [43] effect size A;o is shown at the bottom of each
sub-figure, where the left one is of between AFL++-HIER
over AFL++ (Qemu) and the right one is of between AFL++-
HIER and AFL++-FLAT, respectively. A value above 0.5735,
0.665, 0.737 (or below 0.4265, 0.335, 0.263) indicates a small,
medium, large effect size. More intuitively, a larger value
above 0.5 indicates a higher probability of that AFL++-HIER
will cover more edges than AFL++ (Qemu) or AFL++-FLAT
in a fuzzing campaign. Moreover, a value starting with a star
indicates a statistical significance tested by Wilcoxon signed-
rank test (p < 0.05). Overall, AFL++-HIER could beat AFL++
(Qemu) and AFL++-FLAT on about ten projects, and achieved
significantly more coverage on projects openthread, sqlite3,
and proj4.

shows the unique edge coverage of AFL++ (Qemu)
and AFL++-HIER. The results indicate even on programs

where AFL++-HIER has lower mean coverage than AFL++,
it still can cover some unique edges AFL++ does not cover.
Note that here we union edge coverage across different runs, so
for some benchmarks like lcms and libpcap, though the mean
coverage differences are large, the unique coverage differences
are much smaller.

Compared to the results on the CGC benchmarks, we
observe that our performance is not significantly better than
AFL++ on most of the FuzzBench benchmarks. We suspect
the reason is that our UCB1-based scheduler and the hyper-
parameters we used in the evaluation prefer exploitation over
exploration. As a result, when the program under test is
relatively smaller (e.g., CGC benchmarks), our scheduler can
discover more bugs without sacrificing the overall coverage
by too much. But on FuzzBench programs, breaking through

some unique edges can be overshadowed by not
exploring other easier to cover edges.

D. RQ 3. Fuzzing Throughput

* Results on CGC benchmarks show that AFL-HIER has
a competitive throughput as AFL and AFLFAST. Moreover,
even built on the faster fuzzer AFL++, AFL++-HIER still

3We are working with Google to provide a 23-hour run that compares with
more fuzzers.

freetype2-2017 harfbuzz-1.3.2

lcms-2017-03-21 libjpeg-turbo-07-2017

17500 8000 3400
15000 2000] 3200
7000
12500 3000
1500
6000
10000 2800
7500 5000 S——
0.72 0.50 *0.22 *0.00 1000 *0.25 *0.86 2600 *0.18 0.22
15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h
libpng-1.2.56 libxmlI2-v2.9.2 openssl_x509 openthread-2019-12-23
1650 16000
6000 5800
1600 14000 o 5600
50001{= /
1550 12000 5400
4000
1500 10000, 5200
3000 —
1450 0.51 *0.93 *0.11 *0.00 8000 *0.72 *0.93 5000 0.97 *0.94
15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h
sqlite3_ossfuzz vorbis-2017-12-11 bloaty_fuzz_target 17000 curl_curl_fuzzer_http
6500)
@ 26000 2100
_g’ 16500
@ 24000 6000)
S 2000y 16000
© 22000
g 5500 15500
£ 20000 19001
2 18000 15000
0.69 *1.00 0.39 0.39 5000 +0.00 *0.83 0.44 0.19
15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h
jsoncpp_jsoncpp_fuzzer libpcap_fuzz_both mbedtls_fuzz_dtlsclient proj4-2017-08-14
5000
T 3000;
600 8000) 4000,
500 2000 3000,
7800
1000, 2000
400 —
o 7600) 1000
300 0.50 0.50 0.58 *0.72 *0.79 0.56 *0.94 *0.89
15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h 15m 30m 1h 2h 4h 6h
re2-2014-12-09 systemd_fuzz-link-parser woff2-2016-05-06 zlib_zlib_uncompress_fuzzer
3500 1000/
640 1800 —
1
3000 635 600 / 800 —o— afl++
1400 - afl++-flat
630 A
afl++-hier
2500 1200 600 - i
625 1000)
2 *0.00 *0.00 *0.92 0.50 80 *0.78 0.35 *1.00 *0.89
W 30m 1h 2h 4h 6 15m 30m 1h 2h 4h 6 S 3om 1h 2h 4h 6 15m 30m 1h 2h 4h 6h
time

Fig. 5: Mean coverage in a 6 hour fuzzing campaign on FuzzBech benchmarks.

has a comparable throughput as shown by the results on
FuzzBench benchmarks.

A multi-level coverage metric requires collecting more
coverage measurements during runtime and performing more
operations to insert a seed into the seed tree. Similarly, our
hierarchical scheduler also requires more steps than the power
scheduler of AFL and AFLFAST. Therefore, we expect our
approach to have a negative impact on fuzzing throughput.
Moreover, the multi-level coverage metric is sensitive to minor
variances of test cases and execution paths; consequently, it is
more likely to schedule larger and more complex seeds leading
to longer execution time.

To quantify the impact on fuzzing throughput, we first in-
vestigated the proportion of the time that AFL-HIER spends in
scheduling, which involves maintaining the incidence frequen-
cies and the tree of seeds and choosing the next seed to fuzz.
The results on CGC benchmarks are shown in where
the x-axis represents individual runs (in total 10 x 180 = 1800)
and the y-axis shows the portion of time spent on scheduling.
‘We can see that the median overhead is as low as 3%, and most
overhead is lower than 10%. On AFL++-based prototype, we
observed lower performance overhead, as shown in

12

Next, we measured the throughput of AFL-HIER versus
AFL and AFLFAST on CGC benchmarks. shows the
ratio of AFL-HIER’s throughput over AFL and AFLFAST in an
ascending order. The x-axis represents different CGC binaries
while the y-axis shows the ratio within a 95% confidence
in logarithmic scale. Surprisingly, AFL-HIER only leads to
a lower throughput for about a quarter of the binaries; and
for another quarter of the binaries, AFL-HIER’s throughput is
at least twice as AFLFAST’s. This indicates that the specific
optimizations for AFL-HIER act very well. A similar trend
is also observed on the AFL++-based prototype, as shown

in [Figure §

E. RQ 4. Performance Boost via Hierarchical Seed Scheduling

* Experiment results on CGC and FuzzBench bench-
marks demonstrate that our hierarchical seed scheduler
dramatically reduces the number of candidates to be
examined.

Previous experiments already show that our hierarchical
seed scheduler is more suitable for highly sensitive coverage
metrics, as AFL-HIER can achieve higher coverage faster
than AFL-FLAT and find more bugs. In this evaluation, we

TABLE II: Unique edge coverage between afl++ (Qemu) and
afl++-hier (Hier) on FuzzBench benchmarks. The coverage is
union over different runs.

Benchmark Total Hier - Qemu Qemu - Hier
bloaty_fuzz_target 102417 24 674
curl_curl_fuzzer_http 143182 203 114
freetype2-2017 56114 774 1227
harfbuzz-1.3.2 13073 58 124
jsoncpp_jsoncpp_fuzzer 2583 0 0
lems-2017-03-21 12817 36 33
libjpeg-turbo-07-2017 18486 0 237
libpcap_fuzz_both 11800 141 195
libpng-1.2.56 5944 6 54
libxml2-v2.9.2 89852 52 210
mbedtls_fuzz_dtlsclient 32046 142 102
openssl_x509 115381 26 14
openthread-2019-12-23 42901 344 0
proj4-2017-08-14 10434 109 67
re2-2014-12-09 5904 2 100
sqlite3_ossfuzz 48181 1880 965
systemd_fuzz-link-parser 4167 0 0
vorbis-2017-12-11 6372 8 4
woff2-2016-05-06 6401 54 8
zlib_zlib_uncompress 1664 24 0

1ooo%P—I— afl-hier vs afl
-@- afl-hier vs aflfast
afl-hier vs afl-flat

500%

200%

100%

throughput ratio

50%

20%

10%

binaries

Fig. 6: Comparison between Throughput of AFL-HIER, AFL,
AFLFAST and AFL-FLAT on CGC benchmarks.

investigate the number of seeds generated by each fuzzer
to validate that such improvement is indeed caused by the
scheduler. shows the number of seeds generated by
each fuzzer on the left side, as well as the number of nodes
at different levels of the tree in AFL-HIER on the right side.
The y-axis is in logarithmic scale. We can observe that due
to the increased sensitivity of distance metric C'p, both AFL-
HIER and AFL-FLAT selected one magnitude more seeds than
AFL and AFLFAST, which uses edge coverage with hit count.
However, by clustering the seeds in a hierarchical structure,
AFL-HIER dramatically reduced the number of candidates to
examine when scheduling. Specifically, on average there are
about 21 + 1102/21 4 2350/1102 4 2608/2350 =~ 77 exami-
nations to perform for each scheduling, which is significantly
less than examining 2608 seeds. As a result, even with the
most number of seeds (more than AFL-FLAT), AFL-HIER can
still balance exploration and exploitation and achieve better

13

14%

12%

10%

8%

6%

overhead proportion

4% +

2%

[y
0% runs

Fig. 7: Overhead of AFL-HIER Scheduler on CGC bench-
marks.

500% -l afl++-hier vs afl++

-@— afl++-hier vs afl++-flat

200%

100%

throughput ratio

50%

20%

binaries

Fig. 8: Comparison between Throughput of AFL++-HIER,
AFL++, and AFL++-FLAT on FuzzBench benchmarks.

fuzzing performance (in terms of coverage and detected bugs)
than baseline fuzzers.

On FuzzBench benchmarks, we also observed a similar
level of reduction, as shown in More importantly,
we can see that our scheduling algorithm can scale to larger
programs with significantly more edges and more saved seeds.
As shown in all the benchmarks have at least
thousands of edges in total, and some even contain more than
one hundred thousand edges.

FE. RQ 5. Hyper-parameters

* Experiment results on CGC benchmarks demonstrate
that the hyper-parameters will affect the performance in
terms of crashes and edge coverage.

As discussed in[§IV-B] the seed scoring involves two hyper-
parameters. One is w in that determines how much

2%

1.5%

1%

overhead proportion

0.5%

o
0% runs

Fig. 9: Overhead of AFL++-HIER Scheduler on FuzzBench
benchmarks.

50000 ¥

20000
10000 i §

5000 :
2608 ;
2000 : : cod

5 1102
1000

2350

181

number of seeds & nodes

afl aflfast afl-flat afl-hier 11 12 13

Fig. 10: Number of Seeds and Nodes on CGC benchmarks.

we will decrease weights to old rewards when calculating the
mean reward. The other one is C' in that controls
the trade-off between seed exploration and exploitation. In
this evaluation, we investigate when they are set to different
values, how the fuzzing performance will vary.
and show the average number of crashed binaries and
covered edges with different values of C' and w, respectively.
In addition, we also investigate the number of binaries uniquely
crashed as shown in [Table 1V] and [Table VIl where each cell
represents the number of binaries that have been crashed by
the setting of the row once but never by the setting of the
column. We can observe that different settings will lead to
different results.

Notably, when C' is set to 0, which extremely encourages
exploitation, it uniquely crashes the most binaries, but on
average, it crashes the least. This indicates that although
keeping exploitation may help to trigger a crash at the end of a

14

50000

20000
10000 :
5000

3191

2000

1000 731

number of seeds & nodes

afl++ afl++-flat afl++-hier 11 12 13

Fig. 11: Number of Seeds and Nodes on FuzzBech bench-
marks.

TABLE III: Average number of crashed CGC binaries and
mean edge coverage with different values of hyper-parameter
C.

Valueof C 0 0014 0.14 14 14
Crash 74 75 75 76 75
Edge Cov 776 667 748 727 746

seed chain in one run, it also takes the risk of being trapped in
fuzzing other seeds that previously have led to rarely explored
coverage, thus missing the crash in other runs. In other words,
high exploitation may do better in crash triggering than crash
reproducing. Meanwhile, the result of edge coverage indicates
that exploring more coverage may not be closely related to
bug detection as expected when under different configurations
of the relative strength of exploration and exploitation. For
example, setting C' to 0.014 will lead to significantly less
coverage, but it crashes almost the same number of binaries
as others.

In terms of the hyper-parameter w, note that a larger w
makes old rewards more weighted, thus encourages seed ex-
ploitation rather than exploration. We can observe that setting
w either too high (as 1.0) or too low (as 0.5) will lead to worse
coverage, while setting w to 0.5 will lead to significantly more
unique crashes.

Overall, we can observe that when setting C' to 1.4, w to
0.5, they perform reasonably well in average crashes, unique
crashes, and mean edge coverage. Thus we adapt these settings
in our current implementation.

G. RQ 6. Ability to Support other Coverage Metrics

* Experiment results on the maze problem show that
our hierarchical scheduler can also improve the fuzzing
performance when using other sensitive coverage metrics.

As discussed in [§ITI-A] it is very hard, if not impossible, to
use edge or even distance coverage to solve the maze problem

TABLE IV: Pairwise comparisons (row vs. column) of
uniquely crashed on CGC benchmarks with different values
of hyper-parameter C.

Valueof C 0 0.014 0.14 14 14
0 - 8 7 4 9
0.014 3 - 2 3 4
0.14 4 4 -5 5
14 3 7 7 - 9
14 3 3 2 4 -

TABLE V: Average number of crashed CGC binaries and mean
edge coverage with different values of hyper-parameter W.

Value of W 0.10 025 050 0.75 090 1.00

Crash 74 73 76 72 75 75
Edge Cov 698 758 727 666 739 660

(Listing [T). However, it is possible to solve it using memory
sensitivity C's (see [§III-D2]for details). In this experiment, we
investigate whether our hierarchical scheduler can also boost
the performance of coverage metrics other than code-related
coverage. Specifically, we configured AFL-FLAT and AFL-
HIER to use memory access metric C'4 instead of distance
metric C'p and evaluate the two fuzzers on the maze problem.
Table VII| shows the results. As we can see, compared to the
power scheduler used by AFL-FLAT, our hierarchical scheduler
allows AFL-HIER to solve the maze problem much faster.
This empirical result suggests that our scheduler is flexible
to support different coverage metrics.

VI. RELATED WORK
A. Coverage Guided Greybox Fuzzing

Greybox fuzzing was introduced as early as in 2016 by
Sidewinder [[16]. Since then it has been extensively used in
practice with the popularity of AFL [55]] and LIBFUZZER [1].
Meanwhile, it has gained tremendous academic interest in var-
ious areas. On the one hand, various techniques including taint
tracking [12], [37], [46], symbolic execution [4], [41], program
transformation [23], [33], and deep learning [36], [40], are
incorporated into greybox fuzzing to boost its performance.

TABLE VI: Pairwise comparisons (row vs. column) of
uniquely crashed on CGC benchmarks with different values
of hyper-parameter W.

Value of W 0.10 025 0.50 0.75 090 1.00
0.10 - 5 2 3 4 3
0.25 1 - 1 1 1 1
0.50 8 11 - 9 9 9
0.75 2 4 2 - 3 3
0.90 4 5 3 4 - 4
1.00 4 6 4 5 5 -

TABLE VII: Average solving time for the maze problem
(Listing [T).

AFL-FLAT AFL-HIER
383£92 180+ 36

Fuzzer

Time (sec)

Our approach relies little on these techniques and is orthogonal
to these work. On the other hand, there is an increasing number
of greybox fuzzers that are carefully crafted to test specific
types of programs such as OS kernels [38]], [53]], firmware [57],
protocol [35]], smart contracts [31], deep neural networks [50].
It is promising for these fuzzers to adopt our techniques to
improve their efficiency.

B. Improving Coverage Metric

Angora [12] involves calling context, and MemFuzz [15]]
involves memory accesses when calculating edge coverage
to explore program states more pervasively. However, they
pay little attention to the potential seed explosion problem.
CollAFL [19] improves edge coverage accuracy via ensuring
each edge has a unique hash, and utilizes various kinds of
coverage information to prioritize seeds. However, it requires
a precise analysis of the control flow graph of the target
program. Wang et al. [47] differentiate edges based on their
corresponding memory operations for seed prioritization to
find memory corruption bugs. However, it is incapable of pre-
venting a test case involving diverse memory operations from
being dropped since it still relies on edge coverage to evaluate
the quality of test cases. Greyone [18]] augments edge coverage
with data flow features where lightweight and accurate taint
tracking is necessary. IJON [3]] designs various primitives for
annotating source code that will adapt the coverage metric to
different kinds of challenges of exploring deep state space.
However, it requires domain knowledge of the target program
and much manual work. Ankou [30] proposes a new coverage
metric that measures distances between execution paths of test
cases, and employs adaptive seed pool update to mitigate seed
explosion. By comparison, the distance we propose is between
two arguments of conditions in conditional branches, and we
address the seed explosion problem via organizing the seed
pool as a multi-level tree.

Some research focuses on finding domain-specific bugs
via specially designed coverage metrics. MemLock [48] takes
memory consumption into account when evaluating a test case
in order to trigger memory consumption bugs. SlowFuzz [34]
counts the number of instructions executed by test case as
coverage features to detect algorithm complexity bugs. Further-
more, PerfFuzz [26] records the number of times each block
is executed by a test case and considers the test case as a new
seed if it increases the execution count for any block in order
to find hot spots. KRACE [56] develops a new coverage that
captures the exploration progress in the concurrency dimension
to find data races in kernel file systems. Our work offers a
framework to combine these metrics with others so that they
can benefit from more general metrics.

Wang et al. [45] systematically evaluate multiple coverage
metrics, revealing that there is no grand slam coverage metric
that can beat others, and it is promising to combine different
coverage metrics together through cross seeding between mul-
tiple fuzzing instances. We combine coverage metrics within
one fuzzing instance, avoiding the overhead of synchronizing
seeds as well as redundant fuzzing. FuzzFacotry [32] provides
a platform that makes combining different coverage metrics
easy and flexible. However, it does not address the seed
explosion problem, as our experimental results demonstrate

that randomly combining different metrics without a proper
organization may lead to negative impacts.

C. Smart Seed Scheduling

AFLFAST [9] focuses on fuzzing seeds exercising low-
frequency paths and assigns more power to them through
modeling greybox fuzzing as a Markov chain. FairFuzz [27]
identifies low-frequency edges and prioritizes mutations satis-
fying these edges. Entropic [[7] targets on the test cases that
a seed has generated, evaluating the diversity of coverage
features they exercise via the information-theoretic entropy.
Consequently, seeds with higher information gains are more
likely to be scheduled. Vuzzer [37]] de-prioritizes seeds hitting
error-handling or frequently visited code that is identified
via heavyweight static and dynamic analysis. Cerebo [28]
prioritizes seeds via various metrics including code complexity,
coverage, and execution time. AFLGo [8] and UAFL [44]
are directed fuzzers that favor seeds closer to targeted code.
Compared to these work, our scheduling algorithm considers
the rareness of both static features it covers and test cases it
has generated when evaluating a seed.

Modeling scheduling as an MAB problem. Woo et al. [49]
model blackbox mutational fuzzing as a classic Multi-Armed
Bandit (MAB) problem. Nevertheless, its goal is to search for
an optimal arrangement for a fixed set of program-seed pairs
to maximize the unique bugs found. EcoFuzz [54] proposes
a variant of the Adversarial Multi-Armed Bandit model for
modeling seed scheduling. However, it explicitly puts seed
exploration and exploitation in separate stages, launching ex-
ploitation only when all existing seeds have been explored
once. Thus it is incapable of solving the seed explosion
problem.

VII. CONCLUSION

Fine-grained coverage metrics, such as distances between
operands of comparison operations and array indices involved
in memory accesses, allow greybox fuzzers to detect bugs that
cannot be triggered by traditional edge coverage. However,
existing seed scheduling algorithms cannot efficiently handle
the increased number of seeds. In this work, we present
a new coverage metric design called multi-level coverage
metric, where we cluster seeds selected by fine-grained metrics
using coarse-grained metrics. Combined with a reinforcement-
learning-based hierarchical scheduler, our approach signifi-
cantly outperforms existing edge-coverage-based fuzzers on
DARPA CGC challenges.

ACKNOWLEDGMENT

This work is supported, in part, by National Science
Foundation under Grant No. 1664315, No, 1718997, Office
of Naval Research under Award No. N00014-17-1-2893, and
UCOP under Grant LFR-18-548175. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views
of the funding agencies.

16

(1]

(2]

(3]

(4]

(31

(6]

(71

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

“Libfuzzer: a library for coverage-guided fuzz testing,” https://llvm.org/
docs/LibFuzzer.html.

R. Agrawal, “Sample mean based index policies with o (log n) regret
for the multi-armed bandit problem,” Advances in Applied Probability,
pp. 1054-1078, 1995.

C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring
deep state spaces via fuzzing,” in IEEE Symposium on Security and
Privacy (Oakland), 2020.

C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence,” in Annual
Network and Distributed System Security Symposium (NDSS), 2019.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235-256, 2002.

M. Bohme and B. Falk, “Fuzzing: On the exponential cost of vulnera-
bility discovery,” in ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), 2020.

M. Bohme, V. Manes, and S. K. Cha, “Boosting fuzzer efficiency: An
information theoretic perspective,” in ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), 2020.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in ACM Conference on Computer and Com-
munications Security (CCS), 2017.

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in ACM Conference on Computer and
Communications Security (CCS), 2016.

D. CGC, “Darpa cyber grand challenge binaries,” https://github.com/
CyberGrandChallenge, 2014.

S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in I[EEE Symposium on Security and Privacy (Oakland), 2015.

P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in IEEE Symposium on Security and Privacy (Oakland), 2018.

P. Chen, J. Liu, and H. Chen, “Matryoshka: Fuzzing deeply nested
branches,” in ACM Conference on Computer and Communications
Security (CCS), 2019.

J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in International Conference on Software Engineering
(ICSE), 2019.

N. Coppik, O. Schwahn, and N. Suri, “Memfuzz: Using memory
accesses to guide fuzzing,” in IEEE Conference on Software Testing,
Validation and Verification (ICST), 2019.

S. Embleton, S. Sparks, and R. Cunningham, “Sidewinder: An evo-
lutionary guidance system for malicious input crafting.” in BlackHat,
2006.

A. Fioraldi, D. Maier, H. Eiffeldt, and M. Heuse, “Afl++: Combin-
ing incremental steps of fuzzing research,” in USENIX Workshop on
Offensive Technologies (WOOT), 2020.

S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“Greyone: Data flow sensitive fuzzing,” in USENIX Security Symposium
(Security), 2019.

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in IEEE Symposium on Security and Privacy
(Oakland), 2018.

Google, “OSS-Fuzz - continuous fuzzing of open source software,”’
https://github.com/google/oss-fuzz, 2016.

, “Fuzzbench: Fuzzer benchmarking as a service,” https://google.
github.io/fuzzbench/, 2020.

A. Hazimeh, A. HERRERA, and M. Payer, “Magma: A ground-
truth fuzzing benchmark,” in ACM on Measurement and Analysis of
Computing Systems (SIGMETRICS), 2021.

U. Kargén and N. Shahmehri, “Turning programs against each other:
high coverage fuzz-testing using binary-code mutation and dynamic
slicing,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015.

G. T. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in ACM Conference on Computer and Communications
Security (CCS), 2018.

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/CyberGrandChallenge
https://github.com/CyberGrandChallenge
https://github.com/google/oss-fuzz
https://google.github.io/fuzzbench/
https://google.github.io/fuzzbench/

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

lafintel, “Circumventing fuzzing roadblocks with compiler transforma-
tions,” https://lafintel. wordpress.com/, 2016.

C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perffuzz: automati-
cally generating pathological inputs,” in International Symposium on
Software Testing and Analysis (ISSTA), 2018.

C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2018.

Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and Y. Liu,
“Cerebro: context-aware adaptive fuzzing for effective vulnerability de-
tection,” in ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2019.

C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“Mopt: Optimized mutation scheduling for fuzzers,” in USENIX Secu-
rity Symposium (Security), 2019.

V. J. Manes, S. Kim, and S. K. Cha, “Ankou: Guiding grey-box
fuzzing towards combinatorial difference,” in International Conference
on Software Engineering (ICSE), 2020.

T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in International
Conference on Software Engineering (ICSE), 2020.

R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar,
“Fuzzfactory: domain-specific fuzzing with waypoints,” in Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2019.

H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program
transformation,” in IEEE Symposium on Security and Privacy (Oak-
land), 2018.

T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “Slowfuzz: Automated
domain-independent detection of algorithmic complexity vulnerabili-
ties,” in ACM Conference on Computer and Communications Security
(CCS), 2017.

V.-T. Pham, M. Bohme, and A. Roychoudhury, “Aflnet: A greybox
fuzzer for network protocols,” in IEEE International Conference on
Software Testing, Verification and Validation (Testing Tools Track),
2020.

M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural
byte sieve for fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in Annual Network
and Distributed System Security Symposium (NDSS), 2017.

S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kafl: Hardware-assisted feedback fuzzing for os kernels,” in USENIX
Security Symposium (Security), 2017.

K. Serebryany, “Continuous fuzzing with libfuzzer and addresssani-
tizer,” in IEEE Cybersecurity Development (SecDev). 1EEE, 2016.

D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program learning,” in IEEE Symposium
on Security and Privacy (Oakland), 2019.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Annual Network and
Distributed System Security Symposium (NDSS), 2016.

L. Szekeres, “Memory corruption mitigation via software hardening and
bug-finding,” Ph.D. dissertation, Stony Brook University, 2017.

A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101-132,
2000.

H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen,
and Y. Sui, “Typestate-guided fuzzer for discovering use-after-free
vulnerabilities,” in International Conference on Software Engineering
(ICSE), 2020.

J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive
and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing,” in International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2019.

T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware

17

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

directed fuzzing tool for automatic software vulnerability detection,” in
IEEE Symposium on Security and Privacy (Oakland), 2010.

Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting for
input prioritization,” in Annual Network and Distributed System Security
Symposium (NDSS), 2020.

C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie, G. Pu,
and T. Liu, “Memlock: Memory usage guided fuzzing,” in International
Conference on Software Engineering (ICSE), 2020.

M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-box
mutational fuzzing,” in ACM Conference on Computer and Communi-
cations Security (CCS), 2013.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in International Symposium on
Software Testing and Analysis (ISSTA), 2019.

W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating
primitives to improve fuzzing performance,” in ACM Conference on
Computer and Communications Security (CCS), 2017.

W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,
“Profuzzer: On-the-fly input type probing for better zero-day vulnerabil-
ity discovery,” in IEEE Symposium on Security and Privacy (Oakland),
2019.

W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in ACM Conference on Computer and Communications
Security (CCS), 2017.

T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou,
“Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant of
the adversarial multi-armed bandit,” in USENIX Security Symposium
(Security), 2020.

M. Zalewski, “American fuzzy lop.(2014),” http://Icamtuf.coredump.cx/|
afl, 2014.

M. X. S. K. H. Zhao and T. Kim, “Krace: Data race fuzzing for kernel
file systems,” in IEEE Symposium on Security and Privacy (Oakland),
2020.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in USENIX Security Symposium (Security), 2019.

https://lafintel.wordpress.com/
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

	Introduction
	background
	Greybox Fuzzing
	Multi-Armed Bandit Model

	Multi-Level Coverage Metrics
	Sensitivity of Coverage Metrics
	Seed Clustering via Multi-Level Coverage Metrics
	Incremental Seed Clustering
	Principles and Examples of Multi-level Coverage Metrics
	Principles
	Examples

	Hierarchical Seed Scheduling
	Scheduling against A Tree of Seeds
	Seed Scoring

	Evaluation
	Experiment Setup
	Benchmarks
	Implementations
	Baseline Fuzzers
	Computing Resources

	RQ 1. Bug Detection
	RQ 2. Code Coverage
	RQ 3. Fuzzing Throughput
	RQ 4. Performance Boost via Hierarchical Seed Scheduling
	RQ 5. Hyper-parameters
	RQ 6. Ability to Support other Coverage Metrics

	Related Work
	Coverage Guided Greybox Fuzzing
	Improving Coverage Metric
	Smart Seed Scheduling

	Conclusion
	References

