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Abstract—Cybercrime scene reconstruction that aims to re-
construct a previous execution of the cyber attack delivery process
is an important capability for cyber forensics (e.g., post mortem
analysis of the cyber attack executions). Unfortunately, existing
techniques such as log-based forensics or record-and-replay
techniques are not suitable to handle complex and long-running
modern applications for cybercrime scene reconstruction and post
mortem forensic analysis. Specifically, log-based cyber forensics
techniques often suffer from a lack of inspection capability and do
not provide details of how the attack unfolded. Record-and-replay
techniques impose significant runtime overhead, often require
significant modifications on end-user systems, and demand to
replay the entire recorded execution from the beginning. In this
paper, we propose CQSR, a novel technique that can recon-
struct an attack delivery chain (i.e., cybercrime scene) for post-
mortem forensic analysis. It provides a highly desired capability:
interactable partial execution reconstruction. In particular, it
reproduces a partial execution of interest from a large execution
trace of a long-running program. The reconstructed execution is
also interactable, allowing forensic analysts to leverage debugging
and analysis tools that did not exist on the recorded machine. The
key intuition behind C’SR is partitioning an execution trace by
resources and reproducing resource accesses that are consistent
with the original execution. It tolerates user interactions required
for inspections that do not cause inconsistent resource accesses.
Our evaluation results on 26 real-world programs show that
C’SR has low runtime overhead (less than 5.47 %) and acceptable
space overhead. We also demonstrate with four realistic attack
scenarios that C>SR successfully reconstructs partial executions
of long-running applications such as web browsers, and it can
remarkably reduce the user’s efforts to understand the incident.

I. INTRODUCTION

Exploiting software has become a non-trivial process of
chaining multiple exploits in various software layers. This is
because exploiting a single vulnerability is often not sufficient
to launch a successful attack, avoiding various protection
techniques such as ASLR. As a result, understanding the
attack delivery process (i.e., how a security incident unfolds)
is critical for attack attribution and identifying espionage. For
example, details about the attack delivery processes can help
reveal malicious actors and compromised entities.

The Association for Crime Scene Reconstruction
(ACSR) [32] defines crime scene reconstruction (CSR) as
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“the forensic science discipline that aims to gain explicit
knowledge of the series of events that surround the commission
of a crime using deductive and inductive reasoning, physical
evidence, scientific methods, and their interrelationships.”
CSR is an invaluable component of post-mortem forensic
analysis because it reconstructs crime scenes, providing a
more intuitive understanding of the crime [15], [82].

In the context of cybercrime, a similar capability to CSR is
highly desirable. Reconstructing an execution of the attack de-
livery process to gain knowledge of the series of cyber events,
which we call cybercrime scene, for post-mortem forensic
analysis can open various opportunities. Specifically, cyber
forensic analysts can investigate the reconstructed execution
via various analysis tools, including malware analysis tools
and debuggers, to gain more knowledge of attacks.

Unfortunately, reconstructing a cybercrime scene (i.e., ex-
ecution of the attack process) of modern applications for
forensic analysis is challenging because (1) an exploit often
happens during a long-running execution of a complex and
concurrent application, requiring reconstruction of a large
portion of attack irrelevant execution and (2) user-interactions
on the reconstructed execution for forensic analysis (e.g.,
execution inspection) can cause new syscalls and instructions
to be executed, interfering with execution reconstruction tech-
nique (e.g., record-and-replay techniques). For instance, in
some web attacks, such as malvertising attacks [20], [73],
[6], malicious payloads are often delivered through a chain
of multiple network servers. Reconstructing the malicious
payload delivery process from a long-running web browser
execution and allowing forensic analysts to use debuggers and
inspectors is desirable while difficult to achieve.

Existing post-mortem analysis techniques are not suitable
to handle the above scenarios. Specifically, forensic analysis
techniques [49], [35], [54], [51], [65], [69], [10], [50] analyze
system events (e.g., syscall) to identify causal dependencies be-
tween system subjects (e.g., processes) and objects (e.g., files
and network addresses), and generate causal graphs. However,
they often suffer from the lack of inspection capability and
are unable to provide details of the incident. While record-and-
replay techniques can be used for post-mortem analysis as they
can replay a recorded execution, they also do not fit well in
our scenario. Specifically, recording the fine-grained program
execution [80], [5], [39], [70] often imposes significant runtime
overhead. Coarse-grained record-and-replay techniques [27],
[42] focus on system-level events to reduce the overhead.
However, they often require modifications (e.g., customized
kernel) or hardware supports on end-user systems.



More importantly, we realize that there are two criti-
cal capabilities required for cybercrime scene reconstruction:
(1) interactable execution reconstruction to allow analysts
to investigate the execution in greater detail and (2) partial
execution reconstruction from a long execution.

First, many recent attacks exploit various languages (e.g.,
JavaScript and WebAssembly) to leave fewer traces behind.
For instance, a script-based fileless attack [88] is challenging
to understand only with the system- or instruction-level traces
(e.g., syscalls or instruction traces). Even if a forensic analyst
investigates a replayed execution of such an incident using
existing record-and-replay techniques, there exists a semantic
gap between the system-level execution and the malicious
payload delivered via high-level script. It is desirable, if not
necessary, to leverage debugging tools for those scripting
languages and new technologies to unfold details of the attack.
However, existing record-and-replay techniques do not allow
attaching such additional software to replay execution because
they make a replay execution divert from its recording.

Second, most existing record-and-replay techniques require
to replay an entire recorded execution trace from the beginning
of the execution, even if a forensic analyst only wants to
reconstruct a certain part of the trace (e.g., a limited time
window around a suspected security incident). In our context,
this particularly limits the effectiveness of the techniques
because an analyst often wants to investigate a partial execution
of long-running applications such as web browsers and email
clients, which often run for days.

In this paper, motivated by the definition of crime scene
reconstruction (CSR), we propose an important cyber-forensic
capability, Cybercrime Scene Reconstruction (or C?SR), that
aims to reconstruct an attack delivery process (or cybercrime
scene), for post-mortem forensic analysis. To the best of
our knowledge, C?SR is the first practical technique that
enables both interactable and fine-grained partial execution
reconstruction. In other words, C?SR allows a forensic analyst
to reconstruct a partial execution of a single task (e.g., a
single browser tab of a web browser) and interact with the
reconstructed execution, using debugging tools that are not
part of the recording. C?SR records system calls with their ar-
guments and then partitions the trace (i.e., the recorded system
calls) by resources, which we call resource-based execution
partitioning (§ IV-A). The key intuition of the resource-based
execution partitioning is that each autonomous execution (e.g.,
browser tabs) accesses resources in a disjoint way (i.e., differ-
ent browser tabs access separate sets of resources). Hence,
partitioning an execution trace by resources essentially slices
the execution between autonomous executions. In addition,
C?SR allows live interactions of a reconstructed execution
for forensic investigation purposes, as long as the interactions
do not cause resource accesses that cannot be reconstructed
via our new concept, consistent resource accesses, that allow
different yet reproducible resource accesses.

Our contributions are summarized as follows:

e We propose a new cyber forensic capability: cybercrime
scene reconstruction. To the best of our knowledge, this
is the first technique that enables an interactable partial
execution reconstruction.

e We propose the novel concept of resource-based execution

partitioning, along with practical resource reconstruction
methods and algorithms for the cybercrime scene reconstruc-
tion. (§ IV-A and § IV-B).

e We develop and evaluate a prototype of C?SR. The evalua-
tion results show that C*SR’s partial execution is highly
effective in practical forensic investigations that include
long-running and complex real-world applications such as
Firefox. C*SR can reproduce security incidents by recon-
structing less than 1% of the entire trace with reasonable
recording and execution reconstruction overhead: less than
5.47% and 8.31% respectively).

Scope. We compare our work with other research in the area
to draw a clear scope. Specifically, this research focuses on
reconstructing the cybercrime scene (i.e., a partial execution
that is directly related to the attack) for post-mortem forensic
analysis. In particular, we focus on enabling user interactions
with reconstructed execution so that a forensic analyst can
utilize various debugging or forensic tools that did not exist at
recording time. In contrast, record-and-replay techniques often
aim to replay recorded executions faithfully and determinis-
tically. They do not allow replay execution to diverge from
the recording, and thus, additional debugging or forensic tools
cannot be attached to the replay execution. C?SR does not aim
to provide a deterministic or faithful replay at the instruction-
level. Instead, we design and implement a novel technique to
reconstruct an interactable execution that is consistent with the
recorded execution trace at the resource access level.

Assumptions and Limitations. C?SR targets to reconstruct a
specific incident from a program running multiple tasks (e.g.,
a web-browser opens multiple tabs) where each task accesses
the resources in a disjointed way. C?SR would not be effective
if multiple tasks concurrently access the same resource in a
non-deterministic way. Furthermore, reproducing concurrency
bugs (i.e., executions that are sensitive to the resource access
orders) is out of this paper’s scope. Besides, we assume that all
the system resources are accessed through syscalls, and C?SR
captures resource-accessing syscalls. Although it is uncommon
in practice, if the resource is modified directly by the kernel
without invoking syscalls, we cannot capture them. In terms of
performance overhead, C?SR’s recording overhead is similar
to other log-based techniques leveraging syscall or library
hooking [49], [54], [51], [69], [10], [50], [92], [62].

II. MOTIVATING EXAMPLE

We use a realistic malicious advertisement attack (synthe-
sized from real-world incidents [97], [26]) to demonstrate the
effectiveness of C°SR in a forensic investigation scenario. In
this scenario, a victim uses Firefox to open multiple web pages
in multiple tabs, and one tab loads a malicious website that
downloads a malware (i.e., drive-by download).

A. Attack Scenario

The victim has nine browser tabs opened before it accesses
the compromised website. Then, the victim opens a new
tab (the 10th tab) and navigates to www.forbes.com, which
happens to include a malicious online advertisement. The
malicious ad executes JavaScript code and secretly launches a
WebAssembly module in the user’s browser. The WebAssem-
bly module includes code that downloads a malware binary.
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Fig. 1. Timeline of an execution of 10 browser tabs. The x-axis represents
the time for the execution (in seconds) and the y-axis represents 10 different
browser tabs. The abbreviated URLs (i.e., UI~U11) are shown in the bottom.

Timeline and Tabs during the Attack. Fig. 1 shows a time-
line of Firefox during the incident. We visualize three different
regions that include the entire execution of the browser from
the beginning (@), the execution of all browser tabs during
the malicious ad ((2)), and the execution of the browser tab
containing malicious ad (€)). Note that while the malicious ad
executes, other tabs in the background are also loading contents
(e.g., content updates) and, in our case, the executions of
background tabs are longer than the exploited tab 10.

B. Goals and Scope

To understand how the attack unfolded in detail, C*SR
aims to (1) reconstruct and reproduce the attack delivery
process (which occurs in tab 10), that is responsible for
loading the malicious advertisement on www.forbes.com and
delivering the malicious payload downloading the malware
(essentially the red shaded region 9).

Moreover, for effective post-mortem forensic analysis,
C?SR aims to (2) allow live user interactions for introspecting
reconstructed executions so that security analysts can use
various forensic analysis tools to effectively investigate the
reconstructed incident. Specifically, to understand a website’s
execution (including the malvertising campaign) which in-
volves multiple software layers such as HTML, JavaScript,
and WebAssembly where each of them has a unique semantic
and runtime support, domain specific analysis tools for each
layer [30], [25], [2] are particularly effective.

Identifying the Exploited Tab to Reconstruct. The recorded
execution trace includes 10 browser tabs’ executions. Among
them, the forensic analyst identifies Tab 10 that creates and
writes the malicious binary file. However, in our scenario, the
analyst does not know how the website delivers a malicious
payload that downloads the malware. Hence, she wants to
reconstruct the entire execution of the tab to investigate.

C. C’SR on the Motivating Example

1) Reconstructing the Attack: The forensic analyst uses
C?SR to reconstruct Tab 10 (www.forbes.com) to understand

how the malicious payload that downloads the binary is
delivered. The analyst focuses on discovering technical details
of the attack delivery as well as identifying responsible entities
(e.g., web servers) involved with the attack.

Starting to Reconstruct the Exploited Tab. To recon-
struct the attack delivery process of Tab 10 (that navigated
www.forbes.com), the analyst runs C?SR with Firefox and
provides the recorded execution trace as input. After Firefox
is launched, the default start page is loaded. Then, the analyst
types ‘www.forbes.com’ in the address bar to initiate the
execution reconstruction. When the browser connects to the
domain (e.g., sending a DNS request), C?SR hooks the API for
the DNS request (e.g., getaddrinfo()) and detects that there
is an autonomous task that starts from the network access to
www.forbes.com, meaning that the task can be reconstructed.
Then, it starts to reconstruct the recorded execution by redi-
recting resource accesses to reconstructed resources obtained
from the execution trace.

Resource-based Execution Partitioning. The essence of
C?SR that makes an interactable partial execution recon-
struction possible is the idea of resource based execution
partitioning. It is based on the observation that individual par-
tial executions from a long-running application mostly access
disjoint sets of resources, meaning that each partial execution
mostly accesses different resources from other executions, and
rarely interfere with them. Intuitively, each browser tab is inde-
pendent of other browser tabs. Hence, a partial execution can
be obtained by partitioning the execution trace by resources
accessed during the partial execution.

C’SR partitions an execution trace, consisting of syscalls,
by resource. Specifically, it first groups syscalls that access the
same resource. For each group, all syscalls in the same group
access the same resource. For example, suppose that a program
receives contents from www.forbes.com. There will be a group
for www.forbes.com and it includes all the syscalls that access
(i.e., read and write) the www.forbes.com file exclusively.
C?SR reconstructs resources from the partitioned groups (of
syscalls) on individual resources, resulting in reconstructed
resources. Each reconstructed resource contains all the values
and states observed during the recording and is capable of
emulating the original resource (e.g., a web server). During
reconstructed execution, C?SR essentially hooks resource ac-
cessing syscalls to redirect them to access the reconstructed
resources. To this end, a partial interactable reconstructed
execution is created. A forensic analyst is allowed to interact
with the reconstructed execution, including installing a new
software for inspection, as long as it does not prevent C?SR
from reproducing consistent resource accesses. The in-depth
inspection of the reconstructed execution help unfold details of
the attack delivery process. More details about the definitions
and limitations of a reconstructed execution are in § IV-A.

2) Investigating the Attack Delivery Process: In advanced
attacks, simply reconstructing the execution of the attack is not
sufficient to understand the attack. For example, in this moti-
vating example, the analyst already knows that it downloads a
malware binary. Reproducing the execution without allowing
more in-depth inspections is not helpful. Instead, how the
malicious code that downloads the malware binary is delivered
and executed is worth investigating. This requires using debug-



ging tools (that often did not exist during recording) on the
reconstructed execution. C°SR allows the analyst to interact
with the reconstructed execution so that the analyst can install
and use additional debugging tools [29], [30] for investigation.
In the following paragraphs, we show how analysis tools
(that require user interactions) are used for investigating the
motivating example.

Browser Extension to Find the Malicious Payload. Investi-
gating web attacks is challenging due to the sheer number of
loaded contents and executed code. In this motivation example,
the forensic analyst only knows that the malicious code that
downloads the malware is dynamically generated. Hence,
she uses a Firefox extension called Villain [29] to monitor
dynamically generated JavaScript code (e.g., via eval()).
Note that the extension did not exist during the recording. The
forensic analyst introduces the new extension for inspection.
The extension allows the analyst to focus on the executed code
that is already decoded and deobfuscated.

The analyst installs this extension and uses it to identify
malicious payload generated and executed via eval () (@ in
Fig. 2). Note that existing record-and-replay techniques do not
even allow installing a new extension that runs on top of a
replayed execution, because the installation causes a number
of new instructions and syscalls to be executed.

1 var code = atob('AGFzbQEAAAABBWFgANX8...") w,

2 const mem = new WebAssembly.Memory(...) N

3 const dummy { ",

4 env: { /

6 tableBase: 0, -

7 memory: mem,
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9 .@
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12 .then(({module, instancet)--=y-F-"""of variables
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Fig. 2. Malicious Payload Delivery via WebAssembly and JavaScript.

Investigating the Attack Delivery Process. Fig. 2 shows
the identified eval() that delivers the malicious payload.
Then, the analyst leverages Firefox’s default debugger (i.e.,
DevTools [30]) to set a breakpoint at line 13 (@), which
executes the malicious payload (via eval()) returned from a
WebAssembly module through getpayload() method. Note
that the WebAssembly module is also dynamically instantiated.

At line 11 (@), the module is created from the code and
dummy objects, where the WebAssembly binary is encoded
as base64-encoding at line 1. Since all these processes happen
dynamically, leveraging DevTools to inspect the reconstructed
WebAssembly program’s code is particularly helpful. Further,
the analyst sets the breakpoint at line 11 to understand how the
WebAssembly module is created. By inspecting the arguments
(e.g., code and dummy) and the resulting WebAssembly object,
she finds out that it injects the code into the dummy object to
create the WebAssembly module. Without the interactability of
C?SR, monitoring the reconstructed execution provides limited
details regarding how the attack unfolds, particularly how the
malicious payloads are transferred and generated secretly.

Summary. Post-mortem forensic investigation often requires
the capability of reconstructing a partial execution from
a long-running application. More importantly, as attacks
become more sophisticated and stealthy (e.g., fileless attacks
leveraging WebAssembly), detailed on-the-fly inspection of
the reconstructed execution is highly desirable. In particular,
allowing to install and use new plug-ins and debugging tools
on the reconstructed execution significantly enhances foren-
sic analysis capabilities. C?SR enables an interactable partial
execution reconstruction, providing a practical solution for
post mortem forensic analysis.

TABLE 1. LIMITATIONS OF EXISTING APPROACHES.
Technique Partial Detai} Record Mod. not General
Replay Inspection Overhead Required  Approach
Fine-grain Rec/Rep No Partially High  Not required Yes
Rec/Rep by System mod. | No Partially Low Required Yes
Replay Acceleration Yes Partially N/A N/A Yes
Log-based Forensics N/A No Low Partially Yes
Replay-based Forensics No No Low Required Yes
Browser Replay No No Low Required No
Browser Forensics N/A  Partially Low Required No

C?SR
* N/A: Not applicable.
D. Limitations of Existing Approaches

‘ Yes Yes Low  Not required Yes

Table I summarizes the limitations of existing techniques
in investigating attacks similar to the motivating example.

Record-and-replay. Fine-grain record-and-replay techniques
record program instructions and/or shared memory access
information to enable deterministic replay [80], [5], [39], [70].
Also, there exist approaches [27], [87], [91], [21] that modify
applications, kernel, or hardware to enable a faithful replay.
[37], [45] can replay a program with additional debugging code
while they require recompilation/modification of the target
program. Moreover, they do not allow additional debugging
tools running together with the target application such as
DevTools, limiting the applicability of the replayed execution.
In general, they suffer from significant runtime and space
overhead. DoublePlay [96] greatly reduces logging overhead
by parallelizing the record-and-replay executions, however, it
requires additional resources for the parallelized replay. In
addition, traditional record-and-replay techniques replay an
execution from the beginning of a recorded execution. In our
motivating example, the entire execution of 10 browser tabs
(the region @) has to be replayed, leading to needless cost
and effort to investigate irrelevant executions.

Replay Acceleration. Checkpointing techniques [93], [52],
[91], [53] create checkpoints of the execution periodically or
on particular events (e.g., process creation) during recording. A
replay can be started from one of the checkpoints. However,
they still need to replay nonessential concurrent tasks (e.g.,
in Fig. 1, the yellow shaded region will be replayed if
the checkpoint is created at 80 seconds, when the Tab 10 is
created). Replay reduction technique [56] can reduce a replay
log while retaining its ability to reproduce a failure. How-
ever, it requires source code annotation. Furthermore, replay
acceleration techniques and faithful replay tools typically do
not support interactable replay (e.g., debugger integration) as
additional instructions and system calls invoked by debuggers
are not seamlessly handled. REPT [22] is a reverse debugging
technique to reproduce software failures by recovering pro-
gram state (e.g., data values). It focuses on faithfully replaying
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short execution that is immediately before the program crashes
(e.g., less than 100K instructions in the paper’s evaluation). As
the authors mentioned in the paper, the data recovery accuracy
decreases if the execution trace increases. In our scenario, we
aim to reconstruct the entire attack delivery process that is
longer than REPT can usually handle.

Forensic Analysis. Log-based forensic analysis techniques
analyze system events (e.g., syscalls) and generate causal
graphs [49], [35], [54], [51], [65], [69], [10], [50], [92],
[62]. The main limitation of them is the lack of inspection
capability. They focus on identifying causal relations between
system subjects and objects but do not provide details of attack
behaviors. In our example, they can identify the origin of
the attack (e.g., IP addresses for www.forbes.com and the
malicious advertisement) while they cannot reconstruct the
execution of JavaScript and WebAssembly modules, failing
to provide the details of the attack delivery process. Replay-
based forensic analysis approaches [17], [67], [84], [28], [42],
[43], [44] generate causal graphs by replaying the recorded
execution log. However, they inherit the limitations of record-
and-replay techniques (e.g., lack of partial replay capability
and the requirement of system modification).

Brower-specific Approaches. Browser-level (or domain-
specific) recording and replay techniques [71], [13], [16],
[71, [66], [13] are effective in reproducing web- and web-
application related executions. They allow replaying com-
plicated web components such as JavaScript execution or
user interactions with web applications. Enhanced browser
logging [95], [11], [72], [57] can capture web-specific events
to enable the investigation of web-based attacks. However,
both of browser-specific techniques typically require browser
instrumentation or extensions. Furthermore, they can only
handle web attacks that completely unfold inside the browser.

III. SYSTEM OVERVIEW

Fig. 3 shows a workflow of CQSR, which consists of three
phases: Recording in Production Run, Resource Reconstruc-
tion, and Cybercrime Scene Reconstruction.

Online Event Recording. C’SR recorder logs system calls
of a target process. Typically, one may log multiple pro-
cesses in production run, as any of them might be exploited.
C?SR hooks APIs that invoke syscalls (via shared library and
LD PRELOAD trick) on the target program. It does not require
modifications on target programs (e.g., instrumentation). The
recorder generates an execution trace which is a sequence of
executed system calls with arguments and timestamps.

Offline

Offline Trace Post-Processing. Given the execution trace,
C?SR resource reconstructor recovers states of resources (and
resource content for each state) accessed during the recording.
Then, it creates reconstructed resources from the recovered
states and contents.

Offline Cybercrime Scene Reconstruction. C?SR execution
reconstructor takes the target program and the reconstructed
resources as input. Then, it executes the target program and
monitors all resource accesses at runtime. When the program
tries to access resources that exist in the reconstructed re-
sources, C?SR redirects the accesses to them. C2SR allows
the reconstructed execution to be different at instruction and
syscall levels, as long as they have consistent resource accesses
with respect to the recorded execution. This design choice
provides forensic analysts with the ability to interact with the
reconstructed execution at replay time.

1V. DESIGN
A. Concepts

C?SR introduces a few concepts for partial and interactive
execution reconstruction. Fig. 4 illustrates the concepts and
differences between C>SR and the existing approaches. Each
box in Fig. 4 represents access to a particular resource where
the color of the box indicates which resource is accessed.

Partial (Reconstructed) Execution. Fig. 4-(a) shows an exe-
cution trace without any partitioning. It is simply a sequence
of system events (i.e., resource accesses in our context).
Traditionally, a partial execution is often interpreted as a part of
execution between a certain time period as shown in Fig. 4-
(b). This definition of partial execution essentially includes
all syscalls (i.e., it includes all different types of resource
accesses) that happened between the beginning and the end
of the time period (i.e., from Tgrarr to Tenp in Fig. 4-(b)).

The goal of C?SR is to reconstruct an autonomous task.
Hence, a partial reconstructed execution in our context, as
shown in Fig. 4-(e), is defined as a reconstructed execution
between two user-specified syscall instances, i.e., Sgggy and
SEND, in an execution trace where the two syscalls represent
the first and last syscalls of the partial execution. Typi-
cally, Sgrgiv is a syscall that initiates the entire task (e.g.,
getaddrinfo() to obtain IPs for a domain in a browser tab)
and Sgnp is the one that delivers the attack (e.g., executing ma-
licious payloads). Note that unlike the traditional (time-sliced)
partial execution, our definition does not require including all
syscalls between Tgpart and Tgnp. As long as the execution
starting from Sy can reach to Sgyp without software faults
(e.g., runtime errors), the partial execution is successful.
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Resource based Execution Partitioning. The key enabling
technique for partial execution reconstruction is resource-based
execution partitioning. Given an execution trace, it essentially
groups syscalls that access the same resource, as shown in
Fig. 4-(c). Specifically, as there are four different resources
(i.e., Resource R, B, Y, and S), syscalls (i.e., events illustrated
as boxes) are partitioned into 4 groups. Fig. 4-(d) shows
resource accesses for each task (e.g., a task corresponds to
a browser tab in a web browser). In Fig. 4-(d), there are 3
tasks: Task @, @, and @ Observe that each task accesses
multiple resources, and there are also cases that one resource
(e.g., Resource R and B) is accessed by multiple tasks (e.g.,
multiple websites may access one server for different requests).

Recall that the goal of C?SR is to reconstruct an execution
of a task. A naive approach to reconstruct a recorded execution
is to reproduce the recorded resource accesses of a given task.
For example, to reconstruct Task @, one may try to reproduce
all resource accesses to Resource R and B, marked as G
Unfortunately, this does not work because a resource can be
accessed by multiple tasks (e.g., Resource R is accessed by
Task @ and e). Reproducing resource accesses that belong
to another task can break the execution reconstruction. For
example, when the reconstructed task accesses the third
resource R, reproducing the access of the third access of
resource R that belongs to the task @ can lead to an incorrect
reconstruction. To this end, we propose a concept of consistent
resource access that defines an execution accessing parts of
resources needed for the execution reconstruction.

Reproducing Consistent Resource Access. A key difference
between C>SR and existing record-and-replay techniques is
that C?SR aims to reproduce consistent results of syscalls
while existing techniques try to reproduce faithful replay of
syscalls (e.g., including the exact order of syscalls). Consistent
results in our context mean that results of resource accesses

in a reconstructed execution are semantically compatible with
its recorded resource accesses.

It relaxes two key restrictions that traditional record-and-
replay techniques have. First, C?SR allows the order of
reproduced syscalls to be different from the recorded exe-
cution. Second, a reconstructed execution does not have to
reproduce every resource access observed during recording. In
other words, even if a reconstructed execution accesses parts
of resources, the reconstructed execution is still considered
successful as long as it does not access resources that are not
accessed during the recording. A reconstructed execution can
have additional syscalls as long as their resource accesses are
consistently reproducible (e.g., reading the parts of resource
already accessed is reproducible) or they do not access exter-
nal resources. The relaxations make reconstructed executions
interactable, meaning that additional syscalls caused by user
interactions can be tolerated, so they do not lead to recon-
struction failures. To this end, a reconstructed execution by
C’SR also tolerates non-determinism as long as it does not
lead to unreproducible resource accesses (e.g., a new network
connection that is never observed during recording).

Typically, user interactions for forensic investigation re-
quest existing resources accessed during the recording. For
example, consider a scenario that an analyst uses a debugger
to inspect a reconstructed execution. The analyst wants to
examine parts of a suspicious file created by the reconstructed
execution. To do so, the debugger may invoke a few new
syscalls, to read the file, that were not observed during record-
ing. While such new syscalls would make existing techniques
fail, C*SR can tolerate them because the new syscalls simply
access the existing file’s content that is already accessed
during the recording. Hence, they can be easily reproduced
by reaccessing the content.

B. Formal Definition of the Concepts Introduced by C?SR

Trace Tu= S
Syscall S = < SysName, R, P(Carc), P(CreT)>
SyscallName SysName = open | read | write |
Concrete Value Cu=
Resource Ru= Z
Fig. 5. Definitions for execution reconstruction.

Definition Fig. 5 introduces definitions for recorded execution
trace and executions reconstruction. Specifically, we define an
execution trace (7") as a sequence of syscalls (5). A syscall
is defined as a tuple of a syscall name (SysName), a target
resource handle (R), a set of its argument values (P(C4rc)),
and a set of its return values (P(Crgr)).

Resource based Execution Partitioning. C?SR reproduces a
partial execution from a resource-partitioned execution trace.
To define partial execution reconstruction, we introduce two
key concepts. First, we introduce definitions for the beginning
and the end of a partial execution. Second, we focus on
reproducing consistent results of resource accesses instead of
faithful resource accesses required by existing approaches.

Concept 1: Partial Execution. A partial reconstructed ex-
ecution is defined as a reconstructed execution between two
user-specified syscall instances in an execution trace: the first
and last syscalls of the partial execution.



e Definition 1 — Sgpqery and Sgpyp: We define the first
syscall (Sgrgrn) and the last syscall (Sgyp) in a trace
that indicates the beginning and the end of the reconstructed
execution. Typically, Sprgy is the first syscall that accesses
a key resource for the reconstructed execution. For instance,
in our motivation example, Sppgry is the DNS request for
www.forbes.com (i.e., getaddrinfo () ), which should happen
before any other network requests for the domain. Sgyp is
often a syscall that an analyst wants to reproduce (e.g., creation
of a suspicious file).

Concept 2: Reproducin% Consistent Resource Access. A
key difference between C“SR and existing record-and-replay
techniques is that C’SR aims to reproduce consistent results
of syscalls rather than identical results. Consistent results
mean that (1) results of resource accesses in a reconstructed
execution are logically identical to its recorded execution while
(2) the order of syscalls can be different. For instance, if a
read() on a file is observed during in the recording, the
reconstructed execution should reproduce consistent values for
the read () on the same file while it may allow syscalls that are
independent to the file before the read (). To formally define
consistent resource accesses, we introduce two definitions.

e Definition 2 — Resource-Partitioned Sub-Trace T, (where
r is a resource): We define T, as a sub-trace on a resource 7 of
the entire trace 7. In other words, 7;. is a sequence of syscalls
operating on a resource r. For instance, if r is a file, 7. is a
sequence of syscalls on r (e.g., read(r) and write(r)).

e Definition 3 — Resource Contents (RC): It is a mapping
between a sub-trace 7). and a set of tuples where each tuple
consists of a concrete value (C') of a resource’s contents and
its offset (O). It represents the concrete contents of a resource.

RC: T, & P(< C,0 >) where O is an offset (Z")

For instance, if a file f is accessed, RC is Ty = P(< B;,i >)
where B; represents a byte value at an offset of i.

Definition of Successful Execution Reconstruction. We con-
sider an execution reconstruction is successful if (1) a recon-
structed execution correctly reproduces Sgrginy and Sgnp
and (2) all resource accesses between Sgrory and Sgyp are
successfully and consistently reproduced.

Formal Definition. Let r.q, 7.9, ..., 7s, be resources accessed
during a recorded execution between Sgpgiv and Spyp. T°
is an execution trace of the recorded execution. Let ry,1, 79, ...,
Tpn be the corresponding reproduced resources accessed in a
reconstructed partial execution. 7 is a partial execution trace
to be reproduced. The partial resource-partitioned execution
reconstruction is successful if the two following conditions
are satisfied.

e Condition 1. Sgpcry and Sgyp appear in TP and the
instance of Spparn precedes the instance Sgyp;

o Condition 2. ¥ry; € Ry, RC(T),) € RC(TS), where A € B
means A is equal to or a subset of B.

Summary. C?SR partitions an execution by resources and
reproduces consistent results of resource access. Unlike
existing techniques that aim to faithfully replay a recorded
execution (at instruction or system-event level), C?SR allows
two highly desired capabilities for forensic analysis: (1)
a partial execution reconstruction and (2) an interactable
reconstructed execution.

C. C%SR Recorder

C?SR recorder logs syscalls including their arguments and
return values along with timestamps. If syscall arguments
and returns contain values that may vary across executions
(e.g., memory addresses), C?SR abstracts them into the forms
that do not vary across execution (e.g., offsets from the
base addresses and filenames). As a result, corresponding
syscalls between a recorded and reconstructed execution can
be identified properly.

To log syscalls, we hook library calls that invoke syscalls
(e.g., libc library calls). Logs are buffered on the memory and
then written to the file system when it reaches a predefined
threshold to minimize performance overhead caused by 1/0O
for logging. The threshold is configurable, and we use 200MB
for this paper. Also, we profile target applications to predict
idle time (e.g., when a program waits for a network response)
and actively flush the log out from the buffer.

D. C?SR Resource Reconstructor

C?SR recovers states of resources and proper content for
each state by inferring them from the recorded execution
trace. It creates reconstructed resources where each of them
consists of an automaton from the reconstructed states and
reconstructed values for each state.

Resource Contents Reconstruction. C°SR uses recorded
syscalls to reconstruct resources. The states and contents of
a resource during recording are inferred by analyzing how
syscalls accessed the resource. For instance, read() syscall
on a file (with the file pointer at the beginning of the file) that
returned ‘P’ indicates that the file content should start with
‘P’. As different resources may have different internal states
and characteristics, we categorize syscalls that access external
resources into three different types, as shown in Table II. We
use different approaches for each type. Note that C’SR focuses
on syscalls that access external resources. Syscalls for internal
resources (e.g., shared memory and signals) are not traced
and reconstructed. They will be directly executed during the
reconstructed execution. As the goal of C’SR is reproducing
an attack delivery process instead of faithfully replaying a par-
ticular vulnerability exploitation, internal resources are not our
focus (Details in § VI). The complete list of our categorization,
including justifications, can be found in Appendix § A.
TABLE II. RESOURCE TYPES AND EXAMPLES.

Resource Type [ Ex

Files and Folder
Sockets, Pipe, Std. I/O
Clock, Random Devices

Syscalls on the Resource

read(), readdir (), readlink(), ...
send (), recv(), pipe(), read(), ...
clock_gettime(), getrandom() ...

Random-Access
Sequential-Access
Timing-Dependent

1) Random-Access: Resources that permit random accesses
to their contents belong to this category.

o Reconstruction: To access arbitrary contents of random-
access resources, there are syscalls (e.g., 1seek()) that can



specify the current access position (e.g., file offset) of the
resource contents. In addition, when a resource is accessed,
the current access position is automatically advanced by the
number of bytes successfully accessed (i.e., read and written).
Hence, we track syscalls that the current position to reconstruct
states of a resource and contents associated with the states.

17 = open('./file’,..); 0123456789
2 ... ﬂAAAAAAAAAA;
3 "A"¥20 = read(7, ..); ! 10 |AAAAAAAAAA |
4 40 = 1seek(7, 40, SEEK_SET);

5 "B"*10 = read(7, ..); i .

4+ BBBBBBBBBB)

(a) Syscall Trace (b) Reconstructed file

Fig. 6. Reconstruction of random-access resource.

— Example: Fig. 6-(a) and (b) show syscalls during recording
and the reconstructed file respectively. It first opens a file
(file handle is 7, returned at line 1) and reads 20 bytes of
‘A’ (Line 3). Then, it changes the file offset to 40 (Line 4)
and reads 10 bytes of ‘B’ (Line 5).

C?SR reconstructs the file content from the recorded
read () and 1seek (). Specifically, the first read () (Line 3)
indicates that there are 20 bytes of ‘A’ from the beginning of
the file. Then, read() (Line 5) happens after the 1seek()
(Line 4), which moves the file offset to 40, meaning that
there are 10 bytes of ‘B’ in the file from the offset 40
(i.e., the current file position). Note that other parts (e.g.,
content between the offsets 20 and 39) are unknown as
they were not accessed during recording. We use ‘.’ to
represent unknown (i.e., undefined hence unreproducible)
content. If a reconstructed execution attempts to access the
undefined content, an exception is raised as it indicates that
the reconstruction is failed.

2) Sequential-Access: This category includes resources that
can only be accessed sequentially. Like the random-access
resources, a sequential-access resource may have internal states
that determine the outcome of accesses to it (i.e., return values
of syscalls on the resource), where the internal states may
change each time it is accessed. The state changes are often
done implicitly without explicit syscall invocations.

® Reconstruction: The internal state of a sequential resource is
determined by its access history of the resource (i.e., a trace
of syscalls on the resource). Hence, for each resource, C?SR
captures syscalls on the resource to reconstruct resource states
and contents. Note that C>SR assumes conservatively that any
syscalls may change the internal state.

12 = connect("www.example.com",...);

... = send(12, "GET /index.html ...") SNTa/  N\Te /O
"<!-- index.html ..." = recv(12, ...) S —{ A —{ B
. = send(12, "GET /getitem.php...") N N A
= recv(12, ...) Tc

... = send(12, "GET /additem.php?add=1..")
"<!--Success ..." = recv(12, ...)

... = send(12, "GET /getitem.php...")
"¢l-- Ttem: 11 ..." = recv(12, ...)

"N () )
NN ANV

(b) Reconstructed Network:

1

2

3

4 ..

5 "<!l-- Item: 10 ..."
6

7

8

(a) System calls Automaton
State | Contents Transition Condition
@ <!-- index.html ... Ta | send(“GET /index.html ...”)
;B: <!-- Item: 10 ... Te | send(“GET /getitem.php ...”)
\(_Z) <!-- Success ... Tc | send(“GET /additem.php?add=1 ...”)
@ <!-- Ttem: 11 ... To | send(“GET /getitem.php ...”)

(c) Resource State Table (d) State Transition Condition Table

Fig. 7. Reconstruction of sequential-access resource.

— Example: Fig. 7-(a) presents a syscall trace of a recorded
execution that connects a website, www.example.com. There

are 4 requests (Lines 2, 4, 6, and 8) and 4 corresponding
responses (Lines 3, 5, 7, and 9 respectively). Note that each
response is dependent on itself and previous requests. For
instance, the response at line 3 depends on the request at
line 2. Moreover, while the requests at lines 5 and 9 are
identical, the responses are different because the server’s
internal state was changed by the request at line 6 which
added a new item. To this end, we devise an automaton as
shown in Fig. 7-(b). Every request is a transition condition
(Fig. 7-(d)), leading to a new resource state (Fig. 7-(c)). It
also shows content of the resource on each state.

3) Timing-Dependent: If an access result (i.e., syscall’s re-
turn) to a resource is dependent on the time of the access, it is a
timing-dependent resource. For instance, clock gettime()
returns the current time and read () on a random device (e.g.,
“/dev/random”) returns different values on every access, both
depending on the time of invocation.

e Reconstruction: As the contents of timing-dependent re-
sources do not depend on their internal states (i.e., access
history), the reconstruction approaches for random-access and
sequential-access resources are not applicable. In existing
record-and-replay approaches, timing-dependent resource ac-
cesses are faithfully replayed with its strict order. However,
syscalls on timing-dependent resources can be different across
runs because C>SR allows user-interactions and partial execu-
tion reconstruction. In other words, a reconstructed execution
may have additional/missing syscalls, making it challenging to
apply the same method as the existing techniques do.

— Our Approach: Timeline Reconstruction. C?*SR recon-
structs contents of timing-dependent resources by projecting
timing-dependent resource accesses into a timeline that is
reconstructed from the recorded execution’s timing informa-
tion (i.e., timestamps of syscalls). The intuition of timeline
reconstruction is that we record timestamps of all syscalls to
abstract the ideal timings of the syscalls, including the timing-
dependent syscalls, which we call “timeline.” Then, we project
the ideal timeline by fitting (e.g., shrinking/stretching) the
timeline into the reconstructed execution context. Specifically,
it infers two timelines, a timeline for the recorded execution
and another timeline for the reconstructed execution. Then, it
projects the recorded timeline to the reconstructed timeline.
C?SR leverages the projection to identify proper values for
syscalls on timing-dependent resources.

(a) Recorded
Execution

(b) Time A

(c) Timeline

(d) Reconstructed SA SB Sc

Execution ™A -
(e) Time A ! z TA,

(Projected)

(f) Timeline P
(Projected) 17, ) L

TZ,—

Legend

Non-timing dependent syscall

° Timing dependent syscall

TZ, Time Zone

TAn Time A

Fig. 8. Example of Timeline Reconstruction.



— Concepts: We introduce three concepts, Time A, Time Zone,
and Timeline, to explain how we project a timeline from a
recorded execution to a reconstructed execution.

First, TimeA (or TA) is a distance between a timing-
dependent syscall and its immediately previous syscall. For
example, in Fig. 8-(a), TA; is computed by subtracting times-
tamps between @ and S, (the syscall right before ¢1).

Second, a time zone is a timespan between two consecutive
timing dependent syscalls. In Fig. 8-(c), time zones are anno-
tated inside the timeline as T'Z,,. Given two consecutive timing
dependent syscalls ¢,, and t,.q, a time zone 71'Z,, represents
the timespan between t,, and t,,,. For instance, in Fig. 8-
(c), TZ, is the timespan between the two timing dependent
syscalls 0 and @

Third, a timeline is a sequence of time zones, obtained from
an execution trace by analyzing timing dependent syscalls.
Intuitively, a timeline (and time zones) provides a guideline
for which time zone a syscall belongs. For example, in Fig. 8-
(c), for , the closest time zone is T'Z1, if we use the starting
of the timezone to attribute. Similarly, the closest time zones
for @ and @ are 1'Z5 and T'Z3, respectively.

— Timeline Projection: Given TA values and a timeline
computed from a recorded execution, we project the timeline
into a reconstructed execution. We first identify non-timing
dependent syscalls. Recall that each TA; is calculated by
subtracting timestamps of ¢; and the ¢;’s immediately previous
syscall. During projection, we find corresponding non-timing
dependent syscalls. For each of them, we apply the TA;
computed from the recorded execution, to determine when a
time zone 71'Z; should start.

— Example: Fig. 8-(f) shows an example. The beginning
of TZ, is computed by adding the timestamp of S, and
TA;. Similarly, T'Z, and T'Z3 are obtained by computing
the timestamp of Sy + T'Ay and T'As, respectively.

Fig. 8-(f), the projected timeline provides a correct
guidance for the reconstructed execution. Observe that the
syscalls between Fig. 8-(a) and Fig. 8-(d) happen in a
different speed. In particular, syscalls in the reconstructed
execution happen slower than the recorded execution. With
the timeline projection, for all X , and in the
reconstructed execution, their closest projected time zones
are TZ,, TZ,, and TZs, respectively. This essentially
means that we correctly provide the same recorded values

r @ @ @

Summary. C?SR reconstructs contents of resources ac-
cording to the logical structure of resources (i.e., how
the resources should be accessed and what values should
be expected). We analyze all existing Linux/Unix syscalls
and categorized their target resources into three differ-
ent types: random-access, sequential-access, and timing-
dependent. C?SR aims to reproduce consistent resource
accesses with respect to the accesses during recording. C’SR
detects failures in reconstructed executions by monitoring
accesses to undefined resources, content, and early execution
termination (e.g., caused by software faults).

E. C?SR Execution Reconstructor

C?SR’s runtime modules intercept syscall invocations dur-
ing the reconstructed execution. When the execution tries
to access resources that were reconstructed, C?SR emulates
the resource accesses using the reconstructed resource states,
contents, and timeline. However, it is possible to have a wrong
timeline projection. Specifically, with the current method, if
there are additional syscalls or syscalls in a reconstructed
execution happen faster than its recorded execution, our time-
line projection may fail due to additional syscalls (caused by
user-interactions and non-determinism). Hence, we propose
Timeline Projection Adjustment (TPA) to handle such failures.

Timeline Projection Adjustment (TPA). When the timeline
projection is failed (leading to a failure in execution recon-
struction), C"SR tries to adjust the timeline projection. It
aims to find a new timeline with the adjustment that can lead
to a successful reconstruction. Specifically, for each syscall
on a timing-dependent resource in a trace, C?SR tries to
find another appropriate time zone. Note that searching for
all appropriate timelines can be practically infeasible due
to the large searching space (e.g., with n time zones and
m syscalls on timing resources, there exist m" projections).
Hence, we start finding alternative timeline projections from
the time zones that are close to the execution failure (i.e.,
where the execution failed). Then, we search the alternatives
in a backward direction.

(a) Recorded
Execution

(b) Reconstructed
Execution

(c) Timeline
(Projected)

~—TZ,~—[TZ, TZ,

t, t, t t, t | TZ, | TZ, | TZ, | TZ, | TZ
3.355 3.825 4.325 6.435 7.145 3.58 413 5.66 6.38 7.1

(d) Timestamps of timing dependent syscalls (t;~t5) and Time Zones (TZ,~TZ)
(Values in milliseconds)

t t, t, t, ts
TZ, 0.225 0.245 0.745 2.855
TZ, 0775 | 0305 | 0195 | 2305
TZ, 2305 | 1835 | 1335 | 0775 | 1485
Tz, 2555 | 2055 | 0055 | 0765
TZg 2775 | 0655 | 0.045

(e) Distances between Time Zones and Syscalls on Timing Dependent Resources
(Darker background indicates larger distance values)

tl tZ t3 t4 t5
Ground Truth | TZ, (3.58) | N/A(Any) | TZ,(4.13) | TZ,(5.66) | TZs(7.1)
First Attempt | TZ, (3.58) | TZ,(3.58) | TZ,(4.13) | TZ,(6.38) | TZs(7.1)
Second Attempt | TZ, (3.58) | TZ, (3.58) | TZ, (4.13) | TZs(7.1) | TZ;(7.1)
Third Attempt | TZ, (3.58) | TZ, (3.58) | TZ,(4.13) | TZ,(6:38) | TZ, (6.38)
Forth Attempt | TZ, (3.58) | TZ, (3.58) | TZ,(4.13) | TZ,(5.66) | TZs(7.1)

(f) Timeline Projections and Adjustments
(Red background indicates the root cause of the failure)

Non-timing dependent syscall

o Timing dependent syscall

Legend

° Non essential Timing dependent syscall

Fig. 9. Running example of Timeline Projection Adjustment (TPA).

We use an example of reconstructing an HTTPS webpage
loading in Firefox to show how the timeline projection adjust-
ment (TPA) works. Fig. 9-(a) and Fig. 9-(b) show syscalls



from a recorded execution and its reconstructed execution
respectively. tgi1.grs and .5 are syscalls on timing-dependent
resources (i.e., time ()), and S4.c are syscalls on non-timing-
dependent resources. To facilitate the discussion, we assume
that all ¢, are time() and all S, are send() where x is an
integer. The trace is generated by an execution that establishes
an SSL connection. In the recorded execution, tg1, tra, tRr3,
and tgs are providing seed values for the SSL session key
creation. In the reconstructed execution, t1, t3, t4, and 5 are
the corresponding syscalls for seed values. Providing correct
seed values is important, otherwise it will create a wrong
SSL session key, causing a failed execution reconstruction.
The wrong SSL key typically causes an early exit of the
reconstructed execution. @) with a red border (i.e., tp4 and t5)
is a syscall that is not critical to the execution (i.e., not relevant
to the SSL keys), meaning that not providing a correct value
for it does not cause an execution failure. In our case, it is a
call from JavaScript library to measure its performance.

This example includes two scenarios: the reconstructed
execution has an additional syscall and a missing syscall com-
pared to the recorded execution. First, observe that between
S4 and Sp, the recorded execution has two syscalls while
the reconstructed execution has three. There is an additional
syscall ¢5. Second, between Sp and S, the recorded execution
has three syscalls while the reconstructed execution has two,
missing a syscall £z4. Note that those additional syscalls are
non-essential. However, due to those differences, it is chal-
lenging to find corresponding syscalls between the recorded
and reconstructed executions. Fig. 8-(d) shows timestamps of
syscalls on timing-dependent resources in the reconstructed
execution and the projected time zones (Fig. 8-(c)). Fig. 8-(e)
presents distances between time zones and syscalls that will
be used to find alternative timeline projections.

— Timeline Projection Adjustment Example: Fig. 8-(f) shows
a table that summarizes how C°SR finds a working alter-
native timeline projection, when a reconstructed execution
fails. Specifically, the first row shows the ground-truth,
meaning that with the assignments (i.e., t,=1'27, to= any
values, t3=T7Z,, t4=T7Zs, and t5=TZ5), the reconstructed
execution will succeed. However, the first timeline projec-
tion has a different timeline projection from the ground-
truth. Specifically, the first timeline assigns time zones that
are closest to the syscalls. Observe that T'Z, is the closest
time zone to t4 as shown in Fig. 8-(e), while the correct time
zone for t4 is T'Z3. In the following paragraphs, we show
how C?SR automatically finds the correct timeline (i.e., the
correct time zone assignments).

1) First Attempt: For the initial assignment, t, to, t3, t4,
and t5 are assigned to the time zone 7’2, T'Z,, TZ5, T'Z,,
and T Zy respectively as these time zones are the closest
ones to each of the syscalls. It fails at S as T'Z, is assigned
to t4 while the desired time zone for t4 is T Z5.

2) Second Attempt: C?SR looks for a different timeline
from the failure in a reverse direction. Specifically, we
first look at syscalls after the last successful syscall, Sp.
Given the t4 and t5, we essentially try the second smallest
combination of distances from Fig. 8-(e). As the assignments
of ty = TZ5 and t5 = T Zs results in the second smallest
distance (0.7 = 0.655+0.045), we try the new timeline. The

10

second trial fails again.

3) Third Attempt: We find another time zone assignments
between ¢4 and t5. There are two assignments that lead to the
third smallest distance. First, (t, = T'Z4,t5 = T'Z4) results
in 0.82 (= 0.055+0.765) and (t4, = T'Z3,t5 = T'Zy) leads to
0.82 (= 0.775+0.045). We first try t4 =T Z, and t5 = TZ,.
However, it fails too.

4) Fourth Attempt: We try the other assignment: ¢, = T'Z
and t5 = T'Zs. This trial is successful.

Summary. Timeline Projection Adjustment (TPA) handles
failed reconstructed executions due to incorrect timeline
projections. It systematically searches alternative timelines
that can lead to a successful reconstruction based on the
distances between projected time zones and syscalls on
timing dependent resources.

V. EVALUATION

Our prototype of C’SR, including recorder and resource
reconstructor, is written in C++ (11,045 SLOC). We leverage
the LD PRELOAD environment variable to intercept library
calls that invoke syscalls. Our resource reconstructor is also
written in C++ (2,871 SLOC). Experiments are on a machine
with Intel 17-4770 3.4GHz CPU (4 cores), 16GB RAM, 512GB
SSD, and LinuxMint 19.2 (64-bit).

Program Selection. We use a total of 26 diverse programs to
evaluate different aspects of C?SR. For each experiment, we
choose a different set of programs. We explain how and why
we choose the programs as follows.

1) For Runtime Overhead of Recorder (§ V-A): We use
SPEC CPU2017 Integer (10 programs), 5 web browsers (Fire-
fox, Arora, Midori, Qupzilla, and Opera) for running two
JS/DOM benchmarks (Octane [78] and Speedometer [90]), and
three web servers (Apache, Nginx, Lighttpd) to measure the
runtime performance of serving HTTP(s) requests. We choose
SPEC CPU2017 as it is the standard performance evaluation
suite, while we are aware of that they do not invoke syscalls
extensively, resulting in favorable (and possibly misleading)
evaluation results. We omit SPEC CPU2017 Floating Point
benchmarks due to the same reason as they have almost no
syscalls. Instead, we run more realistic workloads: JS/DOM
benchmarks on web browsers and 3 popular web servers that
represent server-side applications. Moreover, we use 8 client
applications including web browsers, email client, and mes-
sengers to measure the performance during the initialization
of the processes (when programs invoke syscall intensively).

2) For Space Overhead of Recorder (§ V-B): To understand
space overhead of C?SR in realistic settings, we choose
6 representative programs that are popular and commonly
targeted by advanced cyberattackers (e.g., common targets
for phishing). It includes a web browser (Firefox), an email
client (Thunderbirds), instant messengers (Skype and Yakyak),
and web servers (Apache and nginx). We did not use SPEC
CPU2017 as they do not invoke syscalls extensively, leading
to a low space overhead. Other programs (e.g., other browsers
and FTP/IRC clients and servers) are not selected as they incur
less space overhead than the chosen programs.

3) For Efficiency of Partial Execution Reconstruction
(§ V-C): We use 5 web browsers and 5 server programs (3



web servers, 1 IRC server, and 1 FTP server). We select
web browsers as they are long-running programs and supg)ort
concurrent autonomous tasks (e.g., browser tabs) that C"SR
primarily targets. Server programs are long-running programs
where each request is independent from others.

Runtime Overhead of the Post-processing. In § III, C?SR
has an offline post-processing phase. Note that it merely slices
the traces based on resources, and it is not a particularly
expensive process, with costs growing linearly with the trace
size. It is a one-time effort for each recording. During our
evaluation, no post-processing tasks take more than a minute.

A. Runtime Overhead

SPEC CPU2017. Fig. 10 shows normalized runtime overhead
on SPEC CPU2017 Integer programs for recording and execu-
tion reconstruction with the reference inputs. The first 10 bar
graphs present recording overhead while the last 10 bar graphs
show the overhead of reconstructed executions. C*SR incurs
negligible runtime overhead (less than 3% for all cases and
0. 8% on average) for recording. For reconstructed executions,
C?SR incurs only 2% runtime overhead on average, which
is slightly slower than recording as C?SR needs to redirect
syscalls to the reconstructed resources (§ IV-D). In addition, as
SPEC CPU2017 programs are mostly deterministic, we do not
observe any instances that C’SR uses the timeline projection
adjustment algorithm, and every reconstructed execution suc-
cessfully reproduced the target execution in their first attempts.
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Fig. 10. Runtime overhead on SPEC CPU2017.

Web Browsers and Web Servers. We evaluate the recording
performance of C’SR on web-browsers using JS/DOM bench-
marks as shown in Table III. Specifically, we use Octane [78]
and Speedometer [90] to measure the performance of each
browser application with and without C’SR’s recorder. The
numbers are normalized and represent overhead w1th respect
to the performance without C?SR. In most cases, C°SR slows
down the execution by less than 2%, except the Opera in
Speedometer case which results in 3.84% slow down. The
results confirm that C°SR 1s highly practical, causing low
overhead. We also evaluate C*SR’s recording performance on
three popular web-servers leveraging the apache benchmark
program [1]. Specifically, we use the tool to generate 1,000,000
requests with 8 threads and then measure the elapsed time
on each web server with and without C*SR’s recorder. As
shown in Table IV, the recoding overhead is negligible. Note
that processing a trace to create virtualized resources is an
offline process hence does not affect the runtime performance.
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In addition, our buffering optimization (Details in § IV-C)
contributes to the low performance overhead.

TABLE III. RUNTIME OVERHEAD ON JS/DOM BENCHMARKS.
Benchmark [ Firefox [ Arora | Midori | Qupzilla | Opera
Octane [78] [ 193% [ 131% | 1.62% | 08% | 09%
Speedometer [90] | 05% | 05% | 1.83% | 1.52% | 3.84%

TABLE IV. RUNTIME OVERHEAD ON WEB-SERVER BENCHMARKS.
[ Apache | Nginx [ Lighttpd

Overhead (Normalized) ‘ 2.7% ‘ 3.2% ‘ 3.1%

Syscall-intensive Client Applications. As SPEC CPU2017
and web browsers/clients benchmarks are not syscall intensive,
we choose a few client applications to measure the over-
head of C’SR. In particular, we measure runtime overhead
while the applications are initializing, as initialization phases
of applications are often syscall intensive. We pick 5 web
browsers (Firefox, Midori, Arora, Qupzilla, and Lynx) and
Thunderbirds, Skype, and HexChat.

For all applications, as they have the graphical user inter-
face (GUI), we consider the initialization is complete when
the first GUI component is created. For each program, we run
the application 10 times to measure overhead during recording
and reconstruction, and then we take the average.
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Fig. 11 shows the result. The average is 5.47% for record-
ing and 8.31% for reconstruction. Large applications such
as Firefox (8.48% and 14.86%), Thunderbirds (7.85% and
12.58%), and Skype (7.47% and 9.49%) incur more overhead
than others as they issue more syscalls during initialization
(e.g., loading configuration files and connecting servers to
load user profiles). We believe the overhead is reasonable as
the frequency of syscall invocations becomes lower after the
initialization, meaning that in practrce the overhead of C*SR
is lower than the overhead presented in Fig. 11.

B. Space Overhead

We measure the space overhead of execution traces gen-
erated by C’SR. Note that the traces include all inputs and
outputs to/from a program, meaning that the traces always take
more space than all the inputs and outputs.

SPEC CPU2017. Most SPEC CPU programs have multiple
reference inputs. We use all of them and add all the logs
to measure the space overhead as shown in Table V. The
second column shows the total accumulated trace size for
each program. The next three columns show the size of non
I/0 syscalls, input related syscalls, and output related syscalls
in the trace. Note that the size of I/O (input and output)



TABLE V. SPACE OVERHEAD ON SPEC CPU2017.

Program [ Raw (Total) [[ Non /O [ Tnput [ Output

perlbench 57.7 MB 1,009 KB 50.3 MB 6.4 MB
gec 2183 MB 11.8 MB 924 MB | 114.1 MB
mcf 22 MB 85 B 2.2 MB 25 KB
omnetpp 56.8 KB 9.9 KB 46.8 KB 104 B
xalancbmk 119.1 MB 3.9 MB 554MB | 59.7 MB
X264 379.8 MB 112KB | 375.1 MB 4.6 MB
deepsjeng 459 KB 40 B 1,058 B 448 KB
leela 1.5 MB 451 B 513 KB 1.45 MB
exchange2 154 KB 388 B 2.9 KB 11.6 KB
Xz 16.97 MB 99 B 16.9 MB 3.1KB
Total [ 7956 MB [[ 169 MB | 5923 MB | 186.4 MB
Zip | 1549MB [| 31MB [ 1I89MB | 329 MB

related logs are almost identical to the I/O contents (e.g.,
input and output file sizes). Non I/O column shows a space
overhead without the I/O contents. From the total, Non I/O
syscalls only takes 2.12% of the total trace size. This shows
that C*SR does not cause much additional space overhead
beyond logging input and output. Input is required to drive
reconstructed execution and output is needed for verifying the
reconstructed execution is successful.

Fig. 12 presents more detailed analysis of the space over-
head caused by C?SR. It illustrates the percentage of input,
output, and non-I/O syscalls in execution traces. The y-axis
represents each program and the x-axis shows the percentage.
Observe that all the programs except for omnetpp, more than
90% of the trace is occupied by input and output. For omnetpp,
non-1/O syscalls take 17.4% because the total size of the trace
is small (56.8 KB, as shown in Table V), making the proportion
of the non-I/O syscalls significant.

XZ

exchange? N |
leela 1
deepsjeng 1
x264 |
xalanbmk [l |
omnetpp N |
mcf |
gee NI |
perlbench W I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
B Non I/O = Input ®Output
Fig. 12.  SPEC CPU2017 Space Overhead Breakdown.
TABLE VI. SPACE OVERHEAD ON THE CLIENT PROGRAMS.
| Firefox | Thunderbirds [ Skype [ Yakyak [ Apache | nginx
Raw [ 09GB [ 1261MB [ 4972 MB [ 3144 MB | 4333 MB | 289.9 MB
Zip | 398MB_| 8.1 MB | 368MB | 202MB | 2383 MB | 167 MB

Representative Client Programs. SPEC CPU2017 pro-
grams are computation-intensive, but not syscall intensive.
As C?SR’s space overhead is dependent on the number of
syscall invocations, we run an additional experiment with
representative client programs. We run 5 heavy websites
(Facebook, Twitter, CNN, Gmail, and New York Times) for
20 minutes on Firefox (e.g., browsing 37 webpages, reading
7 news articles, searching 10 keywords on Google), reading
and writing emails for 20 minutes in Thunderbirds, accessing
HTML/PHP files on web servers powered by Apache and
Nginx, and using Skype and yakyak (for Google Hangout)
to send/receive text messages/files for 20 minutes. As there is
no standard workload available for them, we manually use the
applications actively for the given amount of time. The results
are shown in Table VI. The first row shows the trace sizes and
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the second row represents compressed (via zlib [105]) trace
sizes. While the size of traces is non-trivial, considering that
all input/output contents (e.g., contents of network servers)
must be stored for post-mortem forensic analysis, we argue
that our space overhead is acceptable for our purpose. Note that
the compression significantly reduces the log size. We observe
that the compression works better for real-world applications
because, in part, they have more repetitive trace patterns.

C. Partial Execution Reconstruction

To evaluate the effectiveness of C>SR’s partial execution
reconstruction, as shown in Table VII, we use 5 server (top
5 rows) and 5 client programs (bottom 5 rows). For each
program, we record an execution and then reconstruct an
execution of a single (randomly picked) request. Specifically,
we pick 10 random requests (e.g., a single web-page view in
a web browser or a single session in a server program) and
present a median value in Table VII. Note that the number of
syscalls that need to be reconstructed to successfully reproduce
a single request is very small (i.e., less than 1% of the entire
syscalls). As C?SR does not need to run a target program
from the beginning, it is highly efficient and effective in
reproducing partial executions from a long-running application
for post-mortem analysis. Also, the fourth column shows the
number of syscalls that access timing-dependent resources. In
web-browsers, there are often more timing-dependent related
syscalls as those are often used in GUI-related operations
(e.g., user interaction, animations). In server programs, those
are often used for performance profiling and logging func-
tionalities. The last two columns (i.e., Recon. and Syscall)
show the number of reattempted execution reconstructions
and the number of syscalls (on timing-dependent resources)
that were reassigned alternative timezones. In general, client
programs (e.g., web-browsers) require more retrials (e.g., 5
~ 14) while server programs require at most 3 retrials. Even
in the worst case, Firefox, it only retries 14 times. Note that
the numbers in the sixth columns are the ones that C>SR’s
timeline projection adjustment algorithm searched for. Our
manual inspection reveals that the retrials are caused by the
frequent use of timing-dependent resources for en/decryption
and third-party JS libraries.

TABLE VII. RECONSTRUCTION OF LONG-RUNNING PROGRAMS.

Pro [ # of syscalls [ # of retrials
gram
‘ Total ‘ Reconstructed ‘ Timing-dep.” ‘ Recon. Syscalls”

Firefox [31]" 482.6M | 381.5K (0.07%) | 32.5M (6.7%) 14 21
Midori [12]7 261.7M | 351.4K (0.13%) | 59.6M (22.7%) 6 10
arora [9] 75.6M 683K (0.9%) 7.9M (10.4%) 9 14
qupzilla [85]" S51.9M | 455K (0.08%) | 13.6M (26.2%) 6 3
lynx [61]° 5.5M 23K (0.04%) 480.2K (8.6%) 5 7
Apache [8]7 6.9M 141 (0.002%) 620M (8.9%) 3 4
nginx [76]° 5.5M 107 (0.001%) 568K (10.1%) 2 4
lighttpd [58]™ 4.1M 81 (0.001%) 206K (4.92%) 2 2
InspIRCd [40]" 1.6M 23K (0.04%) 83K (0.5%) 0 0
proftpd [83]7 3.3M 2.3K (0.04%) 10K (0.29%) 0 0
*: Client programs, **: Server programs, a:: Syscalls on timing-dependent resources,

[3: # of execution reconstruction retrials, ~y: # of syscalls with alternative time zone assign.

D. Case Study

We present two case studies to show how C?SR can
effectively reconstruct attacks and allow forensic analysts to
use program analysis tools to facilitate the analysis.



Case 1: Investigation of a Fileless JavaScript Attack. We use
a fileless JavaScript attack to show how C?SR can reconstruct
an interactable partial execution for forensic analysts. The
attack is created based on an existing literature [88]. We only
use a single browser tab, in this case, to focus on demonstrating
the effectiveness of interactable reconstructed execution.

WS = new WebSocket('.../mal.js');
WS.onmessage = function (e) {
mal = atob(e.data);

1

2

3
4}
5 | function benign_compromised() {

6 var sc = document.createElement('script’ )

7

F- I

- sc.appendChild( document.createTextNode( mfl ) V5

C)wm- mbdocument getElementsByTagName( 'head"’ )[9]
.appendChild(sc);
12 |}
13 .
14 script type='text/javascript'
c,wmlsw“mm,
16 script
Legend
® Code Changed by the ) Breakpoint to Inspect Program
Malicious Attacker States (e.g., Variables)
Fig. 13. Investigating a Fileless Attack via JavaScript.

1) Experimental Setup: The victim uses Firefox to navigate
a web page that contains a malicious JavaScript file, which
fetches another malicious payload that eventually downloads
malware. From the malicious file downloading, a forensic
analyst tries to trace back to the origin of the attack and how
the code that downloads the malware binary was delivered.

2) Investigation: With the reconstructed execution by
C’SR, the forensic analyst identifies that malware is down-
loaded from a web page, including a JavaScript code snippet
shown in Fig. 13. Specifically, the script code block (Lines
14-16) is added dynamically to download malware. Using
DevTools [30], the analyst sets a breakpoint at line 15 (@).
She realizes that the script code block is dynamically added
by comparing the HTML file content delivered through the
network. She then restarts the execution and uses DevIools
to set breakpoints on DOM element change events in order
to identify how the code block is dynamically added. The
breakpoint stops at line 11, showing the malicious code. She
further traces back to the origin. The script code was injected
at line 9. Note that the variables (e.g., mal at line 9) and
DOM elements (e.g., sc at line 11) related to the malicious
payload delivery are only available at runtime, requiring the
analyst to use DevTools for inspection. The user interactions
required to set breakpoints and inspect the variables incur
additional instructions and syscalls. C’SR tolerates them as
additional syscalls do not access completely unobserved ex-
ternal resources, hence consistently reproducible.

To this end, she realized that the HTML file is compro-
mised that line 8 (@) was disabled and line 9 was added by the
attack to inject the DOM element containing malicious code.
Finally, she follows the mal variable which contains malicious
code, eventually discovering that it receives the malicious code
via WebSocket at lines 1-4.

Case 2: Attack Delivery Analysis in a Channel (Single
Autonomous Task) of HexChat. HexChat is an IRC client
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program that supports multiple channels (i.e., chatting ses-
sions) concurrently. We choose this program to demonstrate
an example of an application that runs multiple autonomous
tasks concurrently besides previous web browser cases. The
program has a directory traversal vulnerability [23] that can be
exploited to modify arbitrary files on the client’s file system.

1) Experimental Setup: The victim uses HexChat and
opens 10 channels for 2 days. Even though the user did not
actively chat, the program constantly received messages from
other users and displays them. For the 2 days, it received
63,738 messages from 10 servers, and it receives a malicious
message from the channel 10, and the message exploited the
vulnerability to corrupt the apache web server’s configuration
file. The corrupted configuration file may break the web server
or make it use the insecure default configuration.

2) Result and Analysis: C?SR reconstructs a part of the
single exploited channel 10 (@) as shown in Fig. 14. From
the entire trace, we identify the malicious write() syscall
that corrupts the apache configuration file (i.e., apache2.conf).
From the malicious file write, we trace back the socket that
received the malicious payload and the channel that the socket
belongs to, which is the channel 10. To this end, we use the
first getaddrinfo() API of the channel as the beginning of
partial execution (SpggN)-

Directory Traversal Vulnerability

Senp=
write(apache2.conf, ...)

SpeIN" |
getaddrinfo(Channel10)

A2

2 ‘————e PO
D
@
)
E o~
=
5 ©
=
U wn
<
o
o
—
. a > Time
0 24 hours 48 hours
Legend

Q Window of Suspicious Activities @ Reconstructed Execution

A Vulnerability (Directory Traversal) “/; Corrupted Configuration File

o—e Active Execution (Finished) &> Active Execution (Continuing)

Fig. 14. Reconstructed partial execution of HexChat.

C?SR starts an execution from with the collected trace.
Once the execution starts, we open a new connection window
and type the channel name. Note that in the channel 10,
there are three executlons @, @ and @) that connect to
the same server. C*SR asks the investigator to choose the
execution from them. If the analyst mistakenly chooses @) or
9 Senp (the malicious syscall) cannot be reached, and thus
the reconstructlon will fail. If the second execution (G) is
chosen, C*SR will reproduce the entire attack delivery process
including the exploitation process.

To analyze the incident, we use Taintgrind [48] (a taint
analysis plug-in for Valgrind [74]) on the reconstructed execu-
tion. It supports reverse taint analysis (rtaint [24]), that trace
back to the origin of a certain value. In this example, we first
trace back to the file handler used in the malicious write ()
(line 17), and then identify how the filename was composed



and used to create the file. Fig. 15 shows how the reverse taint
analysis identifies the source of the message and its content,
from the suspicious filename at line 15.

chan = “/../.../apache2.conf”
A

1 void inbound_ujoin (..., char *ch.an,'.,.. LA

2 . e ::_

3 safe_strcpy (sess->channel, chan ;~-€HANLEN) ;

4 ... 3

Sy e,

6 static void log_open (session *sess e,

7 e -

8 sess->logfd = log_open_file(..., sess->channel, ...);

9 ... 4
10 } H
11 static int log_open_file (..., char *channame;e....){
12 H
13
14
15
16
17

_("**** BEGIN LOGGING AT %s\n"), ...));
18 | }
Legend
. . Data Origin
S
Variable/Input Source Variable Value (Reverse Data Flow)
Fig. 15. Reconstructed partial execution of HexChat.

Note that there exist record-and-replay techniques that
allow to integrate with existing program analysis infrastruc-
tures such as Pin [60] and gdb [34]. Such tools can analyze
replayed executions. However, they require the existing pro-
gram analysis tools to interact with the replayed execution
through the replayer. As a result, limited program analysis
infrastructures and plug-ins are often supported and analysis
results may need to be adjusted as the tools are not directly
applied. Unlike them, C?SR allows existing program analysis
techniques to directly interact with the reconstructed execution.
Hence, diverse analysis tools such as Taintgrind with rtaint [24]
can be directly used. In addition, C?SR can reconstruct only a
small part of the channel 10 execution without reconstructing
80% of the messages that are irrelevant to the attack.

VI. DISCUSSION

Reconstructing Non-deterministic Executions. C?SR s not
a deterministic replay technique and it might not be able to
reconstruct a highly non-deterministic execution at the first
attempt. To mitigate this issue, we propose an algorithm,
called Timeline Projection Adjustment (see § IV-E), to sys-
temically search for the correct order of non-deterministic
events. We demonstrate that it can successfully reconstruct the
complete execution of the attack delivery process. Highly non-
deterministic executions, such as concurrency bugs that require
to reproduce the exact execution states of each thread (e.g.,
replay each instruction in the same order of the recording) are
out of the scope. Instead, we focus on reproducing a determin-
istic attack delivery process. However, while C”SR does not
guarantee to reproduce the non-deterministic behaviors, they
may occur in the reconstructed execution, if the behaviors are
not rare. In practice, a forensic analyst may try to reconstruct
a non-deterministic execution multiple times to successfully
reproduce the execution.

Inconsistent Resource Access. User interactions for inspec-
tions may cause new resource accesses that were not observed
during recording. For instance, users can directly execute
JavaScript code snippets on the DevTools’s console to access
new external resources. We handle such cases as follows. If it is
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an available resource in the reconstruction time, (e.g., reading
a local configuration file of an analysis tool), we allow to do
and resume the reconstruction process. If the resource is not
available (e.g., accessing external resources such as loading
a webpage), we consider it as inconsistent resource access,
leading to a reconstruction failure.

Attacks against C’SR. It is possible that an attacker can pur-
posefully create malicious payloads (e.g., JavaScript programs)
that make the execution reconstruction by C’SR difficult. In
particular, since C’SR runs a searching algorithm (Timeline
Projection Adjustment algorithm in § IV-E) when it fails
to provide correct values for timing-dependent syscalls (e.g.,
time()), attackers can craft payloads that make the algorithm
run for a long time, hindering execution reconstruction and
forensic analysis. For instance, assume that there are two
syscalls: ¢, for a timing dependent syscall (e.g., time())
and s, for a non-timing dependent syscall (e.g., read()).
If s, uses the return value of ¢, as one of the arguments,
then the execution of s, is dependent on ?,, meaning that
reconstructing the correct value for ¢,, is required for successful
execution of s,. If an attacker creates a program that has
many timing dependent syscalls between ¢, and s,, it causes
a large searching space for our TPA (Timeline Projection
Adjustment) algorithm (§ IV-E). For example, consider the
original program contains “¢,, s,”. A possible code that can
impose challenges to C?SR is “te» U1, to, ts, ooy ty, 8,7, Where
n is the number of added timing-dependent syscalls. It can
exploit the fact that C’SR does not try to reconstruct values
for timing-dependent resources faithfully. However, while it
might delay the reconstruction significantly, this does not break
our analysis and it is still possible to reconstruct the correct
execution.

Log Integrity. In this paper, we assume that our event logger
and logs generated are not compromised and tampered. We
focus on algorithms and systems to reconstruct an exploit
execution from the log. Protecting the integrity of the recorder
and logs is an orthogonal problem that we can leverage existing
solutions to mitigate [3], [4], [28], [86], [19], [63], [100], [89],
[79], [46].

Generality. C?SR s applicable to diverse applications. In
particular, it can effectively reconstruct a partial execution
when a target program execution is consisting of multiple
autonomous tasks (i.e., tasks that are supposed to be inde-
pendent of other tasks). For example, a document or window
in multi-document/window applications (e.g., tab-based web
browsers, messaging programs, and multi-tab text editors) is
an autonomous task. Among them, web browsers are a popular
target in cyberattacks. Hence, we focus on web browsers in this
paper. However, our design is not limited to them.

Identifying a Task to Reconstruct. In this paper, we focus
on the effective and efficient reconstruction of the cybercrime
scene. Detecting a malicious task or identifying a cybercrime
scene is out of the scope of this work. In practice, a forensic
analyst can typically narrow down a part of execution (e.g.,
a tab executing malicious payload), while she spends a sig-
nificant amount of time and effort to analyze the suspicious
execution repeatedly for hypothesis testing. while pinpointing
a malicious task can be difficult, it can be done by ruling out
obviously benign network connections/system events.



Space Overhead. The current implementation of C?SR uses
zIlib library [105] to compress execution traces. While the log
size is reasonable, it can be further reduced by leveraging
recent studies [99], [38], [64].

Debugging Capability. There are approaches [45], [37] that
aim to provide a replay of a recorded execution for debugging
purposes. While effective, [45] requires modifications to the
target program. [37] aims to handle additional code inserted for
debugging by developers. It also requires modifications to the
target program. C?SR differs from them because (1) it allows
users to apply interactive debugging tools (e.g., DevTools [30])
and (2) it does not require modification of the target program.
[13] also supports interactive debugging, while it only supports
web browsers and requires modifications of the web browsers,
as discussed in § II-D.

VII. RELATED WORK

In addition to our earlier discussion (§ II-D), we discuss other
related work in this section.

A. Record-and-replay Techniques

I)RR [77]: State -of-the-art Record-and-replay Technique:
We compare C?SR with RR [77], the state-of-the-art record-
and-replay technique for debugging. In particular, we use the
same set of benchmark programs used by RR with the similar
configurations: cp, make, octane, htmltest, and sambatest. Note
that the cp benchmark in [77] uses 15,200 files constituting
732MB of data. Since the files are not publicly available, we
use 720MB of data consisting of 37,356 files.

Recordlng Overhead. The average recording overhead of
C’SR is 5.74% which is significantly lower than the RR, which
incurs 2.54x overhead (according to [77]). This is because RR
enforces various changes in the software and environment. For
instance, it forces to use a single thread, causing significant
overhead (7. 85x) on the make benchmark which originally uses
8 threads. C>SR does not have such restrictions, resulting in
a near native speed in the recording.

Side-effects. To reduce the sources of non-determinism, RR
implements various restrictions for executions during record-
ing. First, it only runs one thread at a time. This slows down
the recording execution as discussed above. More importantly,
this will result in a significantly different execution at runtime.
For instance, with RR’s recorder, many concurrency bugs may
disappear due to the restriction. C?SR does not have such
restriction. However, C°SR is also ineffective in reproducing
concurrency bugs. Second, RR interferes with the context
switching as well, performing preemptive context switching.
An execution under the RR’s recorder may exhibit different
context switches from the original execution without the RR’s
recorder. C*SR does not interfere with the context switching.
Th1rd RR uses ptrace to implement various hooks, while
C?SR hooks hbrarles which is faster than the ptrace. As
reported in § V, C?SR’s recording overhead is much less than
RR’s recording overhead, allowing C?SR’s recorder to capture
executions that are close to the original executions.

Robustness. C>SR’s recording capabilities are entirely im-
plemented as a library while RR leverages more robust in-
frastructures such as ptrace. If program code is corrupted
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during recording and reconstruction, C?SR may be affected
(i.e., compromised and fail), while RR would be robust.

2) Other Record-and-replay Techniques: We also compare
with other existing record-and-replay techniques [80], [5], [39],
[70], [27], [87]), [91], [21], [93], [52], [91], [53], [17], [67],
[84], [28], [42], [43], [44], [71], [13], [16], [7], [66], [13].

Recording and Replay Overhead. In terms of record-
ing overhead, except for fine-grained record-and-replay tech-
niques [80], [5], [39], [70], most technlques have low overhead
(e.g., less than 10%) similar to C?SR. For the replay, C?SR’s
execution reconstruction is comparable or faster than existing
record-and-replay techniques, if C’SR does not need to retry
the reconstruction due to the timeline pr0]ect10n adjustment
(§ IV-E). However, as shown in Table VII, C?SR requ1res
retrials to reconstruct the execution. For such cases, C°SR
is slower than existing techniques. For instance, CQSR had
to repeat 14 times to reconstruct the execution of Firefox in
Table VII, leading to 14 times replay overhead than a typical
system call replay technique [27], [87], [91], [21]. Note that
replay acceleration [93], [52], [91], [53] and browser-specific
approaches [71], [13], [16], [7], [66], [13] can replay faster
than C>SR while they are often not effective in reconstructing
attack delivery processes.

Interactable Replay of Exploit Delivery Process. Browser-
specific approaches [71], [13], [16], [7], [66], [13] can provide
the interactable replay capability. However, most of them [13],
[16], [7], [66], [13] aim to replay high-level web application
behaviors such as mouse-events and keyboard-events. Unfor-
tunately, they cannot reproduce exploit delivery processes that
often have to replay low-level system call events. [71] replays
lower-level events than others. Hence, it may record and
replay some exploit delivery processes. However, it requires
significant changes in browser internals.

B. Other Related Works

Network Provenance Systems. Network provenance tech-
niques [104], [14], [103], [94] track network traffic between
hosts in the same network env1ronment to identify causal
relationships across multiple hosts. C?SR is complementary
to such techniques such that they can be used with C?SR to
fully understand details of cyber attacks across multiple hosts.

Taint Analysis. Taint analysis techniques [75], [102], [18],
[47], [101] track information flow between a source to a sink.
Decoupled taint analysis techniques [41], [67], [68], [84] were
developed to improve the run-time performance. Their idea
is to decouple a target process from expensive taint analysis
procedures by allocating spare cores to do the taint tracking.

Additional Forensic Techniques. As we discussed earlier,
graph-based forensics analysis techniques have proposed [49],
[35], [501, [54], [511, [65], [69], [10], [17], [67], [84], [28],
[42], [43], however, they focus on identifying causal relations
and do not allow examining details of the execution. There are
efforts to reduce the space overhead of provenance data [99],
[38], [55], [64]. Data reduction techniques are orthogonal to
C?SR such that their idea can be used to further reduce the
execution trace of C>SR. Recently, novel provenance inquiry
techniques [59], [33], [36], [81], [98] were proposed for easier
and timely investigations for advanced attacks.



VIII. CONCLUSION

We propose a novel technique, CQSR, to enable effective cy-
bercrime scene reconstruction by recreating an attack delivery
chain from a long execution of a complex application. Its
core technique is the resource based execution partitioning,
that allows reproducing the attack relevant events without
wasting time in reconstructing irrelevant events to the attack.
Furthermore, it enables an important forensic capability, which
is the interactivity of a reconstructed execution. Our evaluation
results with 26 real-world applications show that it has low
recording overhead (less than 5.47%), and is highly effective in
reconstructing partial executions (less than 1.3% of the entire
execution) of long-running applications.
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APPENDIX
A. The Complete List of System Call Categorization

As shown in Table VIII , we categorize Linux syscalls that
access external resources into three resource types; 1) Random-
Access, 2) Sequential-Access, and 3) Timing Dependent.

Random-Access Resources (125 syscalls). The random-
access type syscalls mostly access file systems, networks,
and internal system states. They are considered as external
resources because they may be different between machines
and those resources may not exist during the reconstruction.

Sequential-Access Resources (23 syscalls). The sequential-
access type syscalls access networks and pipes that are consid-
ered as an external resource and cannot be accessed randomly.

Timing-Dependent Resources (11 syscalls). The timing de-
pendent type syscalls are accessing date, time, or clock.
Reading from random devices (e.g., /dev/random) is also
categorized into this type.

Syscalls that are not recorded (156 syscalls). There exist
syscalls that we do not record because their executions do
not contribute cybercrime scene reconstruction. C’SR aims
to reconstruct a deterministic (exploit delivery) execution. The
execution of syscalls in this category do not affect deterministic
(exploit delivery) executions. For instance, the order of signals
(e.g., accomplished by rt_sigx syscalls) does not affect the
successful exploit delivery (if it is deterministic). Our focus
is not a faithful replay of non-deterministic events that are
irrelevant to the successful execution (i.e., exploitation pro-
cess). If reconstruction of non-deterministic exploit execution
(e.g., concurrency attacks) is out of scope. To do so, one
must leverage faithful record-and-replay techniques. Note that
most exploits in practice are fairly deterministic (they mostly
succeed), as otherwise, the attacks would mostly fail. We do
not encounter such cases in our experiments, however, we
assume that the current version of C°SR may not be able
to handle corner cases if a non-deterministic event triggered
by not-recorded syscalls.
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TABLE VIIL. LIST OF LINUX SYSCALLS WITH THE RESOURCE TYPE

CATEGORIES.

Syscall List

read, write, ioctl, pread64, pwrite64, readv, writev, sys_pready,
sys_pwritev, open, close, stat, fstat, Istat, Iseek, access, setitimer, send-
file, getsockname, setsockopt, getsockopt, uname, fentl, flock, fsync,
fdatasync, truncate, ftruncate, getdents, getcwd, chdir, fchdir, rename,
mkdir, rmdir, creat, link, unlink, symlink, readlink, chmod, fchmod,
chown, fchown, Ichown, umask, getrlimit, getrusage, sysinfo, getuid,
getgid, setuid, setgid, geteuid, getegid, setpgid, getppid, getpgrp,
setsid, setreuid, setregid, getgroups, setgroups, setresuid, getresuid,
setresgid, getresgid, getpgid, setfsuid, setfsgid, getsid, capget, capset,
mknod, ustat, statfs, fstatfs, sysfs, pivot_root, _sysctl, setrlimit, chroot,
sync, acct, mount, umount2, sethostname, setdomainname, quotactl,
setxattr, Isetxattr, fsetxattr, getxattr, lgetxattr, fgetxattr, listxattr, llistx-
attr, flistxattr, removexattr, Iremovexattr, fremovexattr, getdents64,
utimes, openat, mkdirat, mknodat, fchownat, futimesat, newfstatat,
unlinkat, renameat, linkat, symlinkat, readlinkat, fchmodat, facces-
sat, splice, sync_file_range, vmsplice, utimensat, timerfd_settime,
timerfd_gettime, prlimit64, name_to_handle_at, open_by_handle_at

read, write, ioctl, pread64, pwrite64, readv, writev, sys_preadv,
sys_pwritev, pipe, select, connect, accept, sendto, recvfrom, sendmsg,
recvmsg, listen, getpeername, accept4, pipe2, recvmmsg, sendmmsg
settimeofday, gettimeofday, times, utime, time, clock_settime,
clock_gettime, read (on random devices), pread64 (on random de-
vices), readv (on random devices), sys_preadv (on random devices)

poll, mmap, mprotect, munmap, brk, rt_sigaction, rt_sigprocmask,
rt_sigreturn, sched_yield, mremap, msync, mincore, madvise,
shmget, shmat, shmctl, dup, dup2, pause, shutdown, clone, fork,
vfork, execve, exit, wait4, kill, semget, semop, semctl, shmdt,
msgget, msgsnd, msgrcv, msgetl, ptrace, syslog, rt_sigpending,
rt_sigtimedwait, rt_sigqueueinfo, rt_sigsuspend, sigaltstack, uselib,
personality, getpriority, setpriority, sched_setparam, sched_getparam,
sched_setscheduler, sched_getscheduler, sched_get_priority_max,
sched_get_priority_min, sched_rr_get_interval, mlock, munlock,
lockall, munlockall, vhangup, adjtimex, swapon, swapoff, reboot,
init_module, delete_module, readahead, tkill, futex, sched_setaffinity,
sched_getaffinity, set_thread_area, get_thread_area, lookup_dcookie,
epoll_create, remap_file_pages, set_tid_address, restart_syscall,
semtimedop, fadvise64, timer_create, timer_settime, timer_gettime,
timer_getoverrun, exit_group, epoll_wait, epoll_ctl, tgkill, mbind,
set_mempolicy, get_mempolicy, mq_open, mq_unlink, mq_timedsend,
mq_timedreceive, mq_notify, mq_getsetattr, kexec_load, waitid,
add_key, request_key, keyctl, ioprio_set, ioprio_get, inotify_init,
inotify_add_watch, inotify_rm_watch, migrate_pages, pselect6,
ppoll, unshare, set_robust_list, get_robust_list, —move_pages,
epoll_pwait, signalfd, timerfd_create, eventfd, fallocate, signalfd4,
eventfd2, epoll_createl, dup3, inotify_initl, rt_tgsigqueueinfo,
fanotify_init, fanotify_mark, clock_adjtime, syncfs, setns, getcpu,
kemp, finit_module, getpid, socketpair, gettid, process_vm_readv,
process_vm_writev, modify_ldt, iopl, ioperm, socket, bind, pretl,
arch_pretl, io_setup, io_destroy, io_getevents, io_submit, io_cancel,
tee, perf_event_open, nanosleep, getitimer, alarm, timer_delete,
clock_getres, clock_nanosleep

Type |
Random
Access

Sequential
Access

Timing
Dependent

Not
Recorded

Library Calls. Recall that C?SR also records user inputs such

as keystrokes. To do so, we interpose X-Window libraries and

implement record-and-replay mechanism via library hooking.
2 . .

C”SR treats such library calls as same as sequential access

resources except for that C’SR does not raise exceptions if

there is any new inputs in a reconstructed execution.
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