
ALchemist: Fusing Application and Audit Logs for
Precise Attack Provenance without Instrumentation

Le Yu∗, Shiqing Ma†, Zhuo Zhang∗, Guanhong Tao∗, Xiangyu Zhang∗, Dongyan Xu∗,
Vincent E. Urias‡, Han Wei Lin‡, Gabriela Ciocarlie§, Vinod Yegneswaran§ and Ashish Gehani§

∗Purdue University; †Rutgers University; ‡Sandia National Laboratories; §SRI International
∗{yu759, zhan3299, taog, xyzhang, dxu}@cs.purdue.edu,

†sm2283@cs.rutgers.edu, ‡{veuria, hwlin}@sandia.gov, §{gabriela, vinod, gehani}@csl.sri.com

Abstract—Cyber-attacks are becoming more persistent and
complex. Most state-of-the-art attack forensics techniques either
require annotating and instrumenting software applications or
rely on high quality execution profiling to serve as the basis
for anomaly detection. We propose a novel attack forensics
technique ALchemist. It is based on the observations that built-
in application logs provide critical high-level semantics and audit
logs provide low-level fine-grained information; and the two share
a lot of common elements. ALchemist is hence a log fusion
technique that couples application logs and audit logs to derive
critical attack information invisible in either log. It is based on a
relational reasoning engine Datalog and features the capabilities
of inferring new relations such as the task structure of execution
(e.g., tabs in firefox), especially in the presence of complex asyn-
chronous execution models, and high-level dependencies between
log events. Our evaluation on 15 popular applications including
firefox, Chromium, and OpenOffice, and 14 APT attacks from the
literature demonstrates that although ALchemist does not require
instrumentation, it is highly effective in partitioning execution
to autonomous tasks (in order to avoid bogus dependencies)
and deriving precise attack provenance graphs, with very small
overhead. It also outperforms NoDoze and OmegaLog, two state-
of-the-art techniques that do not require instrumentation.

I. INTRODUCTION

Advanced Persistent Threat (APT) is a complex form
of threat that contains multiple phases and targets specific
organization or institute [4]. A popular method for attack
investigation is to perform dependency analysis on system
audit logs to reconstruct attack provenance. In [41], [42],
[14], researchers analyzed dependencies among system objects
(e.g., files and sockets) and subjects (i.e., processes) using
system call logs. However, these approaches have limita-
tions in analyzing attacks that involve long running processes
(e.g., browsers). In particular, they all assume that an output
operation depends on all the prior input operations in the
same process, introducing substantial false dependencies. For
example, the write to a downloaded file by firefox is considered
dependent on all the websites firefox has visited before the
download, which is very imprecise. This is known as the
dependency explosion problem.

To solve this problem, researchers proposed using program
analysis to enhance the collected log and partition long running

processes into execution units/tasks [53], [45]. Each unit/task
is an autonomous portion of the whole execution such as a tab
in firefox. An output operation is considered dependent on all
the preceding input operations within the same unit. Doing so,
they can preclude a lot of false dependencies. Researchers have
demonstrated the effectiveness of these unit partitioning based
techniques, which yield very few dependence false positives
and false negatives [53], [45]. However, these approaches re-
quire third-party instrumentation, which may not be acceptable
in enterprise environments. In practice, software providers
(e.g., Microsoft) provide maintenance services to their cus-
tomers only when the integrity of their software is guaranteed.
As instrumentation entails changing software (by some third
party), it shifts the responsibility of maintaining the correctness
of software from its original producer to the third party, which
is undesirable. In fact, many vendors provide mechanisms to
proactively prevent their software from being instrumented
such as the Kernel Patch Protection by Microsoft [10]. In
addition, these techniques record low-level events such as
memory accesses such that the entailed overhead, especially
the space overhead, is high [45]. Another line of work does
not require third-party instrumentation. Instead, it tries to
solve the dependency explosion problem by pruning graphs
with heuristics such as prioritizing low frequency events [49],
[31]. Depending on the quality of execution profile used to
establish the baseline, these methods may flag rarely seen
benign operations as malicious and attack steps leveraging
benign software/IPs as normal (e.g., an APT attack using
phishing pages on Github may evade such methods due to
the frequent visits to Github). In addition, asynchronous and
background behaviors pose significant challenges to learning
based methods due to their non-deterministic nature.

Our goal is to develop a new attack investigation technique
that can achieve the same accuracy as instrumentation based
methods without requiring instrumentation. We observe that
many widely used applications, especially those that are long-
running and tend to cause dependence explosion, have well-
designed built-in logs. These application logs record important
events with application-specific semantics (e.g., switching-
to/opening a tab in firefox). As such, they can be parsed and
analyzed to reconstruct the unit structure of an execution,
which is critical to precise dependence analysis as shown by
the literature [53], [33]. On the other hand, the low level audit
log provides fine-grained information that is invisible in appli-
cation logs and typically corresponds to background activities
(e.g., using JavaScript for background network communica-
tion). Therefore, we propose a novel log fusion technique,

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24445
www.ndss-symposium.org

ALchemist, that couples application logs and the audit log,
to produce precise attack provenance. It does not require any
instrumentation and the entailed overhead is low compared to
existing techniques. During attack investigation, ALchemist
first normalizes the raw application logs and the audit log to a
canonical form such that their correlations can be inferred. The
canonical form is general such that it can express all the execu-
tion models of common applications, including those having
complex asynchronous/background behaviors. The canonical
log entries are loaded into a Datalog engine [38] to derive
new relations based on a set of pre-defined rules, which we
call the log fusion rules. Precise dependency graphs can be
easily constructed from the inferred relations. In summary, we
make the following contributions:

• We propose a novel log fusion technique that features the
capabilities of inferring new relations from existing logs.

• We develop a set of parsers that can normalize various
logs to an expressive canonical form. We study the exe-
cution models of a set of popular applications from [54],
[53], [45], [52] and their built-in application logs, and
determine that their executions can be expressed by the
canonical form that preserves the critical unit related in-
formation. In addition, we study the log format changes of
these applications (Appendix A) and find that log formats
rarely change, much less frequently compared to software
releases. Note that for instrumentation based techniques,
each software release entails re-instrumentation.

• We develop a comprehensive set of log fusion rules
general for all applications. We devise a demand-driven
inference algorithm to handle a large volume of log events
in the Datalog engine.

• We develop a prototype on Linux and evaluate it on 8
machines for 7 days. The results show that ALchemist
achieves 92.8% precision and 99.6% recall with only
1.1% run time overhead and 6.8% storage overhead, im-
plying that ALchemist can achieve similar accuracy and
lower overhead, when compared to instrumentation based
approaches. In the study of 14 attacks collected from the
literature, ALchemist outperforms NoDoze [31], a state-
of-the-art technique that does not require instrumentation,
and OmegaLog [33], another state-of-the-art technique
that makes use of both application and audit logs.

Comparison with OmegaLog, NoDoze and Commercial
Log Analysis Tools. OmegaLog [33] leverages application
logs to recover execution paths, which can be used to par-
tition execution to avoid dependence explosion. Particularly,
a sequence of application log entries (e.g., those produced
by fprintf()) can be used to recover an approximate
program path, Repetition of such paths indicate an appli-
cation is handling (independent) tasks. OmegaLog identifies
such paths, projects each path to a corresponding audit log
entry sequence, and then enables partitioning the audit log.
It does not derive high level semantics from application logs
except control flow path. Its dependence analysis is exclusively
performed on the audit log. As such, although it works very
well on server applications in which control flow paths of
independent tasks do not interleave, it can hardly handle
asynchronous/background behaviors that are very common in
complex applications such as firefox. In contrast, ALchemist
infers rich semantic information such as interleaving atomic

sections from concurrent tasks and dependences invisible in
either application log or the audit log alone, through log fusion.
Please see our comparative results in Section V-D.

NoDoze [31] uses unsupervised learning to predict if a
dependence edge is normal. It only includes the abnormal
edges in the provenance graph. In our example, if x.x.x.x is
rarely visited, it will be included. With NoDoze, most normal
browsing behaviors (e.g., visiting CNN.com) are recognized
as normal and precluded. While it can substantially reduce
the graph size, depending on the quality of normal behav-
ior profile, it may have both false positives (e.g., including
benign websites that people rarely visit as part of the attack
graph) and false negatives (e.g., missing malicious behaviors
involving benign sites/IPs/applications). Similar to OmegaLog,
it can hardly handle bogus dependencies caused by asyn-
chronous/background behaviors.

Commercial log analysis tools such as Splunk [13] and
Elasticsearch [8] use pre-built parsers to process unstructured
application built-in logs to structured databases that can be
queried. Multiple application logs can be correlated (e.g.,
through common file names). However, they do not construct
a canonical representation. Neither do they derive new and
implicit relations from existing ones. They are not designed
for forensics and hence they cannnot directly generate attack
provenance graphs or handle dependence explosion.

Threat Model. ALchemist aims to detect attacks which ex-
ploit application vulnerabilities or leverage social engineering
techniques to get into victim systems for data exfiltration
or manipulation. And we consider hardware or side channel
related attacks to be out of scope of this paper. Similar to many
existing works [19], [62], [61], [45], [44], [54], [31], [33], we
assume the Linux kernel and the components associated with
the audit logging system, which may be in the user space, are
part of our trusted computing base (TCB). We also assume the
application logs can be trusted. Note that existing works [53],
[45], [33] also trust the (instrumented) applications or their
built-in logs. As pointed out in [53], [45], [31], [61], although
the attackers can subvert applications or even the kernel such
that logs are compromised, the subversion procedure can be
precisely captured (by the logs before they are compromised).
Existing software and kernel hardening techniques (e.g., [30],
[19]) can be used to secure log storage. Cryptographic hash
values can be computed for log events (or event blocks) and
stored as part of the application logs [51], [50], [16] such
that tampering efforts can be detected. They are orthogonal to
ALchemist and beyond the scope of our paper.

II. MOTIVATION

One day, a user receives an email with a phishing link. She
clicks the link and a compromised software repository website
is opened in a new tab. During page loading, a malicious
JS script is executed to download a compromised fcopy from
x.x.x.x. Later, the user executes fcopy without realizing that it
has been compromised. Upon execution, the malware copies
sensitive data files to a shared folder /var/www/html. In order
to remove the attack trace, it also creates a php file cleaner.php
which deletes attack-related files after sending them to the
attacker (i.e., site z.z.z.z). The suspicious connection to z.z.z.z
is detected, leading to investigation. The example is different

2

firefox

x.x.x.x

copy

fcopy

z.z.z.z

apache

secret.txt

check.phpinfo.html

…

…

Fig. 1: Causal graph by syscall only methods (e.g., [41])

16:30:12 [23104] nsObserverService (TranID=0xf4a1d5b80)
UpdateCurrentTopLevelOuterTabId id=200000001

(a)
21:17:46 [8890] mozStorage ATTACH ‘~/.thunderbird/INBOX’
21:17:46 [8890] mozStorage (TranID=0x603c9b80)
SELECT * FROM messageAttributes (folderID, messageID)
VALUES (2, piMN2BuJQb)

192.168.143.130 [05:09:23] "GET /index.html
HTTP/1.1" 200 151 "-" "Wget/1.19.2 (linux-
gnu)"

(b)

PATH 21:17:46 name=~/.thunderbird/INBOX
SYSCALL 21:17:46 syscall=open exit=130
ppid=8262 pid=8890 exe=thunderbird

(c)

(d)
Fig. 2: (a) firefox tab switch log (b) thunderbird email open
log (c) apache request log (d) thunderbird email open audit
log

from attacks discussed in existing works [53], [31], [33] as it
involves background JS execution as part of its attack chain,
which is difficult for many existing works.

A. Syscall Only Approaches

Many existing approaches analyze only system logs gen-
erated by OS level logging tools (e.g., Linux Audit and Event
Tracing for Windows) [41], [28], [39]. They consider a whole
process as a subject and hence an output event is dependent on
all the preceding input events. In a long running process such
as firefox, such design leads to substantial bogus dependencies.
This is the dependence explosion problem [45]. Fig. 1 shows
the attack causal graph generated by these techniques. In this
graph and also the rest of the paper, we use diamonds to
represent sockets, oval nodes to represent files or application
data structures, and boxes to represent processes or execution
units. An execution unit is a part of process execution that
handles an individual task (e.g., a tab in firefox). Existing
works [31], [33], [45], [53], [46] have shown its importance in
attack investigation. Edges correspond to causality oriented in
the direction of data flow. Starting from the symptom, namely,
the connection to z.z.z.z in Fig. 1, these approaches back-
trace the depending subjects and objects. Specifically, as the
connection is established by apache, a process node denoting
apache is included in the graph. And all the related objects
(e.g., info.html) are included too. Furthermore, process fcopy
which updates these objects is included. It is determined that
fcopy is downloaded via firefox. However, as firefox interacts
with multiple IPs simultaneously (through foreground/back-
ground activities), all these IPs are included in the graph. Such
dependence explosion causes substantial difficulty locating the
root cause IP x.x.x.x.

B. Our approach

The inaccuracy of syscall-only approaches is because they
are not aware of application semantics. The overarching idea
of our technique is to couple the high level semantics in
application log and the low level details in the audit log.

Built-in Application Log Providing Critical High Level Se-
mantics. We observe that built-in application logs provide rich

anonymous.com

fcopy

firefox

z.z.z.z

apache

fcopy

script_n

x.x.x.x
firefox

…

fcopy

secret.txt

info.html

Session1

check.php

fcopy

z.z.z.z

secret.txt

info.html check.php

(b) ALchemist graph(a) NoDoze graph

y.y.y.y

apache

x.x.x.x

Tab1

Fig. 3: Causal graphs by (a) NoDoze and (b) ALchemist
semantics regardless of the programming languages. In our ex-
ample, the three applications involved, firefox, thunderbird, and
apache all have built-in logs that provide critical information
for execution partitioning and dependence identification, which
are the key to the success of attack provenance tracking. For
example, firefox by-default logs any tab creation and switch,
allowing precise identification of execution unit boundaries.
Fig. 2(a) shows a firefox log entry that records opening a
new tab with a tab id 200000001. Note that such operation
is oblivious at the syscall level. Similarly, thunderbird logs
the opening of each individual email as shown in Fig. 2(b)
with the folderID and messageID uniquely identifying
an email. In contrast, since all emails are stored in the same
INBOX file, accesses to different emails are indistinguishable
at the syscall level. Fig. 2(c) shows an apache built-in log entry
that records a new request, which is a natural execution unit
for apache.

Besides task structure, application logs also contain critical
dependence information that is not available at the system
call level. For example in firefox, a tab’s execution is broken
down to smaller sub-tasks (e.g., requesting a page, rendering
an image, and executing a JS code blob) that are dispatched to
various concurrent worker threads, which may further break
down these subtasks. Subtask executions from different tabs
interleave and are hence extremely difficult for existing tech-
niques to separate at the system call level. To help developers
debug and maintain the code base, firefox uniquely identifies
each atomic sub-task internally and logs their creation. From
such information, ALchemist can extract precise depenen-
dences among sub-tasks through log fusion (see Section IV-B).

Syscall Log Providing Low Level Details. On the other
hand, audit logs are irreplaceable as they record low-level
and background information that is invisible or less interesting
for developers (but critical for system-wide dependence). For
example, while loading the CNN.com main page in firefox
generates 2583 application log entries, the same operation
leads to 107140 audit log entries, which contain information
not captured by the application log, such as configuration
file accesses, cache file accesses, and network traffic not
through the standard firefox APIs. In our example, the access
to secret.txt by the malicious fcopy is only visible at the syscall
level. Hence, our method is to fuse application log and audit
log so that on one hand, the rich application semantics can be
propagated to the syscall level, and on the other hand the low-
level background information recorded in the audit log can be
properly attributed to high-level application execution units,
precluding bogus dependencies.

3

Specifically, as shown by Fig. 6, application logs and the
audit log (on the left) are first normalized to a canonical
form using a set of parsers, one for each raw log format.
Building such parsers is an almost one-time effort as raw log
format rarely changes. A number of relations (like relations
in databases) can be directly derived from the normalized log
entries. For example, a relation initUnit(Tab X) means that
the current firefox tab is switched to a new Tab X . These basic
relations are provided to a Datalog inference engine [38] (in
the center of Fig. 6), which can derive new relations from the
basic ones following a set of pre-defined rules. In particular,
these rules derive correlations and correspondence from both
the application log relations and the audit log relations. The
key is that these two levels of relations often share common
fields. For instance, Fig. 2(d) shows the thunderbird read of the
INBOX file in the audit log. Our technique projects it to the
high-level email access (corresponding to the application log
in Fig. 2(b)). Since application logs provide a clear execution
unit structure, by projecting such structure to the low level
audit log, we are able to achieve execution partitioning at the
audit level without any instrumentation. Fig. 3(b) shows the
graph by ALchemist. Observe that it avoids dependence ex-
plosion. That is, only the tab visiting the compromised website
(anonymous.com) is included, compared to the graph in Fig. 1
that includes the execution of all tabs. In addition, it precisely
identifies that fcopy is generated by script n, which downloads
from x.x.x.x, as the execution of the different JS files (script 0
to script n) is correctly separated by ALchemist. Fig. 3(a)
presents the graph by NoDoze. Although it is also smaller
than that in Fig. 1, it cannot fully prune the false dependencies
of firefox as they are not frequent dependencies. It does not
contain tab information either. Furthermore, the graph cannot
indicate that fcopy is downloaded by the execution of a JS file
downloaded from x.x.x.x.

III. STUDY OF POPULAR LINUX APPLICATION
EXECUTION MODELS AND FEASIBILITY OF LOG FUSION

To study the feasibility and generality of our design, we
conduct a manual study of 32 Linux applications, which are
the union of 30 most popular applications listed in [1] and 15
complex applications widely used in the APT attack literature,
such as firefox, Thunderbird, Chromium, OpenOffice, Libre-
Office, and Apache. We aim to study their execution models
and available logs (including both built-in logs and the audit
log) to validate the following: (1) if log fusion can disclose
(implicit) information to identify execution units, including
interleaving/background units, and recover dependences that
are invisible in neither application logs or the audit log;
(2) how often log format changes. The study focuses on the
applications’ background (asynchronous) activities, which are
the most prominent challenge in dependence analysis due
to their non-deterministic interleavings. The applications and
their execution models are listed in Table X in Appendix B.
We find that these models can be divided into five different
categories, with each application using one or multiple models.

Class I: Handling Tasks Sequentially in A Single Process.
A number of applications are single process such as vim and
wget. They do not have asynchronous behavior, but rather
handle tasks one by one in a main loop. Vim uses the main
loop to execute user commands one by one. As shown in

static void server_accept_loop(...) {
...
if ((pid = fork()) == 0) {

 debug("Forked child %ld.", pid);
 ...
 }
}

07:25:47 sshd[1054] Forked child 1580

(b)

11
12
13
14
15
16
17

18

static void auto_next_pat(...) {
...
s = _("%s Auto commands for \"%s\"");
sprintf((char *)sourcing_name, s, ...);
smsg(("Executing %s"), sourcing_name);
...

}

15:36:49 Executing BufEnter Auto commands
for function LocalBrowse('/home/user/
Desktop/file')

 1
 2
3
4
5
6
7

8
9

10

(a)

Fig. 4: (a) Source code and log for vim 7.3 (b) Source code
and log for sshd 7.4

Fig. 4(a), it uses function auto_next_pat() to retrieve
the next command and then executes it. Inside the function,
vim leverages its logging function smsg()(line 5) to record
each executed command. These recorded commands can be
leveraged to identify units. For example, we partition vim’s
execution based on files, which are denoted by the file buffer
data structures internally, one buffer for each loaded file. Every
time the user opens/switches-to a window of some file, a
command “BufEnter” is executed. Every time the user exits
a window, a command “BufLeave” is executed. Lines 8-10
show a log entry for the command “BufEnter” that opens a
file “/home/user/Desktop/ file”. Since the execution
is sequential, all the low level audit events (e.g., file updates)
that happen between this command and the corresponding
“BufLeave” command can be correctly and safely attributed
to the unit of the file. In fact, we observe that the application
log contains so wealthy information that other partitioning
schemes (e.g., based on folders) can be supported.

Class II: Handling Tasks by Forking Additional Pro-
cesses. Some applications, especially those server applica-
tions that need privilege separation, fork processes for new
tasks. Fig. 4(b) shows a code snippet from sshd (lines 11-
17) for starting a new connection, and the corresponding log
event (line 18). The sshd daemon process invokes function
server_accept_loop() in a while loop to handle a
remote connection request. In the function, the daemon process
forks a child process to handle the request (line 13). The child
process may further spawn other processes for various func-
tionalities (e.g., authentication). The dependences of individual
subtasks can be precisely reflected by process creation, which
is captured by the audit log and sometimes by the application
log as well. For example, sshd logs task process creation
(line 14). Line 18 shows the corresponding application log.
Table X (in Appendix B) shows that there are quite a number of
applications in this class. For these applications, a unit consists
of a chain of inter-dependent processes.

Class III: Asynchronous Task Queue. A few applications
such as firefox, thunderbird, and foxit make use of a more
complex asynchronous execution model, in which the appli-
cation has a main thread and a number of worker threads
dedicated to some special functionalities. The main thread
receives independent tasks (from the user), such as loading
a page and accessing an email. It then dispatches the tasks
to worker threads. The worker threads work in a pipeline, for
example, a socket thread downloads a JS file and then hands
it over to the JS helper thread to compile and execute. Each
worker thread serves multiple tasks. The communication be-
tween main thread and worker threads, among worker threads
themselves, is through task queues. Such an asynchronous
execution model creates lots of difficulties for the low-level
audit logging system [53] as syscalls from different pages,

4

static void * APR_THREAD_FUNC listener_thread(...) {
apr_pool_t *tpool = apr_thread_pool_get(thd);
while (1) {

 ...
 apr_log(plog, s);
 }
 ...
}

(c)

32
33
34
35
36
37
38
39
40
41
42
43
44

19
20
21
22
23
24
25
26

WorkerPrivate::SetTimeout(JSContext* aCx, ...) {
 ...
 LOG((“(TranID=%p) has new timeout:delay=%f”, ...));
 rv = data->mTimer->InitWithCallback(
 data->mTimerRunnable, delay,
 nsITimer::TYPE_ONE_SHOT);
}

WorkerPrivate::RunExpiredTimeouts(JSContext* aCx) {
 LOG((“(TranID=%p) executing timeout with original
 delay %f ms.\n", ...));
 ...
}

20:45:34 [9071] DOM Worker (TranID=0xae3ad5080) has
new timeout: delay=5000ms
...
20:45:39 [9071] DOM Worker (TranID=0xae3ad5080)
executing timeout with original delay 5000 ms (d)

27
28
29
30
31

(d)
Fig. 5: (c) Request processing in apache 2.4.20; (d)
Source code firefox 60.0 DOM thread and its app log

tabs, JS blobs, and other background tasks are all interleaving,
without any hints about their origins.

Firefox uses the NSPR logging module [11] which has
been the uniform logging component for all Mozilla appli-
cations for 10 years. NSPR defines and records a large set
of events that are important for Mozilla products. In the
context of firefox, it intercepts and records events such as
page loading, tab switches, and opening a page through some
hyper link. More importantly, it is designed particularly for
the asynchronous execution model. It treats each sub-task
dispatched to some worker thread (e.g., saving a file) as a
transaction, uniquely identified by a transaction id. Each sub-
task dispatch is recorded as a transaction initialization event.
The end of a sub-task is recorded by a destruction event of the
transaction. Other events that happen within a transaction are
often recorded with the enclosing transaction id.

By observing the chain of transaction initializations (e.g., a
tab creates a transaction, which creates another transaction, and
so on), we can identify an execution unit. By fusing application
log events with the corresponding audit log events (e.g., the
events that record the same file access), we could project the
unit structure to the audit log. In addition, dependences with
high level semantics (such as clicking a hyperlink) and hence
invisible in the audit log can be inferred. An detailed example
can be found in Section IV-B.

Class IV: Thread Pool. Many applications adopt a scheme
slightly simpler than asynchronous task queue while providing
a similar level support of asynchrony. Specifically, they dis-
patch tasks to available threads in a thread pool. Take apache
as an example, in the code snippet in Fig. 5(c), the listener
thread first acquires a pointer to the thread pool (line 20). Then
it listens to any requests through a while loop in lines 21-24.
Each time a request is received, it finds an idle thread from the
pool or waits when such threads are not available. The request
is then served by the thread. After handling a request, it logs
the request at line 23. Note that although it is clear that in this
execution model the handling of a request is a unit, we cannot
simply consider all behaviors in a worker thread belong to the
same unit as worker threads are being recycled. Instead, the
application log entry contains the IP of the remote request,
which can be leveraged to couple the application log entry
and the corresponding audit log entries (of the worker thread),
such as socket creation, read and write. Since a worker thread’s
execution is sequential, all the audit events in the time-span of
coupled audit events belong to the same unit. An example is
presented in Section IV-B.

Class V: Background Activities in Virtual Environment.
Many applications support internal virtual environment in
which (script) code blobs get executed. Such script languages
are often very powerful, capable of conducting activities as

Log Datalog
Engine

Relation
Query

Provenance
Graph

Pre-Defined
Rules

Normalized
Record

Target
Relation

Symptom
Event

Parsing Visualizing

Fig. 6: ALchemist’s workflow

complex as a full-fledged application. While the execution of
a code blob can be correctly attributed to the proper execution
unit as such execution is usually performed through some
standard interface (e.g., the firefox-spidermonkey interface),
which is recorded in the application log, the code blob could
be designed in a way that itself induces the execution of other
code blobs. Log fusion can nonetheless handle these cases,
attributing the follow-up executions of other code blobs. In
firefox, a JS code blob can invoke other code blobs asyn-
chronously by registering them as event handlers. These events
could be as simple as timeouts. Specifically, a JS code blob can
call a built-in API SetTimeOut() (lines 32-38 in Fig. 5),
to instruct firefox to execute a specified code blob when the
timeout event happens. Function RunExpiredTimeouts()
(lines 40-44) handles timeout events. Both functions log the
current transaction id (line 34 and lines 41-42). Observe that
the resulted log entries (lines 27-31) clearly indicate the event
handling code blob and the original code blob share the same
transaction id, allowing correct unit partitioning. Other event
handling has a similar mechanism.

To summarize, our study shows that 30 of the 32 ap-
plications are long running, and 31 have built-in logs (or
some history files). All the 31 applications’ built-in logs
record critical events that denote unit boundaries. Besides unit
boundaries, our study also shows that the fusion of built-in
logs and the audit log allows precisely tracking dependences
in complex asynchronous execution models such as worker
threads and thread pools, which can hardly be handled by exist-
ing techniques. For the 2 applications that are not long running,
one of them does not have built-in log. Note that even bash
has a history file that records all the interactive commands.
Individual commands can hence be considered as different
tasks such that dependence explosion through bash can be
avoided. It does not mean we will miss the inter-dependences
across commands as such dependences are visible at the audit
log level (e.g., through files accessed). More details about the
study can be found in Appendix B. We believe the reason that
popular and/or long running applications have informative and
well-designed built-in logs is that their developers tend to pay
a lot of attention to ease of maintenance. Our study further
shows that the design of logging component tends to be stable,
much stabler than the application itself. For example, firefox
has been using the same logging facility for 10 years while it
has 64 different releases in that period. More can be found in
Appendix A.

IV. SYSTEM DESIGN

In this section, we discuss the design details, including
how to normalize various logs to basic relations and how to
fuse them by performing inference and deriving new relations.

5

PATH 18:06:22 name=~/.thunderbird/INBOX
SYSCALL 18:06:22 syscall=open exit=86 ppid=8262 pid=8331
exe=thunderbird
...
PATH 21:17:46 name=~/.thunderbird/INBOX
SYSCALL 21:17:46 syscall=open exit=130 ppid=8262
pid=8331 exe=thunderbird
...
PATH 21:29:30 name=~/.thunderbird/handlers.json
type=SYSCALL 21:29:30 syscall=open exit=152 ppid=8331
pid=8903 exe=thunderbird
...
type=EXECVE a0=firefox a1=http://click.email-puma.com
type=SYSCALL 21:29:32 syscall=execve exit=0 ppid=8331
pid=8903 exe=thunderbird

18:06:22 [8331] mozStorage ATTACH ‘~/.thunderbird/INBOX’
18:06:22 [8331] mozStorage (TranID=0x5d368700)
INSERT INTO messageAttributes (folderID, messageID)
VALUES (2, piMN2BuJQb)
...
21:17:46 [8331] mozStorage ATTACH ‘~/.thunderbird/INBOX’
21:17:46 [8331] mozStorage (TranID=0x603c9b80)
SELECT * FROM messageAttributes (folderID, messageID)
VALUES (2, piMN2BuJQb)

(b)

type=SOCKADDR 15:54:25 host:127.0.1.1 serv:53
type=SYSCALL 15:54:25 syscall=connect exit=0 ppid=2275
pid=2553 exe=firefox
...
SOCKADDR 15:54:29 host:192.168.143.1 serv:80
SYSCALL 15:54:29 syscall=connect exit=0 a0=23 ppid=2275
pid=2553 exe=firefox
...
PATH 15:54:48 name=/tmp/mozilla/main.c
SYSCALL 15:54:48 syscall=open exit=34 ppid=2275 pid=2553
exe=firefox
...
type=EXECVE a0=vim a1=/tmp/mozilla/main.c
type=SYSCALL 15:59:57 syscall=execve exit=0 ppid=2553
pid=2842 exe=firefox

15:54:25 [2553] nsHostResolver (TranID=0xfc9c51b0)
a.com has 192.168.143.1
...
15:54:29 [2553] Socket (TranID=0xfc9acb80) request
[TabID = 0, uri=a.com/main.c, referrer=a.com]
...
15:54:48 [2553] mozStorage (TranID=0xfd9b3380)
INSERT INTO moz_annos(attribute_id, content) VALUES
('FileURI', 'file:/tmp/mozilla/main.c’)

(a)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 1
 2
3
4
5
6
7
8
9

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

25
26
27
28
29
30
31
32
33

Fig. 7: Examples of raw application logs (top) and the corre-
sponding audit logs (bottom). (a) Firefox saves main.c from
a.com to /tmp and opens it with vim; (b) User opens a
downloaded email from the local email box in Thunderbird
and clicks a hyper link in the email.

TABLE I: Normalized audit records, A1 denotes firefox and
A2 thunderbird, IP0 denotes 127.0.0.1, IP1 192.168.143.1

Index Time PID PPID PNAME IP Port File Action Return

S1 15:54:25 2553 2275 A1 IP0 53 - connect 0
S2 15:54:29 2553 2275 A1 IP1 80 - connect 0
S3 15:54:48 2553 2275 A1 - - main.c open 34
S4 15:59:57 2842 2553 A1 - - vim execve 0
S5 18:06:22 8331 8262 A2 - - INBOX open 86
S6 21:17:46 8331 8262 A2 - - INBOX open 130
S7 21:29:30 8903 8331 A2 - - handlers.json open 152
S8 21:29:32 8903 8331 A2 - - firefox execve 0

Existing commercial log analysis tools such as Splunk [13]
and Elasticsearch [8] have different structures for various
applications’ built-in logs. Different correlation rules may
be needed for various pairs/combinations of logs. As such,
they require intensive human efforts. A very important design
goal of ALchemist is generality, that is, minimizing the
efforts of constructing parsers and fusion rules for individual
applications. Therefore, a key design choice is to parse all
logs, including both application logs and the audit log, to an
expressive canonical representation. General log fusion rules
can hence be built on this central representation to reduce
application-specific efforts. As such, in order to support an
application in ALchemist, we just need to write a parser to
parse its built-in log to the canonical form. According to our
aforementioned study, such efforts are largely one-time.

A. Normalizing Logs to the Canonical Form

A Universal Execution Model. In Section III, we identify that
the execution models of popular applications can be mainly
classified in five categories. In order to enable the canonical
log representation, we devise a universal execution model that
can describe all these classes and captures all the information
needed in attack forensics. The model features expressing the
asynchronous/background behaviors. It is formally defined in
Fig. 8. An execution consists of a set of units, whose definition
is similar to that in the literature [53], [33]. A unit is composed
of a sequence of transactions, each of which denotes an atomic
sequential sub-execution of the unit. Each unit may require
multiple transactions to complete its task. Transactions from
different units may interleave, e.g., when they are executed by a
thread. A transaction is composed of a sequence of events that
access certain objects that are of interest for forensic analysts

TABLE II: Normalized firefox log (top) and thunderbird log
(bottom), A1 denotes firefox and A2 denotes thunderbird, IP1

denotes IP 192.168.143.1
Index Time PID PNAME IP File Action UnitID TranID URI

F1 15:54:252553 A1 IP1 - resolve - fc9c51b0 a.com
F2 15:54:292553 A1 - main.c request 0 fc9acb80 a.com/main.c
F3 15:54:482553 A1 - main.c createFile - fd9b3380 -

Index Time PID PNAME IP File Action UnitID TranID URI

T1 18:06:228331 A2 - INBOXcreateFilepiMN2BuJQb5d368700piMN2BuJQb
T2 21:17:468890 A2 - INBOX openFile piMN2BuJQb 603c9b80 piMN2BuJQb

Execution E := {u1, u2, ...}
Unit u := t∗ | e+

Transaction t := e+

Event e := read/write/create/... (file | 〈IP,port〉 | URI | ...)

Fig. 8: Universal Execution Model

such as files, IPs, and URIs. In some cases, a unit does not
have transactions but rather a sequence of events.

The universal model can describe the aforementioned five
classes. For example, in the task queue execution model (class
III) of firefox, a unit is a tab. A transaction is a firefox
transaction created and dispatched to some worker thread,
which serves many tabs. In the thread pool execution model
(class IV) of apache, a unit is a request. A transaction is the
execution of a thread (from the pool) that handles part of
the request. In some execution models such as class I that
sequentially processes tasks, transactions are not necessary.

Canonical Log Representation. Based on the universal ex-
ecution model, we devise the canonical log form. Each log
event in the application and audit logs are parsed to an entry
in the canonical form. It consists of 20 fields, which denote
the timestamp, process/thread information, unit id, transaction
id, operation (action), return value, and the resource that is
being accessed, such as file and IP. Note that many of these
fields(e.g., unit and transaction ids) may be vacant if the raw
log does not have such information. However, such information
can be inferred through log fusion.

In the following, we show a few examples of raw log
entries and their canonical forms. To save space, we omit the
vacant fields in the canonical forms. These examples are also
intended to illustrate the benefits of log fusion.

Application Log and the Corresponding Audit Log For
Sample Operations. Fig. 7 shows some (simplified) sample
application logs and the corresponding audit logs. Specifically,
Fig. 7(a) shows the log for firefox downloading a C file
and then invoking vim to edit it; Fig. 7(b) shows the log
for opening an email in thunderbird and then accessing an
embedded hyper-link. The application logs are on the top and
the corresponding audit logs are on the bottom.

In Fig. 7(a), the application log shows that firefox first
resolves website a.com to IP address 192.168.143.1
(lines 1-2), and then starts a transaction 0xfc9acb80 to
request resource main.c from a.com (lines 4-5). Next,
firefox saves the file to /tmp/mozilla /main.c (lines 7-
9). In contrast, at the low level, we see the socket connections
to a local port 127.0.1.1:53 for name resolution (lines
10-12) and then to 192.168.143.1:80 for file download
(lines 14-16). As audit log does not have semantic information,

6

it is difficult to know that the network connection at lines 14-
16 is for sending the HTTP request and receiving main.c.
On the other hand, the audit log discloses that firefox opens
vim (lines 22-24), which is invisible in the application log.

In Fig. 7(b), the application log shows that an email is
received and put into INBOX through a database insertion
operation (lines 25-28) with a folder id and a message id.
Then the email is read through a database selection operation
(lines 30-33). Observe that the highlighted id values (in pink)
denote an email, which is a natural execution unit for the
email client. In the audit log, the email write and read are
recorded as accesses to file .thunderbird/INBOX, without
any information about the specific email. On the other hand,
the audit log captures the behavior that the user clicks a link
in the email and then opens a web page (lines 42-48), which
are invisible from the application log.

In addition to being complementary, audit log and appli-
cation logs share a lot of common information, which can be
leveraged in log fusion. For instance, in the firefox example,
the two levels of logs share the same IP address and the same
file name; in the thunderbird example, the two levels of logs
share the same INBOX directory and similar timestamps.

Table I shows the reduced canonical representation of audit
log entries. Most fields are self-explaining. Index field is a
global ID; PNAME is the process name; Action represents
the type of the syscall and Return the return value. Similarly,
Table II shows the normalized application logs. Observe that
the normalized audit logs and application log entries can be
correlated through their common fields. Observe that some
canonical firefox log entries have the UnitID, TranID and
URI fields filled as such information can be directly extracted
from the tab id, transaction id, and resource URL, respectively,
in firefox’s built-in log. The UnitID’s are missing in some
entries. They will be filled by log fusion. As shown in the lower
part of Table II, a normalized thunderbird log entry contains
transaction id TranID similar to the firefox transaction id.
An email is essentially a block inside the INBOX file and
uniquely identified by a so-called StorageInfo, for instance
the string “piMN2BuJQb” in the table. Since we consider
continuous operations on an email as an unit, both the URI
and UnitID fields are filled with the StorageInfo string.

In ALchemist, we have developed 15 parsers. Most logs
can be expressed using regular expressions, without requir-
ing the more complex context-free or even context-sensitive
languages. As mentioned earlier, most popular applications
have their own logs. For those that do not (e.g., wget in
our benchmark set), ALchemist resorts only to the audit log
to derive dependence. Specifically, for an application without
its own log, ALchemist conservatively assumes any output
event in the process of the application is dependent on all the
preceding input events in the same process, similar to previous
works [41], [42]. Since these applications are rarely long
running, the conservativeness unlikely leads to undesirable
consequences in practice.

B. Log Fusion

After normalization, ALchemist performs log fusion on
the canonical logs. It first infers critical information from

built-in log entries of individual applications, e.g., identify-
ing tab switches in firefox log that serve as execution unit
boundaries. It then correlates logs of different kinds through
their shared fields to allow information to be propagated
across applications, enabling discovery of new dependencies
and avoiding the bogus ones. While the correlation analysis
can be directly performed among different applications, doing
so incurs quadratic complexity. We hence design a star-shape
fusion scheme, in which each application log is fused with the
common audit log. Information can be propagated from one
application to another through the central audit log. The infer-
ence and fusion procedures are denoted as a set of inference
rules in Datalog [7], which is a Prolog-like representation for
relation computation. Note that these rules are general (i.e.,
not application-specific). Intuitively, each rule derives a new
relation from existing ones. The inference terminates when a
fixed point is reached.

The rules and the related definitions are presented in Fig. 9. At
the beginning, we first define a number of types. Specifically,
an application log event after normalization HR is a relation
of 20 fields, which are a direct mapping from the canonical
form. An audit event LR is similarly defined. We distinguish
application log event from audit event although they are
normalized to the same canonical form, because the fusion
rules entail different operations on the two kinds. We also call
them high level event and low level event, respectively. We
define ActionH and ActionL as the type of event for the two
kinds, respectively. For example, switch means switching
to a tab, init and end denote transaction initialization and
termination, respectively.

In the middle of Fig. 9, we define a number of basic
relations called atoms. These relations are directly acquired
from the normalized log entries without inference. We use form
p(x1, x2, · · · , xn) to represent a relation, with p the predicate
(or name of the relation), and x1, · · · , xn the variables.
For instance, isMember(whale, mammal) means that the pair
(whale, mammal) is a tuple in the relation with the name of
isMember, or, the predicate isMember holds on the pair.

Atom (A1) inSeqL(LR1, LR2) denotes that two low-level
events LR1, LR2 are next to each other (in the audit log). Note
that the explanation of each atom is to its right. These atoms
also denote a list of relation short-hands for log entries. For
example, (A7) initUnit(HR, UnitID) denotes an event that
starts a unit, for instance, a firefox event switching to a new
tab denoted by UnitID. Atoms (A9)-(A13) denote the I/O
related application events. For instance, (A9) denotes reading
a URI , which could be a file, a remote URL, a file block, and
so on. Note that URI stands for uniform resource id that can
represent a wide range of resources. We also have a similar
set of I/O atoms for low level events. In fact, we have a total
of 258 atoms and only those necessary for the illustration of
our technique are presented. These atoms are not application
specific.

After the atoms, we define a set of inference rules that
derive additional relations from atoms and fuse application and
audit logs. These rules are in the following format.

H :− B1 & B2 & · · · & Bn

Specifically, H is the target relation, and Bt a predicate
or a relation. It means that the presence of relations B1, B2,

7

Types:
AppEvent HR := 〈T ime, IDX,PID, PPID, PNAME, IP, Port, F ile, UnitID, TranID,ActionH,

Return, URI : uniform resource identifier, ...〉
AuditEvent LR := 〈Time, IDX,PID, PPID, PNAME, IP, Port, F ile, UnitID, TranID,ActionL,

Return, ...〉
ActionH := switch | request | init | end | readURI | writeURI | · · ·
ActionL := open | close | socket | connect | read | write | · · ·
Action A := ActionH | ActionL

Atoms:
(A1) inSeqL(LR1, LR2) : LR1.IDX + 1 = LR2.IDX
(A2) atomicL(LR1, LR2) : LR1 and LR2 belong to the same atomic operation (i.e., socket create and connect)
(A3) sameT ime(T ime1, T ime2) : the two timestamps have negligible difference
(A4) inputAction(A) : A is an input-related action
(A5) outputAction(A) : A is an output related action
(A6) sameType(A1, A2) : A1 and A2 belong to the same I/O type
(A7) initUnit(HR,UnitID) : HR starts a unit UnitID, e.g., firefox switches to a tab denoted by UnitID
(A8) initTran(HR,TranID) : HR starts a transaction with TranID
(A9) readURI(HR,URI) : HR requests URI
(A10) writeURI(HR,URI) : HR writes to URI , e.g., an email denoted by URI
(A11) resolve(HR,URI, IP) : HR resolves URI to IP
(A12) readNtwk(HR, IP, Port) : HR reads from Port of IP
(A13) requestFrom(HR, IP, URI) : HR denotes a remote request from IP for URI

Inference Rules:
/* high level record is correlated to low level record if they operate on the same ip and port */
(R1) correlated(HR,LR) :- HR.PID = LR.PID & HR.IP = LR.IP & HR.Port = LR.Port

& sameType(HR.ActionH,LR.ActionL)
/* high level record is correlated to low level record if they operate on the same file */
(R2) correlated(HR,LR) :- HR.PID = LR.PID & HR.F ile = LR.F ile & sameType(HR.ActionH,LR.ActionL)
/* high level record is mapped to the nearest correlated low level record */
(R3) project(HR,LR) :- correlated(HR,LR) & sameT ime(HR.T ime, LR.T ime)
/* if two low level records belong to the same atomic action (e.g. socket create and connect), they are all mapped to the same high level record */
(R4) project(HR,LR) :- project(HR,LR1) & atomicL(LR,LR1)

/* two high level events belong to the same transaction if they have the same transaction id */
(R5) sameTran(HR1, HR2) :- HR1.T ranID = HR2.T ranID
/* two high level events with the same unit id belong to the same unit */
(R6) sameUnitH(HR1, HR2) :- HR1.UnitID = HR2.UnitID
/* two high level events with the same transaction id belong to the same unit
(R7) sameUnitH(HR1, HR2) :- sameTran(HR1, HR2)
/* two high level events with different transaction id belong to the same unit if the first transaction initializes the second one
(R8) sameUnitH(HR1, HR2) :- initTran(HR1, HR2.T ranID)

/* two low level events belong to the same unit if the corresponding high level records belong to same high level unit */
(R10) sameUnitL(LR1, LR2) :- sameUnitH(HR1, HR2) & project(HR1, LR1) & project(HR2, LR2)
/* a low level record is in the same unit as its preceding low level record if itself is not projected to a high level record */
(R11) sameUnitL(LR1, LR2) :- project(HR1, LR1) & ¬project(HR2, LR2) & sameUnitL(LR1, LR3) & inSeqL(LR3, LR2)

/* HR2 reads some data (denoted by URI) updated by HR1 */
(R12) depH(HR1, HR2) :- writeURI(HR1, URI) & readURI(HR2, URI) & HR1.IDX < HR2.IDX
/* two low level records have dependence as long as the corresponding high level records have dependence */
(R13) depL(LR1, LR2) :- depH(HR1, HR2) & project(HR1, LR1) & project(HR2, LR2)
/* in the same unit, a record of the output type depends on preceding records of the input type, regardless of the resources they access */
(R14) depL(LR1, LR2) :- sameUnitL(LR1, LR2) & LR1.IDX < LR2.IDX & inputAction(LR1.ActionL) &

outputAction(LR2.ActionL)
/* for read/write of regular file, a file read depends on preceding writes to the same file regardless of their units */
(R15) depL(LR1, LR2) :- LR1.F ile = LR2.F ile & LR1.IDX < LR2.IDX & outputAction(LR1.ActionL) & inputAction(LR2.ActionL)

Fig. 9: Log Fusion Rules

· · · , Bn leads to the introduction of H . The ultimate goal
of these inference rules is to derive four types of critical
relations sameUnitH(HR1, HR2), sameUnitL(LR1, LR2),
depH(HR1, HR2), and depL(LR1, LR2) that assert two high-
level application log entries belong to the same execution unit,
two low-level audit log entries belong to the same unit, two
application log entries have (direct) dependence, and two audit
log entries have (direct) dependence, respectively. They denote
the two kinds of information derived by fusion: execution
units and dependences between events, from which the attack
provenance graph can be precisely constructed. An execution
unit denotes an autonomous task (e.g., a tab in firefox). As

shown by existing works [53], [33], unit partitioning is the
key to high precision in dependence analysis. In particular,
dependences may be induced between an input event and an
output event through computation in memory. For example, a
file write may be dependent on a socket read if part of the
socket buffer is appended to the file. However, such depen-
dences are invisible for syscall level analysis (as the I/O events
operate on different system resources). Although instruction
level tracing can detect them, it is too expensive in practice.
With unit partitioning, an output event is considered to have
dependences on all the preceding input events within the same
unit, even when they operate on different system resources. In

8

addition, dependences across units can be directly derived from
operations on common resources. Many of them are invisible
without fusion. For example, reads/writes of different emails
are recorded as reads/writes to the same INBOX file in the
audit log and hence not distinguishable. However, through log
fusion, dependences induced by reads and writes of the same
email across units can be precisely derived (through the email
URI in the corresponding application log entries).

The first two rules (R1) and (R2) of correlated(HR,LR)
correlate a high level event and a low level event through
their shared fields, indicating that they may denote the same
resource access. Note that the two rules have different pre-
conditions (i.e., different right-hand-sides), denoting the dif-
ferent scenarios (i.e., through network connection or file) that
correlate an HR and an LR. However, two events being
correlated may not mean they correspond to each other. For
example, assume a file is read twice at two distant timestamps.
Each read gives rise to an HR and an LR. The HR of the
first access is correlated to the LR of both accesses while
it only corresponds to the first LR. Hence, we introduce a
relation project(HR,LR) to derive precise correspondence.
The first project(HR,LR) rule (R3) projects an HR to a
low level LR if they are correlated and their timestamps have
negligible differences; and the second rule (R4) projects HR
to LR if there has been another low level event LR1 such
that LR and LR1 belong to the same atomic operation, and
there has been projection from HR to LR1. Note that it is
common that an atomic operation at the application level (e.g.,
establishing a network connection) corresponds to multiple
low-level audit events (e.g., socket creation and connection).
Such atomic relations are captured by the aforementioned atom
(A2) atomicL.

The next rule (R5) sameTran(HR1, HR2) identifies two
HR’s with the same transaction id belong to the same transac-
tion. The next three rules (R6)-(R8) sameUnitH(HR1, HR2)
infer the high level events that belong to the same unit. Recall
that a unit may have many transactions. For example, a tab’s
execution may consist of requesting a page, downloading a file,
and executing a piece of JS code. In the first rule (R6), there
are some log entries that contain explicit unit id. For example,
a switch to tab t event and all the URL request events from
tab t share the same tab id t and hence belong to the same
tab. The second rule (R7) dictates that all the events in the
same transaction must belong to the same tab. The last rule
(R8) includes all the transitive transactions into the same tab.
Note that it is very common a sub-task in firefox spawns its
own sub-tasks, and so on, leading to a chain of transactions.

The next two sameUnitL(LR1, LR2) rules (R10) and
(R11) group audit log entries to the same unit. The first rule
(R10) dictates that the audit events that have the same HR
projection belong to the same unit. The second rule (R11)
says that if LR1 is projected to HR1, LR2 does not have
any projection, but it is right after another audit event LR3

that has been determined to be in the same unit as LR1, then
LR2 is considered to be in the same unit as LR1. This rule
essentially renders forward attribution, which means that if
there are low level (audit) events that are not projected to
any high level (application) event in between two low level
events that have projection to high level, these un-projected
low event events are considered to be in the same unit as the

1

2

 tp.js3

 news.img4

Fig. 10: Firefox Asynchronous Download

Foreground Background Thread Line# Firefox Logs Audit Logs

1 socket(fd0)

2 readURI(A, #0, cnn.com/index.html) connect(151.101.129.67, fd0)

3 ...

Tab B Main 4 initUnit(B)

5 resolve(-, #1, a.com, 192.168.143.1) connect(127.0.0.1, fd1)

6 open(TRRBlacklist.txt, fd2)

7 write(TRRBlacklist.txt, fd2)

8 initTran(-, #1, #2)

9 readURI(A, #2, a.com/tp.js) connect(192.168.143.1, fd3)

10 readURI(B, #3, cnn.com/news.img) connect(151.101.129.67, fd4)

11

12 readURI(-, #3, 151,101.129.67) recvfrom(151.101.129.67, fd4)

13 readURI(-, #2, 192,168,143,1) recvfrom(192.168.143.1, fd3)

14 initTran(-, #2, #4)

15 readURI(-, #4, cache/tp.js) open(cache/tp.js, fd5)

16 writeURI(-, #4, cache/tp.js) write(cache/tp.js, fd5)

17 initTran(-, #4, #5)

18 readURI(-, #5, cache/tp.js) open(cache/tp.js, fd6)

19

20 initTran(#5, #6)

21 readURI(-, #6, secret.txt) open(secret.txt, fd7)

22 read(secret.txt, fd7)

Tab A SocketTab A

Tab B

Resolver

 JS

 Helper

 FS

 Broker

Tab A

Tab A

Tab B

Cache

Socket

Fig. 11: Log for Firefox Asynchronous Download (read-
URI(A,#0,...) means a HR in tab A with transcation id 0 reads
some URI)

preceding projected low level event. As we will demonstrate
with examples, this rule is particularly important for proper
attribution of background activities.

The last four rules (R12)-(R15) derive dependencies be-
tween events. The first depH rule (R12) specifies that read and
write on the same URI induces dependence. This rule allows
us to infer high level semantic dependences invisible in the
audit log. Besides the email dependence example mentioned
earlier, another example is that firefox stores cookies (of
all websites) to the same file cookies.sqlite. Without
the URIs identifying individual cookies and only considering
syscall information, reading the cookie for a website would
be dependent on all the preceding writes to cookie from any
website. The first depL rule (R13) inherits dependence from
high level log entries. The second depL rule (R14) specifies
that any output event is dependent on all the preceding input
events in the same unit. Note that a preceding input event
(e.g., a socket read) may be on an object different from the
output event (e.g., a file write). This approximation is critical
for capturing invisible data-flow (e.g., through memory). The
third depL rule (R15) derives cross-unit and even cross-process
dependence by the common resource that is operated on. In
ALchemist, we have 135 fusion rules in total and we only
present the ones that are necessary to illustrate the idea.

Example 1: Fusing Firefox Log and Audit Log. Fig. 10
shows a sample execution of firefox accessing CNN.com. In
this execution, the user first loads the CNN.com main page
(step 1©). As part of the page loading, a JS file tp.js
is requested. However, before the file is downloaded and
executed, the user clicks a page link on the main page, which
loads a news page about measles (step 2©). The downloading
and the execution of the JS file are hence happening in the

9

background (step 3©), interleaved with the loading process
of the news page (e.g., loading news.img in step 4©). The
resulting syscall interleaving makes causality inference very
difficult for existing techniques. We will use this example to
demonstrate how log fusion allows dis-entangling the complex
interleaving.

Fig. 11 shows the runtime information of the example
execution in Fig. 10 that accesses CNN.com. The first column
shows that in the foreground, there are two tabs, with tab
B displayed after tab A. The second column shows that
in the background, the execution of the two tabs interleave
(with B’s execution shaded). The third column shows the
list of threads that execute in the temporal order. There are
multiple worker threads with the Socket thread managing
network communication, Resolver resolving host names,
Cache maintaining the file cache, JS Helper compiling
and executing JS code blob, and FS Broker performing file
system operations. Observe that a thread may serve multiple
tabs (e.g., lines 9-14 in column four). Columns five and six
show the application log atoms and audit log atoms.

From the application log, we can see that the Socket
thread first requests the main page of CNN.com (line 2) in
transaction #0 in tab A, which is normalized to a readURI
atom. Then the Main thread switches to tab B (normalized to
initUnit at line 4). In the background, the Resolver thread
resolves the host of the JS file, a.com, in transaction #1 (line
5). Observe that the unit id is unknown in the atom as the
raw log does not have such information. We will see log
fusion can recover such information later. It then initializes
a child transaction #2 (line 8) that will download the JS file.
In lines 9-14, the Socket thread first requests the JS file
in transaction #2 and then requests and reads news.img for
tab B (lines 10-12). Observe that the readURI at line 13 is
directly from the IP (without unit information). At the end,
it switches back to serve tab A by receiving the JS file (line
13) and starting a new transaction #4 (line 14) to cache the
JS file (lines 15-16). Transaction #4 initiates #5 to compile
and execute the JS file (lines 18-20), which opens and reads
a file “secret.txt” through the FS Broker thread (lines
21-22). From the audit log (in the last column), we observe
the corresponding syscalls for many of the application level
operations. For example, the first request of the main page at
the application level corresponds to a socket creation syscall
(line 1) and a connect syscall (line 2). There are also syscalls
that are invisible at the application level, such as the open and
write of file “TRRBlacklist.txt” (lines 6-7) that contains
a list of websites that are blocked.

Observe that many high level atoms miss the unit informa-
tion and none of the low level atoms have any unit information.
In addition, dependences are invisible. In the following, we
show how the two logs are fused to derive such missing
information. We use Ft and At to denote the firefox event
and the audit event at line t in Fig. 11.

According to rule (R5) in Fig. 9, we can derive
sameTran(F5, F8) and sameTran(F13, F14). By rule (R7),
these pairs are in the same unit. By rule (R8), we have
sameUnitH(F8, F9) and sameUnitH(F14, F15). By rule
(R6), we have sameUnitH(F2, F9) due to the same tab id
A. At the end of inference, we can determine that all the plain

TABLE III: Apache execution

Thread Line Apache Logs Audit Logs

1 socket(fd0)
2 accept4(172.16.163.1, fd0)
3 read(172.16.163.1, fd0)
4 ...
5 REQ(. . .)* open(/var/www/html/payload.php, fd1)
6 ...
7 open(/var/www/html/secret.txt, fd2)
8 ...
9 writev(172.16.163.1, fd0)

10 shutdown(172.16.163.1, fd0)
11 ...

W
or

ke
r

12 accept4(168.128.16.1, fd3)

* requestFrom(-,-,172.16.163.1, payload.php)

firefox log entries in Fig. 11 belong to the same unit. The
shaded entries belong to another unit.

Following rules (R1) and (R3), we have
project(F2, A2). Note that although F2 has an URI
“CNN.com/index.html”, it is resolved to an IP
151.101.129.67, which allows (R1) to apply. Similarly, we
have project (F5, A5), project(F9, A9), project(F10, A10),
project(F12, A12), and so on. We also have atomicL(A1, A2)
due to the atomicity of the two operations, by (A2). As such,
we have project(F2, A1) by rule (R4). By (R10), we have
sameUnitL(A2, A5), which further entails sameUnitL
(A2, A6) by (R11), i.e., the forward attribution rule. Similarly,
we have sameUnitL(A2, A7). At the end, we correctly
partition the audit events to two units, namely, the plain
events and the shaded events. Furthermore, through rules
(R14), we get depL(A16, A13), which correctly captures
the dependence that the JS file was received from network
and written to a file. And due to execution partitioning, the
false dependence from A16 to A12 is avoided. In contrast,
NoDoze [31] cannot distinguish the true dependence between
A16 and A13 from the false dependence between A16 and
A12. OmegaLog [33] cannot identify the false dependence
either as it cannot distinguish the subtasks from different units
in a worker thread. In fact, as shown by our results in Section
V-E, they do not work well when asynchronous behaviors are
intensive.

Example 2: Request Serving in Apache. To show the gen-
erality of log fusion, we use another example in which apache
serves a request. Recall that it has a class IV thread pool
execution model, in which a thread from the pool is being
reused to serve multiple requests. In Table III, an attacker from
IP 172.16.163.1 requests a file payload.php from the
apache server. The request is recorded in the apache log at line
5. The audit log column shows the low level events invisible
at the application level. They all belong to a same thread
(from the pool). Note that audit log entries contain thread id,
allowing us to separate them by threads. Lines 1-10 belong
to the request and lines 11-12 belong to another later request
served by the same thread. Lines 1 and 2 are atomic. Lines 2,
3, 9, and 10 (in the audit log) share the common IP field with
the application log entry (at line 5). As such, rules (R1), (R3),
and (R4) allow us to project lines 2, 3, 9, and 10 in audit to line
5 in the application log. They hence belong to the same unit.
According to rule (R11), lines 4-8 are attributed to the same
unit too although they are not projected to any application log.
This precisely reflects that tasks within a thread are processed
sequentially.

10

We use the above two examples to show how the fusion
rules can be applied in real scenarios to remove false de-
pendence. However, it is possible that the attackers can craft
special application workloads to attack our rules. We will
explore this in our future work.

Apply to New Programs. ALchemist is designed in a way
that aims to minimize the efforts of extending the technique
to a new application. The canonical form, atoms, and fusion
rules are all general and shared by all applications which
can be expressed by our execution models. For such a new
application, the analyst only needs to provide the parser to
parse its built-in log to the canonical form. Note that it is
completely fine if certain fields of the canonical form are
vacant when the raw log does not have such information
explicitly. ALchemist will infer it by log fusion if the raw log
has sufficient (implicit) information to reflect the underlying
execution model, which is the case for most the applications
we studied. As discussed earlier, writing parsers is largely
one-time efforts. However, it is possible that our execution
model study do not cover some execution models, leading to
incompleteness of the fusion rules. We plan to address this
issue in the future work.

C. Demand-driven Datalog Inference, Graph Construction

ALchemist relies on the underlying Datalog inference
engine to perform log fusion. However, according to our
experiment in Section V, on average three million audit events
and thirty thousand application log events can be generated
everyday with a regular workload. Complex attacks may span
over days, weeks and even months. It is infeasible for a Datalog
engine to operate on the logs of such a long period. We
leverage the observation that although attack span may be long,
the attack behaviors may only be a very small portion of overall
logged behaviors. Given that ALchemist is capable of avoiding
bogus dependencies, we propose a demand-driven Datalog
inference algorithm. Particularly, for a backward forensic task
that tries to identify the root cause of an attack, we start with
the raw logs (of a long period of time) and the symptom event.
We separate the log entries by processes. We then perform
log fusion on the process of the symptom to construct its
causal graph, e.g., through rules (R12)-(R15) in Fig. 9. With
the dependence relations, the provenance graph is constructed
as follows.

Provenance Graph Construction. A unit node is created
for each unit. It contains all the application log events and
audit log events in the unit based on the sameUnitH and
sameUnitL relations (in Fig. 9). An event node is created for
each event such that each unit node contains a set of event
nodes. Dependence edges are introduced between event nodes
according to the depH and depL relations. Projection edges
are introduced between an application event node and an audit
event node according to the projection relation. Examples can
be found in Section VI.

After the dependence graph is constructed, it is traversed
backward from the symptom event. Through the traversal,
ALchemist identifies the other processes that are causally re-
lated to the symptom through direct or transitive dependencies.
Then, only the logs of those processes are fused and further

TABLE IV: Attack overview

No. Platform Duration Attack Surface Scenario Name Attack Reference

1 Ubuntu 14.04 0d8h TightVNC-1.3.9 Ransomware Case3.5(Engagement 4)
2 Ubuntu 14.04 0d3h Nginx-1.2.9 Backdoor Case3.8(Engagement 3)
3 Ubuntu 14.04 0d20h Firefox54.0 Phishing Email Link Case4.5(Engagement 3)
4 Ubuntu 14.04 0d10h Firefox54.0 Exfiltration Case4.9(Engagement 3)
5 Ubuntu 14.04 1d23h Firefox54.0 Phishing Email Exec Case4.8(Engagement 3)

6 Mint 17.1 0d7h OpenSSH-6.6 Metasploit Case3.6(Engagement 4)
7 Mint 17.1 0d5h OpenSSH-6.6 Azazel Injection Case3.2(Engagement 4)
8 Mint 17.1 1d0h Nginx-1.2.9 SSHD Injection Case3.14(Engagement 3)
9 Mint 17.1 0d3h Nginx-1.2.9 Web-Shell Case3.1(Engagemnet 3)
10 Mint 17.1 0d10h Firefox54.0 RAT Malware Case4.4(Engagement 3)

11 Ubuntu 14.04 0d19h Apache-2.4.7 ShellShock NoDoze[31]
12 Ubuntu 14.04 1d20h OpenSSH-6.6 passwd-gzip-scp High Fidelity[71]
13 Ubuntu 14.044 1d18h Apache-2.4.7 Cheating Student ProTracer[54]
14 Ubuntu 14.04 0d23h OpenSSH-6.6 Data Theft PrioTracker[49]

traversed. Section V shows that such a demand-driven strategy
substantially reduces the workload for the Datalog engine.

V. EVALUATION

ALchemist supports both Linux 64 bits and 32 bits sys-
tems. Its code base includes approximately 600 lines of parser
specification, 11500 lines of Python code, and 1900 lines of
Datalog rules. We focus on the following research questions.

RQ1 What is the runtime and space overhead of AL-
chemist(Section V-B)?

RQ2 What is the performance of Datalog module when
analyzing real world attacks (Section V-C)?

RQ3 How effective is our execution partitioning scheme
based on log fusion (Section V-D)?

RQ4 How effective is ALchemist when analyzing real
world attacks? How does it compare to the state-of-the-art
techniques that do not require instrumentation: NoDoze [31]
and OmegaLog [33] (Section V-E)?

A. Experiment Setup

To evaluate the efficiency of ALchemist (RQ1), we use 12
popular applications collected from the literature [53], [45].
To answer RQ3, we construct a few most commonly seen use
cases for each application, which involve intensive background
behaviors, and demonstrate that ALchemist can correctly
partition these executions and attribute the background activ-
ities. Also, to show the effectiveness of ALchemist (RQ4)
and study the performance of Datalog inference (RQ2), we
emulate 10 advanced attacks collected from various public
resources including the DARPA TC engagements [6] and the
4 real world attacks in NoDoze [31]. We are not able to
acquire the implementation of NoDoze or OmegaLog. We
hence reimplement them based on the papers and validate the
correctness of reimplementation by comparing the results of
our implementation with their published results.

Our evaluation environments include the Ubuntu 14.04
64-bit operating system (as a few attacks require exploiting
vulnerabilities on 64-bit applications) and the Mint 17.1 32-bit
operating system. These systems have the audit logging mod-
ule running, with the configuration of collecting 48 security
related syscalls. The built-in application logging components
are all activated. Several attacker machines with different IPs
launch remote attacks and generate benign workload. NoDoze

11

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Alchemist MPI BEEP

Fig. 12: Space overhead

0

2

4

6

8

10

12

14

16

DAY1 DAY2 DAY3 DAY4 DAY5 DAY6 DAY7

Lo
g

Si
ze

(G
B)

Time(day)

App
Audit

Fig. 13: Space consumption over a week

requires collecting event frequency in normal workload in
order to determine outlier events during deployment. To collect
such profile, we collect audit logs of 4 weeks from 10 work-
stations in our institute (running typical end-user workloads)
and calculate the frequency of each dependence edge. These
work-stations are used exclusively by the authors of this
paper and they all agree to use the collected data for their
own research. Besides, we anonymized the identity related
information including account names, private file names, and
private domain names.

To answer the research questions, we run 8 systems for
seven days. Most of the time, the systems are dealing with
normal workloads, e.g., as the primary machine for daily usage.
The fourteen attacks are conducted during the seven-day period
on various machines (some machines having more than one
attacks conducted). We assume that we know the symptom
events and we conduct backward analysis to understand the
root cause. The details of fourteen attacks (nine on the 64-bits
platform and the other five on 32-bits) are shown in Table IV.
They are reproduced based on reports at [6] and description in
[31]. Observe in column 3, each attack procedure is distributed
in a long duration of time (within the 7-day period), in order
to simulate real attacks and test how well ALchemist can
identify attack provenance from benign workload. The Datalog
inference module and visualization module are deployed on a
separate server with Intel i7-9700 CPU 4.7GHz and 64 GB
memory running Ubuntu 14.04 OS.

B. System Overhead (RQ1)

Space Overhead. In the overhead experiments, we acquire
the implementations of MPI [53] and BEEP [45] from their

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

Alchemist MPI BEEP

Fig. 14: Runtime overhead

authors and compare ALchemist with them. To measure space
overhead, we use the logs from the one-week experiments
on the 8 systems. We have turned on ALchemist, MPI and
BEEP. The results are shown in Fig. 12. For ALchemist, the
space overhead denotes the ratio of aggregated application log
size over the audit log size. For MPI and BEEP, the space
overhead denotes the size of the additional events emitted
by instrumentation over the audit log size. Observe that for
complex applications such as firefox, our system introduces
much less overhead compared to MPI and BEEP. For firefox,
our system introduces 7.11% overhead while MPI introduces
18.20% overhead and BEEP introduces 42.16% overhead. This
is because the instrumentation is quite low level such that a
high level event (i.e., one entry in the application log) may give
rise to a large number of instrumented events. We also evaluate
the whole system overhead in real world scenario. With one
week of normal workload, our system on average generates
15.8GB logs with 1.7GB application logs. Fig. 13 shows the
space consumption over time for one of the machines.

Runtime Overhead. To measure runtime overhead, we cre-
ated a set of normal workloads for individual applications,
representing typical use cases, such as browsing websites
and downloading files in firefox. We use ab [3] to simulate
apache workload and a UI input simulation tool xdotool [9]
to scriptize keyboard and mouse activities. The results are
shown in Fig. 14. Here the original applications with audit
logging turned on serve as the baseline. Observe that for
most applications ALchemist has the lowest overhead as its
runtime overhead comes only from application logging. For 4
applications such as firefox and transimission, MPI has lower
overhead as it only instruments places that are critical for
causality, whereas the application logs record additional infor-
mation such as application performance statistics. The more
important message here is that all these methods, including
ALchemist, have very small overhead.

C. Datalog Inference Overhead (RQ2)

The analysis overhead of ALchemist is dominated by
the Datalog engine. Recall that ALchemist is demand-driven
and only performs inference on log entries related to attacks.
Table V shows the important statistics for Datalog inference
for the 14 attacks. The first column shows the attacks. The
second column shows that how many raw log entries, including
both audit log entries and application log entries, are con-
sumed, with and without demand-driven analysis. For instance,
6.6M/291K (1st row) means that without demand-driven, 6.6M
tuples have to be processed and with demand-driven, they

12

TABLE V: Datalog inference details of attacks
Attack Tuple(#) Rules(#) Relations(#) Time(s) Memory(MB)

1 6.6M/291K 73.8M/3.2M 16.4M/1.2M 40.0 / 1.1 262 / 40
2 313K/95K 1.74M/1.16M 554K/429K 0.6 / 0.5 23 / 17
3 83M/1.76M -/347.26M -/11.96M - /88.5 - /217
4 39M/800K -/59.48M -/3.74M - /23.2 - / 95
5 149M/3.06M -/221.85M -/22.2M - /70.6 - /384
6 3.6M/181.8K 494M/9.18M 11.7M/1.89M 106.0 / 2.7 178 / 46
7 2.58M/155.36K 106M/6.61M 1.50M/854K 42.3 / 2.3 38 / 28
8 10.8M/697.82K 544M/15.48M 79.4M/2.49M 136.0 / 3.3 1180 / 53
9 5.37M/154.83K 184.7M/31.65M 14.2M/12.2M 46.4 /12.5 191 /154
10 17.5M/730.82K -/46.57M -/3.45M - /12.1 - / 79
11 7.37M/2.12M -/281.62M -/6.87M - /97.3 - /409
12 5.07M/1.25M -/223.71M -/9.33M - /99.0 - /370
13 4.30M/1.05M -/151.9M -/4.25M - /84.5 - /267
14 4.02M/521K -/161.6M -/5.72M - /95.4 - /145

are reduced to 291K. The third column reports the number
of applications of inference rules (with and without demand-
driven). Symbol ‘-’ means timeout (10 hours) or out of mem-
ory. The fourth column shows the number of derived relations;
the fifth column time consumed and the last column memory
consumed. The results indicate the necessity of the demand-
driven strategy. Observe that in a complex attack 5 (involving
complex firefox behaviors), the inference engine applies over
220 million rules, deriving 22.2 million new relations. The
corresponding runtime overhead is only 70 seconds while the
space overhead is only 384MB, demonstrating the practicality
of ALchemist in attack forensics.

D. Effectiveness in Execution Partitioning (RQ3)

We conduct an experiment to evaluate the effectiveness of
log fusion for execution partitioning. For each application, we
craft a special workload that represents the most commonly
seen background activities of the application. Each workload
represents multiple independent tasks (i.e., units), each task
having substantial background activities. We first run the tasks
one by one with complete separation to acquire the ground-
truth (i.e., which unit an event belongs to). Then we execute
these tasks again in parallel, inducing maximum interleaving,
and then evaluate the precision and recall of ALchemist. Here,
precision means that how many unit attributions identified
by ALchemist are correct and recall means that how many
correct unit attributions are reported by ALchemist. In order to
compare with the ground truth, we suppress non-determinism
by hosting resources on local servers and avoiding dynamic
contents (e.g., dynamic Ads in firefox).

For instance in the workload of firefox, we use HTTrack to
crawl 10 common websites, e.g., yahoo.com and CNN.com,
including all the content pages, CSS, and JS to a local folder
and then host these sites locally. We then use a command line
to open each site in a tab, e.g., “firefox -new-tab -url
CNN.com” to open CNN.com, and collect the corresponding
logs. All the log entries belong to the same unit. We do this
for the ten sites and acquire the ground truth.

Then, we use “firefox -new-tab -url CNN.com
-new-tab -url ...” to open the 10 sites simultaneously,
causing maximum interleaving. Then we use ALchemist to
partition application logs and attribute audit events. Recall in
Section I we discussed that OmegaLog [33] also partitions
execution by using repetitive control flow paths (recovered
from application logs) to approximate units. We hence also
run the same experiment on OmegaLog for comparison.

The second row in Table VI presents the results for
firefox. The second and third columns denote the audit log

size and the corresponding application log size. The 4th, 5th,
6th, 7th, and 8th columns denote the number of raw event
entries, rule applications, derived relations, inference time,
and memory overhead. The 9th and 10th columns denote
precision and recall for ALchemist, whereas the 11th and 12th
columns for OmegaLog. NoDoze does not partition execution.
Observe that ALchemist’s precision for firefox is 99.7%, with
only 16.9k events mis-attributed, while OmegaLog does not
support applications with asynchronous background behaviors.
Further inspection shows that firefox regularly updates backup
files like sessionstore.jsonlz4. Our system attributes
these updates to a tab instead of the firefox process. The
recall of firefox is 96.8%. The reason for missing entries is
the non-determinism of firefox execution beyond our control.
Specifically, different firefox executions use different tem-
porary files to communicate with other applications (e.g.,
/tmp/dbus-XXX, with XXX a random string). Hence, the
file names in the re-execution are different from those in
the ground truth. The other applications have similar results.
Observe that ALchemist has 100% precision and recall for
many of them, denoting perfect partitioning. In contrast, for
the applications it supports, OmegaLog has good precision and
recall for many of them except two, where the log messages
do not have sufficient information to recover precise paths.
The details of the workloads, the raw logs, and the derived
relations are posted on [2] for reproduction.

E. Effectiveness in Attack Forensics (RQ4)

To answer RQ4, we use ALchemist, the reimplemented
NoDoze [31] and OmegaLog [33] to generate provenance
graphs for the 14 APT attacks. During NoDoze attack foren-
sics, each event is assigned an anomaly score based on its
frequency (when compared to the normal profile). Then the
anomaly score is propagated during causal path traversal. In
this way, an anomaly score can be computed for each path.
Paths having a high score (i.e., likely anomaly) are reported.
Then we compare the generated graphs with the precise ground
truth attack graphs (manually marked based on the attack
steps) to calculate the True Positive (TP), True Negative
(TN), False Positive (FP), False Negative (FN), Precision
and Recall values. In contrast, OmegaLog recovers repetitive
control flow paths from application logs and use these paths
as the approximation of the execution units. An output event
in a unit is considered dependent on all the preceding inputs
in the unit. We tune our reimplementations (e.g., the threshold
for anomaly) until we can achieve similar performance as their
published results. The results are summarized in Table VII. The
table contains the following information: columns 2∼3 for the
ground truth number of attack related units and normal units
(note that attack steps may interleave with benign activities);
columns 4∼7 for the number of attack related and normal
units determined by ALchemist (a unit is considered attack
related if it is in the attack provenance graph), FP and FN
compared with the ground truth; columns 8∼9 for the ground
truth numbers of attack related events and normal events, each
including both the number of audit events (L) and the number
of application log events (H); columns 10∼13 the number of
FPs and FNs (of the events in attack provenance graph) by
ALchemist, the precision, and recall; columns 14∼17 the FPs
and FNs (only at the audit log level), precision and recall by
NoDoze, which does not use application log. The last four

13

TABLE VI: Execution partitioning on asynchronous normal workloads (‘-’ entries are because OmegaLog does not support
applications with asynchronous background behaviors)

Program Audit Size App Size Tuples(#) Rules(#) Relations(#) Time(s) Memory(MB) ALchemist Result OmegaLog Result
Precision Recall Precision Recall

Firefox 2.6GB 241.8MB 5.4M 139.0M 22.0M 107.1 525 99.7% 96.8% - -
Chromium 1.6GB 71.1MB 1.9M 77.6M 12.7M 99.7 477 99.8% 96.2% - -
LibreOffice 513.0MB 5.7MB 1.1M 46.2M 8.3M 87.5 381 99.8% 97.7% - -
OpenOffice 487.6MB 3.1MB 382K 13.7M 2.6M 61.7 167 99.6% 99.5% - -
Vim 389.0MB 2.5MB 774K 8.9M 2.0M 15.9 174 100.0% 100.0% 93.1% 93.1%
Apache 282.4MB 15.3MB 529K 4.8M 1.4M 10.5 119 100.0% 100.0% 100.0% 100.0%
Nginx 205.2MB 11.2MB 401K 2.1M 512K 5.0 92 100.0% 100.0% 100.0% 100.0%
Pure-ftpd 388.1MB 6.5MB 832K 5.9M 1.5M 12.5 168 100.0% 100.0% 100.0% 100.0%
Vsftpd 491.1MB 9.2MB 1.1M 12.6M 2.5M 21.0 191 100.0% 100.0% 100.0% 100.0%
Proftpd 338.5MB 4.7MB 717K 7.4M 1.6M 14.9 130 100.0% 100.0% 100.0% 100.0%
TightVNC 402.4MB 7.9MB 839K 6.2M 2.2M 13.7 176 100.0% 100.0% 100.0% 100.0%
Foxit 63.6MB 1.1MB 110K 757K 243K 1.2 29 99.3% 98.0% - -
Openssh 186.1MB 1.6MB 425K 3.0M 1.3M 8.1 110 100.0% 100.0% 100.0% 100.0%
Transmission 1.2GB 17.6MB 2.6M 20.2M 7.1M 42.0 358 98.9% 97.6% 74.1% 72.8%

TABLE VII: Forensic results (APG, L, and H stand for attack provenance graph, audit level, and application level, respectively)
Attack |Unit| (g-truth) |Unit| ALchemist |Event| (g-truth) (L/H) |Event| in ALchemist APG (L/H) |Event| in NoDoze APG (L only) |Event| in OmegaLog APG (L/H)

No. Attack Normal TP TN FP FN Attack Normal FP FN Precision Recall FP FN Precision Recall FP FN Precision Recall

1 2 24 2 24 0 0 1043/10 290K/618 25/0 0/0 97.6%/100% 100%/100% 12 0 98.9% 100% 92/4 37/2 91.9%/71.4% 96.6%/83.3%
2 3 17 3 17 0 0 65/13 95K/212 5/0 0/0 92.8%/100% 100%/100% 3 0 95.6% 100% 16/0 0/0 80.2%/100% 100%/100%
3 4 158 4 158 0 0 2687/1132 1.78M/33K 279/58 0/0 90.6%/95.1% 100%/100% 1191 785 69.3% 77.4% - - - -
4 8 97 8 97 0 0 1028/530 1.19M/28K 150/36 0/0 87.3%/93.6% 100%/100% 792 565 56.5% 64.5% - - - -
5 12 354 12 354 0 0 3874/859 4.05M/58K 357/83 0/0 91.6%/91.2% 100%/100% 1516 698 71.9% 84.7% - - - -
6 5 45 5 45 0 0 114/40 181K/1463 12/0 0/0 90.4%/100% 100%/100% 18 0 86.4% 100% 12/0 0/0 90.4%/100% 100%/100%
7 5 74 5 74 0 0 112/37 155K/680 17/0 0/0 86.8%/100% 100%/100% 13 24 87.1% 78.6% - - - -
8 7 67 7 67 0 0 307/26 697K/297 26/0 28/0 91.4%/100% 90.8%/100% 22 37 92.5% 87.9% - - - -
9 5 267 5 267 0 0 73/19 154K/5349 5/0 0/0 93.5%/100% 100%/100% 4 0 94.8% 100% 14/0 0/0 83.9%/100% 100%/100%
10 7 136 7 136 0 0 926/283 1.07M/20K 115/39 0/0 89.0%/87.9% 100%/100% 405 213 69.6% 81.3% - - - -
11 11 541 11 541 0 0 285/35 1.36M/33K 7/0 0/0 97.6%100% 100% 100% 4 2 98.6% 99.3% 20/0 4/1 93.4%/100% 98.6%/97.2%
12 2 12 2 12 0 0 211/9 1.22M/21 13/0 0/0 94.2%/100% 100%/100% 21 0 90.9% 100% 13/0 0/0 94.2%/100% 100%/100%
13 5 43 5 43 0 0 101/20 1.50M/44 4/0 0/0 96.2%/100% 100%/100% 2 2 98.1% 98.1% 9/0 0/0 91.8%/100% 100%/100%
14 6 12 6 12 0 0 656/17 511K/47 0/0 0/0 100%/100% 100%/100% 0 0 100% 100% 0/0 0/0 100%/100% 100%/100%

Avg. 6 132 6 132 0 0 820/216 987K/13K 73/13 2/0 92.8%/97.7% 99.6%/100% 286 166 86.4% 90.8% 22/1 5/1 90.7%/96.4% 99.4%/97.6%

columns are the same information for OmegaLog that uses
both application and audit logs. Our experiments show that
ALchemist can precisely identify all the attack-related units in
the 14 attacks. At the individual event level, ALchemist can
achieve 92.8% precision and 99.6% recall for audit records,
whereas NoDoze can achieve 86.4% precision and 90.8%
recall and OmegaLog achieves 90.7% precision and 99.4%
recall (for the subset of attacks it supports). ALchemist has
some false positives for attacks 4 and 7 that involve firefox and
rootkit Azazel with highly asynchronous execution and sophis-
ticated process injection techniques. As such, some of the low
level events are attributed to the wrong unit by the forward
attribution rule. These events do not have clear projection to
the application log. In contrast, NoDoze does not have good
accuracy for attacks 3, 4, 5, and 10 that involve firefox and
libreoffice with a lot of background behaviors. As illustrated
by the example in Fig. 11, NoDoze cannot prevent bogus
dependencies caused by asynchronous background behaviors.
It mistakenly introduces dependencies between foreground unit
and the completely unrelated background unit as it cannot
distinguish them. NoDoze misses important events in 6 out
of 10 attacks and the recall for attacks 3, 4, 5 are low. This is
because the attacks leveraged frequently executed apps and
dependencies, which are mistakenly excluded by NoDoze.
These events are critical in understanding attack provenance.
We also want to point out that NoDoze requires collecting
execution profile and training whereas ALchemist does not.
Omega does not handle applications that have background

…

 mail.yahoo.com

 poc.html

anonymous.com

file 1 file n

z.z.z.z

 poc.html

A B

Tab 1 Tab 2

69.147.64.33

C

Fig. 15: Causal graph of attack #4 by ALchemist
behaviors and hence the provenance graphs for attacks 3, 4,
5, 7, 8 and 10 explode (and hence the ‘-’ values). It works
well for the other attacks. Observe that ALchemist consistently
outperforms.

VI. CASE STUDIES

We use two representative attacks: Exfiltration (attack #
4) and Azazel Injection (attack # 7) to demonstrate the
effectiveness of ALchemist in comparison with NoDoze. They
demonstrate how NoDoze misses critical attack steps such as
those related to commonly visited mail.yahoo.com and the
/home/user folder.

A. Attack #4: Exfiltration

Attack Scenario. The attacker sends an email with a malicious
attachment to the victim. The victim downloads the malicious
HTML file to “file:///home/user/poc.html”. Then
the victim opens the HTML file in firefox. Based on the same
origin policy [12] by firefox, poc.html has the access to all
files in a folder if one of its DOM objects has access to these

14

 deamon

Session 1

 monitor user child …
 network

Session n

 monitor user child

 networkx.x.x.x y.y.y.y

 bash bash

 selinux.so

 server

z.z.z.z

 bash

 netcat ps …
z.z.z.z

A

 azazel

Fig. 16: Causal graph for the Azazel attack by ALchemist
files. Then attacker uses ClickJacking [5] to deceive the victim
into clicking a button on the malicious HTML. The victim
believes he clicks on a link to a remote page, but in fact he is
clicking on the iframe’s directory “file://home/user/”,
allowing poc.html to gain access to all the files in the
directory. Finally, the malicious page sends requests with the
stolen information and navigates to the attacker’s website
anonymous.com (with IP z.z.z.z).

Threat Alert. The suspicious connection to z.z.z.z is
subsequently detected by a local network monitoring software
Nogios, which leads to the investigation of the attack.

Attack Investigation. Fig. 15 presents the causal graph by
ALchemist. Observe that it precisely captures the attack
provenance with tab 1 downloading the attachment from
mail.yahoo.com (IP 69.147.64.33) and tab 2 exfiltrating
files. In contrast, NoDoze misses the root cause C and
the exfiltration of files (e.g., A and B). In particular,
the IP of mail.yahoo.com is frequently visited by
firefox and hence the network connection is precluded.
Furthermore, the exfiltration happens on preference files in
the /home/user folder frequently visited by firefox during
normal operation. As such, they are precluded as well. Hence,
from NoDoze’s graph, the inspector may not understand
the damages caused by the attack, nor does he understand
where the attack was from. In addition, the navigation
from poc.html to anonymous.com is also unclear
from NoDoze’s graph. In ALchemist, rules (R1) is used
during the Datalog inference phase to correlate firefox event
“GET anonymous.com/index.html*?data=...”
with the system event “connect(z.z.z.z)”.
Through firefox events, ALchemist reconstructs the
navigation relation from /home/user/poc.html to
anonymous.com. The accesses to “file 1” and “file
n” are invisible at the application log level. But they can be
seen at the audit level. Our forward attribution rule (R11)
allows attributing these audit events to the appropriate tab.

B. Attack #7: Azazel Attack

Attack Scenario. The attacker connects to a host via SSH
using stolen credentials. Then an open-source rootkit Azazel
and its shared object package selinux.so were uploaded using
scp. In order to avoid creating a large number of events
during a short period, the attacker terminates the current sshd
session. Sometime later, the attacker uses other stolen creden-
tials to start a new sshd session and executes command line
“export LD_PRELOD = selinux.so” in bash to set the
LD PRELOAD environment variable to the downloaded
selinux.so. Then the attacker starts a server process listening on

TABLE VIII: Comparison with closely related works that aim
to solve the dependency explosion problem

BEEP [45]

MPI [53]
MCI [43]

UIScope [73]

OmegaLog [33]

NoDoze [31]

ALchemist

Instrumentation 3 3 7 7 7 7 7
Training Run 3 7 3 7 7 7 7
Server App. 3 3 3 7 3 3 3
GUI App. 3 3 3 3 7 3 3
App. Semantics 7 7 7 7 3 7 3

port 4444. As such, selinux.so is injected to the newly launched
process. By hooking the commonly used function accept(),
selinux.so enables the attacker to drop a shell remotely from
IP z.z.z.z. Then the attacker can execute multiple recon
commands to collect and send back credential information a
few times.

Threat Symptom. The suspicious connection to z.z.z.z is
subsequently detected by a local network monitoring software
(e.g. Nogios), which leads to the attack investigation.

Attack Investigation. To investigate this attack, the inspector
first obtains the logs (including both app and audit logs),
apply Datalog inference and construct the graph from the
symptom event (i.e., the connection to z.z.z.z). The graph
is shown in Fig. 16. Note that in this attack, the daemon forks a
monitor process for each external connection. For the purpose
of avoiding privilege escalation, the monitor further forks child
processes to handle individual tasks (e.g., network authentica-
tion/communication). The application log helps ALchemist to
group sshd processes into sessions (one for each connection
request). In this way, starting from the symptom z.z.z.z,
ALchemist first back-traces to a sshd session n. NoDoze
can also achieve this due to the rarely visited IP. However,
setting LD PRELOAD is invisible at the audit log level
while it is recorded by applications (e.g., bash and firefox). As
a result, NoDoze misses this attack step due to the missing
dependence in A whereas ALchemist precisely captures it
and then the root cause. Furthermore, since loading selinux.so
is considered a normal activity by NoDoze according to the
execution profile, it misses the root cause as well.

VII. RELATED WORK

ALchemist is related to data provenance [65], [17], [62],
[21], [15], [64], [37], [55], [30] [69], audit logging [57], [41],
[40], [62], [18], [61], [36], [75], [74], log parsing [79], [70],
[58], [34], [66], [26] and causality analysis [80], [42], [41],
[40], [35], [45], [52], [53], [54], [43] [77], [78]. Some of them
suffer from the dependency explosion problem [41], [42]. Some
require instrumentation [53], [45], [54], which is not practical
for deployment in enterprises. Many techniques utilize learn-
ing/profiling to derive a reference model to detect abnormal
events [49], [31], [59], [70], [22], [31], [32], [47], [68], [67],
[71], [35], [23], [63], [72], [60], [76], [48]. As discussed in
Section I, these methods may be bypassed if the attacker
uses spoofing techniques to hide their activities. UIScope [73]
intercepts UI events and correlates them with audit events to
construct attack graphs. It focuses on UI apps and does not
leverage application specific semantics. It is Windows based
and hence cannot be empirically compared with ALchemist.
In contrast, ALchemist does not require instrumentation or
pre-trained models. It performs log fusion on application logs

15

and audit log to address the dependency explosion problem.
Table VIII summarizes the differences between ALchemist
and a few closely related works that address the dependence
explosion problem. Some works propose to support better
forensics analysis using graph queries [61], [25], [24] and ef-
ficient storage [29]. Forensic analysis can be extended to other
tasks [56]. Such techniques are complementary to ALchemist.

Zhang et al. [77], [78] use rule- and learning-based methods
to infer causal relationship between network events. Then
they devise user-intention based security policies to pinpoint
stealthy malware activities based on the relations. These rules
can potentially be rewritten in datalog to enhance ALchemist’s
capabilities. Xu et al. [69] propose an efficient cryptographic
protocol that ensures the correct origin or provenance of criti-
cal system information and prevents adversaries from utilizing
host resources.

Application logs have been studied in recent years. Ghoshal
et al. [27] utilize a rule specification to generate structured
provenance events by processing application log. The pro-
posed approach, however, only focuses on application logs
without considering system logs or log fusion. The exper-
iments were only conducted on 5 simple applications. The
provenance system designed by Chen et al. [20] uses a graph
recorder, which extracts provenance for applications written
in a specific declarative language or instrumented in source
code. ALchemist does not require any specific language or
instrumentation.

VIII. CONCLUSION

We propose a novel forensics technique ALchemist. It
leverages that built-in application logs and audit log are
complementary and in the mean time share a lot of common
elements, which can be utilized for log fusion. A set of parsers
are developed to parse various kinds of logs to their canonical
representations. Datalog based fusion rules are applied to bind
these logs and more importantly, to derive new information that
is invisible from either kind of the logs. Our evaluation shows
that ALchemist is highly effective in partitioning execution to
units and producing precise attack provenance graphs, without
requiring any instrumentation. It also outperforms state-of-the-
art techniques with and without instrumentation.

ACKNOWLEDGMENT

We thank our shepherd, Daphne Yao, and those anonymous
reviewers for their comments and suggestions. This research
was supported, in part by NSF 1901242 and 1910300, ONR
N000141712045, N000141410468 and N000141712947, and
Sandia Lab MOD1-18046142. Any opinions, findings, and
conclusions in this paper are those of the authors only and
do not necessarily reflect the views of our sponsors.

REFERENCES

[1] “50 essential linux applications,” https://tinyurl.com/wcj5og2.
[2] “Alchemist2020/workload,” https://github.com/ALchemist2020/Workload.
[3] “Apache http server benchmarking tool,” https://tinyurl.com/onkcat3.
[4] “Apt groups,” https://tinyurl.com/y2tqt74o.
[5] “Clickjacking,” https://tinyurl.com/62thhvp.
[6] “darpa-i2o/transparent-computing: Darpa transparent computing pro-

gram,” https://github.com/darpa-i2o/Transparent-Computing.

[7] “Datalog,” https://tinyurl.com/cam64up.

[8] “Elasticsearch,” https://tinyurl.com/y3uv7342.

[9] “jordansissel/xdotool: fake keyboard/mouse input, window manage-
ment, and more,” https://github.com/jordansissel/xdotool.

[10] “Kernel path protection,” https://tinyurl.com/7ttl5h2.

[11] “Nspr log modules,” https://tinyurl.com/gmlmtnz.

[12] “Same-origin policy,” https://tinyurl.com/pp86n9a.

[13] “Splunk,” https://www.splunk.com.

[14] “Sysdig,” https://tinyurl.com/nzrexz5.

[15] S. T. Ali, V. Sivaraman, D. Ostry, G. Tsudik, and S. Jha, “Securing
first-hop data provenance for bodyworn devices using wireless link
fingerprints,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 12, pp. 2193–2204, 2014.

[16] S. Avizheh, T. T. Doan, X. Liu, and R. Safavi-Naini, “A secure event
logging system for smart homes,” in Proceedings of the 2017 Workshop
on Internet of Things Security and Privacy, 2017, pp. 37–42.

[17] M. Backes, S. Bugiel, and S. Gerling, “Scippa: system-centric ipc
provenance on android,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 36–45.

[18] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 319–334.

[19] A. M. Bates, D. Tian, K. R. Butler, and T. Moyer, “Trustworthy
whole-system provenance for the linux kernel,” in USENIX Security
Symposium, 2015, pp. 319–334.

[20] A. Chen, Y. Wu, A. Haeberlen, B. T. Loo, and W. Zhou, “Data
provenance at internet scale: Architecture, experiences, and the road
ahead,” in Proceedings of 8th Biennial Conference on Innovative Data
Systems Research (CIDR), 2017.

[21] C. Collberg, A. Gibson, S. Martin, N. Shinde, A. Herzberg, and
H. Shulman, “Provenance of exposure: Identifying sources of leaked
documents,” in 2013 IEEE Conference on Communications and Net-
work Security (CNS), 2013, pp. 367–368.

[22] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[23] T. Dumitras and I. Neamtiu, “Experimental challenges in cyber security:
A story of provenance and lineage for malware.” in Proceedings of 4th
Workshop on Cyber Security Experimentation and Test (CSET), 2011.

[24] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “{SAQL}: A stream-based query system
for real-time abnormal system behavior detection,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 639–656.

[25] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “{AIQL}:
Enabling efficient attack investigation from system monitoring data,” in
2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
2018, pp. 113–126.

[26] Y. Gao, S. Huang, and A. Parameswaran, “Navigating the data lake
with datamaran: Automatically extracting structure from log datasets,”
in Proceedings of the 2018 International Conference on Management
of Data, 2018, pp. 943–958.

[27] D. Ghoshal and B. Plale, “Provenance from log files: a bigdata prob-
lem,” in Proceedings of the Joint EDBT/ICDT 2013 Workshops, 2013,
pp. 290–297.

[28] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The taser intrusion
recovery system,” in ACM SIGOPS Operating Systems Review, vol. 39,
no. 5, 2005, pp. 163–176.

[29] Z. Guo, H. Lin, M. Yang, D. Zhou, F. Long, C. Deng, C. Liu, and
L. Zhou, “G2: A graph processing system for diagnosing distributed
systems,” 2011.

[30] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso:
Preventing history forgery with secure provenance.” in FAST, vol. 9,
2009, pp. 1–14.

[31] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.” in NDSS, 2019.

16

[32] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer, “Towards
scalable cluster auditing through grammatical inference over provenance
graphs,” in Network and Distributed Systems Security Symposium, 2018.

[33] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omegalog:
High-fidelity attack investigation via transparent multi-layer log analy-
sis,” in NDSS, 2020.

[34] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated
log parsing for large-scale log data analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 931–944, 2017.

[35] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time
attack scenario reconstruction from cots audit data,” in Proc. USENIX
Secur., 2017, pp. 487–504.

[36] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso, and
W. Lee, “Enabling refinable cross-host attack investigation with efficient
data flow tagging and tracking,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 1705–1722.

[37] Y. Ji, S. Lee, and W. Lee, “Recprov: Towards provenance-aware user
space record and replay,” in International Provenance and Annotation
Workshop, 2016, pp. 3–15.

[38] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in International Conference on Computer Aided Verification,
2016, pp. 422–430.

[39] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in Acm
Sigplan Notices, vol. 47, no. 7, 2012, pp. 121–132.

[40] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion
recovery using selective re-execution,” 2010.

[41] S. T. King and P. M. Chen, “Backtracking intrusions,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 223–236, 2003.

[42] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality.” in NDSS, 2005.

[43] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation,” in Proceedings of
the 25th Network and Distributed System Security Symposium (NDSS).
The Internet Society, San Diego, California, USA, 2018.

[44] K. H. Lee, X. Zhang, and D. Xu, “Loggc: garbage collecting audit log,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 1005–1016.

[45] ——, “High accuracy attack provenance via binary-based execution
partition.” in NDSS, 2013.

[46] B. Li, “Enabling fine-grained reconstruction and analysis of web attacks
with in-browser recording systems,” Ph.D. dissertation, uga, 2017.

[47] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion, 2016, pp. 102–111.

[48] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1777–1794.

[49] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security,” in Proceed-
ings of the 25th Network and Distributed System Security Symposium
(NDSS). The Internet Society, San Diego, California, USA, 2018.

[50] D. Ma, “Practical forward secure sequential aggregate signatures,” in
Proceedings of the 2008 ACM symposium on Information, computer
and communications security. ACM, 2008, pp. 341–352.

[51] D. Ma and G. Tsudik, “Forward-secure sequential aggregate authen-
tication,” in 2007 IEEE Symposium on Security and Privacy (SP’07),
2007, pp. 86–91.

[52] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in Proceedings of the 31st Annual Computer Security Applications
Conference, 2015, pp. 401–410.

[53] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “Mpi: Mul-

tiple perspective attack investigation with semantics aware execution
partitioning,” in USENIX Security, 2017.

[54] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in NDSS, 2016.

[55] P. McDaniel, “Data provenance and security,” IEEE Security & Privacy,
vol. 9, no. 2, pp. 83–85, 2011.

[56] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” arXiv preprint arXiv:1810.01594, 2018.

[57] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in USENIX Annual Technical
Conference, General Track, 2006, pp. 43–56.

[58] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting opera-
tional profiles from execution logs using suffix arrays,” in 2009 20th
International Symposium on Software Reliability Engineering, 2009, pp.
41–50.

[59] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, 2012, pp. 26–26.

[60] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais, “Detection
of early-stage enterprise infection by mining large-scale log data,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2015, pp. 45–56.

[61] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Ba-
con, and M. Seltzer, “Runtime analysis of whole-system provenance,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1601–1616.

[62] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi:
collecting high-fidelity whole-system provenance,” in Proceedings of
the 28th Annual Computer Security Applications Conference, 2012, pp.
259–268.

[63] A. Ramachandran, K. Bhandankar, M. B. Tariq, and N. Feamster,
“Packets with provenance,” Georgia Institute of Technology, Tech. Rep.,
2008.

[64] A. Ramachandran and M. Kantarcioglu, “Smartprovenance: a dis-
tributed, blockchain based dataprovenance system,” in Proceedings of
the Eighth ACM Conference on Data and Application Security and
Privacy, 2018, pp. 35–42.

[65] M. Stamatogiannakis, E. Athanasopoulos, H. Bos, and P. Groth, “Prov
2r: practical provenance analysis of unstructured processes,” ACM
Transactions on Internet Technology (TOIT), vol. 17, no. 4, p. 37, 2017.

[66] S. Thaler, V. Menkonvski, and M. Petkovic, “Towards a neural language
model for signature extraction from forensic logs,” in 2017 5th Inter-
national Symposium on Digital Forensic and Security (ISDFS), 2017,
pp. 1–6.

[67] Y. Xie, D. Feng, Z. Tan, L. Chen, K.-K. Muniswamy-Reddy, Y. Li, and
D. D. Long, “A hybrid approach for efficient provenance storage,” in
Proceedings of the 21st ACM international conference on Information
and knowledge management, 2012, pp. 1752–1756.

[68] Y. Xie, K.-K. Muniswamy-Reddy, D. D. Long, A. Amer, D. Feng, and
Z. Tan, “Compressing provenance graphs.” in TaPP, 2011.

[69] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao, “Data-provenance
verification for secure hosts,” IEEE Transactions on Dependable and
Secure Computing, vol. 9, no. 2, pp. 173–183, 2011.

[70] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 117–132.

[71] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 504–516.

[72] C. Yang, G. Yang, A. Gehani, V. Yegneswaran, D. Tariq, and G. Gu,
“Using provenance patterns to vet sensitive behaviors in android apps,”
in International Conference on Security and Privacy in Communication
Systems, 2015, pp. 58–77.

[73] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “Uiscope: Accurate,
instrumentation-free, deterministic and visible attack investigation,” in
NDSS, 2020.

17

[74] A. A. Yavuz, P. Ning, and M. K. Reiter, “Efficient, compromise resilient
and append-only cryptographic schemes for secure audit logging,” in
International Conference on Financial Cryptography and Data Security,
2012, pp. 148–163.

[75] A. A. Yavuz and P. Ning, “Baf: An efficient publicly verifiable secure
audit logging scheme for distributed systems,” in 2009 Annual Com-
puter Security Applications Conference, 2009, pp. 219–228.

[76] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda, “Beehive: Large-scale log analysis for detecting suspi-
cious activity in enterprise networks,” in Proceedings of the 29th Annual
Computer Security Applications Conference, 2013, pp. 199–208.

[77] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy
malware activities with traffic causality and scalable triggering relation
discovery,” in Proceedings of the 9th ACM symposium on Information,
computer and communications security, 2014, pp. 39–50.

[78] H. Zhang, D. D. Yao, N. Ramakrishnan, and Z. Zhang, “Causality rea-
soning about network events for detecting stealthy malware activities,”
computers & security, vol. 58, pp. 180–198, 2016.

[79] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), 2019, pp. 121–130.

[80] N. Zhu and T.-c. Chiueh, “Design, implementation, and evaluation of
repairable file service,” in 2003 International Conference on Depend-
able Systems and Networks (DSN), 2003, p. 217.

APPENDIX

A. Stability Study of Application Built-in Logging Modules

We study the stability of application built-in logging mod-
ules. The results are shown in Table IX. Column 1 presents
the name for the logging facilities. Note that the same logging
facility may be used by multiple applications. The second
column shows the applications. Column 3 shows the number
of regular expressions we implemented to parse the log.
Columns 4-5 present the two versions whose built-in logs are
compared. Column 6 indicates the new log types added (in
the new version) and column 7 presents the number of regular
expressions we have to change, that is, the log types are the
same but the formats are changed. Observe that most of them
are fairly stable. Even for firefox that has gone through major
code change, the logging module has only small changes.

B. Study of Top 30 Linux Application Built-in Logging

We study 32 Linux applications, including 30 most popular
applications listed in [1] and 15 complex applications widely
used in the APT attack literature. We want to analyze their
execution models and check if these applications have built-
in logging module and if their logs contain information to
disclose the underlying execution model, especially implicit/-
explicit unit boundaries, which are the most critical informa-
tion for execution partitioning. Here, implicit boundaries mean
that they can be inferred by log fusion. Column 1 shows the
applications. Column 2 presents if the application has built-in
logging facility. Column 3 presents the execution unit structure
for the application. Column 4 shows if the application log
contains information to separate different units. Column 5
shows the execution model(discussed in Section III) used by
the application. From the table, 28 out of 32 applications are
long running and 29 out of 32 have built-in logging facility
and support unit partitioning. For UI programs, their unit
structures have the following categories. Web applications (e.g.
firefox and chromium) have tabs as their execution units. For
example, Chromium’s built-in log uses a same connection id

TABLE IX: Change of application logging over years

Logging
Facilities Applications Total version1 version2 Semantic

Change
Syntax
Change

firefox 719 42.0(2015) 60.0(2018) 28 52NSPR thunderbird 719 42.0(2015) 60.0(2018) 28 52
ChromeLog chromium 657 46.0(2015) 64.0(2018) 47 84

libreoffice 64 4.4(2015) 6.0(2018) 16 41OfficeLog openoffice 70 4.1.2(2015) 4.1.6(2018) 0 0
VimLog vim 109 8.0.0(2016) 8.1.0(2019) 6 3

nginx httpd 20 1.9.0(2015) 1.15.0(2018) 0 0HttpLog apache httpd 20 2.4.12(2015) 2.4.32(2018) 0 0
vsftpd 18 2.3.5(2011) 3.0.3(2015) 0 0FtpLog pure-ftpd 18 1.0.37(2015) 1.0.47(2018) 0 0

SshLog sshd 26 7.0(2015) 7.9(2018) 0 0
VncLog tightvnc 30 2.7.10(2013) 2.8.11(2018) 0 0
ShellLog bash 8 4.3.11(2013) 5.0(2018) 0 0
PdfLog foxit 54 2.4.1(2015) 2.4.4(2018) 0 0

PlayerLog mplayer 20 1.1.0(2012) 1.3.0(2016) 0 2

TABLE X: Built-in logging study for top 30 popular Linux
applications in daily usage and top 15 Linux applications in
APT attacks (13 are shared by the two sets). Execution models
I,II,III,IV,V are those in Section III.

Application Has Built-in
Logging Unit Log of Unit

Boundary
Execution

Model

Thunderbird Yes Conversation Thread Yes III,IV,V
Geary Yes Conversation Thread Yes III,IV,V

WizNote Yes Note Yes III,IV
Chromium Yes Tab Yes III,IV,V

Firefox Yes Tab Yes III,IV,V
FileZilla Yes Connection Yes III,IV

OpenOffice Yes File/Window Yes III,IV
LibreOffice Yes File/Window Yes III,IV
KeePass* No / / /

gscan2pdf* Yes Document Yes II
WINE Yes Guest Application Yes III,IV,V

VirtualBox Yes Guest Environment Yes III,IV,V
Skype Yes Chat Thread Yes III,IV

DropBox Yes Folder Yes III,IV
Gimp Yes Window Yes III,IV
Bash Command History Command Yes II
Zsh Command History Command Yes II

Nmap Yes Connection Yes II
Zsh Command History Command Yes II

MPlayer Yes Connection Yes IV
Vim Yes Buffer/Window Yes I

U
I

Pr
og

ra
m

Emacs Yes Buffer/Window Yes I
Apache Yes Connection Yes IV,V
Nginx Yes Connection Yes IV,V

Lighttpd Yes Connection Yes IV,V
TightVNC Yes Connection Yes II
Openssh Yes Connection Yes II
Pure-ftpd Yes Connection Yes II

Vsftpd Yes Connection Yes II
Proftpd Yes Connection Yes II
FileZilla Yes Connection Yes II

Se
rv

er

UFW Yes Connection Yes I

* Not-long running applications.

to denote all sub-tasks originated from the same tab, which is
very similar to the transaction id in firefox, allowing tracking
causality in its complex asynchronous execution model. Editor
applications (e.g. office, text editor, and graphic editor) have
individual windows and files as units. Shell programs (e.g.
bash and zsh) have a history file that records all the interactive
commands and individual commands can hence be considered
as different units. For server programs, each connection is
considered as a unit. Class I execution model (sequential single
process) is widely used by editors and firewall applications.
Class II (process forking) is used in simple UI programs
(e.g. gscan2pdf) and ftp servers. Asynchronous models III, IV,
and V are commonly used by complex UI programs such as
Thunderbird and Geary.

18

